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ON THE TIME VALUE OF RUIN
Hans U. Gerber* and Elias S.W. Shiu†

ABSTRACT

This paper studies the joint distribution of the time of ruin, the surplus immediately before ruin,
and the deficit at ruin. The time of ruin is analyzed in terms of its Laplace transforms, which can
naturally be interpreted as discounting. Hence the classical risk theory model is generalized by
discounting with respect to the time of ruin. We show how to calculate an expected discounted
penalty, which is due at ruin and may depend on the deficit at ruin and on the surplus imme-
diately before ruin. The expected discounted penalty, considered as a function of the initial sur-
plus, satisfies a certain renewal equation, which has a probabilistic interpretation. Explicit answers
are obtained for zero initial surplus, very large initial surplus, and arbitrary initial surplus if the
claim amount distribution is exponential or a mixture of exponentials. We generalize Dickson’s
formula, which expresses the joint distribution of the surplus immediately prior to and at ruin in
terms of the probability of ultimate ruin. Explicit results are obtained when dividends are paid
out to the stockholders according to a constant barrier strategy.

1. INTRODUCTION

Two particular questions of interest in classical ruin
theory are (a) the deficit at ruin and (b) the time of
ruin, both of which have been treated separately in
the literature. In this paper certain answers to both
questions are given at the same time. From a math-
ematical point of view, a crucial role is played by the
amount of surplus immediately before ruin occurs.
Hence we study the joint distribution of three random
variables: the surplus immediately before ruin, the def-
icit at ruin, and the time of ruin. The time of ruin is
analyzed in terms of its Laplace transforms, which
can naturally be interpreted as discounting. The study
of the joint distribution is embedded in the study of
an expected discounted penalty, which is due at ruin
and depends on the deficit at ruin and on the surplus
immediately prior to ruin. The expected discounted
penalty, considered as a function of the initial surplus,
satisfies a certain renewal equation. We find a natural
probabilistic interpretation for the renewal equation
by considering the first time the surplus falls below

*Hans U. Gerber, A.S.A., Ph.D., is Professor of Actuarial Science at
the Ecole des HEC (Business School), University of Lausanne, CH-
1015 Lausanne, Switzerland.

†Elias S. W. Shiu, A.S.A., Ph.D., is Principal Financial Group Foun-
dation Professor of Actuarial Science at the University of Iowa, Iowa
City, Iowa 52242.

the initial level and whether or not ruin takes place
at that time.

Explicit answers are obtained for zero initial sur-
plus, large initial surplus, and arbitrary initial surplus
if the claim amount distribution is exponential or a
mixture of exponentials. Additional insight is obtained
from a pair of exponential martingales. We generalize
Dickson’s (1992) formula, which expresses the joint
distribution of the surpluses immediately prior to and
at ruin in terms of the probability of ultimate ruin.
We also obtain explicit results in the situation in
which dividends are paid out to the stockholders ac-
cording to a constant barrier strategy.

The paper generalizes and adds to a better under-
standing of classical ruin theory, which can be re-
trieved by setting the force of interest (Laplace
transform variable) equal to zero. For example, in the
classical model, the adjustment coefficient is the so-
lution of an implicit equation, which has 0 as the
other solution. If the interest rate is positive, the sit-
uation is suddenly symmetric: the corresponding
equation, called Lundberg’s fundamental equation,
has a positive solution and a negative solution. Both
solutions are important and are used to construct ex-
ponential martingales.

This paper was originally motivated by the problem
of pricing American options. The classical model uses
the geometric Brownian motion to model the stock
price process. Such a process has continuous sample
paths, which facilitate the analysis of an American
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option: the option is exercised as soon as the stock
price arrives on the optimal exercise boundary, and
the price of the option is the expected discounted
payoff. On the other hand, we would like to price an
American option in a perhaps more realistic model in
which the stock price may have jumps. The resulting
mathematical problem is more intricate, because
now, at the time of the exercise, the stock price is not
on but beyond the optimal exercise boundary. If the
logarithm of the stock price is modeled by a shifted
compound Poisson process, this leads to the type of
problems discussed in this paper. Evidently ‘‘penalty
at ruin’’ has to be replaced by ‘‘payoff at exercise.’’
Thus the paper lays the mathematical bases for a fi-
nancial application, which is explained in Gerber and
Shiu (1997b, 1998).

2. WHEN AND HOW DOES RUIN
OCCUR?

We follow the notation in Chapter 13 of Actuarial
Mathematics (Bowers et al. 1997). Thus u≥0 is the
insurer’s initial surplus. The premiums are received
continuously at a constant rate, c, per unit time. The
aggregate claims constitute a compound Poisson pro-
cess, {S(t)}, given by the Poisson parameter l and in-
dividual claim amount distribution function P(x) with
P(0)50. That is,

N(t)

S(t) 5 X , (2.1)Σ j
j51

where {N(t)} is a Poisson process with mean per unit
time l and {Xj} are independent random variables
with common distribution P(x). Then

U(t) 5 u 1 ct 2 S(t) (2.2)

is the surplus at time t, t≥0. For simplicity we assume
that P(x) is differentiable, with

P '(x) 5 p(x)

being the individual claim amount probability density
function.

Let T denote the time of ruin,

T 5 inf{t U(t) , 0} (2.3)|

(T5` if ruin does not occur). We consider the prob-
ability of ultimate ruin as a function of the initial sur-
plus U(0)5u≥0,

c(u) 5 Pr[T , ` U(0) 5 u]. (2.4)|

Let p1 denote the mean of the individual claim
amount distribution,

`

p 5 * x p(x) dx 5 E(X ).1 j0

We assume

c . lp (2.5)1

to ensure that {U(t)} has a positive drift; hence

lim U(t) 5 ` (2.6)
t→`

with certainty, and

c(u) , 1. (2.7)

We also consider the random variables U(T-), the
surplus immediately before ruin, and U(T), the sur-
plus at ruin. See Figure 1. For given U(0)5u≥0, let

denote the joint probability density func-f(x, y, t u)|
tion of U(T-), and T. ThenU(T)| |

` ` `* * * f(x, y, t u) dx dy dt|0 0 0

5 Pr[T , ` U(0) 5 u] 5 c(u). (2.8)|

Because of (2.7), is a defective probabilityf(x, y, t u)|
density function. We remark that, for x.u1ct,

f(x, y, t u) 5 0,|

and that

f(u 1 ct, y, t u) dx dy dt|
2lt5 e lp(u 1 ct 1 y)dy dt.

It is easier to analyze the following function, the
study of which is a central theme in this paper. For
d≥0, define

`

2dtf(x, y u) 5 * e f(x, y, t u) dt. (2.9)| |0

Here d can be interpreted as a force of interest or, in
the context of Laplace transforms, as a dummy vari-
able. For notational simplicity, the symbol f(x, y u)|
does not exhibit the dependence on d. If d50, (2.9)
is the defective joint probability density function of
U(T-) and given U(0)5u. Also, if d.0, thenU(T) ,| |

2dT 2dTe 5 e I(T , `),

where I denotes the indicator function, that is,
I(A)51 if A is true and I(A)50 if A is false.

Let w(x, y) be a nonnegative function of x.0 and
y.0. We consider, for u≥0, the function f(u) defined
as
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FIGURE 1
THE SURPLUS IMMEDIATELY BEFORE AND AT RUIN

2dTf(u) 5 E[w(U(T-), U(T) ) e I(T , `) U(0) 5 u]| | |
(2.10)

` ` `

2dt5 * * * w(x, y) e f(x, y, t u) dt dx dy|0 0 0

(2.11)
` `

5 * * w(x, y) f(x, y u) dx dy. (2.12)|0 0

Note that the symbol f(u) does not exhibit the de-
pendence on the parameter d and the function
w(x, y). [With d50 and w(x, y)5w(2y), f(u) is de-
noted as c(u; w) in the proof of Theorem 13.5.1 of
Actuarial Mathematics.] For x0.0 and y0.0, if
w(x, y) is a ‘‘generalized’’ density function with mass
1 for (x, y)5(x0, y0) and 0 for other values of (x, y),
then

f(u) 5 f(x , y u). (2.13)|0 0

Hence the analysis of the function is in-f(x, y u)|
cluded in the analysis of the function f(u).

If we interpret d as a force of interest and w as some
kind of penalty when ruin occurs, then f(u) is the
expectation of the discounted penalty. If w is inter-
preted as the benefit amount of an insurance (or re-
insurance) payable at the time of ruin, then f(u) is
the single premium of the insurance. We should clar-
ify that, while it can be very helpful to consider d as
a force of interest in this paper, we are dealing with
the classical model in which the surplus does not earn
any interest.

An interesting example of a penalty function is

2ry1 2 e
w(x, y) 5 , (2.14)

d

where r is the positive solution of Lundberg’s funda-
mental equation (discussed later in this section).
Then f(u) is the expected present value of a deferred
continuous annuity at a rate of 1 per unit time, start-
ing at the time of ruin and ending as soon as the sur-
plus rises to zero. This example is discussed in
Remark (v) of Section 6. Another interesting example
arises in the context of option pricing, where penalty
at ruin is replaced by payoff at exercise. The payoff
function considered by Gerber and Shiu (1997b) is

a2yw(x, y) 5 max(K 2 e , 0),

where K is the exercise price of a perpetual American
put option, and ea is the value of an option-exercise
boundary.

Our immediate goal is to derive a functional equa-
tion for f(u) by applying the law of iterated expec-
tations to the right-hand side of (2.10). For h.0,
consider the time interval (0, h), and condition on the
time t and the amount x of the first claim in this time
interval. Note that the probability that there is no
claim up to time h is e2lh, the probability that the first
claim occurs between time t and time t1dt is e2ltldt,
and

x . u 1 ct
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means that ruin has occurred with the first claim.
Hence

2(d1l)hf(u) 5 e f(u 1 ch)

h u1ct
2(d1l)t1 * * f(u 1 ct 2 x)p(x)dx e ldt@ #0 0

h `

2(d1l)t1 * * w(u 1 ct, x 2 u 2 ct)p(x)dx e ldt.@ #0 u1ct

(2.15)

Differentiating (2.15) with respect to h and setting
h50, we obtain

0 5 2(d 1 l)f(u) 1 cf'(u)
u

1 l* f(u 2 x)p(x)dx
0

`

1 l* w(u, x 2 u)p(x)dx
u

5 2(d 1 l)f(u) 1 cf'(u)
u

1 l* f(u 2 x)p(x) dx 1 lv(u),
0

(2.16)
where

`

v(u) 5 * w(u, x 2 u) p(x) dx
u

`

5 * w(u, y) p(u 1 y) dy. (2.17)
0

For further analysis, we use the technique of inte-
grating factors. Let

2ruf (u) 5 e f(u), (2.18)r

where r is a nonnegative number to be specified later.
Multiplying (2.16) with e2ru, applying the product rule
for differentiation, and rearranging yields

cf' (u) 5 (d 1 l 2 cr)f (u)r r

u
2r x 2ru2 l* f (u 2 x)e p(x)dx 2 le v(u). (2.19)r0

Define

<(j) 5 d 1 l 2 cj; (2.20)

hence the coefficient of fr(u) in (2.19) is <(r). In this
paper we let denote the Laplace transform of a func-f̂
tion f,

`

2j xˆ(j) 5 * e f(x) dx. (2.21)f 0

The Laplace transform of p, is defined for allp̂(j),
nonnegative numbers j and is a decreasing convex
function because

`

2j xp̂'(j) 5 2* e x p(x) dx , 0
0

and

`

2j x 2p̂"(j) 5 * e x p(x) dx . 0.
0

Consider the equation

ˆ<(j) 5 lp(j). (2.22)

Since

ˆ<(0) 5 d 1 l ≥ l 5 lp(0)

and the slope of the line <(j) is negative, Equation
(2.22) has a unique nonnegative root, say j1. See Fig-
ure 2.

It is obvious from Figure 2 that j1 is an increasing
function of d, with j150 when d50. Furthermore, if
the individual claim amount density function, p, is
sufficiently regular, Equation (2.22) has one more
root, say j2, which is negative. This negative root,
which is denoted as 2R, plays an important role later.
As shown in Section 5, both roots are related to the
construction of exponential martingales. When d50,
(2.22) is equivalent to (13.4.3) in Actuarial Mathe-
matics and R is the adjustment coefficient. Because
Lundberg (1932, p. 144) pointed out that (2.22) is
‘‘fundamental to the whole of collective risk theory,’’
we refer to this equation as Lundberg’s fundamental
equation.

The trick for solving (2.19) is to choose

r 5 j , (2.23)1

so that (2.19) becomes

ˆcf' (u) 5 lp(r)f (u)r r

u
2r x 2ru2 l* f (u 2 x)e p(x)dx 2 le v(u)r0

u
2r(u2x)ˆ5 l p(r)f (u) 2* f (x)e p(u 2 x)dx@ r r0

2ru2 e v(u) . (2.24)#
For z.0, we integrate (2.24) from u50 to u5z. After
a division by l, the resulting equation is

21l c[f (z) 2 f (0)]r r

z

ˆ5 p(r) * f (u)dur0

z u
2r(u2x)2 * * f (x)e p(u 2 x)dx du@ r #0 0

z
2ru2 * e v(u)du

0
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FIGURE 2
THE TWO ROOTS OF LUNDBERG’S FUNDAMENTAL EQUATION

z

ˆ5 p(r) * f (u)dur0

z z
2r(u2x)2 * * e p(u 2 x)du f (x)dx@ # r0 x

z
2ru2 * e v(u)du

0

z `

2ry5 * f (x) * e p(y)dy dxr @ #0 z2x

z
2ru2 * e v(u)du. (2.25)

0

For z→`, the first terms on both sides of (2.25) van-
ish, which shows that

`l l v̂(r)
2ruf (0) 5 * e v(u)du 5 . (2.26)r 0c c

Finally, substituting (2.26) in (2.25) and simplifying
yields

z `l
2ryf (z) 5 * f (x) * e p(y)dy dxr r @ #0 z2x$c

`

2ru1 * e v(u)du , z ≥ 0. (2.27)
z %

Multiplying (2.27) with erz and applying (2.18), we
have

z `l
r(z2x2y)f(z) 5 * f(x) * e p(y)dy dx@ #0 z2x$c

`

r(z2u)1 * e v(u)du . (2.28)
z %

For two integrable functions f1 and f2 defined on
[0, `), the convolution of f1 and f2 is the function

x

( f f )(x) 5 * f (y) f (x 2 y) dy, x ≥ 0. (2.29)*1 2 1 20

Note that f1*f2 5 f2*f1. With the definitions

`l
2r(y2x)g(x) 5 * e p(y) dy (2.30)

xc
`l

2rz5 * e p(x 1 z) dz, x ≥ 0, (2.31)
0c

and

`l
2r(u2x)h(x) 5 * e v(u) du (2.32)

xc

` `l
2r(u2x)5 * * e w(u, y) p(u 1 y) dy du, x ≥ 0,

x 0c

(2.33)
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Equation (2.28) can be written more concisely as

f 5 f g 1 h. (2.34)*

In the literature of integral equations, (2.34) is clas-
sified as a Volterra equation of the second kind. The
function g is a nonnegative function on [0, `) and
hence may be interpreted as a (not necessarily
proper) probability density function; in probability
theory, (2.34) is known as a renewal equation for the
function f.

The solution of (2.34) can be expressed as an infi-
nite series of functions, sometimes called a Neumann
series,

f 5 h 1 g h 1 g g h 1 g g g h* * * * * *

1 g g g g h 1 z z z. (2.35)* * * *

Equation (2.35) can be obtained from (2.34) by the
method of successive substitution.

Remarks

(i) With d50 and hence r50, it is well known (Ac-
tuarial Mathematics, Theorem 13.5.1) that the dif-
ferential

21g(y) dy 5 lc [1 2 P(y)]dy (2.36)

can be interpreted as the probability that the surplus
will ever fall below its initial u and will be between
u2y and u2y2dy when it happens for the first time.
Furthermore, with d50 and w[1, we have

`

h(x) 5 * g(y)dy,
x

which is the probability that the surplus will ever fall
below its initial level u and will be below u2x when
it happens for the first time. The renewal equation
(2.34) generalizes Exercise 13.11 of Actuarial Math-
ematics; see also (6.44) below.

(ii) It follows from the conditional probability for-
mula,

Pr(A ∩ B) 5 Pr(A) Pr(B A),|

that the joint probability density function of U(T-),
|U(T)|, and T at the point (x, y, t) is the joint proba-
bility density function of U(T-) and T at the point
(x, t) multiplied by the conditional probability density
function of |U(T)| at y, given that U(T-)5x and T5t.
The latter does not depend on t and is

p(x 1 y) p(x 1 y)
5 , y ≥ 0.

` 1 2 P(x)* p(x 1 y) dy
0

Hence

` p(x 1 y)
f(x, y, t u) 5 * f(x, z, t u) dz . (2.37)| |@ #0 1 2 P(x)

With the definition

`

f(x u) 5 * f(x, y u) dy (2.38)| |0

` `

2dt5 * * e f(x, y, t u) dt dy, (2.39)|0 0

multiplying (2.37) with e2dt and then integrating with
respect to t yields

p(x 1 y)
f(x, y u) 5 f(x u) . (2.40)| | 1 2 P(x)

With d50, (2.40) was pointed out by Dufresne and
Gerber (1988, Eq. 3); another proof can be found in
Dickson and Egı́dio dos Reis (1994). Also, it follows
from (2.11), (2.37), (2.39), and (2.17) that

` ` `

2dtf(u) 5 * * * w(x, y) e f(x, y, t u) dt dx dy|0 0 0

` ` ` `

2dt5 * * * w(x, y) e * f(x, z, t u) dz|@ #0 0 0 0

p(x 1 y)
dt dx dy

1 2 P(x)
` ` p(x 1 y)

5 * * w(x, y) f(x u) dx dy|0 0 1 2 P(x)
` f(x u)|

5 * v(x) dx.
0 1 2 P(x) (2.41)

(iii) It follows from an integration by parts that

`

2j xp̂(j) 5 1 2 j * e [1 2 P(x)] dx, (2.42)
0

with which we can rewrite Lundberg’s fundamental
equation (2.22) as

ˆd 5 cj 2 l[1 2 p(j)] (2.43)
`

2j x5 j{c 2 l * e [1 2 P(x)] dx}. (2.44)
0

Hence

`d
lim 5 c 2 l * [1 2 P(x)] dx

0rd→0

5 c 2 lp , (2.45)1
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which is the drift of {U(t)}. With d50, the negative
root j5j2 of (2.44) or (2.22) is determined by the
equation

`

2j xl * e [1 2 P(x)] dx 5 c; (2.46)
0

this condition is discussed in Exercise 13.9 of Actu-
arial Mathematics.

(iv) Equation (2.34) can be solved by the method
of Laplace transforms (Spiegel 1965). Taking Laplace
transforms, we have

ˆˆ ˆ ˆf(j) 5 f(j)g(j) 1 h(j), (2.47)

or

ĥ(j)
f̂(j) 5 . (2.48)ˆ1 2 g(j)

Hence f can obtained by inverting or identifying the
right-hand side of (2.48). If we expand the right-hand
side of (2.48) as a geometric series, we obtain

`

ˆnˆ ˆf(j) 5 g(j) h(j), (2.49)Σ
n50

which is the Laplace transform of (2.35).
(v) From (2.30) and by changing of the order of

integration, we see that

` `l
2j x 2r(y2x)ĝ(j) 5 * e * e p(y) dy dx@ #0 xc

`l
(r2j)y 2ry5 * [e 2 1] e p(y) dy

0c(r 2 j)

l
ˆ ˆ5 [p(j) 2 p(r)]. (2.50)

c(r 2 j)

Because r satisfies Lundberg’s fundamental equation
(2.22), it follows that

ˆlp(j) 1 cr 2 d 2 l
ĝ(j) 5 , (2.51)

c(r 2 j)

or

ˆl[1 2 p(j)] 1 d 2 cjˆ1 2 g(j) 5 . (2.52)
c(r 2 j)

We note that (2.22) is the condition that the numer-
ator on the right-hand side of (2.52) vanishes. Hence
the negative root j2 of (2.22) is determined by the
condition that

ĝ(j) 5 1. (2.53)

(vi) It follows from (2.50) that

21ˆ ˆg(j) 1 lc p'(j)
ĝ'(j) 5 . (2.54)

r 2 j

Since the negative root j2 satisfies (2.53), a particular
case of (2.54) is

21 ˆ1 1 lc p'(j )2ĝ'(j ) 5 . (2.55)2 r 2 j2

This result and (2.56) below are used to derive an
asymptotic formula for f(u); see (4.9), (4.8), and
(4.10) below.

(vii) From (2.32) and by changing the order of in-
tegration, we get

` `lˆ 2j x 2r(u2x)h(j) 5 * e * e v(u) du dx@ #0 xc
`l

(r2j)u 2ru5 * [e 2 1] e v(u) du
0c(r 2 j)

` `l
2ju 2ru5 * * (e 2 e ) w(u, y) p(u 1 y) du dy.

0 0c(r 2 j)
(2.56)

Consider the special case with the penalty function
w(x, y) [ 1. Then (2.56) becomes

` `lˆ 2ju 2ruh(j) 5 * * (e 2 e ) p(u 1 y) du dy
0 0c(r 2 j)

`l
2ju 2ru5 * (e 2 e ) [1 2 P(u)] du

0c(r 2 j)

`1 d
2ju5 l * e [1 2 P(u)] du 1 2 c , (2.57)

0$ %c(r 2 j) r

because r satisfies (2.44). Applying (2.42) yields

1 l dˆ ˆh(j) 5 [1 2 p(j)] 1 2 c . (2.58)$ %c(r 2 j) j r

Hence, with w(x, y) [ 1,

ĥ(j)
f̂(j) 5 ˆ1 2 g(j)

ˆlr[1 2 p(j)] 1 j(d 2 cr)
5 (2.59)

ˆjr{l[1 2 p(j)] 1 d 2 cj}

by (2.58) and (2.52). In deriving (2.59), we assume
that d and hence r are positive. The case where
d5r50 and hence f5c is best treated as a limiting
case: From (2.59) and (2.45), we obtain

ˆl[1 2 p j 2 p(j)]1ĉ(j) 5 , (2.60)
ˆj{l[1 2 p(j)] 2 cj}
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which can be reconciled with (13.6.9) in Actuarial
Mathematics by the formula

`

2ju ˆ* e c'(u) du 5 2c(0) 1 j c(j). (2.61)
0

(viii) Let

c(u, t) 5 Pr[T ≤ t U(0) 5 u] (2.62)|

be the probability of ruin by time t, t≥0. Then

t ` `

c(u, t) 5 * * * f(x, y, s u) dxdy ds, (2.63)|@ #0 0 0

from which it follows that

` `]
c(u, t) 5 * * f(x, y, t u) dxdy. (2.64)|0 0]t

Hence

2dTE[e I(T , `) U(0) 5 u]|
` ]

2dt5 * e c(u, t) dt
0 ]t

`

2dt5 d * e c(u, t) dt (2.65)
0

after an integration by parts.

3. THE FIRST SURPLUS BELOW THE
INITIAL LEVEL

In the first part of this section we study functions
such as f [defined by (2.38)] and f(x, [de-(x 0) y 0)| |
fined by (2.9)]. With initial surplus U(0)5u50, some
very explicit results can be obtained. Since f satisfies
the renewal equation (2.34), it follows that

f(0) 5 h(0). (3.1)

From (2.12) and (2.33) we obtain

` `* * w(x, y) f(x, y 0) dx dy|0 0

` `l
2r x5 * * e w(x, y) p(x 1 y) dx dy. (3.2)

0 0c

Because this identity holds for an arbitrary function
w, it follows that

l
2r xf(x, y 0) 5 e p(x 1 y), x . 0, y . 0. (3.3)| c

This formula plays a central role; an alternative proof
and additional insight are given in Section 5. Some
immediate consequences can be obtained by inte-
grating over x, y, and both:

` `l
2r x* f(x, y 0) dx 5 * e p(x 1 y) dx|0 0c

5 g(y), (3.4)

as defined by (2.31);

`

f(x 0) 5 * f(x, y 0) dy| |0

`l
2r x5 e * p(x 1 y) dy

0c

l
2r x5 e [1 2 P(x)]; (3.5)

c

2dTE[e I(T , `) U(0) 5 0]|
` `

5 * * f(x, y 0) dy dx|0 0

`l
2r x5 * e [1 2 P(x)] dx. (3.6)

0c

As a check, note that (3.3) and (3.5) satisfy (2.40)
with u50.

With d50, and hence r50, (3.3) reduces to a result
of Dufresne and Gerber (1988, Eq. 10). In particular,

f(x, y 0) 5 f(y, x 0). (3.7)| |

Dickson (1992) has pointed out that this symmetry
can be explained in terms of ‘‘duality.’’ Further dis-
cussion can be found in Dickson and Egı́dio dos Reis
(1994) and in Section 6 below. For d.0, Formula
(3.7) does not hold any longer.

For d50, (3.6) reduces to the famous formula

`l l p1c(0) 5 * [1 2 P(x)] dx 5 . (3.8)
0c c

For d.0, we can use (3.6) and the fact that r is a
solution of (2.44) to see that

2dT 2dTE[e U(0) 5 0] 5 E[e I(T , `) U(0) 5 0]| |

d
5 1 2 . (3.9)

cr

Formula (3.8) can be obtained as a limiting case of
(3.9) because of (2.45).

Example

Let us look at the case of an exponential individual
claim amount distribution,

2b xp(x) 5 be , x ≥ 0, (3.10)
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with b.0 and c.lp15l/b. The number r is j1, the
nonnegative solution of (2.22), which is

lb
d 1 l 2 cj 5 ,

b 1 j

or

2cj 1 (cb 2 d 2 l)j 2 bd 5 0. (3.11)

Hence

r 5 j1

2=l 1 d 2 cb 1 (cb 2 d 2 l) 1 4cbd
5 . (3.12)

2c

(Note that, if d50, then r5j150.) Then

21 2(r1b)x2by 21 2(r1b)xf(x, y 0) 5 lbc e 5 lc e p(y);|
lb l

2byg(y) 5 e 5 p(y);
c(b 1 r) c(b 1 r)

21 2(r1b)xf(x 0) 5 lc e ;|

(3.13)

2dTE[e I(T , `) U(0) 5 0]|
` `

5 * * f(x, y 0) dy dx|0 0

l
5 (3.14)

c(b 1 r)

2l
5 . (3.15)

2=cb 1 d 1 l 1 (cb 2 d 2 l) 1 4cbd

An alternative to (3.14) and (3.15) is Formula (3.9),
which is simple and general at the same time. In Sec-
tion 5 we show that

2dTE[e I(T , `) U(0) 5 u]|
2dT j u25 E[e I(T , `) U(0) 5 0] e , (3.16)|

where j2 is the negative root of (3.11); see (5.38) and
(5.43). Hence it follows from (2.65), (3.16), and (3.14)
that

` l
2dt j u2* e c(u, t) dt 5 e . (3.17)

0 dc(b 1 r)

On the other hand, using (3.9) instead of (3.14) yields

` 1 1
2dt j u2* e c(u, t) dt 5 2 e . (3.18)~ !0 d cr

Finally, we note that (2.40) can be simplified to

f(x, y u) 5 f(x u) p(y), u ≥ 0, x . 0, y . 0.| | (3.19) M

Results concerning ‘‘ruin’’ for zero initial surplus
can be translated into results that are related to when

the surplus falls below the initial level for the first
time. We can use (3.3) and (3.4) to derive the renewal
equation (2.34) by probabilistic reasoning. We con-
dition on the first time when the surplus falls below
the initial level. For given initial surplus U(0)5u≥0,
the probability that this event occurs between time t
and time t1dt, with

u 1 x ≤ U(t-) ≤ u 1 x 1 dx

and

u 2 y 2 dy ≤ U(t) ≤ u 2 y,

is

f(x, y, t 0) dx dy dt. (3.20)|

Furthermore, the occurrence

y . u

means that ruin also takes place with this claim. Thus

u ` `

2dtf(u) 5 * * * e f(u 2 y) f(x, y, t|0) dt dx dy
0 0 0

` ` `

2dt1 * * * e w(x 1 u, y 2 u) f(x, y, t|0)dt dx dy
u 0 0

u `

5 * * f(u 2 y) f(x, y|0) dx dy
0 0

` `

1 * * w(x 1 u, y 2 u) f(x, y|0)dx dy.
u 0

(3.21)

Applying (3.4) and (3.3) to the right-hand side of
(3.21) yields

u

f(u) 5 * f(u 2 y)g(y)dy
0

` `l
2r x1 * * w (x 1 u, y 2 u)e p(x 1 y)dx dy

u 0c

5 (f g)(u) 1 h(u)*

by (2.33). This is the probabilistic proof of (2.34).

Remarks

(i) If we consider and as functionsf(x u) f(x, y u)| |
of u, they satisfy renewal equations similar to (2.34).
By distinguishing whether or not ruin occurs at the
first time when the surplus falls below the initial value
u, we see that

u

f(x, y u) 5 * f(x, y u 2 z)g(z)dz| |0

1 f(x 2 u, y 1 u 0), 0 ≤ u , x, (3.22)|
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and

u

f(x, y u) 5 * f(x, y u 2 z)g(z)dz,| |0

0 , x ≤ u. (3.23)

By (3.3),

21 2r(x2u)f(x 2 u, y 1 u 0) 5 lc e p(x 1 y). (3.24)|

Hence, for u≥0, x.0, y.0,

u

f(x, y u) 5 * f(x, y u 2 z)g(z)dz| |0

21 2r(x2u)1 lc e p(x 1 y)I(x . u). (3.25)

Integrating (3.25) with respect to y, we obtain by
(2.38)

u

f(x u) 5 * f(x u 2 z)g(z)dz| |0

21 2r(x2u)1 lc e [1 2 P(x)]I(x . u). (3.26)

(ii) As a function of x, f has a discontinuity of(x u)|
amount

21lc [1 2 P(u)] (3.27)

at x5u. Surprisingly, it does not depend on d.
(iii) With appropriate choices of w(x, y), (3.25) and

(3.26) can be obtained as special cases of (2.34). See
(2.13).

4. ASYMPTOTIC FORMULAS

Since the function f(u) is the solution of a renewal
equation, its asymptotic behavior is best examined by
renewal theory. Let f(x) and z(x) be two nonnegative
functions on [0, `). Consider the integral equation

Z(x) 5 ( f Z)(x) 1 z(x), x ≥ 0, (4.1)*

which is a renewal equation for Z(x). Seek a real num-
ber R such that

`

ˆ Rxf(2R) 5 * e f(x)dx 5 1. (4.2)
0

The number R is unique because

`d ˆ j xf(2j) 5 * e x f(x) dx . 0.
0dj

If ( f is a defective density), then R.0; iff̂(0),1
( f is a proper density), then R50;ˆ ˆf(0)51 if f(0).1

( f is an excessive density), then R,0. The key
renewal theorem (Feller 1971, Resnick 1992) states
that, if the function z is sufficiently regular, then

`

Ry* e z(y) dy
0

Rxlim e Z(x) 5
`

x→` Ry* y e f(y) dy
0

ẑ(2R)
5 . (4.3)ˆ2f '(2R)

Let f1(x) and f2(x) be two functions; we write

f (x) ; f (x) for x → ` (4.4)1 2

if

f (x)1lim 5 1.
f (x)x→` 2

Then (4.3) can be restated as

ẑ(2R)
2RxZ(x) ; e for x → `. (4.5)ˆ2f '(2R)

We now apply the key renewal theorem to the func-
tion f, which satisfies (2.34),

f 5 f g 1 h,*

where g and h are defined by (2.31) and (2.32), re-
spectively. Since r≥0, we have

21ĝ(0) ≤ lc p , 1,1

which means that (2.34) is a defective renewal equa-
tion. Thus we seek R.0 such that

`

Rxˆ1 5 g(2R) 5 * e g(x) dx, (4.6)
0

which is equation (2.53). Hence

R 5 2j ,2

where j2 is the negative root of Lundberg’s fundamen-
tal equation (2.22). Note that both r (or j1) and R (or

are increasing functions of d and do not dependj )| |2

on the penalty function w. When confusion may arise,
we write r(d) for r and R(d) for R. We observe that
r(0)50, and R(0) is the adjustment coefficient in clas-
sical risk theory.

It follows from the key renewal theorem that

ĥ(2R)
2Ruf(u) ; e for u → `. (4.7)ˆ2g'(2R)

By (2.56),

` `l
ĥ(2R) 5 * *

0 0c(r 1 R)
Ru 2ru(e 2 e ) w(u, y) p(u 1 y) dy du. (4.8)
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By (2.55),

1 lˆ ˆg'(2R) 5 1 1 p'(2R) . (4.9)@ #r 1 R c

Hence

f(u) ;

` `

Rx 2r xl * * w(x, y) (e 2 e ) p(x 1 y) dx dy
0 0

2Rue
ˆ2lp'(2R) 2 c

for u → `. (4.10)

Now, consider the special case where w(x, y)[1
and d50. Then f5c, and the renewal equation (2.34)
is

c 5 c g 1 h, (4.11)*

with

21g(x) 5 lc [1 2 P(x)] (4.12)

and

`

21h(x) 5 lc * [1 2 P(y)]dy
x

`

5 * g(y) dy. (4.13)
x

Equation (4.11) is the same as Exercise 13.11 in Ac-
tuarial Mathematics. Because 2R is the solution of
(2.46), we have

` `

Rx* * (e 2 1) p(x 1 y) dx dy
0 0

`

Rx5 * (e 2 1) [1 2 P(x)] dx
0

`

215 cl 2 * [1 2 P(x)] dx
0

215 cl 2 p . (4.14)1

Hence (4.10) simplifies as

c 2 lp1 2Ruc(u) ; e for u → `, (4.15)
ˆ2lp'(2R) 2 c

which is usually called Lundberg’s asymptotic for-
mula.

We can also obtain an asymptotic formula (u → `)
for c(u, t) dt, d.0, the single Laplace transform` 2dt* e0

of the finite-time ruin function. By (2.65),

` f(u)
2dt* e c(u, t) dt 5 , (4.16)

0 d

where w(x, y)[1. It follows from (2.58) and (2.43)
that

1 d d
ĥ(2R) 5 1 c 1 2 c .$ %c(R 1 r) R r

d 1 1
5 1 . (4.17)~ !c(R 1 r) R r

Hence

d 1 1
2Ruf(u) ; 1 e~ !ˆ2lp'(2R) 2 c R r

for u → ` (4.18)

[which can also be derived by applying (2.44) to
(4.10)]. Substituting (4.18) in (4.16) yields

` 1 1 1
2dt 2Ru* e c(u, t) dt ; 1 e~ !0 ˆ2lp'(2R) 2 c R r

for u → `. (4.19)

Lundberg’s asymptotic formula (4.15) is, of course,
a special case of (4.18):

c(u) 5 lim f(u)
d→0

1 d d
2R(d)u; lim 1 e ,@ #ˆ2lp'(2R(d)) 2 c R(d) r(d)d→0

for u → `, (4.20)

which, by (2.45), is (4.15).
We note that (4.10) is for an arbitrary function

w(x, y). By comparing this formula with (2.12) we
gather that

Rx 2r xl(e 2 e ) p(x 1 y)
2Ruf(x, y u) ; e| ˆ2lp'(2R) 2 c

for u → `, (4.21)

which generalizes Dufresne and Gerber (1988, Eq.
24). Because (3.25) is a renewal equation for

(as a function of u), it can also be used tof(x, y u)|
derive (4.21); here

ruh(u) 5 f(x, y 0) e I(x . u), (4.22)|

and hence
`

ˆ Ru ruh(2R) 5 f(x, y 0) * e e I(x . u) du| 0

(R1r)xe 2 1
5 f(x, y 0)| R 1 r

Rx 2rxl(e 2 e )p(x 1 y)
5 . (4.23)

c(R 1 r)
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Example

As in Section 3, let us consider the case of an ex-
ponential individual claim distribution. The negative
solution of (3.11) is

2=l 1 d 2 cb 2 (cb 2 d 2 l) 1 4cbd
2R 5 j 5 ,2 2c

(4.24)

and the adjustment coefficient is

21R(0) 5 b 2 lc . (4.25)

From (3.13)

lb
ĝ(j) 5 , (4.26)

c(b 1 r)(b 1 j)

and hence

lbˆ2g'(2R) 5 . (4.27)
2c(b 1 r)(b 2 R)

Now, let us consider the particular case where
w(x, y)5w(y), a function not depending on x. Then

`

v(x) 5 * w(y) p(x 1 y) dy
0

`

2bx 2by5 be * w(y) e dy
0

2bx5 be ŵ(b), (4.28)

and

`l
2rzh(x) 5 * e v(u 1 z) dz

0c
`l

2rz 2b(x1z)5 bŵ(b) * e e dz
0c
2bxl b ŵ(b) e

5 . (4.29)
c(b 1 r)

Hence

l b ŵ(b)
ĥ(j) 5 . (4.30)

c(b 1 r)(b 1 j)

It follows from (4.30) and (4.27) that

ĥ(2R)
5 ŵ(b) (b 2 R). (4.31)ˆ2g'(2R)

Thus, with w(x, y)5w(y), and P(x)512e2bx, we have

2Ruf(u) ; ŵ(b) (b 2 R) e for u → `. (4.32)

In the next section, we see that (4.32) is in fact an
equality valid for all u≥0.

Furthermore, (4.21) is

Rx 2r x 2b(x1y)l(e 2 e ) be
2Ruf(x, y u) ; e| 22lb(b 2 R) 2 c

for u → `. (4.33)

Because r and 2R are the roots of (3.11), we have

2c(b 1 r)(b 2 R) 5 c(2b) 1 (cb 2 d 2 l)(2b) 2 bd

5 lb. (4.34)

It follows from (4.34) and some algebra that (4.33)
can be rewritten as

lb(b 2 R)
Rx 2rx 2b(x1y) 2Ruf(x, y u) ; [e 2 e ] e e| c(R 1 r)

for u → `. (4.35)

Applying (3.19) to (4.35) yields

l(b 2 R)
Rx 2r x 2bx 2Ruf(x u) ; [e 2 e ] e e| c(R 1 r)

for u → `. (4.36)

It turns out that (4.35) and (4.36) are exact for
0,x≤u; see (6.40) below. M

To conclude this section, we look at the Laplace
transform of T, given that ruin occurs:

2dTE[e I(T , `) U(0) 5 u]|2dTE[e T , `, U(0) 5 u] 5| E[I(T , `) U(0) 5 u]|

f(u)
5 , (4.37)

c(u)

where w[1. Consider

ĥ(2R)
ˆ2g'(2R)

as a function of d, and write it as C(d). It follows from
(4.7) that, for u→`,

2R(d)uf(u) C(d)e C(d)
2[R(d)2R(0)]u; 5 e . (4.38)

2R(0)uc(u) C(0)e C(0)

If d.0, then R(d).R(0), and hence

2[R(d)2R(0)]ulim e 5 0,
u→`

which means that

2dTlim E[e T , `, U(0) 5 u] 5 0. (4.39)|
u→`

Thus, for each t . 0,

lim Pr[T ≤ t T , `, U(0) 5 u] 5 0, (4.40)|
u→`
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which implies that, for a large initial surplus u and
given that ruin occurs, it occurs late. The result (4.40)
is compatible with the observation that the condi-
tional expectation

E[T T , `, U(0) 5 u]|

is essentially a linear function in u in some cases; see
(5.46) and (5.47) below, Gerber (1979, p. 138, Ex-
ample 3.2), and Seal (1969, p. 114).

5. MARTINGALES

Further insight can be provided to the reader who has
some familiarity with martingales. Let j be a number.
Because {U(t)}t≥0 is a stochastic process with station-
ary and independent increments, a process of the
form

2dt1jU(t){e } (5.1)t≥0

is a martingale if and only if, for each t.0, its expec-
tation at time t is equal to its initial value, that is, if
and only if

2dt1jU(t) juE[e U(0) 5 u] 5 e . (5.2)|

Since

2dt1jU(t)E[e U(0) 5 u]|
ˆ5 exp(2dt 1 ju 1 jct 1 lt[p(j) 2 1]),

the martingale condition is that

ˆ2d 1 cj 1 l[p(j) 2 1] 5 0,

which is again Lundberg’s fundamental equation
(2.22). Thus, for (5.1) to be a martingale, the coeffi-
cient of U(t) in (5.1) is either j15r≥0 or j252R,0.

With such a j, (5.2) holds for each fixed t, t≥0. How-
ever, if we replace t by a stopping time, which is a
random variable, then there is no guarantee that (5.2)
will hold. Fortunately, it holds in two important cases,
as we see in this and the next paragraph. If the stop-
ping time is T, we consider the martingale (5.1) with
j52R. For 0≤t,T,

dt 1 RU(t) ≥ 0,

and hence

2dt2RU(t)0 , e ≤ 1.

With {e2dt2RU(t)}0≤t,T being bounded, the optional sam-
pling theorem is applicable and we obtain

2dT2RU(T) 2RuE[e U(0) 5 u] 5 e . (5.3)|

Furthermore, it follows from (2.6) that, even if d50,

2dT2RU(T)E[e I(T 5 `) U(0) 5 u] 5 0.|

Consequently, we can rewrite (5.3) as

2Ru 2dT2RU(T)e 5 E[e I(T , `) U(0) 5 u],|

d ≥ 0, u ≥ 0. (5.4)

The above is a proof by martingale theory of a gen-
eralization of Theorem 13.4.1 in Actuarial Mathe-
matics.

We now show that the quantity e2r(x2u), which ap-
pears throughout this paper (usually with u50), has
a probabilistic interpretation. For x.U(0)5u, let

T 5 min {t U(t) 5 x} (5.5)|x

be the first time when the surplus reaches the level
x. We can use equality to define the stopping time Tx

because the process {U(t)} is skip-free (jump-free) up-
ward. Then, for 0≤t≤Tx,

2dt1rU(t) r xe ≤ e . (5.6)

Hence we can apply the optional sampling theorem to
the martingale {e2dt1rU(t)} to obtain

ru 2dT 1rU(T )x xe 5 E[e U(0) 5 u]|
2dT r xx5 E[e U(0) 5 u] e ,|

or

2r(x2u) 2dTxe 5 E[e U(0) 5 u]. (5.7)|

Formula (5.7) was probably first given by Kendall
(1957, Eq. 14), although he did not provide a com-
plete proof.

With d interpreted as a force of interest, the quan-
tity e2r(x2u) is the expected discounted value of a pay-
ment of 1 due at the time when U(t)5x for the first
time. We note that (5.7) remains valid even if u is
negative. The required condition is x.u. The condi-
tion u≥0 is not needed anywhere in the derivation.

Formula (5.7) can be used to give an alternative
proof of the important formula (3.3). For x.u5U(0),
let , t.0, denote the probability densityp (x, t u)|1

function of the random variable Tx. Hence (5.7) states
that

`

2dt 2r(x2u)* e p (x, t u) dt 5 e . (5.8)|10

The differential is the probability that thep (x, t u)dt|1

surplus process upcrosses level x between t and t1dt
and that then this happens for the first time. We re-
mark that the surplus cannot reach the level x before
time t5(x2u)/c, and that it may reach x before the
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first claim occurs. Hence, for t,(x2u)/c, p (x, t u)5|1

and the distribution of Tx has a point mass at0,
t5(x2u)/c so that

x 2 u 2l(x 2 u)
p x, u dt 5 exp .1 c c

For U(0)5u≥0, x.0, let p2(x, t.0, be the func-t u),|
tion defined by the condition that p2(x, is thet u)dt|
probability that ruin does not occur by time t and that
there is an upcrossing of the surplus process at level
x between t and t1dt. It can be proved by duality, a
notion discussed in the next section, that

p (x, t 0) 5 p (x, t 0), x . 0, t . 0. (5.9)| |1 2

Now, f(x, y, u)dtdxdy can be interpreted as thet|
probability of the event that ‘‘ruin’’ does not take
place by time t, that the surplus process upcrosses
through level x between time t and time t1dt, but
does not attain level x1dx, that is, that there is a
claim within c21dx time units after Tx, and that the
size of this claim is between x1y and x1y1dy. Thus

f(x, y, t u) dt dx dy|
215 [p (x, t u) dt] [lc dx] [p(x 1 y) dy], (5.10)|2

from which it follows that

21f(x, y, t u) 5 lc p(x 1 y) p (x, t u). (5.11)| |2

This formula is particularly useful if u50; then it fol-
lows from (5.9) that

21f(x, y, t 0) 5 lc p(x 1 y) p (x, t 0). (5.12)| |1

If we multiply (5.12) by e2dt, integrate from t50 to
t5`, and apply (5.8) with u50, we obtain (3.3) once
again.

Remarks

(i) For x.u5U(0)≥0, the functions p1(x, andt u)|
p2(x, can be expressed in terms of p3(x, thet 0) t u),| |
passage time density of the surplus process at the
level x. The differential p3(x, is the probabilityt u)dt|
that the surplus process upcrosses level x between t
and t1dt. This is the same as the probability that the
surplus at time t is between x2dx and x with
dx5c dt. Hence, we have

p (x, t u) 5 c f (u 1 ct 2 x), (5.13)|3 S(t)

where
` n(lt)

2lt nf (s) 5 e p (s) (5.14)Σ *S(t)
n50 n!

is the probability density function of S(t), the aggre-
gate claims up to time t. The following version of the
ballot theorem,

x
p (x, t 0) 5 p (x, t 0), x . 0, t . 0, (5.15)| |1 3ct

was first given by Kendall (1957, Eq. 17). For x.u
and t.0, because

p (x, t u) 5 p (x 2 u, t 0) (5.16)| |1 1

and

p (x, t u) 5 p (x 2 u, t 0), (5.17)| |3 3

we have

x 2 u
p (x, t u) 5 p (x, t u). (5.18)| |1 3ct

Gerber (1988, Theorem 2) has given a proof of

x
p (x, t 0) 5 p (x, t 0) 5 p (x, t 0) (5.19)| | |1 3 2ct

by martingales. The second equality of (5.19) is equiv-
alent to Equation (2.1) on page 112 of Gerber (1979).

(ii) The differential p2(x, can be interpretedt u)dt|
as the probability that ruin does not occur by time t
and that the surplus at time t is between x2dx and
x, where dx5cdt. Consider the nonruin function

s(u, t) 5 Pr[T . t U(0) 5 u]|
5 1 2 c(u, t). (5.20)

Then

`

21s(u, t) 5 * p (x, t u) c dx. (5.21)|20

Hence, it follows from the second equality of (5.19)
and from (5.13) that

` x
21s(0, t) 5 * p (x, t 0) c dx|30 ct

`1
5 * x f (ct 2 x) dx. (5.22)S(t)0ct

This result was first given by Prabhu (1961, Eq. 4.6)
and is sometimes called the Prabhu formula (De
Vylder 1996, p. 132). Let

` n(lt)
2lt *nF (s) 5 e P (s) (5.23)ΣS(t)

n50 n!
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be the probability distribution function of S(t). Then
integrating the right-hand side of (5.22) by parts and
noting that FS(t)(s)50 for s,0 yields

`1
s(0, t) 5 0 2 0 1 * F (ct 2 x) dxS(t)0ct

ct1
5 * F (ct 2 x) dxS(t)0ct

ct1
5 * F (s) ds. (5.24)S(t)0ct

(iii) By (5.21), (5.9), and (5.8), the Laplace trans-
form of the function s(0, t) is

` ` `

2dt 2dt 21* e s(0, t) dt 5 * e * p (x, t 0) c dx dt|@ 2 #0 0 0

` `1
2dt5 * * e p (x, t 0) dt dx|10 0c

`1
2r x5 * e dx

0c
1

5 . (5.25)
cr

This elegant formula can also be obtained from the
initial value theorem of Laplace transforms (Spiegel
1965, p. 5, Theorem 1-16) which states that, for a
sufficiently regular function f,

ˆlim f(u) 5 lim j f(j).
u→0 j→`

Hence

`

2dt* e s(0, t) dt 5 lim j ŝ(j, d), (5.26)
0

j→`

where is the double Laplace transform ofŝ(j, d)
s(u, t),

` `

2ju2dtŝ(j, d) 5 * * e s(u, t) dt du,
0 0

j . 0, d . 0. (5.27)

It follows from (5.20) that

1 ˆŝ(j, d) 5 2 c(j, d), (5.28)
jd

where is the double Laplace transform ofĉ(j, d)
c(u, t). Because the left-hand side of (2.65) is f(u)
with w(x, y)[1, we have

ˆ ˆc(j, d) 5 f(j)/d

ˆlr[1 2 p(j)] 1 j(d 2 cr)
5 (5.29)

ˆdjr{l[1 2 p(j)] 1 d 2 cj}

by (2.59). From (5.29) and (5.28) we obtain the fol-
lowing result, which is of an independent interest:

21 21j 2 r
ŝ(j, d) 5 . (5.30)

ˆl[1 2 p(j)] 1 d 2 cj

Note that the denominator on the right-hand side of
(5.30) is the difference of the two sides in Lundberg’s
fundamental equation (2.22). Substituting (5.30) in
the right-hand side of (5.26) and taking the limit as j
tends to ` yields (5.25).

(iv) For u≥0, t.0, consider the probability

Pr[U(t) ≥ 0 U(0) 5 u] 5 F (u 1 ct).| S(t)

By conditioning on whether or not ruin occurs before
time t and distinguishing according to the time t when
the surplus process upcrosses the level 0 for the last
time, we have the following equation for the nonruin
function s(u, t),

F (u 1 ct) 5 s(u, t)S(t)

t

1 * p (0, t u) s(0, t 2 t) dt, (5.31)|30

which, in the context of risk theory, was first given
by Prabhu (1961, Eq. 3.3). As t→`, (5.31) becomes

`

1 5 s(u, `) 1 * p (0, t u) s(0, `) dt,|30

or

`

c(u) 5 [1 2 c(0)] * p (0, t u) dt (5.32)|30

`c 2 lp15 * p (0, t u) dt, u ≥ 0. (5.33)|30c

Seah (1990, p. 426) has pointed out that (5.33) ‘‘is
not practical for computing.’’

(v) For x≤u5U(0), we have

p (x, t u) 5 p (0, t u 2 x),| |3 3

from which and (5.32) it follows that

` c(u 2 x)* p (x, t u) dt 5 . (5.34)|30 1 2 c(0)

For x.u5U(0), because {U(t)} has a positive drift by
(2.5), the surplus will reach level x with probability
1. Hence, for x.u,

` `* p (x, t u) dt 5 1 1 * p (x, t x) dt (5.35)| |3 30 0

c(x 2 x)
5 1 1

1 2 c(0)

1
5 (5.36)

1 2 c(0)
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by (5.34). Furthermore, (5.35) can be generalized as

`

2dt* p (x, t u) e dt|30

`

2r(x2u) 2dt5 e 1 1 * p (x, t x) e dt|@ 3 #0

`

2r(x2u) 2dt5 e 1 1 * p (0, t 0) e dt ,|@ 3 #0

x . u, d ≥ 0. (5.37)

Further results are given in Remark (vi) of Section 6.

Example

Again, consider the case in which the individual
claim amount distribution is exponential, p(x)5be2bx.
Then R is given by (4.24). Applying (3.19) to (5.4)
yields

`

2Ru Ry 2dTe 5 * e p(y)dy E[e I(T , `) U(0) 5 u]|@ #0

b
2dT5 E[e I(T , `) U(0) 5 u].|

b 2 R

Hence

b 2 R
2dT 2RuE[e I(T , `) U(0) 5 u] 5 e . (5.38)|

b

Formula (5.38) should be compared with the first line
of (13.4.8) in Actuarial Mathematics, which is only
for d50. To reconcile (5.38) for u50 with (3.9), we
need to show that, for d.0,

R d
5 . (5.39)

b cr

Equation (5.39) holds because the product of the two
roots of the quadratic equation (3.11) is 2bd/c. As a
further check, we want to see that (5.38) with u50 is
consistent with (3.14); here we need the identity

b 2 R l
5 , (5.40)

b c(b 1 r)

which is true because of (4.34). It follows from (3.13)
and (5.40) that

p(y)
2byg(y) 5 (b 2 R)e 5 . (5.41)

p̂(2R)

In the particular case in which w(x, y)5w(y), a
function not depending on x, we can apply (3.19) and
(5.38) to obtain an explicit expression for f(u):

2dTf(u) 5 E[e w( U(T) ) I(T , `) U(0) 5 u]| | |
`

2dT5 * w(y)p(y)dy E[e I(T , `) U(0) 5 u]|@ #0

`

2by 2Ru5 * w(y)e dy (b 2 R)e@ #0

2Ruˆ5 w(b)(b 2 R)e . (5.42)

This shows that the asymptotic formula (4.32) is ac-
tually an exact formula, and

2Ruf(u) 5 f(0)e . (5.43)

Furthermore, for d.0,

2dTE[e w( U(T) ) T , `, U(0) 5 u]| | |
2dTE[e w( U(T) ) I(T , `) U(0) 5 u]| | |

5
E[I(T , `) U(0) 5 u]|

f(u)
5

c(u)

ˆbw(b)[b 2 R(d)]
2[R(d)2R(0)]u5 e . (5.44)

b 2 R(0)

Because of (5.40) [or (4.34)], we can rewrite (5.44)
in terms of r(d) and r(0). Noting that r(0)50, we have

2dTE[e w( U(T) ) T , `, U(0) 5 u]| | |
2 ˆb w(b) l b

5 exp 2 1 u . (5.45)~ @ # !b 1 r(d) c b 1 r(d)

Differentiating (5.44) with respect to d and then set-
ting d50 yields

E[T w( U(T) ) T , `, U(0) 5 u]| | |
1

ˆ5 bw(b)R '(0) 1 u , (5.46)@ #b 2 R(0)

which is a linear function in u. By (4.25)

21b 2 R(0) 5 lc .

From (4.24),

l
R '(0) 5 .

c(cb 2 l)

Hence

E[T w( U(T) ) T , `, U(0) 5 u]| | |
ˆlbw(b) c

5 1 u . (5.47) M@ #c(cb 2 l) l
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6. GENERALIZATION OF DICKSON’S
FORMULA

For the case d50, Dickson (1992) has found the fol-
lowing astonishing result:

f(x u) 5

(6.1)

|
1 2 c(u) x . u ≥ 0,f(x 0) ,|

(6.2)

1 2 c(0)

c(u 2 x) 2 c(u)^ 0 , x ≤ u.f(x 0) ,| 1 2 c(0)

Here,

21f(x 0) 5 lc [1 2 P(x)]; (6.3)|

see (3.5). The purpose of this section is to generalize
(6.1) and (6.2) to the case in which d≥0.

A first question is how to extend the definition of
c(u) for d.0. It turns out that the appropriate defi-
nition is

2dT1rU(T)c(u) 5 E[e I(T , `) U(0) 5 u], u ≥ 0.| (6.4)

Thus c(u)5f(u) with w(x, y)5e2ry; see (2.10). [Com-
pare the expressions on the right-hand sides of (6.4)
with (5.4).] Then Dickson’s formula can be general-
ized as

f(x u) 5

(6.5)

|
rue 2 c(u) x . u ≥ 0,f(x 0) ,|

(6.6)

1 2 c(0)

r xe c(u 2 x) 2 c(u)^ 0 , x ≤ u,f(x 0) ,| 1 2 c(0)

with

21 2r xf(x 0) 5 lc e [1 2 P(x)] (6.7)|

according to (3.5). Hence, as a function of x, f(x u)|
has a discontinuity of amount

ru 21f(u 0) e 5 lc [1 2 P(u)]|

at x5u. This is the same result as (3.27).
To prove (6.5) and (6.6), we need some more con-

cepts. We begin by extending the definition of the
stopping time Tx as given by (5.5). For a real number
x, we now let Tx denote the time of the first upcross-
ing of the surplus through the level x; we set Tx5` if
the surplus never upcrosses through the level x. For
x.U(0), this is the same as (5.5). For x,U(0), the
surplus has to drop below the level x before it can
ever upcross through x. We call the stopping time T0

the time of recovery; it is the first time the surplus

reaches zero after ruin. It follows from (5.7) that, for
a,b,

2d(T 2T ) 2r(b2a)b aE[e T , T ] 5 e . (6.8)| a b

Hence

2d(T 2T) rU(T)0E[e T , `] 5 e , (6.9)|

from which and the law of iterated expectations it fol-
lows that

2dT0E[e I(T , `) U(0) 5 u]|
2d(T 2T) 2dT05 E[e e I(T , `) U(0) 5 u]|
rU(T) 2dT5 E[e e I(T , `) U(0) 5 u]|

5 c(u). (6.10)

This formula shows that the generalized c(u) can be
interpreted as the expected present value of a pay-
ment of 1 that is made at the time of recovery, if ruin
takes place.

For a≤u,b,

Pr[T , ` U(0) 5 u] , 1 (6.11)|a

and

Pr[T , ` U(0) 5 u] 5 1 (6.12)|b

because the surplus process {U(t)} has a positive drift.
We define the stopping time

T 5 min(T , T ), (6.13)a,b a b

and consider the functions

2dTa,bA(a, b u) 5 E[e I(U(T ) 5 a) U(0) 5 u]| |a,b

2dTa5 E[e I(T , T ) U(0) 5 u], (6.14)|a b

and

2dTa,bB(a, b u) 5 E[e I(U(T ) 5 b) U(0) 5 u]| |a,b

2dTb5 E[e I(T . T ) U(0) 5 u]. (6.15)|a b

With d interpreted as a force of interest, isA(a, b u)|
the expected present value of a payment of 1 that is
made when the surplus upcrosses the level a for the
first time, provided that the surplus has not reached
the level b in the meantime. Similarly, is theB(a, b u)|
expected present value of a payment of 1 that is made
when the surplus reaches the level b for the first time,
provided that the surplus has not dropped below the
level a in the meantime. Note that, for each constant
k,

A(a, b u) 5 A(a 1 k, b 1 k u 1 k) (6.16)| |
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and

B(a, b u) 5 B(a 1 k, b 1 k u 1 k). (6.17)| |

It follows from (6.10) that, for u≥a,

A(a, u) 5 lim A(a, b u)`| |
b→`

5 lim A(0, b 2 a u 2 a)|
b→`

2dT05 E[e I(T , `) U(0) 5 u 2 a]|0

5 c(u 2 a). (6.18)

Similarly, it follows from (6.12) and (5.7) that, for
u,b,

B(2`, b u) 5 lim B(a, b u)| |
a→2`

2r(b2u)5 e . (6.19)

Note that, with d50 and 0≤u,b, A(0, b|u) is the prob-
ability of ruin from an initial surplus u in the presence
of an absorbing upper barrier at b.

For a',a≤u,b,b', by considering whether Ta,Tb

or Ta.Tb, we obtain the identities

A(a, b' u) 5 A(a, b u) 1 B(a, b u)A(a, b' b) (6.20)| | | |

and

B(a', b u) 5 A(a, b u)B(a', b a) 1 B(a, b u). (6.21)| | | |

With a50, b5x, b'5` and because of (6.18), (6.20)
becomes

c(u) 5 A(0, x u) 1 B(0, x u)c(x). (6.22)| |

With a'52`, a50, b5x, b'5` and because of (6.19),
(6.21) becomes

2r(x2u) 2r xe 5 A(0, x u)e 1 B(0, x u). (6.23)| |

For 0≤u,x, formulas (6.22) and (6.23) are two linear
equations for A(0, x|u) and B(0, x|u); their solution is

r x rue c(u) 2 e c(x)
A(0, x u) 5 (6.24)| r xe 2 c(x)

and

rue 2 c(u)
B(0, x u) 5 . (6.25)| r xe 2 c(x)

With d50, Segerdahl (1970) denotes A(0, andx u)|
B(0, as j(u, x) and x(u, x), respectively. Formulasx u)|
(6.24) and (6.25) extend Dickson’s (1992) formulas
(1.3) and (1.4) to the general case of d≥0.

With (6.25), we can now prove (6.5). Let 0≤u,x. If
ruin should occur with U(0)50 such that the surplus

immediately before ruin is x, then the surplus must
attain the level u prior to ruin. Hence

f(x 0) 5 B(0, u 0) f(x u), (6.26)| | |

or

f(x 0)|f(x u) 5| B(0, u 0)|
rue 2 c(u)

5 f(x 0) , (6.27)| 1 2 c(0)

which is (6.5).
Formula (6.6) is more intricate because the condi-

tion U(0)5u≥x5U(T-).0 means that the surplus is to
drop below the level x some time before ruin occurs.
Its proof is based on the notion of duality, which, as
pointed out by Feller (1971, p. 395), enables us ‘‘to
prove in an elementary way theorems that would oth-
erwise require deep analytic methods.’’ Formula (6.6)
follows from the identity

` p(x 1 y)
2ryB(0, u 0) f(x u) * e dy| | 0 1 2 P(x)

2ru5 g(x) A(2u, 0 2x) e , (6.28)|

valid for 0,x≤u. Solving for f and using (3.4) and(x u)|
(6.16), we get

A(0, u u 2 x)|21 2ruf(x u) 5 lc [1 2 P(x)]e . (6.29)| B(0, u 0).|

Applying (6.24) and (6.25) to (6.29) yields

2r xc(u 2 x) 2 e c(u)
21f(x u) 5 lc [1 2 P(x)] , (6.30)| 1 2 c(0)

which is indeed (6.6).
It remains to prove the identity (6.28). We multiply

it by dx. Then the expression on the left-hand side
can be interpreted as

2dT0E[e I(T , T , `, x ≤ U (T-) ≤ x 1 dx)u

U(0) 5 0], (6.31)|

the expected present value of a payment of 1 that is
due at the time of recovery, provided that the surplus
has been above the level u prior to ruin and between
x and x1dx immediately before ruin. The expression
on the right-hand side is

2dT0E[e I(2x2dx ≤ U(T) ≤ 2x, min U(t) , 2u)
T,t,T0

U(0) 5 0], (6.32)|
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the expected present value of 1 that is due at the time
of recovery, provided that the surplus has been
between 2x2dx and 2x at the time of ruin and below
2u prior to recovery. Finally, the equality of (6.31)
and (6.32) can be explained by duality.

A dual process {U*(t)} of the process {U(t)} with
U(0)50 is defined as follows: If T5`, we set
U*(t)5U(t), and if T,`, we set

for 0 ≤ t ≤ T2U(T 2 t) 00
U*(t) 5 . (6.33)^ for t . TU(t) 0

See Figures 3 and 4. In other words, suppose that
{U(t)} has n jumps before the time of recovery T0 and
that the jump of size Xi occurs at time ti, ti,T0, i51,
..., n. Then {U*(t)} has the same n jumps before time
T0, except that the jump of size Xi occurs at time
T02ti, i51, ..., n. This is a measure-preserving corre-
spondence, and hence the process {U*(t)} follows the
same probability law as the process {U(t)}. That is, if
a certain event in terms of {U(t)} is translated as an
event that is formulated in terms of {U*(t)}, the prob-
abilities, or, as in the case of (6.31) and (6.32), the
contingent expectations, are identical. (Incidentally,
this duality also explains the symmetric Formula
(3.7), which is for the case d50.) This completes the
proof of (6.6).

Using (2.40), we obtain from (6.5) and (6.6) the for-
mula

f(x, y u) 5

(6.34)

|
rue 2 c(u) x . u ≥ 0,f(x, y 0) ,|

(6.35)

1 2 c(0)

r xe c(u 2 x) 2 c(u)^ 0 , x ≤ u,f(x, y 0) ,| 1 2 c(0)

with

21 2r xf(x, y 0) 5 lc e p(x 1 y) (6.36)|

according to (3.3).

Example

One consequence of (6.34) and (6.35) is that there
is an explicit formula for f(x, whenever there isy u)|
an explicit expression for the function c(u). This is
the case for an exponential claim amount distribu-
tion,

2bxp(x) 5 be , x ≥ 0.

Here we have, for u≥0,

2dT1rU(T)c(u) 5 E[e I(T , `) U(0) 5 u]|
b 2 R

2Ru5 e (6.37)
b 1 r

according to (5.42) [with w(y)5e2ry]. Then

Rxc(u 2 x) 5 e c(u). (6.38)

Hence, by (6.5) and (6.6) we obtain

f(x u) 5|

l
2(r1b)x ru 2Rue [(b 1 r)e 2 (b 2 R)e ],

c(R 1 r)

x . u ≥ 0, (6.39)

l(b 2 R)
2(r1b)x (R1r)x 2Rue [e 2 1] e ,

c(R 1 r)

0 , x ≤ u. (6.40)

T̂o determine we apply (3.19). We may usef(x, y u),|
the formula

`

2dT* f(x u) dx 5 E[e I(T , `) U(0) 5 u]| |0

as a check for the validity of (6.39) and (6.40). After
some calculation the integral on the left-hand side
simplifies as

l
2Rue , (6.41)

c(b 1 r)

while the right-hand side is

b 2 R
2Rue (6.42)

b

by (5.38). These two terms are the same because of
(5.40). It is amusing to note that the integral of ex-
pression (6.40) from x50 to x5` is also (6.41). M

Remarks

(i) With w(x, y)5e2ry,

`

2r(z2u)h(u) 5 * e g(z) dz (6.43)
u

by (2.32), (2.17), and (3.4). It follows from (2.34)
[with f(u)5c(u)] that

c(u) 5 (c g)(u) 1 h(u)*

u `

2r(z2u)5 * c(u 2 z) g(z) dz 1 * e g(z) dz,
0 u (6.44)
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FIGURE 3
A SAMPLE PATH OF THE PROCESS {U(t)} THAT CONTRIBUTES TO EXPRESSION (6.31)

FIGURE 4
THE DUAL SAMPLE PATH THAT CONTRIBUTES TO EXPRESSION (6.32)



68 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

which generalizes Exercise 13.11 of Actuarial Math-
ematics. With u50, (6.44) becomes

ˆc(0) 5 g(r); (6.45)

recall that ĝ(2R)51.
(ii) As an alternative proof, we would like to show

that (6.5) and (6.6) satisfy the renewal equation
(3.26), or equivalently, with the definition

ru x . u ≥ 0,e ,
w(u) 5 (6.46)

r x^ e c(u 2 x), 0 , x ≤ u,

that

w(u) 2 c(u) 5 [(w 2 c) g](u)*
ru1 [1 2 c(0)] e I(x . u) (6.47)

holds. A direct verification of (6.47) seems difficult.
However, we can confirm its validity by means of La-
place transforms. Taking Laplace transforms of (6.44)
yields

ˆˆ ˆ ˆc(j) 5 c(j)g(j) 1 h(j), (6.48)

where

` `

ˆ 2ju 2r(z2u)h(j) 5 * e * e g(z) dz du@ #0 u

ˆ ˆg(j) 2 g(r)
5 (6.49)

r 2 j

by changing the order of integration. Hence

ĥ(j)
ĉ(j) 5 ˆ1 2 g(j)

ˆ ˆg(j) 2 g(r)
5 . (6.50)ˆ[1 2 g(j)](r 2 j)

From (6.46)

(r2j)xe 2 1
(r2j)xˆ ˆw(j) 5 1 e c(j). (6.51)

r 2 j

Thus

(r2j)x ˆe 2 1 1 2 g(r)ˆ ˆw(j) 2 c(j) 5 ˆr 2 j 1 2 g(j)
(r2j)xe 2 1 1 2 c(0)

5 (6.52)ˆr 2 j 1 2 g(j)

by (6.45). We now see that (6.47) holds.
(iii) As we pointed out earlier, it follows from our

generalization of Dickson’s formula that there is an
explicit formula for [and wheneverf(x u) f(x, y u)]| |

there is an explicit expression for the function c(u).
If is a rational function, then by locating its polesĉ(j)
(singularities), we can determine c(u). It follows from
(6.50) that is a rational function if and only ifĉ(j)

is a rational function; by (2.50) is a rationalˆ ˆg(j) g(j)
function if and only if is a rational function. Itp̂(j)
also follows from (6.50) that the singularities of ĉ(j)
are exactly the roots of the equation

ĝ(j) 5 1. (6.53)

We should clarify that here the functions ˆ ˆc(j), g(j),
and are defined on the whole complex plane byp̂(j)
analytic continuation. Consider the example where
p(x)5be2bx; although the integral

`

2j x* e p(x)dx
0

is not defined for complex numbers j with Re(j)≤2b,
the rational function b/(b1j) is. Consequently, while
(2.53) has at most one solution, (6.53) can have mul-
tiple solutions. Now, let 2r1, 2r2, . . . , 2rm be the
distinct roots of (6.53) and n1, n2, . . . , nm be their
multiplicities. Then it follows from Heaviside’s ex-
pansion formula (Spiegel 1965, p. 73) that

m n 21k1 d
n j uˆkc(u) 5 lim [(j 1 r ) c(j) e ],Σ kn 21kk51 (n 2 1)! djj→2rkk

(6.54)

where is given by (6.50). In the special caseĉ(j)
where all poles of are simple, that is, n15n25ĉ(j)
. . .5nm51, then (6.54) simplifies as

m

j uˆc(u) 5 lim [(j 1 r ) c(j) e ]Σ k
k51 j→2rk

m
ĥ(2r )k 2r uk5 eΣ ˆk51 2g'(2r )k

m ˆ ˆg(2r ) 2 g(r)k 2r uk5 e . (6.55)Σ ˆk51 2g'(2r )(r 1 r )k k

By (6.53) and (6.45),

ˆ ˆg(2r ) 2 g(r) 5 1 2 c(0).k

Similar to (2.55), we have

ˆ ˆ2g'(2r )(r 1 r ) 5 2(l/c)p'(2r ) 2 1.k k k

Hence (6.55) simplifies as
m 2r uke

c(u) 5 [1 2 c(0)] . (6.56)Σ ˆk51 2(l/c)p'(2r ) 2 1k
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Putting u50 in (6.56) and rearranging, we obtain

1
1 2 c(0) 5 , (6.57)m

1
1 1 Σ

k51 12(l/c)p̂'(2r ) 2 1k

which can be substituted in (6.56) yielding
m 2r ukc e

c(u) 5 .Σm ˆk51 2lp'(2r ) 2 cc k
1 1 Σ

k51 12lp̂'(2r ) 2 ck

(6.58)

Consider the case in which p(x) is a mixture of ex-
ponential distributions,

n

2b xjp(x) 5 A b e , x ≥ 0, (6.59)Σ j j
j51

where

0 , b , b , . . . , b ,1 2 n

and Then
n

A 51.Σ j
j51

n
A bj jp̂(j) 5 , (6.60)Σ

j51 b 1 jj

and Lundberg’s fundamental equation (2.22) becomes
n

A bj jd 1 l 2 cj 5 l . (6.61)Σ
j51 b 1 jj

The nonnegative solution of (6.61) is r and the neg-

ative solutions are the poles of We now imposeĉ(j).
the condition that Aj.0, j51, 2, . . ., n. Then (6.61)
has n distinct negative roots {2rk} with

0 , r 5 R , b , r , b , . . . , r , b .1 1 2 2 n n

[Inequalities (13.6.15) of Actuarial Mathematics are
for the case d50; see also Figure 13.6.2 of Actuarial
Mathematics.] It follows from

n
A bj jp̂'(j) 5 2 (6.62)Σ 2j51 (b 1 j)j

and (6.58) that, given the roots {2rk}, we have an
explicit formula for c(u) [and hence explicit formulas
for f(x|u) and f(x, y|u)]. On the other hand, by (2.50)
and (6.60),

lˆ ˆ ˆg(j) 5 [p(j) 2 p(r)]
c(r 2 j)

n
l A bj j5 , (6.63)Σ

j51c (b 1 j)(b 1 r)j j

from which we obtain

nˆ ˆg(j) 2 g(r) l A bj jh(j) 5 5 (6.64)Σ 2j51r 2 j c (b 1 j)(b 1 r)j j

and
n

l A bj jˆ2g'(j) 5 . (6.65)Σ 2j51c (b 1 j) (b 1 rj j

It follows from (6.55), (6.64), and (6.65) that we have
the following alternative formula for c(u),

n
A bj jΣn 2j51 (b 2 r )(b 1 r)j k j 2r ukc(u) 5 e . (6.66)Σ n

k51 A bj jΣ 2j51 (b 2 r ) (b 1 r)j k j

Note that in the special case n51, we obtain again
(6.37).

(iv) Substituting the asymptotic expression of c(u),

2Ruc(u) ; Ce for u → `, (6.67)

in (6.35) yields

C
r x 2R(u2x) 2Ruf(x, y u) ; f(x, y 0) [e e 2 e ]| | 1 2 c(0)

lC
Rx 2r x 2Ru5 (e 2 e ) p (x 1 y) e

c[1 2 c(0)]

for u → `. (6.68)

Because

ˆ ˆg(2R) 2 g(r)
C 5 ˆ2g'(2R)(r 1 R)

1 2 c(0)
5 , (6.69)

21 ˆ2lc p'(2R) 2 1

the asymptotic formulas (6.68) and (4.21) are the
same.

(v) The expression

TE[v a I(T , `) U(0) 5 u] (6.70)|T 2T0 |

is the expected present value of a continuous annuity
at a rate of 1 per unit time between the time of ruin
and the time of recovery for a given initial surplus u.
Because

2dT 2dT0e 2 e
Tv a 5 , (6.71)T 2T0 | d

(6.70) is

`* f(x u) dx 2 c(u)|0
. (6.72)

d
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Alternatively, (6.70) is

rU(T)1 2 e
TE[v I(T , `) U(0) 5 u] (6.73)|

d

by (6.9). That is, it is f(u) with the penalty function
w given by (2.14). We note that

Tlim E[v a I(T , `) U(0) 5 u]|T 2T0 |
d→0

5 E[(T 2 T) I(T , `) U(0) 5 u]. (6.74)|0

It follows from (6.74), (6.73), and (2.45) that

E[(T 2 T) I(T , `) U(0) 5 u]|0

r
5 lim E[ U(T) I(T , `) U(0) 5 u]| | |

dd→0

1
5 E[ U(T) I(T , `) U(0) 5 u]. (6.75)| | |c 2 lp1

Formula (6.75) is intuitively clear because c2lp1 is
the drift of {U(t)}. For related results see Egı́dio dos
Reis (1993).

(vi) Recall the function the passage timep (x, t u),|3

density of the surplus process at the level x, an ex-
plicit formula for which is given by (5.13) and (5.14).
Similarly to (5.37), we have, for x≤u and d≥0,

`

2dt* p (x, t u) e dt|30

`

2dt5 c(x 2 u) 1 1 * p (x, t x) e dt|@ 3 #0

`

2dt5 c(x 2 u) 1 1 * p (0, t 0) e dt . (6.76)|@ 3 #0

Putting x5u50 in (6.76) and solving for the integral
yields

` c(0)
2dt* p (0, t 0) e dt 5 . (6.77)|30 1 2 c(0)

Applying (6.77) to (5.37) and (6.76), we obtain

`

2dt* p (x, t u) e dt|30

2r(x2u)e x . u,
(6.78)

1 2 c(0)
.5

c(u 2 x)^ x ≤ u,
1 2 c(0)

The right-hand side of (6.78) can be written as a pair
of infinite series using the geometric series formula

`
1

n5 c(0) ;Σ
n501 2 c(0)

the j-th term of either series represents the contri-
bution of the j-th upcrossing at the level x to the in-
tegral on the left-hand side of (6.78).

7. OPTIMAL DIVIDEND STRATEGIES

We now consider a problem that is due to Bruno de
Finetti, has been treated by Karl Borch and others,
and can be found in the textbooks of Bühlmann
(1970, Section 6.4) and Gerber (1979, Section 10.1).
Here the surplus model is modified in that dividends
are paid to the shareholders of the insurance com-
pany. We assume that the dividends are paid accord-
ing to a barrier strategy corresponding to a barrier at
the level b. Thus whenever the surplus is on the bar-
rier b, dividends are paid continuously, at a rate of c
so that the surplus stays on the barrier, until the next
claim occurs and the surplus falls below b. If the sur-
plus is below b, no dividends are being paid. Evi-
dently, ruin will occur with certainty in this model.
For 0≤u≤b, let V(u, b) denote the expected present
value of the dividend payments until ruin.

Since no dividends are paid unless the surplus
reaches the level b before ruin occurs, we have, for
0≤u≤b,

V(u, b) 5 B(0, b u) V(b, b), (7.1)|

or, by (6.25)

rue 2 c(u)
V(u, b) 5 V(b, b). (7.2)

rbe 2 c(b)

To determine V(b, b), we need a boundary condition
at u5b. To obtain it, we compare two situations at
time 0: one with initial surplus b, and the other with
initial surplus u5b2h, 0,h≤b. Then h/c is the time
the surplus reaches the barrier in the second case,
provided that there is no claim by then. By condi-
tioning on the time t and the amount x of the first
claim in the time interval (0, h/c) and noting that the
dividend payments start immediately in the first case,
we see that

V(b, b) 2 V(b 2 h, b)

h/c
2lh/c 2lt5 e c a 1 * le c a dth/c t| |0

h/c b
2lt 2dt1 * le e * V(b 2 x, b)p(x)dx@0 0

b2h1ct

2 * V(b 2 h 1 ct 2 x, b)p(x)dx dt.#0 (7.3)
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Differentiating (7.3) with respect to h and then setting
h50, we obtain the condition

]V (u, b)
5 1. (7.4)]u u5b

Now, differentiating (7.2) with respect to u, setting
u5b, and applying (7.4) yields

rbre 2 c'(b)
1 5 V(b, b).

rbe 2 c(b)

Hence

rue 2 c(u)
V(u, b) 5 , 0 ≤ u ≤ b. (7.5)

rbre 2 c'(b)

This formula should be compared with (1.13) in
Chapter 10 of Gerber (1979). In Section 10.1 of Ger-
ber (1979), the function B(0, is denoted asb u)|
W (u, b).

Let be the optimal barrier, that is, is the value˜ ˜b b
of b that maximizes the expected present value of the
dividends. In view of (7.5), is the value that mini-b̃
mizes the denominator, that is, satisfiesb̃

2 rbr e 2 c"(b) 5 0. (7.6)

An equivalent condition is that

2 ˜] V(u, b)
5 0; (7.7)

2  ˜]u u5b

this follows from the explicit form of (7.5).

Example

In the case of an exponential claim amount distri-
bution, there is an explicit expression for c(u). Sub-
stituting (6.37) into (7.5) yields

ru 2Ru(b 1 r)e 2 (b 2 R)e
V(u, b) 5 . (7.8)

rb 2Rbr(b 1 r)e 1 R(b 2 R)e

The optimal value is obtained from the conditionb̃
that

2 rb 2 2Rbr (b 1 r)e 2 R (b 2 R)e 5 0. (7.9)

Thus

21 R (b 2 R)
b̃ 5 ln (7.10)

2r 1 R r (b 1 r)

is the optimal barrier. M

8. CONCLUDING REMARKS

This paper studies the joint distribution of the time
of ruin, the surplus immediately before ruin, and the
deficit at ruin. The time of ruin is studied in terms of
its Laplace transforms, which can naturally be inter-
preted as discounting. New results are derived, many
of which have a probabilistic interpretation, and ad-
ditional insight is gained for existing results in the
classical model.

Formulas (2.34) and (3.3) are the mathematical
keys. They are equivalent formulas. Formula (2.34) is
derived analytically in Section 2. Section 3 shows that
(3.3) is an immediate consequence of (2.34) and con-
versely that (2.34) can be obtained from (3.3) by
probabilistic reasoning. In Section 5, we derive (3.3)
by a probabilistic argument.

The results presented in this paper can be gener-
alized in various directions. For example, several for-
mulas can be extended to the case in which the
compound Poisson process is replaced by a more gen-
eral process with positive, independent and stationary
increments, such as a gamma process or an inverse
Gaussian process.
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DISCUSSIONS

F. ETIENNE DE VYLDER* AND MARC J.
GOOVAERTS†

The paper is a new chapter and a summit of clas-
sical actuarial ruin theory. The primary goal of ruin
theory is the evaluation of the ruin probability

*F. Etienne De Vylder, Ph.D., is a former professor of actuarial science
at a Belgian university. He can be reached at Broederlijke Wever-
splein 32, 9000 Gent, Belgium.

†Marc J. Goovaerts, Ph.D., is a professor at the Katholeike Universi-
teit Leuven, Ninderbroederstraat 5, B-3000 Leuven, Belgium.

P(T,`). In recent years actuaries have dissected the
risk process and considered more components such
as the time of ruin T, the deficit at ruin 2U(T), and
the risk reserve just before ruin U(T-). At each stage,
more insight has been gained. The novelty of this pa-
per is the introduction of a discounting factor at ruin
e2dT. This allows one to solve an optimal dividend
strategies problem (Section 7), and it lays the bases
for a model of pricing American options. We will show
that the number of the claim provoking ruin also mer-
its consideration.

The density of results of this paper is amazing. Al-
most all classical results—results by Dufresne and
Gerber (1988), by Gerber (1988), by Dixon (1992),
and by Egı́dio dos Reis (1993)—are obtained as par-
ticular cases for d50, and almost all the formulas are
extended to the case d.0.

Another characteristic of the paper is its richness of
tools and techniques: integrating factors, Laplace trans-
forms, convolutions, renewal equations and key renewal
theorem, martingales and optional sampling theorem,
probabilistic duality, and Heaviside’s expansion.

It is remarkable that the paper is not based on any
other results of classical ruin theory. Our first idea
when we saw the paper was that it would be an ex-
cellent last chapter of any book on the subject. Our
second opinion is that due to its self-containedness,
it should better be a first chapter.

The rest of this discussion focuses on the central
simple but deep relation (3.3) of the paper, that is,

2r xf(x, y 0) 5 (l/c)e p(x 1 y), (x . 0, y . 0). (1)|

The difficult part of the proof of this relation is the
insertion of the root r≥0 of Lundberg’s fundamental
equation (2.22) for j,

ˆd 1 l 2 cj 5 lp(j). (2)

The first proof of (1) is based on renewal equation
(2.34) in which r is introduced by the ingenious trick
of integrating factors. The proof of (2.34) is a mas-
terpiece. In the most elegant second proof of (1) in
Section 5, r is inserted via the optional sampling the-
orem of martingale theory. We guess that (1) has been
discovered by the martingale proof.

We now develop a complete third proof of (1) based
on the consideration of the claim number provoking
ruin and on Lagrange’s expansion of a function of a
root of an equation. Hereafter, the classical risk pro-
cess is considered with U(0)50 only. The condition
U(0)50 is understood everywhere. The claim instants
are T1,T2,. . . and the corresponding claim amounts
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are X1, X2, . . .. For x, y, n≥0, let andf (x,y 0) f (x 0)| |n n

be defined by the relations

f (x,y 0)dxdy 5 E{I[T 5 T , x , U(T-) , x1dx,|n n11

2dTy , U(T) , y1dy]e },| | (3)

f (x 0)dx 5 E{I[no ruin in [0, T ),|n n11

2dTn11x , U(T -) , x1dx]e }. (4)n11

Then

f (x,y 0) 5 f (x 0) p(x1y), (5)| |n n

f(x, y 0) 5 f (x,y 0) 5 f (x 0) p(x1y), (6)Σ Σ| | |n @ n #
n≥0 n≥0

and thus it is enough to prove that

l
2r xf (x 0) 5 e . (7)Σ |n

n≥0 c

The expectation of the indicator function of an event
equals the probability of that event. Hence,

dxdy and dx are probabilities if d50.f (x,y 0) f (x 0)| |n n

In order to evaluate we observe that thef (x 0),|n

density of (X1, . . ., Xn, T1, . . ., Tn, Tn11) is

f(x , . . ., x , t , . . ., t , t )1 n 1 n n11

n11 2ltn115 p(x ). . .p(x ) l e ,1 n

on the subset of R2n11 defined by the relations x1≥0,
. . ., xn≥0 and 0,t1,. . .,tn,tn11,`. Hence,

n11f (x 0)dx 5 l * . . . * p(x ). . .p(x )dx . . .dx|n 1 n 1 nI

2lt 2dtn11 n11* . . . * e e dt . . .dt dt ,@ 1 n n11#J
(8)

where I is the integration domain defined by the re-
lations x1≥0, . . ., xn≥0 and for fixed x1, . . ., xn, J is
the integration domain defined by the relations
0,t1,. . .,tn,tn11 and

x , ct , x 1 x , ct , . . .,1 1 1 2 2

x 1 x 1 . . . 1 x , ct ,1 2 n n

x , ct 2 (x 1 . . . 1 x ) , x 1 dx. (9)n11 1 n

In fact, no integration with respect to tn11 must be
performed and tn115(x11. . .1xn1x)/c, dtn115dx/c by
(9). Then by (8),

f (x 0) 5|n

n 2a(x 1...1x 1x)1 n(l/c) l * . . . * p(x ). . .p(x )e dx . . .dx1 n 1 nI

* . . . * dt . . .dt , (10)@ 1 n#K

where for fixed x1, . . ., xn, K is the integration domain
defined by the relations

0 , t , . . . , t , (x 1 . . . 1 x 1 x)/c,1 n 1 n

t . x /c, t . (x 1 x )/c, . . .,1 1 2 1 2

t . (x 1 . . . 1 x )/c, (11)n 1 n

and a5(l1d)/c. In case n50, (10) must be under-
stood as 5(l /c)e2ax. The multiple interior in-f (x 0)|0

tegral of (10) is a polynomial in x1, . . ., xn. By the
argument of De Vylder (1996), pp. 132–135, it can be
replaced by the polynomial

n n21(t /n!)(12s /t)5t (t2s )/n!,n n

where

x 1 . . . 1 x 1 x1 nt 5
c

and

x 1 . . . 1 x1 ns 5 .n c

Hence,

n(lx/c)(l /c)
n21f (x 0) 5 * . . . * (x 1 . . . 1 x 1 x)|n 1 nIn!

2a(x 1...1x 1x)1 ne p(x ). . .p(x )dx . . .dx1 n 1 n

n(lx/c)(l /c)
n215 E[(X 1 . . . 1 X 1 x)1 nn!

2a(X 1...1X 1x)1 ne ], (12)

which is (lx /c)e2ax if n50.
Let us regard a as a variable. Then the expectation

in the last member of (12) can be displayed as
n21

]
n21 2a(X 1...1X 1x)1 n(21) E[e ]~ !]a

n21
]

n21 2ax nˆ5 (21) [e p (a)],~ !]a



74 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

where the differentiations under the E operator are
easily justified. Then

n(l /c)(2x)(2l /c)
f (x 0) 5|n n!

n21
]

2ax nˆ[e p (a)]. (13)~ !]a

Let us now recall Lagrange’s development. It says that
under regularity conditions on the functions f and g,

n21nt ]
nf(j) 5 f(a) 1 [ f '(a)g (a)] (14)Σ ~ ! ~ !

n≥1 n! ]a

if j is the root of the equation j5a1tg(j), which tends
to a as t tends to 0. Lundberg’s fundamental equation
(2) can be displayed as

ˆj 5 a 1 (2l /c)p(j).

If (2l /c)5t→0, then j→a.0. Hence, the positive root
r of Lundberg’s fundamental equation is involved in
Lagrange’s development. By Lagrange’s development
(14) with the functions and f(z)5e2xz (xˆg(z)5p(z)
fixed), relation (7) results from (13).

DAVID C.M. DICKSON*

Professors Gerber and Shiu have produced a very
comprehensive paper. They have introduced some el-
egant mathematics and provided a framework from
which many results in classical ruin theory can be
derived.

I would like to comment on a particular part of the
paper, namely the derivation of f(u) in Section 2.
Throughout the paper the authors mention different
approaches to solving a given problem. I was therefore
somewhat surprised that they did not consider solving
for f(u) through its Laplace transform, especially as
special cases of this transform are mentioned later in
the paper.

Starting from Equation (2.16)

0 5 2(d 1 l)f(u) 1 cf'(u)
u

1 l * f(u 2 x)p(x)dx 1 lv(u),
0

we have

ˆ0 5 2(d 1 l)f(j)

ˆ ˆ ˆ1 c [jf(j) 2 f(0)] 1 lf(j)p(j) 1 lv̂(j),

*David C.M. Dickson, F.F.A., F.I.A.A., Ph.D., is Associate Professor in
the Centre for Actuarial Studies, The University of Melbourne, Park-
ville, Victoria, 3052, Australia.

so that

lv̂(j) 2 cf(0)
f̂(j) 5

ˆd 1 l 2 cj 2 lp(j)

lv̂(j) 2 cf(0)
5 .

ˆ<(j) 2 lp(j)

For reasons given in the paper, there is a unique pos-
itive number r such that Since f(u).0ˆ<(r)5lp(r).
unless w(x, y)50 for all x, y.0, it follows that

and solv̂(r)5cf(0)

l[v̂(j) 2 v̂(r)]
f̂(j) 5 .

ˆ<(j) 2 lp(j)

For example, if w(x, y)51 for all x and y, then

v(u) 5 1 2 P(u)

and so

21 ˆv̂(j) 5 j [1 2 p(j)].

Hence

21 21ˆ ˆl {j [1 2 p(j)] 2 r [1 2 p(r)}
f̂(j) 5 ,

ˆl [1 2 p(j)] 1 d 2 cj

and since ˆlp(r)5d1l2cr,

ˆlr [1 2 p(j)] 1 j (d 2 cr)
f̂(j) 5 ,

ˆrj (l [1 2 p(j)] 1 d 2 cj)

which is the authors’ formula (2.59).
For certain forms of p(x) (especially those men-

tioned in the paper) and w(x, y) (say exponential
functions), it should be easy to invert to findf̂(j)
f(u). Although it could be argued that solutions via
Laplace transforms deprive us of the insight gained
through other approaches, there is no doubt that in-
version of Laplace transforms, particularly with the
aid of the powerful mathematical software available
nowadays, is a useful way of solving many problems.

VLADIMIR KALASHNIKOV*

The authors, well-known experts in actuarial science,
present a paper giving a new insight into the ruin
problem. In most papers on this topic, the probability
of ultimate ruin is considered. It can be interpreted
as the probability that the time T of ruin is finite.
Using renewal arguments or the martingale approach,

*Vladimir Kalashnikov, Ph.D., is a professor in the Department of
Probability Theory, Faculty of Mechanics and Mathematics, Mos-
cow State University, Vorob’evy Gory, 119899 Moscow, Russia.



ON THE TIME VALUE OF RUIN 75

one can investigate the limiting behavior of the ruin
probability.

In this paper, the authors make a very important
observation: if one equips the time T of ruin with
other characteristics of the surplus process referring
to the same time (in the paper, these are the surplus
values just before and after the ruin), then the result-
ing renewal equation is much similar to the equation
for the simple ruin probability, and owing to this fact,
it can be solved, or, at least, investigated.

This observation allows them to obtain their pro-
found results, which have numerous consequences
and give rise to further research. Among such con-
sequences, I would like to emphasize:
(i) Formula (3.3) for the joint density of the afore-

mentioned two values of the surplus at the time
of ruin given initial surplus U(0)50

(ii) A generalization of Dickson’s formula given in
Section 6.

Now, let me list several remarks concerning the pa-
per. First, for the experienced mathematician, the pa-
per contains too many details, and it can be shortened
without loss of clarity. For example, the arguments
yielding the renewal equation (2.34) can be replaced
by the arguments used in the last part of Section 3,
yielding the same equation more directly. But I realize
that the audience of this paper includes not only
mathematicians.

Second, there are some minor incorrectnesses that
do not affect the final results. For example, some reg-
ularity conditions for the claim amount distribution
are needed to guarantee the existence of R.

Third, the authors use the Laplace transform to
state many of their results. It should be kept in mind
that the inversion problem is difficult in many real
cases.

Fourth, it is well-known that there exists a similar-
ity between risk and queuing theories. In queuing,
similar problems were also considered and various
methods for their solution (including the Wiener-Hopf
factorization, not mentioned in the paper) were elab-
orated. In particular, this can allow the investigation
of the Andersen risk model in which the occurrence
times form a renewal process. Let me refer to Borov-
kov (1976) (especially Chapter 4), Cohen (1969) (es-
pecially Section II.5.3), Takács (1967) (see Chapter
7), and Gnedenko and Konig (1983). These books
contain many relevant topics and further references.

In conclusion, I hope that the results presented in
this paper will be implemented to find new charac-
teristics of risk processes and will result in new re-
search in actuarial science.
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GÉRARD PAFUMI*

The mathematics of this paper are interesting by
themselves. At the same time, they open the door to
several financial applications, such as the pricing of
perpetual put options, see the paper by Gerber and
Shiu (1997), and the optimal choice of dividend strat-
egies, as described in Section 7 of the paper. The pur-
pose of this discussion is to show how certain results
of this paper can be used to calculate the net single
premium for a perpetual default (or insolvency) re-
insurance.

As in Section 2 we assume that a company starts
with an initial surplus u≥0, receives premiums con-
tinuously at a rate c.0, and has to pay claims, which
constitute a compound Poisson process {S(t)}. We
consider the following contract: Whenever the surplus
is negative, the reinsurer makes the necessary pay-
ment to bring the surplus back to zero. A typical sam-
ple path of the surplus process is depicted in Figure
1. Thus the reinsurer will pay the amounts Y1, Y2, Y3,
. . . . The net single premium of the contract is the
expectation of the sum of their discounted values and
is denoted by the symbol A(u).

For u50, there is a surprisingly simple and explicit
result:

1 c 2 lp1A(0) 5 2 . (1)
r d

We note that A(0) can also be interpreted as the un-
loaded reinsurance premium for the guarantee that
the surplus will never drop below the initial level.

Formula (1) can be obtained as follows. When the
surplus is negative for the first time, the reinsurer has
to make an immediate payment of Y1 and reserve the
amount A(0) for the future payments Y2, Y3, . . ..

*Gérard Pafumi is a doctoral student at the Ecole des HEC (Business
School), University of Lausanne, CH-1015 Lausanne, Switzerland.
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FIGURE 1
A TYPICAL SAMPLE PATH OF THE SURPLUS PROCESS UNDER DEFAULT INSURANCE

Hence

`

A(0) 5 * [y 1 A(0)]g(y)dy, (2)
0

with

`l
ry 2rzg(y) 5 e * e p(z)dz (3)

yc

as defined by Formula (2.30) of the paper. Formula
(2) is a linear equation for A(0). Its solution is

`* yg(y)dy
0

A(0) 5 . (4)
`

1 2 * g(y)dy
0

According to Formula (3.9) of the paper, the denom-
inator equals d/(cr). To evaluate the numerator, we
use (3) and change the order of integration to obtain

` zl
2rz ry* e p(z) * ye dy dz.~ !0 0c

Since

z 1 1 1
ry rz rz* ye dy 5 ze 2 e 1 ,

0 2 2r r r

the numerator is

lp l l1 ˆ2 1 p(r).
2 2cr cr cr

Because r is a solution of Lundberg’s equation (2.22),
the numerator can further be simplified to

lp l 1 lp d 11 12 1 <(r) 5 1 2 .
2 2 2cr cr cr cr cr r

Substituting this in the numerator and d/(cr) in the
denominator of (4), we obtain (1).

If u.0, we have

A(u) 5 f(u),

corresponding to the penalty function

w(x, y) 5 y 1 A(0), y . 0.

An explicit expression can be obtained for exponential
claim amount distributions. Then it follows from
(5.43) that

2RuA(u) 5 A(0)e

1 c 2 l/b
2Ru5 2 e .~ !r d

Here 2R and r are the roots of (3.11).
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AUTHORS’ REPLY

HANS U. GERBER AND ELIAS S.W. SHIU

We are grateful for receiving four discussions that
add much breadth and depth to the paper. We thank
the discussants for their thoughtful contributions.

Drs. De Vylder and Goovaerts have provided a most
interesting alternative proof of Formula (3.3) by con-
sidering the claim number of the individual claim
causing ruin and by applying Lagrange’s expansion
formula. Their formula (7), together with (12), is sim-
ilar to, but not the same as, the first formula in Gerber
(1988, Theorem 1(a)). Following a suggestion by Will-
mot, Shiu (1989, p. 248) has shown that Gerber’s
(1988) first formula can be derived by Lagrange’s for-
mula. There is a second version of Lagrange’s formula.
Shiu (1989, p. 248) has pointed out that Gerber’s sec-
ond formula (Gerber 1988, Theorem 1(b)) follows
from the second version of Lagrange’s formula. Panjer
and Willmot (1992, Corollary 11.7.1) have used La-
grange’s formula to give an explicit expression for
r(d).

The two proofs of (3.3) are given in the order that
they were discovered. Because (3.3) looked uncom-
plicated, we kept asking ourselves whether there
would be a simpler proof. Then we came up with the
martingale proof in Section 5.

Dr. Dickson has provided an efficient way to derive
the Laplace transform of f, starting with (2.16). His
derivation of (2.26) from (2.16) is indeed insightful.
Drs. Dickson and Kalashnikov seem to have different
opinions with respect to the difficulty in inverting La-
place transforms.

We agree with Dr. Kalashnikov that, for an experi-
enced mathematical audience, the paper can be
shortened. Dr. Kalashnikov points out that some tech-
nical conditions are needed to guarantee the exis-
tence of R. Although we did say in Section 2 that ‘‘if
the individual claim amount density function, p, is
sufficiently regular, Equation (2.22) has one more
root,’’ we should have been more precise when dis-
cussing R at the beginning of Section 4. For an illus-
tration of this point, we now refer the reader to
Example 13.4.3 on page 412 of Actuarial Mathemat-
ics. We appreciate the references to queuing theory.
To the list of books, we would add the papers by Seal
(1972) and Taylor (1976).

We take this opportunity to point out that Formula
(3.3) holds even if Inequality (2.5) is reversed, that
is, even if the loading is negative. The only modifica-
tion needed is for the limiting case d50. If

c , lp ,1

we have

lim r(d) 5 r(0) . 0
d→0

and

lim R(d) 5 R(0) 5 0.
d→0

Consequently, if d 5 0, we have

l
2r(0)xf(x, y 0) 5 e p(x 1 y), x . 0, y . 0, (R.1)| c

but the symmetry (3.7) does not hold any more.
Mr. Pafumi has presented a very clever idea, which

can be applied to price the so-called reset guarantees
(Gerber and Shiu 1998). His arguments can also be
used to price a contract that provides protection
against the first n deficits only. Let An(u) denote the
net single premium for the payments Y1, . . . , Yn. [Mr.
Pafumi’s A(u) is A`(u) here.] Thus

`

A (0) 5 * y g(y) dy1 0

lp d 115 1 2 , (R.2)
2cr cr r

as derived by Mr. Pafumi. For n 5 2, 3, . . . , we have
the recursive formula

`

A (0) 5 * [y 1 A (0)] g(y) dyn n210

d
5 A (0) 1 1 2 A (0).1 ~ ! n21cr

It follows that, for n 5 1, 2, 3, . . . ,
n

cr d
A (0) 5 1 2 1 2 A (0)n @ ~ ! # 1d cr

n
d

5 1 2 1 2 A (0). (R.3)@ ~ ! # `cr

Furthermore,
A (u) 5 f(u)n

with

w(x, y) 5 y 1 A (0).n21

Again, an explicit formula can be obtained for expo-
nential claim amount distributions; it follows from
(5.43) that, for n 5 1, 2, . . . ,

2RuA (u) 5 A (0) e , u . 0. (R.4)n n

Let us briefly look at the case in which the in-
come process is a Wiener process, with constant
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parameters µ and s2. Then Lundberg’s fundamental
equation is

1
2 2s j 1 µ j 2 d 5 0, (R.5)

2

yielding

2 2=2µ 1 µ 1 2s d
r 5 (R.6)

2s

and

2 2=µ 1 µ 1 2s d
R 5 . (R.7)

2s

We gather from Formula (1) in Mr. Pafumi’s discus-
sion that

1 µ
A (0) 5 2 .` r d

From this, together with (R.6) and (R.7), we obtain
A`(0) 5 1/R; hence, for u ≥ 0,

1
2RuA (u) 5 e . (R.8)` R

In particular, it follows that

A' (0) 5 21, (R.9)`

which can be compared to (7.4).
Finally, we would like to explain how the results of

our paper can be generalized to the case in which
there are n types of claims with frequencies l1, l2,
. . . , ln, so that

n
lip(x) 5 p (x), x . 0. (R.10)Σ i

i51 l

(See Theorem 12.4.1 of Actuarial Mathematics.) We
suppose that the penalty at ruin depends on the type
of claim that causes ruin and the n penalty functions
are w1(x, y), . . . , wn(x, y). Hence the expected dis-
counted penalty is

n ` `

f(u) 5 * * w (x, y) f (x, y u) dx dy, (R.11)Σ |i i0 0i51

with

`

2dtf (x, y u) 5 * e f (x, y, t u) dt. (R.12)| |i i0

(Do not confuse the notation here with that of De
Vylder and Goovaerts.) We proceed as in Section 2,
except that now we have

n ` liv(x) 5 * w (u, x 2 u) p (x) dx. (R.13)Σ i iui51 l

Formulas (2.34) and (2.32) are still valid, in particular

`l
2rzf(0) 5 h(0) 5 * e v(z) dz. (R.14)

0c

Substituting (R.13) in the right-hand side of the
above, and comparing the resulting formula with
(R.11) (with u 5 0), we found that

li 2rxf (x, y 0) 5 e p (x 1 y), x . 0, y . 0, (R.15)|i il

i 5 1, 2, . . . , n. If we integrate this formula over x,
over y, or both, we generalize (3.4), (3.5) and (3.9).
For an alternative proof of (R.15), see Gerber and
Shiu (1998).

We thank all five discussants for their thought-
provoking comments.
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Additional discussions on this paper can be sub-
mitted until July 1, 1998. The authors reserve the
right to reply to any discussion. See the Submission
Guidelines for Authors for detailed instructions on
the submission of discussions.


