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Abstract

Transportation Economics �the use of economic models and theory to further e�cient

transportation � has become highly relevant in today's congested world. This PhD-thesis

contributes to the �eld of Transportation Economics by focusing on the e�cient use of

tra�c lights (Part I) and on the implementation of e�cient transportation policies (Part

II). Central to the �rst part of this thesis is the regulation of intersections. In particular,

three issues on this subject are analyzed: Part I begins by studying the optimal regulation

of intersections, where the intersection can be regulated by tra�c lights or a priority rule,

and tolls can be levied. Next, Part I compares the e�ciency of tra�c-responsive signal

control and anticipatory signal control. Part I ends by analyzing whether tra�c lights can

achieve the same results as tolls. Part II of this thesis focuses on a case study of e�cient

transportation policies and more particularly on the e�ectiveness and welfare e�ects of

alternative transport policies designed to reduce urban tra�c externalities in a medium

sized city.
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Samenvatting

Door de toenemende congestie is de studie van transporteconomie - het gebruik van econo-

mische theorie en modellen om e�ciënte mobiliteit te bevorderen - vandaag de dag uiterst

relevant. Deze thesis in transporteconomie focust op het e�ciënt gebruik van verkeerslich-

ten (Deel I) en op de toepassing van e�ciente transportmaatregelen (Deel II). In het eerste

gedeelte van deze thesis staat de regulering van kruispunten centraal. Drie aspecten wor-

den er geanalyseerd: Als eerste wordt de optimale regulering van kruispunten bestudeerd.

Het kruispunt kan hierbij zowel door een voorrangsregel als door verkeerlichten geregeld

worden. Ook kan er een tolhe�ng van toepassing zijn. Ten tweede wordt de e�ciëntie van

een proactieve verkeerslichtinstelling afgewogen tegen de e�ciëntie van een reactieve ver-

keerslichtinstelling. En ten slotte wordt er nagegaan of verkeerslichten dezelfde resultaten

kunnen behalen als een tolhe�ng. In het tweede gedeelte van deze thesis ligt de nadruk

op een case-study omtrent e�ciënt transportbeleid. In dit gedeelte wordt met name inge-

gaan op de doeltre�endheid en welvaartse�ecten van transportmaatregelen, bedoeld om de

externe kosten van vervoer te reduceren in een middelgrote stad.
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Chapter 1

Introduction

In many areas, a steadily increasing demand for mobility is confronting economic, social and

physical constraints on transportation infrastructure. One way to meet with this increasing

demand is by building new infrastructure. A more cost-e�ective way however would be

to make better use of the existing infrastructure. In its recent Green Paper the European

Commission emphasizes that to limit congestion �in certain cases new infrastructure might

be needed, but the �rst step should be to explore how to make better use of existing in-

frastructure� (European Commission (2007)).

Intersections are an important component of the tra�c network. Nielsen et al. (1998)

states that intersection delays account for 17 − 35% of the total travel time in the Mu-

nicipality of Copenhagen. Arnott (1990) indicates that �the principal form of congestion

in C.B.D. auto travel is signalized intersection congestion�. The National Transportation

Operations Coalition (NTOC) declares that delays at tra�c signals constitute 5-10% of all

tra�c delay (NTOC (2012)). The regulation of these intersections consequently has a large

impact on the e�ciency of the network as a whole.

Intersections can be regulated by tra�c lights or a priority rule, or they can be con-

trolled by a roundabout. Kakooza et al. (2005) found that with light tra�c, roundabouts

perform better than un-signalized and signalized intersections in terms of easing congestion,

but with heavy tra�c, signalized intersection perform better. In this thesis we will only

focus on unsignalized and signalized intersections.

In 1868, the �rst gas-lit tra�c lights were installed outside the Houses of Parliament in

1



London to control the tra�c in Bridge Street, Great George Street and Parliament Street.

The �rst electric tra�c light was installed on the corner of East 105th Street and Euclid

Avenue in Cleveland, Ohio in 1914 (Wikipedia contributors (2015)). Roughly �fty years

later, the �rst signal control model was studied by Webster (1958). This model assumed

tra�c �ows to be una�ected by the signal settings. In reality, however, tra�c �ows will

react to a changes signal settings. And these modi�ed tra�c �ows subsequently require

signal settings to be re-optimized.

The second generation of signal control, tra�c-responsive control (Miller (1963)), takes into

account this mutual dependence of tra�c �ow and signal settings. In tra�c-responsive con-

trol, data collected from vehicle detectors located upstream is used to optimize the signal

settings. Successful commercial products of this sort are the Split Cycle O�set Optimisa-

tion Technique (SCOOT, Hunt et al. (1981)) and the Sydney Coordinated Adaptive Tra�c

System (SCATS, Luk (1984)).

The strand in the literature that deals with tra�c-responsive signal control focuses

on the iterative optimization and assignment procedure. In the iterative optimization and

assignment procedure the signal settings and equilibrium �ow patterns are updated alter-

natively, until both �ows are at equilibrium and signal settings are optimal given the �ows

(Allsop and Charlesworth (1977), Cantarella et al. (1991), Gartner et al. (1980), Lee and

Hazelton (1996)).

Another approach that takes into account the interaction between tra�c control and

tra�c assignment is known as anticipatory control. In the literature, this has been formu-

lated as a bi-level problem, in which the upper level is the signal setting problem and the

lower level is the tra�c equilibrium assignment problem (Chiou (1999), Yang and Yagar

(1995)), and as a Stackelberg game (Fisk (1984)).

Although tra�c signal control has been the subject of numerous studies, it is widely

accepted that tra�c signal bene�ts are not fully realized and there is plenty of room for

improvement (Lo (1999)). In the second chapter of this thesis, we therefore take a fresh

look at the optimization of intersections.

To acquire maximum insight and understanding of the optimization problem, we fo-

cus on a simple two-road network, which allows us to obtain an optimal solution. More

speci�cally, we optimize the regulation of an intersection of two routes connecting one
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CHAPTER 1. INTRODUCTION

origin-destination pair. This network was also used by Smith (1979b) to maximize capac-

ity. The simpli�ed network can represent two parallel roads (e.g. a road through an urban

area and a parallel road bypassing the city) or two parallel modes (e.g. a train and a road

connecting two cities).

We follow Fisk (1984) in modelling the combined assignment and control problem as

a Stackelberg game. In this game the leader (tra�c authority) moves �rst and bases his

decision on the expected reaction of the follower (the drivers). The existence of conges-

tion generates interdependencies between users' decisions, which can also be modeled using

game theory. We will assume that the followers behave according to the noncooperative

principle of Nash (1951).

In his paper Smith (1980) puts forward di�erent real life cases where introducing

�ow-responsive tra�c signals has deteriorated journey times, in some cases even by 30%.

In addition, both Gershwin and Tan (1978) and Dickson (1981) have shown, albeit for

a speci�c numerical example, that the iterative optimization and assignment procedure

(Cournot) leads to a worse solution than the constrained optimization approach (Stackel-

berg). Despite these results, policy makers generally assume that tra�c responsive signal

control is the most e�cient control policy. The result is that in many cities, signal control

is of the tra�c responsive type.

The rapid and widespread implementation of tra�c-responsive signal control is strongly

connected to the intuitive superiority of this control policy. An equal intuitive discourse

is thus needed to challenge this inclination towards responsive signal control. The third

chapter in this thesis therefore provides a clear and accessible comparison of responsive

signal control versus anticipatory signal control. To provide maximum insight for policy

making, we focus on a simple network and represent both the tra�c responsive and the

anticipatory signal setting procedure in an transparent game theoretical framework. The

results are explained in a intuitive way by recognizing the presence of externalities and the

�rst mover advantage.

Tra�c lights are in the �rst place designed to manage vehicle con�icts at intersections,

allocating green time among con�icting streams. But tra�c lights can also be a powerful

tool to manage tra�c �ow in order to provide a more e�cient use of the network. In chapter

4 of this thesis, we study the extent to which tra�c lights can achieve the same e�ciency

3



gains as tolls. To the best of the author's knowledge, this is the �rst work that analyzes

under which conditions tra�c lights can provide an adequate alternative to road pricing.

We focus our analysis on two di�erent networks, one in which the tra�c lights' pri-

mary objective is to regulate an intersection and another network in which tra�c lights are

installed with as a sole objective to in�uence route choice. Both networks are deliberately

kept as simple as possible to allow for clear intuitive results.

We model the signal setting procedure in a �rst stage as a Stackelberg game. In a later

stage we will use the inverse Stackelberg approach (Olsder (2009)), which is an extension

of the basic Stackelberg game.

In the �nal chapter of this thesis, e�cient urban transportation policies are at the

forefront. In its communication on the Action Plan on Urban Mobility the European Com-

mission states that "In many urban areas, ..., increasing demand for urban mobility has

created a situation that is not sustainable: severe congestion, poor air quality, noise emis-

sions and high levels of CO2 emissions"(European Commission (2015)). Chapter 5 of this

thesis develops a model in the MOLINO tradition (De Palma et al. (2010), Kilani et al.

(2014)), that allows policy makers to compare di�erent transport policies designed to re-

duce congestion externalities, accident risk and noise and air pollution.

Unlike most models that have a high degree of detail and describe users behavior via

discrete choice techniques, this model focuses on a simpli�ed network and uses aggregate

data to represent user's behavior. As such, calibration of the model requires a minimum

of data allowing policy makers to quickly obtain a �rst impression of the e�ciency of a

transport policy.

The supply side of the model features a network which allows for combined trips as

well as pure mode-trips. Travel costs encompass access, waiting and in-vehicle time costs.

The demand side of the model consists of multiple user classes, which di�er with respect

to their travel preferences, incomes, and costs of travel.

The model is illustrated to the city of Leuven (Belgium). Three transport policies to

reduce the tra�c externalities in the city center are considered: introducing road pricing in

the city center, raising parking fees in the center of Leuven and expanding public transport.

4



CHAPTER 1. INTRODUCTION

1.1 Scope

The study of transportation is approached from various disciplines, including engineering,

economics, geography, psychology, mathematics, . . . . Though having the same subject,

these �elds are generally considered to be only distantly related. This thesis tries to per-

form a bridging function, with papers providing a link between transportation engineering

and transportation economics.

While interacting closely with transportation engineering, the main focus of this thesis

is on the contribution economics can make to the analysis of transportation. The emphasis

is thus more on concepts, illustrated on simple networks, than on speci�c design and im-

plementation.

Like any other branch of economics, transportation economics deals with the alloca-

tion of scarce resources. As such, transport economics and e�ciency are inextricably linked.

The concept of e�ciency is therefore also central to this thesis. More particularly, Part I of

this thesis deals with e�cient tra�c networks and Part II focuses on e�cient transportation

policies. Table 1.1 gives an overview of the di�erent chapters.

Table 1.1: Overview of the di�erent chapters

Ch Objective Instruments Model
2 Optimization of inter-

sections
Priority rules, tra�c
lights and tolls

Stackelberg game

3 Comparison of respon-
sive and anticipatory
signal control

Tra�c lights Stackelberg game

4 Analysis of tra�c lights
versus road pricing

Road pricing, tra�c
lights

Stackelberg game, inverse
stackelberg game

5 Comparison of welfare
e�ects of alternative
transport policies

Parking fees, road pric-
ing, public transit de-
sign

multi-user, multi-period,
multi-modal model in the
MOLINO-tradition

In a nutshell, the four chapters of this thesis cover the following topics:
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1.1. Scope

Chapter 2: Optimizing Intersections. In this chapter we optimize the regulation of

an intersection of two routes connecting one origin-destination pair and study the e�ects of

priority rules, tra�c lights and tolls. We show that when the intersection is regulated by

a priority rule, the optimal policy is generally to block one of the two routes. When the

intersection is regulated by tra�c lights, it can only be optimal to leave both routes open

when both routes are subject to congestion or if a toll is levied.

This chapter is joint work with Stef Proost and has been published in Transportation

Research Part B: Methodological, 2015, volume 71, pp. 100-119.

Chapter 3: The Puzzle of Tra�c-Responsive Signal Control. This chapter aims

to show that, contrary to popular belief, tra�c responsive signal control is not necessarily

the most e�cient control policy. More particularly, we show that for an intersection of two

routes connecting one origin-destination pair where only one route is subject to congestion,

anticipatory signal control performs better than tra�c-responsive signal control. Further-

more, the unfolded logic behind this result suggests that the superiority of anticipatory

signal control also extends to other networks.

This chapter is joint work with Stef Proost and has been published in Transportation

Research Part A: Policy and Practice, 2015, volume 77, pp. 350-357.

Chapter 4: Can Tra�c Lights Achieve the Same Results as Tolls? This chapter

studies the extent to which tra�c lights can provide an alternative to road pricing in a simple

network with two routes connecting one origin destination pair. We distinguish between

the case in which the main purpose of the tra�c lights is to regulate the intersection and

the case in which the sole objective of the tra�c light is to a�ect route choice. For this

last case, we show that road pricing performs at least as good as tra�c lights. For the

network in which the tra�c lights regulate the intersection of the two routes, we show that

the implementation of a �ow-dependent signal setting makes road pricing super�uous.

Chapter 5: E�cient transportation policies for sustainable cities. In this paper

we compare the e�ectiveness and welfare e�ects of alternative transport policies designed to

reduce urban tra�c externalities. We build a multimodal, multi-class, multi-period model,

which allows for endogenous congestion and total demand elasticity. Pure as well as mixed

modes of transport are considered, and di�erent government perspectives are compared.

The model is applied using data from a Belgian medium-size city, suggesting that the city

6



CHAPTER 1. INTRODUCTION

authority will lobby for measures that are welfare decreasing from societal point of view.

The results furthermore show that road pricing creates better results than increasing park-

ing fees or expanding public transit.

This chapter is joint work with Stef Proost.
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Part I

E�cient tra�c networks
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Chapter 2

Optimizing intersections

2.1 Introduction

Despite decades of research on the optimization of intersections, the poor regulation of in-

tersections is a matter of huge frustration amongst many drivers today. The complexity of

the problem makes the optimization of intersections a tough nut to crack. Understanding

the causal mechanisms that govern the optimal regulation of intersections is therefore es-

sential in dealing with complex network problems. Not least because externalities, resulting

from the behaviour of drivers, can lead to results that defy intuition.

The �rst tra�c signal control model was studied by Webster (1958). This model as-

sumes tra�c �ows to be una�ected by the signal settings. This reduces the model to an

isolated control problem in which signal settings are optimized for given �ows on the net-

work. The need to take into account the e�ects of the change in tra�c light settings on

the network �ow was �rst emphasized by Allsop (1974). This insight has generated two ap-

proaches in the literature that address the interaction between control and assignment: (1)

the iterative procedure and (2) the global optimization approach (Cantarella et al. (1991)).

The iterative procedure iteratively solves the signal setting problem for a �xed �ow

pattern and the assignment problem for �xed signal settings until two successive �ow pat-

terns or signal settings converge (Allsop and Charlesworth (1977), Cantarella et al. (1991),

Gartner et al. (1980), Lee and Hazelton (1996)). A dynamic approach is proposed by Hu

and Mahmassani (1997) and Lo et al. (2001). With a simple example, Dickson (1981)

11



2.1. Introduction

showed that the total network cost can increase during the iterative procedure. The itera-

tive procedure does thus not necessarily lead to the optimal solution.

When the global optimization approach is applied, some network objective function is

optimized while taking into account the equilibrium route choice behaviour of the drivers

(Chiou (1999), Cipriani and Fusco (2004), Fisk (1984), Marcotte (1983), She� and Powell

(1983), Yang and Yagar (1995)). The global optimization problem can be modelled as a

bilevel programming problem in which the upper level deals with the control problem and

the lower level with the user equilibrium assignment problem. The dynamic approach is

studied by Abu-Lebdeh and Benekohal (2003).

Smith (1979a) provided the necessary mathematical fundamentals of the tra�c control

and assignment problem by stating the conditions under which the problem has a unique

and stable solution. In later work, he proposes and elaborates a local tra�c control policy

(called P0) that maximizes network capacity (Smith (1980, 1981)). In successive papers,

Smith extends his work on the combined tra�c assignment and control problem (see e.g.

Smith and Van Vuren (1993)).

Relatively few papers address both signal optimization and road pricing. Clegg et al.

(2001) explored the use of both instruments by specifying an algorithm that continuously

moves current tra�c �ows, green-times and road prices within the model toward locally-

optimal values. Chiou (2007) proposed a globally convergent iterative scheme designed to

heuristically search for a local optimum.

Fisk (1984) was the �rst to model the combined assignment and control problem as

a Stackelberg game. Chen and Ben-Akiva (1998) developed a dynamic model dealing with

the combined assignment and control problem and formulated it as a Cournot, Stackelberg

and monopoly game. Overall, there have only been a limited number of authors focussing

on the game theoretical perspective of the combined assignment and control problem. For

an overview, see Hollander and Prashker (2006).

This paper follows Fisk's example in modelling the combined assignment and control

problem as a Stackelberg game. In this game the leader (tra�c authority) moves �rst and

bases his decision on the expected reaction of the follower (the drivers). The behaviour

of the drivers can also be represented as a game, because the congestion on one road is

12



CHAPTER 2. OPTIMIZING INTERSECTIONS

dependent upon how many users choose to use the same road. We will assume that the

followers behave according to the noncooperative principle of Nash (1951).

To obtain an optimal and tractable solution for the intersection problem, we use a sim-

ple two-road intersection, that can be controlled by either a priority rule or tra�c lights.

This simpli�ed network structure can represent di�erent types of routes and di�erent modes

of transport that are either congestible or insensitive to congestion.

The remainder of this paper is organized as follows: Section 2 focuses on the case in

which the intersection is regulated by a priority rule. Section 3 presents the main results

when the intersection is regulated by tra�c lights. Section 4 o�ers a comparison between

the regulation by tra�c lights and by a priority rule. Section 5 illustrates the theory by

means of two applications and Section 6 o�ers a conclusion.

2.2 Priority

In this section, the intersection is regulated by a priority rule. In Section 2.2.2, Route 2 is

considered to have unlimited capacity, while Route 1 is subject to congestion. In Section

2.2.3, we consider the case where both routes have limited capacity. The focus will be on

the main results and the intuition. The complete mathematical derivations are given in

Appendices. Before turning to the results, the assumptions underlying the priority model

will be set out.

2.2.1 Assumptions underlying the priority model

N drivers want to go from point A to point B (Figure 2.1). They can either take Route 1 or

Route 2. The two routes intersect at point C and the intersection is regulated by a priority

rule. Six assumptions are imposed on the model representing the intersection regulated by

a priority rule.

A.1 Demand: total demand is inelastic and equals N.

A.2 Homogeneous users: all users are identical and try to minimize their expected user

cost. The stationary distribution of vehicles will be a Wardrop equilibrium (Wardrop

(1952)).

A.3 Arrival rate: the arrival rate is static.

13
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Figure 2.1: Outline of an intersection of two routes connecting one OD pair (AB) regulated by a
priority rule.

A.4 Undersaturated conditions: the arrivals at the intersection on Route 2 in the time

interval 1
X1

don't exceed the number of Route 2-drivers that can cross the intersection

in the time interval ( 1
X1
− v).

A.5 Priority: Route 1 always has priority.

A.6 Time cost of priority: v hours before a car on Route 1 passes C, cars on Route 2

already wait until the car on Route 1 has passed.

Proposition 1. When the intersection of two routes connecting one OD pair is regulated

by a priority rule, the optimal policy is generally to block one of the two routes. The only

exception is the case where the marginal congestion cost on the minor route is greater than

half of the square of the marginal waiting cost (a2 >
v2

2 ). In this scenario, the optimal

policy is to leave both routes open.

2.2.2 Only one route subject to congestion

Let a1 be the increase in average cost on Route 1 when one vehicle is added, we call it the

sensitivity to congestion; let Xi equal the �ow on route i ; let ω be the resource cost for a

trip from A to C; let φi stand for the minimal time cost from A to C of route i ; and let
v2X1
2 be the expected waiting time cost1 on Route 2 at the intersection. When two parallel

routes connect one OD pair, the government can use three possible policies to maximize

1The waiting time cost function is derived in Appendix E.
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total welfare: to block Route 1, to block Route 2, or to leave both routes open. The users

in turn can react in three ways to any chosen policy: to only take Route 1, to only use

Route 2, or to use both routes. If the government decides to block Route 1, then all drivers

need to take Route 2 and the total cost will equal (ω + φ2)N . If, on the other hand,

the government blocks Route 2, then the user equilibrium will be X1 = N and the total

cost will be (a1N + ω + φ1)N . If, however, the government decides to leave both routes

open, the equilibrium reaction of the drivers will be X1 = N if a1N + φ1 < φ2 +
v2(N−1)

2 ,

X2 = N if φ1 > φ2 and the drivers will use both routes if φ1 ≤ φ2 ≤ 1N +φ1− v2(N−1)
2 . In

this last case the Wardrop equilibrium implies
(
ω + φ2 +

v2Xe
2

2

)
N as total cost. The user

equilibrium in which both routes are used is, however, never optimal from the government's

point of view. Therefore, it is always optimal to block one of the two routes.

Which route to block depends on the relative cost of both routes: a rational authority

minimizing the social cost closes Route 1 if a1N + φ1 > φ2, and Route 2 if a1N + φ1 < φ2.

Remark that if the interior equilibrium exists, it is always optimal to block the route

with limited capacity. This result can be explained intuitively. If both routes are used,

drivers on the minor (uncongested) route incur a waiting cost, whereas if only the minor

(uncongested) route were to be used, no waiting cost would be incurred and, compared to

the interior solution, no other additional costs are incurred. If on the other hand only the

congested route were to be used, then the total cost would be higher than for the interior

solution due to additional congestion costs. We have shown this result for linear average

cost functions, but this result holds more generally for any travel cost function in which

the running time is a continuous nonlinear nondecreasing function of the �ow. Indeed, the

main driver of the result is the additional waiting time externality that is imposed when

using both Route 1 and Route 2. If there is an internal solution where both user costs are

equal, it is always optimal to have all users only using Route 2 as this cost is always lower

by avoiding the priority waiting costs.

In the absence of a government intervention blocking one road, the driver will often

make the sub-optimal choice. Indeed, whenever a1N + φ1 − v2(N−1)
2 < φ2 < a1N + φ1, the

user equilibrium is X1 = N , while X2 = N would be optimal. On the other hand, whenever

φ1 < φ2 < a1N + φ1 − v2(N−1)
2 there will be an equilibrium in which both routes are used,

while it would be optimal to have all drivers on Route 2. Figure 2.2 illustrates this second

situation. The Wardrop equilibrium is given by the intersection of the average cost-curves

of Route 2 and Route 1 (point G).2 It is clear that the total cost for the interior solution

2Note that for interior solutions every additional user on Route 1 imposes an extra waiting cost for the
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Figure 2.2: The solution in which all travellers use Route 2 (E) is optimal. However, without
intervention, the interior solution (G) will be the user equilibrium.

equals ABCD, while the total cost would only equal ABFE if Route 1 had been blocked.

This can be seen as an illustration of the Braess paradox (Braess (1968)). In the

Braess paradox, adding one additional link can increase total travel cost. Braess' paradox

occurs because the congestion externality is not taken into account by the drivers. Here,

we also add a link and, in this case, it is the external waiting cost that users on the main

road impose on the users of the minor road that can increase the total travel cost.

2.2.3 Both routes subject to congestion

The suboptimality of an interior solution continues to hold for the case in which both routes

are subject to congestion and a2 ≤ v2

2 (with a2 the sensitivity to congestion of Route 2).

However, when a2 ≥ v2

2 , the total cost can be at lowest when both routes are used in

equilibrium.

In the Stackelberg game the tra�c authority (leader) moves �rst and bases her decision

on the expected reaction of the drivers (follower). Figure 2.3 illustrates this sequential game

and shows the di�erent options for the government and the possible reactions of the drivers.

drivers on Route 2. This explains the upward sloping AC curve of Route 2 for increasing X1.
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Figure 2.3: The total travel costs resulting from a Stackelberg game.

When the government decides to close Route 1, the user equilibrium will be X2 = N , and

the total cost will be (a2N + ω + φ2)N . When only Route 1 is accessible, X1 = N will be

the only equilibrium, and the total cost will amount to (a1N+φ1+ω)N . When both routes

are accessible, the user equilibrium that will be in place depends on the relative value of

the parameters: X2 = N if a2N + φ2 < φ1; X1 = N if a1N + φ1 < φ2 +
v2

2 (N − 1); and

0 < Xe
1 < N in all other cases.

Taking into account the reaction of the drivers, the government will block one of the

two routes if a2 < v2

2 , and leave both routes open if a2 ≥ v2

2 . The optimal policy thus

depends on the ratio of the congestion coe�cient (a2) to the reaction time (v). If a2 < v2

2 ,

the situation is similar to the case where only one route is subject to congestion and then it

is always optimal to block one of the two routes. If a2 ≥ v2

2 and the government leaves both

routes open, it can be shown that in the user equilibrium the lowest cost will be attained.
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In graphical terms, a2 < v2

2 boils down to an upward sloping (in X1) average cost

curve of Route 2, while a2 > v2

2 boils down to a downward sloping ACroute2-curve. The

underlying logic is that if a2 ≥ v2

2 , the extra congestion cost of having all travellers on

Route 2 is more costly than the saving in waiting costs. If, however, a2 < v2

2 , the opposite

is true.

Figure 2.4: The interior solution (G) is optimal. No government intervention is needed to reach
the optimal solution.

2.3 Tra�c lights

In this section, the two-road intersection is regulated by tra�c lights. Following the same

approach as in the previous section, �rst only one route is considered to have limited

capacity, and subsequently both routes are considered to have limited capacity.

2.3.1 Assumptions underlying the tra�c lights model

Five assumptions are imposed on the model representing the intersection regulated by tra�c

lights.

A.1 Demand: total demand is inelastic and equals N. This assumption is relaxed in Section

2.3.3.2.
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Figure 2.5: Outline of an intersection of two routes connecting one OD pair (AB) regulated by
tra�c lights.

A.2 Homogeneous users: all users are identical and try to minimize their expected user

cost. The stationary distribution of vehicles will be a Wardrop equilibrium.

A.3 Arrival rate: the arrival rate is static.

A.4 Undersaturated conditions: vehicle queues are only created during red phases, and

fully dissipate during green phases. This assumption is relaxed in Section 2.3.2.1.

A.5 Cycle time: to simplify matters, the cycle time3 `c' is held �xed. Hence, it follows that

including intergreen time in the analysis is not relevant and will thus be ignored.

In this paper, the variable `r' represents the red time on Route 2 and will be the

main control variable. The corresponding green time on Route 2 will thus be (c-r) and a

reverse scenario holds for Route 1. As there will be alternating red times to avoid collisions

at the intersection, both routes will experience an expected tra�c light waiting time cost

(T1 (c, r) , T2 (c, r)). The tra�c light waiting cost functions are increasing in the red time

and decreasing in the green time (∂T1(c,r)∂r < 0, ∂T2(c,r)∂r > 0). Furthermore, the expected

tra�c light waiting functions are discontinuous and jump to in�nity when it is always red.

2.3.2 Only one route subject to congestion

In this section, only one route is considered to have limited capacity. In Section 2.3.2.1 the

optimal policy is determined for the case in which the tra�c authority can only control the
3That is the duration of the sum of green time and red time.
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tra�c lights. In Section 2.3.2.2 the tra�c authority can use both signal settings and a toll

to minimize total costs.

2.3.2.1 Tra�c lights without road pricing

Proposition 2. When the intersection of two routes connecting one OD pair is regulated

by tra�c lights and only one of the two routes is congested, a signal setting whereby drivers

choose to use both routes can never be an optimal policy.

Table 2.1: The total travel cost for every (r, UE)-combination

Signal setting X1 = N X2 = N 0 < X1 < N

r = c (a1N + φ1 + ω)N ∞ ∞
r = 0 ∞ (ω + φ2)N ∞
0 < r < c (a1N + ω + φ1 + T1)N (ω + φ2 + T2)N (ω + φ2 + T2)N

Table 2.1 shows that a rational government will never decide on an alternating signal

setting when both routes are substitutes. Indeed, let Ti (c, r) be the expected waiting time

cost on route i at the intersection.4 As Ti (c, r) is positive when 0 < r < c, the total travel

cost for an alternating signal setting will always be higher than for r = c or r = 0. Which

of the two non-alternating signal settings will be optimal is dependent on the values of the

parameters a1, N, φ1 and φ2. When a1N +φ1 < φ2, r = c is the optimal solution and when

a1N + φ1 ≥ φ2, r = 0 will be implemented.5

The suboptimality of an alternating signal (0 < r < c) in case the intersection is

regulated by tra�c lights and only one route is subject to congestion, can be explained in-

tuitively. When the user equilibrium isX2 = N orX1 = N (i.e. φ2+T2 (c, r) < φ1+T1 (c, r)

or a1N +φ1+T1 (c, r) < φ2+T2 (c, r) respectively), drivers have to wait at the tra�c light

while there is no one crossing the intersection. The intuition behind the suboptimality of

an alternating signal setting when the user equilibrium is 0 < Xe
1 < N is shown in Figure

2.6. If the duration of red light for Route 2 is reduced, then the expected average waiting

time on Route 1 increases, indicated by an upward shift of the ACroute1 curve in Figure 2.6.

At the same time, the expected average waiting time for Route 2 decreases, corresponding

4We will assume that the saturation �ow s is very large in comparison to the arrival rate Xi, so that the
tra�c light waiting time due to departure delay is negligible.

5The optimality of only one route (mode) connecting one OD pair remains valid in the case where both
routes have unlimited capacity. The total minimal cost then equals (ω + φi)N with i the route index that
procures the lowest minimal time cost.
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Figure 2.6: A corner solution constitutes the optimal solution; in this case: X2 = N .

to a downward shift of the ACroute2 curve. This forces the switching point G to the left,

hence less people travel on Route 1 with a simultaneous decrease in total cost. From the

graph it is clear that the lowest cost (area ABFE) will be achieved when it is always green

for drivers on Route 2 (grey line). It is noted that the ACroute1 curve would lie in�nitely

high in this situation.

This can be vivi�ed by the following example: consider the situation in which demand

from point A to point B is relatively inelastic. Suppose A and B are connected by a tram6

and a road plagued by tra�c congestion. Users are indi�erent between the two modes, only

the user cost matters. The tram line intersects the road trajectory, and this intersection

is regulated by tra�c lights. In this situation, even though counterintuitive, the optimal

policy would either be to close the road and only maintain the tram, or to remove the tram

and only keep the road, depending on the relative costs of the two scenarios.

Proposition 2 can be generalized to average cost function in which the running time

component is a continuous nonlinear nondecreasing function of the �ow. Indeed, the main

driver of the result is that any interior solution can be improved by either giving only green

to Route 2 or giving only green to Route 1. So the result does not depend on the precise

6The tram is assumed to be relatively insensitive to congestion and a substitute for the car.
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curvature of the average cost function of Route 1. Furthermore, when we relax the assump-

tion that the waiting time due to departure delay is negligible,7 the result obtained in this

subsection is still valid, since any interior solution is more costly than the solution for either

r = 0 or r = c.

Figure 2.7: The total cost when tra�c conditions are saturated is at least as high as when condi-
tions are undersaturated.

Finally, we can show that Proposition 2 can also be generalized to saturated tra�c

conditions. Remark �rst that saturated tra�c conditions can only occur for alternating

signal settings. Indeed, if r = 0 or r = c, the tra�c light can not be the restricting factor.

Suppose that the demand and the relative time and resource costs are such that there exists

a signal setting for which the amount of drivers arriving at the intersection on Route 1 is

larger than the amount of drivers that can exit the intersection. That is, there is an r

for which Xe
1c > s1r, with c the cycle time, Xe

1 the equilibrium �ow on Route 1, s1 the

saturation �ow and r the green time for Route 1 per cycle. In this case, a queue will develop

on Route 1, the time cost for Route 1 will go up, and the drivers will shift from Route 1

to Route 2. If the capacity on Route 2 is not su�cient to accommodate the excess demand

of Route 1, then the total demand (N) will decrease,8 which results in a loss of surplus. If

Route 2 has enough spare capacity to accommodate the shifting Route 1 drivers, then we

know from Yang and Yagar (1995) that in the steady state, Xe
1c equals s1r and the queue

waiting time cost will be such that the user cost on Route 1 and Route 2 is equal. From

7In this case, the user cost for Route 1 is a1X1+φ1+ω+ (c−r)2

2c
(
1−X1

s1

) and the user cost for Route 2 equals

φ2 + ω + r2

2c
(
1−X2

s2

) .
8Inelastic demand was assumed here. This, however, is always relatively inelastic, because if the user

cost becomes in�nitely large on both routes, the drivers will refrain from making the trip.
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Figure 2.7 (graph on the left-hand side) it is clear that the total cost in this case is as high

as the total cost for the same signal setting in the undersaturated case. Figure 2.7 (graph

on the right-hand side) furthermore shows that if Route 2 has the limiting capacity, the

total cost is higher than the total cost for the same signal setting in the undersaturated case.

From the analysis of the undersaturated case, we know that the total cost for an alter-

nating signal setting is always higher than for either r = 0 or r = c. If tra�c conditions can

be saturated, then the optimal signal setting can lead to either saturated or undersaturated

conditions. Given that we have shown that for saturated conditions, the total cost is at

least as high as for the same signal setting in the undersaturated case, we can conclude that

also in the saturated case it is optimal to use only one of the two routes.

2.3.2.2 Tra�c lights and road pricing

In this subsection, both signal settings and a toll (τ) are instruments the authorities can

use to minimize total costs. The toll is levied on the route subject to congestion, and the

toll revenues are subtracted from the total cost. Note that with �xed demand, a toll on

Route 1 is equivalent to a subsidy to the users of Route 2.

Proposition 3. When the intersection of two routes connecting one OD pair is regulated by

tra�c lights and only one route is subject to congestion, then an alternating signal setting

can be optimal if a toll is possible.

Table 2.2: The total travel cost for every (τ , r, UE)-combination

Signal & toll X1=N X2=N 0<X1<N

r=c (a1N+ω+φ1)N ∞ ∞
r=0 ∞ (φ2+ω)N ∞
0<r<c, τ>0 (a1N+ω+φ1+T1)N (φ2+ω+T2)N (a1X

e
1+ω+φ1+T1)N+τXe

2

From Table 2.2 it is clear that a rational authority will only implement an alternating

signal setting if both routes are used in the user equilibrium. It can be shown that if

there exists an optimal alternating signal setting and an optimal toll (i.e. if 2a1N > c and

2a1N − c
2 + φ1 > φ2 > φ1 +

c
2), both routes are used. So, the optimal (r, τ) combination

can be obtained as the solution of the following minimization problem:

min
X1,X2,r,τ

(a1X1 + ω + φ1 + T1 (c, r) + τ)X1 + (ω + φ2 + T2 (c, r))X2 − τX1 (2.1)
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s.t.

X1 +X2 = N (2.2)

a1X1 + ω + φ1 + T1 (c, r) + τ = ω + φ2 + T2 (c, r) (2.3)

0 ≤ r ≤ c (2.4)

X1 > 0 (2.5)

X2 > 0 (2.6)

τ > 0 (2.7)

Now that a toll can be levied, the external costs on Route 1 are taken into account in

the user equilibrium. The optimal toll is (Appendix A):

τ =
φ2 − φ1 + T2 (c, r)− T1 (c, r)

2
(2.8)

Assuming undersaturated tra�c conditions, i.e. queues at the intersection are only cre-

ated during the red phases and dissolved during the green phases, the tra�c light functions

take the following form for 0 < r < c (see Appendix E):

T1 (c, r) =
(c− r)2

2c
(2.9)

T2 (c, r) =
r2

2c
(2.10)

The optimal toll can then be written as follows:

τ∗ =
φ2 − φ1 − c

2 + r

2
(2.11)

As ∂τ/∂r > 0, the optimal toll on Route 1 is increasing in r (the green time on Route

1). The intuition is the following: if the green time increases on the congested route, people

will switch from Route 2 to Route 1 to take advantage of the extra green time. However,

this causes Route 1 to be even more congested. As individuals do not take into account the

e�ect of their switching on the existing drivers on Route 1, the toll has to increase in order

to reach a social optimum for given tra�c light settings.

The dependence of the optimal toll on the optimal tra�c light setting drives the state-

ment that the implementation of optimal signal settings can lead to a higher acceptance

of toll roads. First, in the absence of a toll, the optimal policy is to block one of the two
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routes. When a toll becomes available on Route 1, it can be optimal to open both routes,

which increases the possibilities for the drivers. Second, consider a suboptimal signal set-

ting without toll where the congested Route 1 receives a very low green time. When a toll

can be implemented on Route 1, one can increase the green time on Route 1.

The optimal r is de�ned by the following equation in which N represents the total

amount of vehicles, τ the toll, a1 the sensitivity to congestion on Route 1, and Ti (c, r) the

expected waiting time cost on route i at the intersection (A).(
−N +

τ

a1

)
∂T2 (c, r)

∂r
=

τ

a1

∂T1 (c, r)

∂r
(2.12)

Combining equations (2.8) and (2.12) allows us to identify the optimal r as the solution

of the following equation:

(φ2 − 2a1N − φ1 + T2 − T1)
∂T2 (c, r)

∂r
= (φ2 − φ1 + T2 − T1)

∂T1 (c, r)

∂r
(2.13)

Assuming undersaturated tra�c conditions and using the results from Appendix E,

the optimal r as a function of the exogenous parameters can be obtained from equation

(2.13):

r∗ =

(
φ1 − φ2 + c

2

)
c

−2a1N + c
(2.14)

When 2a1N−c < 0, the optimal (r, τ) combination is a saddle point, and consequently

the minimum will be near the boundary (Appendix A). On the other hand, if 2a1N−c ≥ 0,

the optimal (r, τ) combination provides the minimum attainable costs.

To identify the optimal policy, the total cost needs to be compared for all three poli-

cies. When the user equilibrium is X2 = N or X1 = N , tolls and tra�c lights are not

needed. Therefore, the total costs equal (ω + φ2)N in case r = 0, and (a1N + ω + φ1)N

in case r = c.

If the optimal alternating signal setting exists, i.e. if 2a1N > c and 2a1N − c
2 + φ1 >

φ2 > φ1 +
c
2 , then the corresponding cost is always lower than the cost for r = 0 or r = c

(Appendix G). If an optimal alternating signal setting does not exist, then it is optimal to

implement r = c if φ2 > φ1 + a1N , whereas it is optimal for Route 2 if φ2 ≤ φ1 + a1N .

Figure 2.8 schematically depicts the situation in which a toll is levied on the limited

capacity route in a two-road network and the intersection is regulated by tra�c lights. In
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Figure 2.8: The interior solution (I) is optimal.

this graph the signal settings are considered optimal. It is clear that an interior solution

exists (point I). A switch toward the corner solution X2 = N is accompanied by a cost

reduction equal to the area ABCD. This equals:

N
r∗2

2c
= N

(
φ1 − φ2 + c

2

)2
c

2 (−2a1N + c)2
(2.15)

However, the toll revenue obtained at the interior solution equals area AIFE. This is:

X1τ(X1) =

(
φ2 − φ1 + r∗ − c

2

)2
4a1

(2.16)

In Appendix F, it is shown that area AIFE is larger than area ABCD. Therefore, in

this case, the interior optimum is better than the corner solution X2 = N . This con�rms

the previous statement that if an interior optimum exists, it leads to lower costs than the

corner solutions.

Figure 2.8 also shows that, if the optimal τ is levied and if the tra�c light settings are

optimal, the user equilibrium corresponds to the social optimum. This makes sense, as the

externality is internalized by the toll.
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2.3.3 Both routes subject to congestion

We will �rst focus on the case in which demand is inelastic and then extend the analysis to

include elastic demand.

2.3.3.1 Inelastic demand

Proposition 4. When the intersection of two congested routes connecting one OD pair is

regulated by tra�c lights, the optimal alternating signal setting is independent of the total

�ow and is given by r = a2c
a1+a2

.

Figure 2.9: The total costs when the combined assignment and control problem is modelled as a
Stackelberg game.

The government �rst decides on the signal settings and the drivers subsequently de-

termine which route to take. Figure 2.9 illustrates this sequential game and shows all

the feasible signal settings and the reaction of the drivers to each of these signal settings.
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The third branch, representing the decision of the government to implement an alternating

signal setting (0 < r < c), considers all red times between zero and c.

It can be shown that, if there exists an alternating signal setting for which the total cost

is lower than for any non-alternating r ( i.e., if a1Xe
1+T1 (c, r) < a1N and a2Xe

2+T2 (c, r) <

a2N), then the user equilibrium for this r is the one in which both routes are used. Hence,

the optimal alternating signal setting is the solution of the following optimization problem:

min
X1,X2,r

(a1X1 + ω + φ1 + T1 (c, r))X1 + (a2X2 + ω + φ2 + T2 (c, r))X2 (2.17)

s.t.

X1 +X2 = N (2.18)

a1X1 + ω + φ1 + T1 (c, r) = a2X2 + ω + φ2 + T2 (c, r) (2.19)

0 < r < c, X1 > 0, X2 > 0 (2.20)

The solution will be determined by:

a1
∂T2 (c, r)

∂r
= −a2

∂T1 (c, r)

∂r
(2.21)

Assuming undersaturated tra�c conditions, the explicit waiting time functions are

given by equations (2.9) and (2.10). Inserting these expressions in equation (2.21), and

solving for r, the proportion of red time for Route 2 equals:

r∗

c
=

a2
a1 + a2

(2.22)

Even though the minimal time costs add to the total costs and we would therefore

expect them to appear in the formula, they are not part of the optimal signal setting-

formula. This can be explained by observing that the drivers themselves take the minimal

time cost into account when choosing a route, while they omit the external congestion cost

in their decision criterium. This omission is corrected by the optimal signal setting. The

optimal red time on Route 2 increases in a2
a2+a1

. The more congestible Route 2 is compared

to Route 1, the more users will take Route 1 and thus a larger cost reduction is expected

from an increase in green time on Route 1.

The total cost that the optimal tra�c light settings produce is given by the following

28



CHAPTER 2. OPTIMIZING INTERSECTIONS

equation: (
2a1a2 (a1 + a2)N + 2a1 (a1 + a2) (φ2 − φ1) + a1a2c

(a1 + a2)
2 2

+ φ1 + ω

)
N (2.23)

If this cost is lower than (a1N + ω + φ1)N and (a2N + ω + φ2)N , then the optimal

policy is to implement r= a2c
a1+a2

. If, on the other hand, the parameters are such that

(a1N + ω + φ1)N is the lowest cost, then the optimal policy would be to only give green

to Route 1. Finally, if (a2N + ω + φ2)N is the lowest cost a rational authority would

implement r = 0.

2.3.3.2 Elastic demand

Proposition 5. When the intersection of two congested routes connecting one OD pair

is regulated by tra�c lights, the optimal signal setting is independent of the elasticity of

demand.

Figure 2.10: Equilibrium with elastic demand curve.

Regardless of the number of drivers that go from A to C, both routes will be used

in the user equilibrium that comes about when the authorities implement an alternating

signal setting. Taking this into account, we can construct an aggregate average cost func-

tion (Appendix C). The optimal alternating signal setting is the solution of the following
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maximization problem with XT the total �ow in the network and (δ − πXT ) the demand

function:

max
r,XT

∫ XT

0

(
(δ−πXT )−

(
2
a1a2
a1+a2

XT+2
a1φ2+a2φ1
a1+a2

+2ω+
a1T2 (c, r)+a2T1 (c, r)

a1+a2

))
dXT

(2.24)

s.t.

2a1a2XT

a1 + a2
+

2 (a1φ2 + a2φ1)

a1 + a2
+ 2ω +

a1T2 (c, r) + a2T1 (c, r)

a1 + a2
= δ − πXT (2.25)

XT ≥ 0 (2.26)

c > r > 0 (2.27)

XT is determined by equalizing the elastic demand function (δ−πXT ) and the aggre-

gate average cost function (2.25) and can be written as follows:

XT =
(a1 + a2) δ − 2ω (a1 + a2)− 2a1φ2 − 2a2φ1 − a1T2 (c, r)− a2T1 (c, r)

(a1 + a2)π + 2a1a2
(2.28)

Assuming tra�c conditions are undersaturated, equations (2.9) and (2.10) hold, and

can be introduced in the optimization function. The optimal red time is then given by :

r∗ = a2c

a1 + a2
(2.29)

This equation shows that the optimal red time is independent of the total �ow within

the network and yields the same result as in the case with inelastic demand. Therefore,

it can be concluded that the optimal alternating signal settings are independent of the

elasticity of demand when both routes have limited capacity.

2.4 The choice between tra�c lights and a priority rule

Proposition 6. If only one route is subject to congestion, then for all r <
√
v2c φ2−φ1

a1− v
2

2

tra�c lights are better than a priority rule. Furthermore, the higher the total number of

drivers, the larger the cost advantage of tra�c lights compared to a priority rule.

If for some reason both routes have to be used and if r can be chosen such that

r <
√
v2c φ2−φ1

a1− v
2

2

and 0 < r < c, then tra�c lights are the better choice. This can be seen

as follows: if both routes have to be used when tra�c lights are present, the total cost
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amounts to (ω+φ2+
r2

2c )N . Comparing this with the total cost in a priority rule situation,(
ω + φ2 +

v2Xe
1

2

)
N , it is clear that if r

2

2c <
v2Xe

1
2 (this comes down to r <

√
v2cXe

1), tra�c

lights reduce the total cost. The cost savings that accompany the transfer to tra�c light

regulation thus equal (
v2

φ2−φ1
a1−

v2
2

2 − r2

2c )N . If this value exceeds the additional annualized

investment cost, tra�c lights are optimal.

A further examination on the condition on r (r <
√
v2c φ2−φ1

a1− v
2

2

) shows that tra�c lights

become more interesting when drivers are more careful (higher v). This is explicable, a

higher v increases the lost time when the intersection is regulated by a priority rule, leading

to a favourable regulation of the intersection by tra�c lights.

2.5 Two applications

In this section, some of the theoretical results obtained in the previous section are illustrated

with an example.

The �rst example applies a result of Section 2.2.2: when the intersection of two routes

connecting one OD pair, of which only one is congestible, is regulated by a priority rule

and the interior equilibrium exists, then the optimal policy is to block the congested route.

The second example extends the results obtained in Section 2.3.2 by including local tra�c

within the problem setting.

2.5.1 A low-tra�c city center

Consider a city where the inhabitants live on the edge of the city and work in the city

center. There is a bike path, as well as a congestible road connecting work and home, and

both are currently being used for commuting trips. In the city center, cyclists always have

to give way to cars. Applying the results of Section 2.2.2 to this situation, we can conclude

that for this city, the optimal policy would be to make the city center a car-free zone.

A city center in which no motorized tra�c at all is allowed, is however, unrealistic.

After all, shops have to be provisioned and emergency vehicles have to be able to enter the

center. A simple solution, already adopted in many cities, is to allow only certain vehicles

to enter the city center. This can be implemented using, for example, automatic rising

bollards.
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2.5. Two applications

Figure 2.11: Commuters can take the car or the bicycle.

2.5.2 A bypass and a city road

A well-known situation in which one OD pair is connected by two parallel roads is rep-

resented in Figure 2.12. Here, transit tra�c can choose between Route 1 or Route 2 to

reach point C, while local tra�c can only take Route 2. Let Route 1 (the bypass) have a

large capacity. Furthermore, we will assume that both local tra�c and cut-through tra�c

contribute to the city road congestion. Suppose that the tra�c lights are regulated by a

federal authority whose objective is to minimize the total cost of all drivers.

Let

Xb be the number of transit drivers taking the bypass per hour;

Xv be the number of transit drivers taking the city road per hour;

av be the congestion sensitivity of the city road;

φv be the minimal time cost to get to point C using the city road;

φb be the minimal time cost to get to point C using the bypass;

R be the local tra�c per hour;

N be the total transit tra�c per hour;

Ti (c, r) be the total waiting time cost at the tra�c light on route i ;
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Figure 2.12: Transit tra�c will either take the city road or the bypass depending on the signal
settings.

and r be the red time for the city road.

Table 2.3: The total travel cost for every (r,UE)-combination in a bypass situation

Signal setting Xb = N, Xv = N 0 < Xb < N

r = c ∞ ∞ ∞
r = 0 ∞ (φv + av(N +R))(N +R) ∞
0 < r < c (avR+ φv + Tv)R (av(N +R) + φv + Tv)(N +R) (φb + Tb)(N +R)

+(φb + Tb)N

In Table 2.3, the total cost is shown for every combination of policy and user equilib-

rium. A glance at the table shows that a rational authority would never implement r = c.

When the city road always has green (r = 0), the only Nash equilibrium is Xv = N . The

total cost in this case amounts to (φv + av (R+N)) (R+N). Furthermore, the total cost

for the combination (Xv = N , 0 < r < c) is always larger than the total cost for the combi-

nation (Xv = N , r = 0). Finally, it can be shown that the FOC of (φb + Tb)(N +R) w.r.t.

r is always negative. As a consequence, the lowest cost when both routes are used occurs

at the signal setting for which transit tra�c is indi�erent between using both routes and

using only the bypass. The total cost curve when Xb = N is convex. Here, the minimum
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of this total cost curve equals r = Nc
N+R .

The previous observations narrow down the candidate solutions to either r = 0,

r = −avR − φv + φb +
c
2 or r = Nc

N+R . In order to determine the optimal signal set-

ting, the government has to compare the cost of the di�erent solutions.

Suppose now that the city road has limited capacity, then how will this change the

results? From Section 2.3.2.1, we know that if a signal setting leads to saturated conditions

on the city road and both routes are used, the total cost will be the same as in the under-

saturated case. Consequently, the �rst order condition of the total cost function will again

be negative and the optimal solution will be the signal setting for which transit tra�c is

indi�erent between using both routes and using only the bypass.

The minimal green time for which all the local drivers are below capacity (r = c− Rc
sv
)

will be an element of the interval for which Xb = N . If r = c − Rc
sv

is greater than Nc
N+R ,

then either Nc
N+R , r = −avR− φv + φb +

c
2 , or r = 0, will be the optimal solution. If on the

other hand r = c− Rc
sv

is lower than Nc
N+R , then either r = c− Rc

sv
, r = −avR− φv + φb+

c
2 ,

or r = 0, will be the optimal solution.9

It is clear that a local government, preferring minimal transit tra�c in its city, would

try to avoid the (Xv = N) outcome. The local government can do this by increasing av
or φv.10 Increasing av or φv raises the cost of the (Xv = N , r = 0) combination relatively

more,11 which decreases the likelihood of the federal govenment implementing r = 0.

Today, many cities already apply this strategy. Indeed, speed bumps and speed limits are

put in place to increase φv and local governments limit the capacity of roads to increase av
(De Borger and Proost (2013)).

2.6 Concluding remarks

In this paper, we studied the e�ects of a priority rule, tra�c lights, and a toll on an

intersection of two routes connecting one OD pair. We derived the intersection regulation

that minimizes total travel cost, taking into account Wardrop's principles and the delay at

the intersection.

9The demand function of the local drivers is assumed inelastic, so it is relatively expensive to drive back
the demand. So even if for Nc

N+R
the total cost is minimal, the loss in consumer surplus of the drivers that

no longer make the trip still reduces welfare.
10We only mention the parameters the local government can in�uence.

11( dTCr=0
dφv

>
dTC

r= Nc
N+R

dφv
and dTCr=0

dav
>

dTC
r= Nc

N+R

dav
)
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We have four major results. First, if the intersection is regulated by a priority rule, the

optimal policy is generally to block one of the two routes. Second, if the intersection is

regulated by tra�c lights, and only one route is congestible, the optimal policy is again to

block one route. However, the addition of a toll allows for an optimal alternating signal

setting. Third, if the intersection is regulated by tra�c lights, the optimal alternating

signal setting is always independent of the elasticity of demand. Finally, if only one route

is subject to congestion, the superiority of a regulation by tra�c lights over a priority rule

becomes more likely the lower the reaction time of the drivers, and the higher the cycle

time.

These results are important for three reasons. First, the counter-intuitive nature of these

results con�rms the importance of a good understanding of the causal mechanisms that

govern the optimal regulation. Second, these insights allow to solve larger networks more

e�ciently as well as more e�ectively. More e�cient, because the increased insight in the

location of the optimal solution allows for a reduction in computation time. More e�ective,

because local optima can be detected more easily. Finally, the obtained results can be

applied in practice. Our results can be useful in di�erent contexts. We primarly think

about two parallel roads (e.g. a road through an urban area and a parallel road bypassing

the city) or two parallel modes (e.g. a train and a road connecting two cities).

The results in this paper can be applied to solve one particular larger network problem.

In this network problem the two routes are a chain of individual components similar to the

one solved in this paper. If, for every component, it is optimal to use one and the same

link,12 it can be concluded that it is optimal to maintain only one route. As this composition

technique can only be applied to a certain type of network problems, one future research

line is to extend the model to larger networks. Other future work includes the extension of

the model towards multiple government levels.

Acknowledgements

This work was supported �nancially by the OT/11/068-project. The authors wish to thank

three anonymous referees, the Editor-in-Chief Hai Yang as well as C. Tampère, F. Viti and

participants at the ITEA meeting (Northwestern 2013) for helpful suggestions on a previous

draft.

12We can use the results from this paper to solve this problem on the component level.

35



2.6. Concluding remarks

36



Glossary

Parameters

δ maximum willingness-to-pay for a trip from A to B

ω resource cost per trip from A to C

φ1 minimal time cost to go from A to C using route 1

φ2 minimal time cost to go from A to C using Route 2

π marginal willingness-to-pay for a trip from A to B

a1 increase in average cost on Route 1 when one vehicle is added

a2 increase in average cost on Route 2 when one vehicle is added

c cycle length

N total inelastic demand from A to B

s1 saturation �ow of Route 1

s2 saturation �ow of Route 2

v time gap in which the users of the minor road are stationary at the intersection

before the crossing of a main road user

Control variables

τ toll fee

r duration of red per cycle given to Route 2

Variables
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X1 �ow on Route 1

X2 �ow on Route 2

XT total �ow in the network
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Chapter 3

The puzzle of tra�c-responsive signal

control: why common sense does not

always make sense.

3.1 Introduction

A lot of the current signal control systems are based on tra�c-responsive control. This

type of control allocates green time in proportion to the relative magnitude of the �ow. In

this paper, we show that, though intuitively superior, this type of control is not necessarily

the most e�cient. The main reason is that in tra�c networks the user equilibrium is often

not optimal. Blindly attempting to accommodate to the volume of tra�c on a link with

congestion, by adding capacity or by giving more green time, is a widespread problem,

which can, more generally, be ascribed to the phenomenon of �induced demand�.

The theory of induced demand asserts that improvements in the transportation in-

frastructure attract new tra�c. The available literature has largely centered around the

demand-inducing and tra�c diversion e�ects of particularly road expansion (Downs (1962),

Braess (1968), Noland (2001)). This literature has provided a basis for a major rethinking

of road-expansion policies. Recognition of the generated tra�c e�ects of tra�c-responsive

control can in�uence policy making in the same way.

In many cities, signal control is of the tra�c responsive type. The control system SCOOT,
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for example, has been implemented in more than 250 towns and cities (Hamilton et al.

(2013)). The rapid and widespread implementation of tra�c-responsive signal control is

strongly connected to the intuitive superiority of this control policy, which made it politi-

cally more acceptable. An equal intuitive discourse is needed to challenge this inclination

towards responsive signal control. The objective of this paper is therefore to provide a clear

and accessible comparison of responsive signal control versus anticipatory signal control,

which provides insight for policy making.

Already in 1974, the need to take into account the interaction between route choice and

signal control was pointed out by Allsop (1974). In most papers nowadays the importance

of this interaction is recognized and the interaction is thus included in the model. The way

this interaction is modelled di�ers, however, from paper to paper. Here, two speci�c ways

to model this interaction, i.e. anticipatory signal control and responsive signal control, are

considered.

Miller (1963) was the �rst to introduce the notion of tra�c-responsive control. In

tra�c-responsive control, data collected from vehicle detectors located upstream is used to

optimize the signal settings.

The strand in the literature that deals with tra�c-responsive signal control focuses

on the iterative optimization and assignment procedure. In the iterative optimization and

assignment procedure the signal settings and equilibrium �ow patterns are updated alter-

natively, until both �ows are at equilibrium and signal settings are optimal given the �ows

(Allsop and Charlesworth (1977), Cantarella et al. (1991), Gartner et al. (1980), Lee and

Hazelton (1996)).

In the case of anticipatory signal control the road authority anticipates the reaction of

the drivers to a change in the signal settings and thus optimizes the signal settings taking

into account the reaction of the drivers. In the literature, this has been formulated as a

bi-level problem, in which the upper level is the signal setting problem and the lower level

is the tra�c equilibrium assignment problem (Chiou (1999), Yang and Yagar (1995)), and

as a Stackelberg game (Fisk (1984)).

A few papers have touched on the shortcomings of responsive signal control. Both

Gershwin and Tan (1978) and Dickson (1981) have solved the combined tra�c assignment

and control problem for a speci�c numerical example, using on the one hand the iterative
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optimization and assignment procedure and on the other hand a constrained optimization

approach. For their speci�c examples, both show that the iterative optimization and as-

signment leads to a worse solution.

In this paper we use a game theoretical perspective to model both the anticipatory and

the responsive signal setting procedure for a simple network. This results in clear theoretical

results, which allow to give insights in the underlying mechanisms. The remainder of

this paper is organized as follows: First, the problem at hand is described in Section

2. Subsequently, the outcomes of the tra�c-responsive and anticipatory framework are

compared and discussed in Section 3. Section 4, �nally, o�ers a conclusion.

3.2 Problem formulation

The model we use to compare the performance of anticipatory signal control with the per-

formance of tra�c-responsive signal control is the simple two-road model represented in

Figure 3.1. We assume that, per time unit, N people want to go from A to B.1 Further-

more, we limit the model to undersaturated tra�c conditions, i.e. queues at the intersection

are only created during the red phases and dissolved during the green phases. To go from

A to B, drivers can either take a congestible route (Route 1) or an uncongestible route

(Route 2).2 In this paper, the red phase on Route 2 is represented by `r', and will be the

main control variable. The corresponding green phase on Route 2 will thus be `c-r', and

a reverse scenario holds for Route 1. The duration of the sum of the red and the green

phase is the cycle time `c', which, to simplify matters, is held �xed. Hence, it follows that

including intergreen time in the analysis is not relevant and will thus be ignored.

As there will be alternating red times to avoid collisions at the intersection, drivers on

both routes will experience an expected tra�c light waiting time cost (T1 (c, r) , T2 (c, r)).

It is clear that the expected tra�c light waiting cost functions are increasing in the red

time and decreasing in the green time (∂T1(c,r)∂r < 0, ∂T2(c,r)∂r > 0). Assuming undersaturated

1The arrival rate is thus inelastic, static and deterministic.
2Up to N drivers per hour, the time cost curve for this route is horizontal.
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Figure 3.1: Outline of an intersection of two routes connecting one OD pair (AB) regulated by
tra�c lights.

tra�c conditions, the expected tra�c light functions take the following form for 0 < r < c:3

T1 (c, r) =
(c− r)2

2c
(3.1)

T2 (c, r) =
r2

2c
(3.2)

When it is always red (r = c for Route 2 and r = 0 for Route 1 ) the expected tra�c

light waiting function jumps to in�nity.

We will model both the anticipatory and the tra�c-responsive control and assignment

problem as a Stackelberg game (Von Stackelberg (1934)). The Stackelberg game is a se-

quential game in which the leader moves �rst and the follower acts sequentially. In this

paper, the tra�c authority is the leader when the signal control is anticipatory and the

tra�c authority is the follower when the signal control is tra�c-responsive. The objective

of the tra�c authority is to maximize welfare. The drivers in turn represent the follower

when the signal control is anticipatory and the leader when the signal control is tra�c-

responsive. We will assume that all drivers are identical and try to minimize their expected

travel cost.

The behaviour of the drivers can also be represented as a game, because the congestion

on one road is dependent upon how many users choose to use the same road. In this paper,

we will assume that the drivers behave non-cooperatively (Nash (1951)).

3We will assume that the saturation �ow rate g is very large in comparison to the arrival rate Xi, so
that the tra�c light waiting time due to departure delay is negligible.

42



CHAPTER 3. THE PUZZLE OF TRAFFIC-RESPONSIVE SIGNAL CONTROL

3.3 Results

3.3.1 Tra�c-responsive signal control

When the signal control is tra�c-responsive, the signal settings respond to the current traf-

�c conditions measured by a vehicle detector. This situation is represented as a Stackelberg

game in Figure 3.2. The game tree shows all the possible distributions of the drivers over

the two routes and all the policies the government can implement in reaction to the drivers'

choice.

Figure 3.2: Total costs when signal control is tra�c-responsive.

To predict the outcome of this game, we will �rst determine the best response of the

road authority to every possible distribution of the drivers over the two routes. Assuming

that the government wants to maximize welfare, their best response to any distribution over

the two routes is to maximize welfare taking as given this distribution. From the game tree,

it is clear that the tra�c authority will always give green to Route 1 when all drivers choose

Route 1. When all drivers choose Route 2, the rational decision for the tra�c authority

is to give always green to Route 2. When the drivers divide themselves over the 2 routes,

the optimal response of the tra�c authority is the solution of the following optimization

problem.
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min
r

(a1X1 + ω + φ1 + T1 (r))X1 + (ω + φ2 + T2 (r))X2 (3.3)

0 < r < c (3.4)

In this optimization problem ai represents the sensitivity to congestion of route i, Xi

equals the �ow on route i,4 φi stands for the minimal time cost of route i, ω is the resource

cost for a trip from A to C on either route and Ti (c, r) is the expected waiting time cost

on route i at the intersection.

Taking the derivative of (3.3) to r and taking into account that X1+X2 = N , we �nd

that the optimal strategy for the government is to implement the following red time:

r∗ =
X1c

N
(3.5)

Making this trip day in day out, the drivers will come to learn the optimization formula

of the government, which is easy to understand as the red time is inversely proportional to

the �ow. As a result, their private cost functions have the following form for 0 < X1 < N :

a1X1 + φ1 + ω +
cX2

2

2N2
(3.6)

for Route 1 and

φ2 + ω +
cX2

1

2N2
(3.7)

for Route 2. Remark that cX2
2

2N2 is the expected tra�c light waiting cost for Route 1 ( (c−r
∗)2

2c ,

with r∗ = X1c
N ) and cX2

1
2N2 is the expected tra�c light waiting cost for Route 2 ( r

∗2

2c , with

r∗ = X1c
N ).

Drivers will individually seek to minimize their private cost and will consequently

change routes until unilaterally changing increases their private cost. At that point the

stationary distribution of vehicles in the network, i.e. the equilibrium, is reached. And this

stationary distribution will thus be the outcome of the drivers' part of the game which,

together with the government's strategy, will determine the total cost of responsive signal

control.

Remark that, even though the signal setting policy of the tra�c authority provides

the drivers with an opportunity to manage the actions of the tra�c authority, they can not

4This is the �ow measured by the vehicle detector.
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exploit this advantage as the drivers do not cooperate.

Depending on the parameter values and the amount of drivers on Route 1, the average

cost curve is either downward sloping (dAC1
dX1

< 0) or upward sloping (dAC1
dX1

> 0). The

average cost on Route 1 can be downward sloping because an increase in volume on Route

1 implies a decrease in volume on Route 2. With responsive signals this implies a longer

green phase on Route 1 which can outweight the increased congestion on Route 1. In this

paper, we will determine the equilibria for only one instance: the waiting cost always out-

weights the congestion cost (∀X1 : dAC1
dX1

< 0). We can restrict ourselves to this instance,

as it su�ces to show the superiority of anticipatory control.

When the waiting cost outweights the congestion cost for all possible distributions of

vehicles over the two routes, we can distinguish between three cases: either the average cost

of Route 1 is always larger than the average cost of Route 2 or the other way around, or

the average cost curves intersect. We will determine the equilibria for each of these cases

separately.

Case 1. If for every distribution of vehicles over the two routes AC1 is larger than

AC2, then the only equilibrium is X2 = N .

Figure 3.3: The only stationary distribution is X2 = N

The search for potential equilibria in the set of possible distributions of vehicles over

the 2 routes is greatly simpli�ed by Wardrop's �rst principle (Wardrop (1952)): In a user

equilibrium, all used routes for an OD pair should have equal generalized prices, and there

are no unused routes with lower generalized prices. For this case, the �rst part of the

principle, eliminates all distributions in which both routes are used. The second part of the

principle, eliminates the outcome where all drivers are on Route 1. The only distribution
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left, X2 = N , satis�es the de�nition of a Nash equilibrium. The total cost in this case

equals (ω + φ2)N .

Case 2. If there exists a distribution of vehicles over the two routes for which AC1 =

AC2, then there are two potential equilibria: X2 = N or X1 = N .

Figure 3.4: There are two stationary distributions: X2 = N and X1 = N

In this case, Wardrop's �rst principle leaves us with three potential equilibria: X2 = N ,

X1 = N , and X1 =
( c2+φ1−φ2)N

c−a1N . When the distribution of vehicles is such that the average

cost of both routes is the same, then a driver on Route 1 could lower his cost by unilaterally

changing to Route 2 (or a driver on Route 2 could lower his cost by unilaterally changing

to Route 1). So depending on the initial distribution of vehicles over the two routes, either

X2 = N or X1 = N will be the stationary distribution. The corresponding total cost equals

(ω + φ2)N when the equilibrium is X2 = N and (a1N + ω + φ1)N when X1 = N .

Case 3. If for every distribution of vehicles over the two routes AC2 is larger than

AC1, then the only equilibrium is X1 = N .

If for every possible distribution of vehicles over the two routes, the private cost when

taking Route 2 is higher than the private cost of taking Route 1, then all drivers will take

Route 1. This dominant strategy leads us to the equilibrium distribution X1 = N . The

private cost every driver will incur equals a1N + ω + φ1, and the total cost thus amounts

to (a1N + ω + φ1)N .
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Figure 3.5: The only stationary distribution is X1 = N

3.3.2 Anticipatory signal control

When signal control is anticipatory, the tra�c authority moves �rst and bases its decision

on the expected reaction of the drivers. Figure 3.6 shows the di�erent options for the gov-

ernment, and the possible reactions of the drivers.

Figure 3.6: Total costs when signal control is anticipatory.

The tra�c authority has three possible policies: to grant always green to Route 1, to
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grant always green to Route 2, or to implement an alternating signal setting.5 The users in

turn can react in three di�erent ways to any chosen policy: to only take Route 1, to only

use Route 2, or to use both routes.

If the tra�c authority decides to implement always red for Route 1, then all drivers

will take Route 2 and the total cost will equal (ω + φ2)N . If, on the other hand, the tra�c

authority grants always green to Route 1, then the user equilibrium will be X1 = N and

the total cost will be (a1N + ω + φ1)N . If, however, the government decides to implement

an alternating signal setting, the equilibrium reaction of the drivers will be X1 = N if

a1N + φ1 + T1 (c, r) < φ2 + T2 (c, r), and X2 = N if φ1 + T1 (c, r) > φ2 + T2 (c, r). If

φ1 + T1 (c, r) < φ2 + T2 (c, r) < a1N + φ1 + T1 (c, r), the drivers will use both routes, and

the Wardrop equilibrium implies (ω + φ2 + T2 (c, r))N as total cost.

A glance at Figure 3.6 reveals that a rational government will never decide on an

alternating signal setting when both routes are substitutes. Indeed, let Ti (c, r) be the

expected waiting time cost on route i at the intersection. As Ti (c, r) is positive when

0 < r < c, the total travel cost for an alternating signal setting will always be higher than

for r = c or r = 0. Which of the two non-alternating signal settings will be optimal depends

on the values of the parameters a1, N, φ1 and φ2. Whenever a1N + φ1 < φ2, r = c is the

optimal solution and whenever a1N + φ1 ≥ φ2, r = 0 will be implemented.

3.3.3 Anticipatory versus tra�c-responsive signal control

From the analysis in Section 3.3.2, we know that when a1N + φ1 < φ2, the total cost

amounts to (a1N + ω + φ1)N and when a1N + φ1 ≥ φ2, the total cost equals (ω + φ2)N

when tra�c control is anticipatory. The outcome in each of the two scenarios is not so

straightforward in case tra�c-responsive control is implemented,6 so it is rather cumber-

some to directly compare total costs. However, the following line of reasoning allows to

asses the relative performance of anticipatory and tra�c-responsive control in an indirect

way.

Comparing the outcomes of anticipatory signal control (Figure 3.6) to the possible

outcomes of tra�c responsive signal control (Figure 3.2), it is clear that the performance

5The third branch, representing the decision of the government to implement an alternating signal setting
(0 < r < c), is a clubbing of all red times between zero and c.

6As it depends on the relative values of some of the parameters.
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of tra�c responsive signal control can only be equally well or worse than anticipatory sig-

nal control. Consequently, if there exists one case for which the performance of tra�c

responsive signal control is worse, we can conclude that the overall expected perfomance of

tra�c-responsive signal control is worse than anticipatory signal control.

Take the scenario in which a1N + φ1 < φ2, then out of the three cases we have dealt

with in section 3.3.1, Case 2 and Case 3 can occur. If Case 2 occurs the total cost is either

(a1N + ω + φ1)N or (ω + φ2)N . If Case 3 occurs, the total cost is (a1N + ω + φ1)N .

Remember that in this case the total cost with anticipatory signal control equals

(a1N + ω + φ1)N . The possible outcome of the stationary distribution X2 = N , resulting

in a signal setting r = 0 and total cost (ω + φ2)N , when a1N + φ1 < φ2 thus proves that

there exists at least one case for which the performance of tra�c responsive signal control

is worse than the performance of anticipatory signal control. As a result, we can assert that

for our model, the performance of anticipatory signal control is superior to the performance

of tra�c-responsive signal control.

This result can be explained by recognizing the presence of externalities and the �rst

mover advantage. Because of externalities, the drivers' individual choices are not socially

optimal. Or, putting it di�erently, every driver minimizes his own cost, but this does not

necessarily minimize the cost of all drivers. The tra�c authority's objective is to minimize

the cost of all drivers, so its unconstrained decisions are socially optimal. However, in both

the tra�c responsive control problem and the anticipatory control problem the tra�c au-

thority's optimization problem is constrained, to a greater or lesser extent, by the behaviour

of the drivers. When the tra�c authority is the leader, she can act so as to elicit the most

favorable response of the driver. However, when the tra�c authority is the follower, her

in�uence on the drivers' behaviour is more restricted. Analytically, when signal control

is anticipatory the leader's optimization problem is constrained by the drivers' reaction

function, while when signal control is tra�c-responsive the leader's optimization problem is

constrained by the drivers' individually optimized distribution over the di�erent routes. It

is clear that the tra�c authority's constraint is much more restricting when signal control

is tra�c-responsive. This also becomes apparent in Figure 3.7 below, in which the total

cost is compared in case the tra�c authority is the leader and when the tra�c authority is

the follower.
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Figure 3.7: Comparison of the total cost when tra�c control is anticipatory and tra�c-responsive
for an interior equilibrium.

When both routes are used in equilibrium, the anticipatory signal setting will always

be the lowest red time possible (on Route 2), resulting in the lowest costs (see red arrow

in Figure 3.7). However, when signal control is responsive, the equilibrium signal setting

equals r = (
φ2−φ1− c2
a1N−c )c, which, depending on the parameter values, results in a total cost

that is at least as high as the lowest cost.

Our discussion allows to extend the obtained results to other networks. Indeed, the

above reasoning can be applied as well to other situations in which signal settings can in-

�uence route choice. If there is no route choice, then the tra�c-responsive control coincides

with anticipatory control.

3.4 Conclusion

In this paper we have shown that for an intersection of two routes connecting one OD pair

where only one route is subject to congestion (1) tra�c responsive signal control can only

perform just as well or worse than anticipatory signal control and that (2) the expected per-

formance of tra�c responsive signal control is worse than the performance of anticipatory

signal control. The game theoretic perspective taken in this paper furthermore suggests

that these results can also be extended to larger instances.

These results have important implications for policy. The counter-intuitiveness of these

results indicates that great attention needs to be given to the accuracy of the appraisal of

signal control investments. Since both the costs of road transportation infrastructure and
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user costs are large, policy should be based on careful analysis rather than on intuition

alone. The allocation of public money to the intuitively superior tra�c-responsive signal

control, may actually make society worse o� as the money could be more e�ciently spent on

anticipatory signal control. This paper furthermore intends to raise awareness that policies

based on intuition alone can have unintended consequences in the hope that these can be

recognized and avoided.

A �nal note on the results in this paper concerns the deterministic nature of demand

in this paper. An interesting extension would deal with stochastic demand as the �exi-

ble nature of tra�c-responsive signal control could mitigate the advantage of anticipatory

control in this case.
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Chapter 4

Can tra�c lights achieve the same

results as tolls?

4.1 Introduction

One of the main constraints in the optimization of networks is the socially suboptimal

behavior of drivers. This suboptimal behavior manifests itself in an excessive amount of

drivers on the road, or in an ine�cient distribution of vehicles over alternative routes. In

this paper, the focus will solely be on this second type of ine�ciency.

The main reason behind this ine�ciency is a congestion externality often present in

transportation. As drivers do not take into account their delaying e�ect on other users

when making a decision about which road to take, an ine�cient situation arises.

The solution proposed by Pigou (1920) and Knight (1924) is to internalize the ex-

ternality by introducing road pricing. Travellers are then confronted with their marginal

social cost, rather than their average cost, and will consequently make the socially optimal

route choice. This paper analyzes the conditions under which tra�c lights can provide an

adequate alternative to road pricing.

The suggestion for tra�c lights as an alternative to road pricing is based on the ob-

servation that tra�c lights have the potential to in�uence route choice.
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Already in 1974, Allsop pointed out that signal settings can a�ect route choice. A

change in the signal settings in�uences the average cost of the routes, leading to a change

in route choice. This insight has generated two approaches in the literature to optimize

a network with tra�c lights: (1) the iterative procedure and (2) the global optimization

approach (Cantarella et al. (1991)).

The iterative procedure iteratively solves the signal setting problem for a �xed �ow

pattern and the assignment problem for �xed signal settings until two successive �ow pat-

terns or signal settings converge (Allsop and Charlesworth (1977), Gartner et al. (1980),

Cantarella et al. (1991)).

When the global optimization approach is applied, some network objective function is

optimized while taking into account the equilibrium route choice behaviour of the drivers.

The global optimization problem can be modelled as a bilevel programming problem (Yang

and Yagar (1995)) or as a Stackelberg game (Fisk (1984)).

Compared to the iterative approach, the Stackelberg approach enables the tra�c au-

thority to exert more control over the equilibrium route choice of the drivers. As this paper

aims at using tra�c lights to in�uence route choice, applying the Stackelberg approach

seems the logical choice.

First, we will model the signal setting procedure as a Stackelberg game. In a later

stage, we will use the inverse Stackelberg approach (Olsder (2009)), which is an extension

of the basic Stackelberg game. In the basic Stackelberg game the leader chooses an action

after which the follower determines his optimal response. In the inverse Stackelberg game

the leader action is generalized from making a direct decision to determining a function

that maps the followers' decision space into the leader's decision space. As such, the in-

verse Stackelberg approach allows to fully control the route choice behaviour of the drivers.

The following example, adopted from Groot et al. (2012), illustrates the inverse Stack-

elberg concept.

Example 1. Consider the following simple static, single-leader single-follower situation.

Let the objective functions of leader and follower be respectively:

JL (uL, uF ) = (uF − 5)2 + u2L,
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JF (uL, uF ) = u2L + u2F − uLuF ,

with decision variables uL ∈ <, uF ∈ <. The leader's global optimum is
(
udL, u

d
F

)
= (0, 5).

In the original Stackelberg game formulation, the follower's response to the desired variable

udL = 0 would be the suboptimal u∗F = 1/2uL = 0.

However, under the leader function

uL = γL (uF ) = 2uF − 10,

the follower's response will be:

argmin
uF

JF (uF ) = argmin
uF

(2uF − 10)2 + u2F + (2uF − 10)uF = 5.

We focus our analysis on two di�erent types of networks, one in which the tra�c

lights' primary objective is to regulate an intersection and another network in which tra�c

lights are installed with as a sole objective to in�uence route choice. Both networks are

deliberately kept as simple as possible to allow for clear, intuitive results.

The remainder of this paper is organized as follows: in Section 4.2 the di�erent net-

works are described. In Section 4.3 the relative performance of road pricing and tra�c

lights is compared for the network with two parallel routes. In Section 4.4, we focus on the

network in which the main purpose of the tra�c lights is to avoid collisions. Section 4.5

o�ers a discussion and Section 4.6 concludes this paper.

4.2 Basic set-up: network, demand, equilibrium conditions

Per time unit N users wish to travel from a single origin (A) to a single destination (B).

The drivers can choose between two alternative routes indexed by i ∈ {1, 2}. Let f1 (f2) be
the minimum travel time from A to B via Route 1 (Route 2). Both routes are congestible,

and the congestion is represented by a the variable travel time that is an increasing linear

function of the number of users, Xi, on this route. The route's sensitivity to congestion is

denoted by ai.

In this paper, we distinguish between two di�erent networks of two routes connecting

an origin A to a destination B. In the �rst network (Figure 4.1) the capacity of road CB

is such that the merge of Route 1 and Route 2 drivers can occur without hindrance. In

that case, no additional cost is incurred at point C and the average cost when using Route

i equals:
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Figure 4.1: A network without intersection

ACi = fi + aiXi (4.1)

In the second network (Figure 4.2) the intersection is regulated by tra�c lights. In

that case, the two routes can not have simultaneous right of way, and the drivers on both

routes will experience an expected tra�c light waiting time cost (T1 (c, r) , T2 (c, r)).

Figure 4.2: A network with an intersection

The average cost on Route i is given by the sum of the �xed and variable time cost

and the expected waiting time cost at the tra�c light (Ti(r, c)):

ACi = fi + aiXi + Ti(r, c) (4.2)

In this paper, r2 is the red time for Route 2. The duration of the sum of the red

and the green phase is the cycle time `c', which, to simplify matters, is held �xed. Hence,

it follows that including intergreen time in the analysis is not relevant and will thus be

ignored. The red time for Route 1 will be (c− r2).
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It is clear that the expected tra�c light waiting cost functions are increasing in the

red time and decreasing in the green time (∂T1(c,r2)∂r2
< 0, ∂T2(c,r2)∂r2

> 0). When it is always

red (r2 = c for Route 2 and r2 = 0 for Route 1) the expected tra�c light waiting cost is

in�nitely high. For simplicity, we will assume that the queue that builds up during the red

time fully dissipates during the green time and that the cost associated with it is negligible.

In that case the expected tra�c light functions take the following form for 0 < r2 < c:

T1 (c, r2) =
(c− r2)2

2c
(4.3)

T2 (c, r2) =
r22
2c

(4.4)

All drivers are assumed identical and try to minimize their expected travel cost. The

equilibrium concept used in this paper is known as the user equilibrium. It was introduced

by Bernstein and Smith (1994) and used by e.g. De Palma and Nesterov (1998). In the

user equilibrium no arbitrarily small portion of drivers on a route can lower its private

cost by deviating to another route that connects the same origin destination pair.1 When

the private cost functions are continuous, the user equilibrium reduces to the Wardrop

equilibrium (Wardrop (1952)). With two routes, the Wardrop equilibrium has either all

drivers on Route 1, or all drivers on Route 2, or a distribution of drivers over the two routes

such that the average cost on both routes is equal.

4.3 A network without intersection

In this section, the focus is on a network in which tra�c lights are not strictly necessary, in

the sense that there are no con�icting tra�c streams. We �rst determine the minimal total

cost when route choice is in�uenced by road pricing (Section 4.3.1). In this same section,

we also work out the minimum cost when tra�c lights are used to in�uence route choice

(Section 4.3.2). In both sections, the optimization process is modelled as a Stackelberg

game in which the tra�c authority is the leader and the drivers are the follower. In Section

4.3.3 the di�erent policies are compared.

Proposition 7. In a network with two parallel routes, a tra�c light with an optimal signal

setting determined by the Stackelberg game can not provide an adequate alternative for road

pricing.

1See Section 4.4.2 for a formal de�nition.
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4.3.1 Road pricing to in�uence route choice

When demand is inelastic, the ine�ciency caused by the socially suboptimal behaviour of

drivers only manifests itself in a socially suboptimal route-choice. Therefore, a toll or a

subsidy on only one of the two routes su�ces to account for this suboptimality, even when

both routes are congested (see Appendix H).

For the network in Figure 4.1, we will assume that a toll is levied on Route 1. The

total cost for this network then equals the sum of the average cost of all Route 1 and Route

2-drivers minus the toll revenue, i.e. (a1X1 + f1 + τ)X1 + (a2X2 + f2)X2 − τX1. The

minimization of this cost through road pricing has two stages. First the tra�c authority

determines the toll value. Second, the drivers make their route choice. To �nd the optimal

toll value, we work backward.

Depending on the toll value, the Wardrop equilibrium2 will either be X1 = N , X2 = N

or 0 < X1 < N such that the average cost is equal on both routes. Suppose the tra�c au-

thority implements τ , then all drivers will take Route 1 in equilibrium if a1N +f1+ τ < f2.

The total cost then equals (f1 + a1N)N . If a2N + f2 < f1 + τ all drivers will take Route

2 in equilibrium and the total cost is (f2 + a2N)N . Finally, if the value of τ is such that

a1N+f1+τ > f2 and a2N+f2 < f1+τ then the drivers will distribute themselves over the

two routes, resulting in a total cost of
(
f1 +

a1(a2N+f2−f1)
a1+a2

+ a2τ
a1+a2

)
N − τXe

1 (Appendix

I).

Tra�c
authority Drivers

(
f1 +

a1(a2N+f2−f1)
a1+a2

+ a2τ
a1+a2

)
N − τXe

1

0 < X
1 < N

(f1 + a1N)N
X1 = N

(f2 + a2N)N

X2
= N

τ

Figure 4.3: Total costs when road pricing is applied

Taking into account the equilibrium behaviour of the drivers, the tra�c authority

2Both equation (4.1) and (4.2) are continuous in Xi and so the equilibrium distribution of vehicles will
be a Wardrop equilibrium.
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determines the optimal τ -value. Figure 4.3 shows that the total cost is not a�ected

by the toll value when all drivers take one route in equilibrium. So if (f1 + a1N)N

((f2 + a2N)N) is the lowest cost, a rational tra�c authority will implement a toll that

satis�es a1N + f1 + τ < f2 (a2N + f2 < f1 + τ).

When a1N + f1 + τ > f2 and a2N + f2 > f1 + τ , the drivers will use both routes. In

this case, the toll value in�uences the total cost, and the total cost is minimized when the

toll value equals f2−f1
2 .

It can be shown that if the optimal toll value is feasible,3 then the associated minimal

cost is lower than (f1 + a1N)N and (f2 + a2N)N . It can furthermore be shown that if

τ = f2−f1
2 is such that Xe

1 < 0 (Xe
1 > N), (a2N + f2)N ((a1N + f1)N) is the lowest cost

and the equilibrium distribution is X2 = N (X1 = N) when τ = f2−f1
2 is implemented.

Thus, independently of the parameter values, the optimal policy for the tra�c authority

would always be to set the toll equal to f2−f1
2 .

4.3.2 Tra�c lights to in�uence route choice

Consider the network in Figure 4.4 in which, instead of road pricing, a tra�c light is

installed on Route 1 to in�uence route choice.

Figure 4.4: A tra�c light to in�uence route choice

Suppose the authority implements the signal setting r1. Then the equilibrium distri-

bution will be X1 = N when f2 > a1N+f1+T1, X2 = N f1+T1 > a2N+f2 and the drivers

will use both routes in the equilibrium when f2 ≤ a1N + f1 + T1 and f1 + T1 ≤ a2N + f2.

3That is, if for the optimal toll value the equilibrium amount of drivers on Route 1 and Route 2 is
positive.
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Tra�c
authority Drivers

(
f1 +

a1(a2N+f2−f1)
a1+a2

+ a2T1
a1+a2

)
N

0 < X
1 < N

(f1 + a1N + T1)N
X1 = N

(f2 + a2N)N

X2
= N

T1

Figure 4.5: Total costs when a tra�c light is installed

If all drivers take Route 1, the total cost can be minimized by setting the tra�c light

always to green. The total cost then equals (a1N + f1)N . If all drivers take Route 2

in equilibrium, the total cost will be (f2 + a2N)N . When both routes are used in the

equilibrium, the total cost is minimal for T1 = 0,4 as illustrated in Figure 4.6.

Figure 4.6: The total cost is minimal when the tra�c light is always green.

If T1 = 0, the total cost equals area ABCD. If a tra�c light is installed on Route 1

4The cost decrease resulting from a better route choice is outweighted by the cost increase due to the
additional waiting time.
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and the expected tra�c light waiting cost is positive, then the average cost curve of Route

1 will shift up (the grey curve in Figure 4.6). The total cost will then equal the area AEFD,

which is larger than the area ABCD. Given that the average cost curve of Route 2 is upward

sloping, it is clear that any T1 > 0 will result in a higher total cost than T1 = 0.

Figure 4.7: The cost minimizing user equilibrium always comes about.

To obtain the lowest cost, the reaction of the drivers to the optimal signal setting also

has to be such that the cost minimizing user equilibrium comes about. In Figure 4.7, the

three possible scenarios, dependent on the parameter settings, are depicted. In the �rst

graph, the situation in which (a1N + f1)N is the lowest cost is represented. It is clear from

the graph that X1 = N will always be the Wardrop equilibrium in this case. In the middle

graph the parameter values are such that
(
f1 +

a1(a2N+f2−f1)
a1+a2

)
N is the lowest cost. In this

case, both routes are used in equilibrium. In the graph on the right (f2 + a2N)N is the

lowest cost. Here, X2 = N is the user equilibrium.

Remark �nally, that even though the optimal signal setting for all cases in this section

is to give always green, we can not conclude that installing a tra�c light solely to in�uence

route choice can not be a good policy.5 Indeed, a well placed tra�c light can sidestep

the Braess paradox (Braess (1968)). In the Braess paradox adding a road to a congested

network can increase overall journey time. Consider the network in Figure 4.8 in which the

addition of link v-t increases the total social cost. The installation of a tra�c light on link

v-t in the network (b) in Figure 4.8 thus allows to lower total costs.

5I am indebted to André de Palma for pointing this out to me.
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Figure 4.8: Braess' paradox

4.3.3 Policy comparison: minimum costs and �exibility of the instru-

ments

In Table 4.1 the minimal costs that can be obtained with the di�erent instruments are

summarized. The minimal cost that can be obtained when all the drivers take Route 1 is

the same for both instruments. When (f1 + a1N)N is the lowest cost, the tra�c authority

can attain this lowest cost both with a tra�c light and with a toll.

Table 4.1: The total travel cost for each user equilibrium and policy measure

X1 = N X2 = N 0 < X1 < N

τ (f1 + a1N)N (f2 + a2N)N
−
(
f1−f2

2

)2
+a2f1N+a1f2N+a1a2N2

a1+a2

T1 (f1 + a1N)N (f2 + a2N)N a1a2N2+a1f2N+a2f1N
a1+a2

The minimal cost that can be obtained by directing all drivers to Route 2 is equal in

both cases. Both instruments are equally �exible in directing the tra�c towards this user

equilibrium. Consequently, if the parameter values are such that (f2 + a2N)N is the lowest

cost, then both instruments can always attain the lowest cost in the network.

If in the user equilibrium the drivers distribute themselves over the two routes, then the

total cost when road pricing is applied is at least as low as when a tra�c light is installed.

Indeed, a1a2N
2+a1f2N+a2f1N
a1+a2

−
(
f1−f2

2

)2

a1+a2
≤ a1a2N2+a1f2N+a2f1N

a1+a2
. This result is intuitive. A
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tra�c light can a�ect route choice, but any intervention comes at a cost, namely the waiting

cost at the tra�c light. A toll can also a�ect route choice, but, as the toll revenue �ows

back to society, the toll is not a cost. Combining these insights with the knowledge that

the optimal toll can always direct the drivers towards the lowest cost equilibrium, it can be

concluded that road pricing performs better than tra�c lights.

4.4 A network with intersection

In this section, the focus is on a network in which a tra�c light is essential for reasons of

tra�c safety. For this network, we �rst determine the minimal cost that can be attained

when road pricing is applied in conjunction with tra�c lights (Section 4.4.1). Subsequently,

we compare these results with the minimal costs obtained when road pricing can not be

implemented and only �xed signal settings are possible (Section 4.4.2). Next, we determine

the conditions the signal settings have to satisfy to obtain the same results as road pricing.

Finally, a numerical example is presented to illustrate the e�ectiveness of the proposed

methodology.

Proposition 8. In a network with two parallel routes that intersect, a tra�c light with an

optimal signal setting determined by an inverse Stackelberg game can provide an adequate

alternative for road pricing.

4.4.1 The optimal solution when road pricing is applied

We will model the signal and toll setting procedure for the network in Figure 4.9 as a

Stackelberg game.

The tra�c authority who controls the signal settings and toll, can either give always

green to Route 1, or give always green to Route 2 or implement an alternating signal set-

ting. The toll is levied on Route 1, and can be positive or negative. In deciding upon his

optimal control (optimal in the sense that it minimizes total cost), the tra�c authority will

take into account the reaction of the drivers. The drivers can react to a certain signal and

toll-combination by taking all together Route 1, or Route 2, or dividing themselves over

the two routes in equilibrium.

If r2 = 0, the Wardrop equilibrium is X2 = N . As a consequence, all combinations

of variables for which r2 = 0 and 0 < X1 ≤ N are not part of the feasible set. Following
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Figure 4.9: Road pricing applied to a network with an intersection

the same reasoning, if r2 = c the only feasible �ow variable is X1 = N . As road pricing

does not a�ect the objective function, the value of the objective function will be the same

for solutions (r2 = c, X1 = N , τ > 0) and (r2 = c, X1 = N , τ = 0) and for solutions

(r2 = 0, X2 = N , τ > 0) and (r2 = 0, X2 = N , τ = 0). Given that the implementation of

road pricing is costly6only the candidate solutions (r2 = 0, X2 = N , τ = 0) and (r2 = c,

X1 = N , τ = 0) are retained.

For 0 < r2 < c, the objective function will only be lower than the objective function of

the two previous candidate solutions if 0 < X1 < N.7 As a consequence, the third candidate

solution will be the solution of the following minimization problem.

min
r,X1,X2,τ

(f1 + a1X1 + T1 (c, r2) + τ)X1 + (f2 + a2X2 + T2 (c, r2))X2 − τX1 (4.5)

s.t.

f1 + a1X1 + T1 (c, r2) + τ = f2 + a2X2 + T2 (c, r2) (4.6)

X1 +X2 = N (4.7)

X1 > 0 (4.8)

X2 > 0 (4.9)

r2 > 0 (4.10)

r2 < c (4.11)

6For simplicity, this has not been included in the objective function.
7Indeed, for a signal setting r ∈ ]0, c[, (f1 + a1N + T1 (c, r2))N is always larger than (f1 + a1N)N and

(f2 + a2N + T2 (c, r2))N is always larger than (f2 + a2N)N .
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Tra�c
authority

Drivers

(f1 + a1X
e
1 + T1 + τ)N − τXe

1

0 < X
1 < N

(f1 + a1N + T1)N
X1 = N

(f2 + a2N + T2)N

X2
= N

τ, 0
<
r
2 <

c

Drivers 0 < X
1 < N

(f1 + a1N)N
X1 = N

X2
= N

τ, r2 = c

Drivers 0 < X
1 < N
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(f2 + a2N)N

X2
= N

τ,
r 2
=
0

Figure 4.10: Total costs when road pricing is applied in conjunction with tra�c lights
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In this optimization problem ai represents the sensitivity to congestion of route i, Xi

equals the �ow on route i, fi stands for the minimal time and resource cost of route i, τ

is the value of the toll levied on Route 1 and Ti(c, r2) is the expected waiting time cost on

route i at the intersection.

For simplicity we will assume that the parameter values are such that the total cost

function is convex (2 (a1 + a2)N − c ≥ 0). Then the solution of this minimization problem

is the global minimum. Furthermore, we will assume that the parameter values are such

that 0 < r∗2 < c.

Solving the �rst order conditions of the Langragian function associated with this opti-

mization problem, yields the optimal �ow pattern, toll value and signal setting (Appendix

K). The optimal distribution of vehicles (Xint) can be found where the marginal cost curves

of both routes intersect:

f1 + 2a1X1 + T1 (c, r2) = f2 + 2a2X2 + T2 (c, r2) (4.12)

The optimal toll (τ int) equals the di�erence between the marginal external congestion cost

of Route 1 and the marginal external congestion cost of Route 2.

τ = a1X1 − a2X2 (4.13)

The optimal signal setting (rint2 ) is determined by the following equation:

δT1 (c, r2)

δr2
X1 = −

δT2 (c, r2)

δr2
X2 (4.14)

It can be shown that there exist parameter values for which the interior solution is

feasible and the associated total cost (TCint) is lower than (a1N + f1)N and (a2N + f2).

As a consequence, the interior solution is a candidate solution.

Depending on the parameter values, the desired choice for the tra�c authority will

thus be one of the three following combinations: either Route 1 always has green, no toll is

levied and all drivers take Route 1 or Route 2 receives always green, no toll is levied and

all drivers take Route 2 or the optimal alternating signal setting (rint2 ) is implemented, the

optimal toll (τ int) is levied and the drivers are distributed over the two routes such that

MC1 =MC2.
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The total costs associated with these solutions are the lowest attainable in this network

if there are to be N drivers per time unit going from A to B. The network itself is indeed only

restricted by the fact that the signal settings have to be such that collisions are avoided.

The lowest costs for the network are thus associated with the solutions of the following

optimization problem

min
r2,X1

(f1 + a1X1 + T1 (c, r2))X1 + (f2 + a2 (N −X1) + T2 (c, r2)) (N −X1) (4.15)

s.t.

0 ≤ X1 ≤ N (4.16)

0 ≤ r2 ≤ c (4.17)

An inspection of the corner solutions already provides two candidate optima: (r2 =

c,X1 = N) and (r2 = 0, X1 = 0). The total cost associated with these solutions is

(a1N + f1)N and (a2N + f2)N respectively. The third candidate solution is the interior

solution (0 < r2 < c and 0 < X1 < N). In Appendix K it is shown that the �ow pattern

of the optimal interior solution (X∗1 ) is determined by MC1 = MC2. Remark that when

the optimal toll is levied, the �ow distribution equals the socially optimal �ow pattern.

This implies that, for this network, road pricing allows to completely control route choice.

The optimal interior signal setting (r∗2) is determined by dT1(c,r2)
dr2

X1 = −dT2(c,r2)
dr2

X2, which

equals equation (4.14). Given that X∗1 equals Xint
1 , r∗2 is equal to rint2 and the toll value

does not a�ect the value of the objective function, the total cost will equal TCint.

Suppose now that for the network in Figure 4.9, the toll cannot be levied anymore.

In the previous section, we found that the deployment of tra�c lights increases costs, as

the delays caused by the tra�c light are added to the social cost. However, contrary to the

network in Section 4.3, the tra�c light is now part of the network. So the delays caused

by the tra�c light are not added to the social cost, but are already part of the social cost

also when road pricing is applied. Would it for this network then be possible to obtain the

same result with tra�c lights alone?

4.4.2 The optimal solution when road pricing can not be applied

Figure 4.11 shows the di�erent options for the tra�c authority and the possible reactions of

the drivers when the signal setting procedure is modelled as a Stackelberg game. From Evers

and Proost (2015), we know that, depending on the parameter values, the minimal cost for
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Figure 4.11: Total costs when tra�c lights are the only instrument

the network is given by (a2N+f2)N , (a1N+f1)N or
(
2a1a2(a1+a2)N+2a1(a1+a2)(f2−f1)+a1a2c

(a1+a2)
22

+ f1

)
N .

The associated optimal signal settings are r2 = 0, r2 = c and r2 =
a2c

a1+a2
respectively.8

Given that we now have fewer instruments to solve the same problem, these results

will be equally as good or worse than when a toll was also available. The focus will be on

the conditions under which deviations occur and on the sources of these deviations.

When the parameter values are such that (a1N + f1)N is the lowest cost attainable

with road pricing, then the simple implementation of r2 = c allows to obtain the same

cost. When (a2N + f2)N is the minimum, then the signal setting r2 = 0 provides this

solution. When TCint is the minimal cost, then the strategy to obtain this cost is not so

8Remark that the optimal alternating signal setting r2 = a2c
a1+a2

only equals r∗2 for those parameter
values for which the �ow that solves AC1 = AC2 also solves MC1 =MC2.
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straightforward. Indeed, when the tra�c authority implements r2 = 0 or r2 = c, then the

total cost equals (a2N + f2)N respectively (a1N + f1)N . These costs are by assumption

larger than TCint. When the tra�c authority implements the optimal alternating signal

setting r2 = a2c
a1+a2

the minimal cost is also at least as large as TCint. Indeed, at the end

of Section 4.4.2 we have shown that TCint is equal to the value of the total cost associated

with the optimal interior solution of an unconstrained optimization problem. The minimal

cost associated with r2 =
a2c

a1+a2
is the solution of the exact same optimization problem, yet

constrained by the equilibrium reaction of the driver. This last observation indicates that

the real constraint in obtaining the lowest cost is the route choice of the drivers. If the

tra�c authority could exert more control over the route choice of the drivers, the lowest cost

would be attainable. This insight prompts us to shift to an approach with more in�uence

over route choice to see whether this allows tra�c lights to achieve the same results as tolls.

Compared to the Stackelberg approach, the inverse Stackelberg approach allows to

exert more control over the choices of the follower. Therefore, we will now model the signal

setting procedure for the network in Figure 4.9 as an inverse Stackelberg game.

Whereas in the basic Stackelberg game the tra�c authority implements a �ow-independent

signal setting, in the inverse Stackelberg game the signal setting can be a function of the

�ow pattern. In the following, we will determine what this function should look like to

obtain the lowest cost.9

We know that when (f1 + a1N)N ((f2 + a2N)N) is the lowest cost, the signal setting

r2 = c (r2 = 0 respectively) allows to obtain this minimum cost. A constant function thus

su�ces in these cases. However, we also have shown that when TCint is the lowest cost a

�ow-independent signal setting is not su�cient. In fact, to reach TCint the signal setting

policy has to be such that when rint2 is set, the user equilibrium that comes about coincides

with the system equilibrium. The constraints a valid function has to satisfy thus depend

on the properties of the user equilibrium. We therefore �rst give a formal de�nition of the

user equilibrium.

De�nition 1. A feasible �ow pattern fUE is a user equilibrium if for any OD pair and all

9Remark that in Section 4.4 we have shown that the results obtained when both road pricing and tra�c
lights are available are the lowest attainable in the network. We will thus use the terms lowest cost and
TCint interchangeably.
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routes connecting this OD pair

ACr(f
UE) ≤ lim

ε→0
inf{ACs(fUE + α1r − α1s) : 0 < α < min(ε, fs)} (4.18)

with s any route connecting the same OD pair as route r. In this de�nition 1i denotes the

vector with a '1' in position i and a '0' elsewhere.

The tra�c authority wants the social equilibrium to coincide with the user equilibrium.

And to obtain the lowest cost, the tra�c authority will implement the socially optimal signal

setting (r∗2) when the �ow pattern is socially optimal. Taking all this into account, a valid

function has to satisfy the following constraints.

AC1(X
∗
1 , r
∗
2) ≤ lim

ε→0
inf{AC2(X

∗
2 + α1, r2) : 0 < α < min(ε,X∗1 )} (4.19)

AC2(X
∗
2 , r
∗
2) ≤ lim

ε→0
inf{AC1(X

∗
1 + α1, r2) : 0 < α < min(ε,X∗2 )} (4.20)

Here, (X∗1 , X
∗
2 ) is the socially optimal �ow, (r∗2) is the socially optimal signal setting

and r2 is the function we are looking for. When the signal setting is such that equations

(4.19) and (4.20) are satis�ed, the socially optimal �ow is a user equilibrium.

Figure 4.12: The average cost in the optimum is di�erent on both routes

Remark that AC1(X
∗
1 , r
∗
2) and AC2(X

∗
2 , r
∗
2) are generally not equal. Equations (4.19)

and (4.20) thus indicate that the function that maps the �ow distribution in a signal setting
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has to be discontinuous.

When the �ow is not in equilibrium, e.g. due to a shock, the drivers will change routes

to minimize their private cost. This process has to converge to the equilibrium �ow. As a

consequence, a valid function also has to satisfy the following constraints:

AC1(X1) < AC2 ∀X1 < X∗1 (4.21)

AC1(X1) > AC2 ∀X1 > X∗1 (4.22)

There exist many functions that can satisfy these constraints. However, given that

the objective of this paper is only to show that there exists a function that satis�es the

constraints, we limit ourselves to the elaboration of the simplest case with a �xed signal

setting rh2 for all X1 > X∗1 and a �xed signal setting rl2 for all X1 < X∗1 .

4.4.3 Characterization of the �xed signal settings and numerical example

As mentioned before, r2 has to equal r∗2, when the �ow pattern is socially optimal. This

thus determines the signal setting when X1 = X∗1 . Using the constraints in Section 4.4.2,

we will also characterize the �xed signal setting for X1 < X∗1 and for X1 > X∗1 .

f(X1) =


rl2 if X1 < X∗1
r∗2 if X1 = X∗1
rh2 if X1 > X∗1

We �rst focus on the area right of the social optimum. With �xed signal settings,

undersaturated tra�c conditions and linear congestion AC1 is linearly increasing in X1. So

any rh2 satisfying AC2(X
∗
2 , r
∗
2) ≤ AC1(X

∗
1 , r

h
2 ) will also satisfy equation (4.20). With AC1

linearly increasing inX1 and AC2 linearly decreasing inX2, any rh2 satisfyingAC1(X
∗
1 , r

h
2 ) >

AC2(X
∗
2 , r

h
2 ) will also satisfy equation (4.24) (see Figure 4.13). The constraints that thus

determine a feasible rh2 can be written as follows:

f1 + a1X
∗
1 +

(
c− rh2

)2
2c

≥ a2X∗2 + f2 +
(r∗2)

2

2c
(4.23)

f1 + a1X
∗
1 +

(
c− rh2

)2
2c

> a2X
∗
2 + f2 +

(
rh2
)2

2c
(4.24)

Equation (4.23) reduces further to:
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Figure 4.13: Average cost functions associated with rh2 that satisfy the constraints

rh2 ≤ c−

√√√√(f2 − f1 + (a2 − a1)X∗1 + a2N +
(r∗2)

2

2c

)
2c (4.25)

and equation (4.24) reduces to:

rh2 < f1 − f2 − (a2 − a1)X∗1 − a2N +
c

2
(4.26)

In Appendix L we show that if AC2(X
∗
2 , r
∗
2) > AC1(X

∗
1 , r
∗
2), then equation (4.25) im-

plies equation (4.26) and if AC2(X
∗
2 , r
∗
2) < AC1(X

∗
1 , r
∗
2), equation (4.26) implies equation

(4.25) for all X1 > X∗1 .

Next, we analyse the area left of the social optimum. Also here, there are two con-

straints that have to be satis�ed.

With �xed signal settings AC2 is linearly decreasing in X1 and equation (4.19) will

always be satis�ed when AC1(X
∗
1 , r
∗
2) ≤ AC2(X

∗
2 , r

l
2) is satis�ed. Equation (4.21) always

holds for any rl2 that satis�es AC1(X
∗
1 , r

l
2) < AC2(X

∗
2 , r

l
2) (see Figure 4.14). A feasible rl2
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Figure 4.14: Average cost functions associated with rl2 that satisfy the constraints

will thus satisfy the following constraints:

a2X
∗
2 + f2 +

(
rl2
)2

2c
≥ f1 + a1X

∗
1 +

(c− r∗2)
2

2c
(4.27)

a2X
∗
2 + f2 +

(
rl2
)2

2c
> f1 + a1X

∗
1 +

(
c− rl2

)2
2c

(4.28)

Equation (4.27) reduces to

rl2 ≥

√√√√(f1 − f2 + (a1 + a2)X∗1 − a2N +
(c− r∗2)

2

2c

)
2c (4.29)

and equation (4.28) reduces to

rl2 > f1 − f2 +
(r∗)2

2c
+ (a1 + a2)X

∗
1 − a2N +

c

2
(4.30)

If AC1(X
∗
1 , r
∗
2) > AC2(X

∗
2 , r
∗
2), then equation (4.29) implies equation (4.30) and if

AC2(X
∗
2 , r
∗
2) > AC1(X

∗
1 , r
∗
2), equation (4.30) implies equation (4.29).

Suppose there are 30,000 drivers per time unit (N) that want to go from A to B. The

minimal time and resource cost equals 22 euro for Route 1 (f1), and 3 euro for Route 2 (f2).
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The parameters a1 and a2 are 0.003 and 0.0005 euro time units per driver respectively. The

total duration of red and green time (c) equals 50 time units.

Table 4.2: When road pricing is applied, the optimal result is obtained when both routes are used
in the equilibrium.

(r2 = 0; τ = 0) (r2 = 50; τ = 0) (rint2 = 7.5; τ int = 0.75)

Total cost 1, 110, 000 2, 790, 000 1, 056, 000

For these parameter values, the total cost when the tra�c authority implements the

in Section 4.4.1 calculated optimal alternating signal setting and toll is lower than the total

cost when the tra�c authority implements either r2 = 0 or r2 = c (see Table 4.2). The

tra�c authority will thus implement a signal setting that varies with the �ow distribution

to obtain this cost without having to implement road pricing. We will use the framework

developed in Section 4.4.2 to deduce the �ow-dependent signal setting f(X1) for this spe-

ci�c example.

The optimal red time for Route 2 equals 7.5 time units. The optimal �ow on Route

1 is 4,500 vehicles per time unit, and thus 25,500 vehicles per time unit on Route 2. For

this optimal combination of red time and �ow distribution, AC2(25, 500; 7.5) is larger than

AC1(4, 500; 7.5). Consequently, the constraint that determines rh2 for all X1 > X∗1 is given

by equation (4.25). For the given parameter values, this equation reduces to:

0 < rh2 ≤ 1.72 (4.31)

The constraint that determines rl2 for all X1 < X∗1 is given by equation (4.30). Here,

this equation reduces to:

c > rl2 > 6.75 (4.32)

The signal setting f(X1) can then be determined as follows:

f(X1) =


10 if X1 < 4, 500

7.5 if X1 = 4, 500

1 if X1 > 4, 500

Remark that even though for all the �ow patterns left of the equilibrium (X1 < X∗1 )

there are not enough Route 1 drivers compared to the amount of Route 1 drivers in the
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equilibrium, equation (4.32) does not specify that the red time for Route 1 has to decrease

for all X1 < X∗1 (compared to the red time for Route 1 in the equilibrium). A deviation

to Route 2 from the equilibrium is thus not necessarily punished by an increase in the

red time for Route 2. This is because the other cost components are such that even for

7.5 ≥ rl2 > 6.75 equation (4.19) and equation (4.21) are still satis�ed.

Table 4.3: Contrary to the optimal �xed signal setting, the �ow dependent signal setting allows
to obtain the same result as road pricing.

r2 =
a2c

a1+a2
f(X1) (rint2 = 7.5; τ int = 0.75)

Total cost 1, 056, 120 1, 056, 000 1, 056, 000

The total costs in Table 4.3 show that f(X1) indeed allows to obtain the same result

as road pricing. The optimal �ow-independent alternating signal setting, by contrast, has

a higher total cost.

Figure 4.15: Shape of the average cost functions for a feasible �ow-dependent signal setting

With f(X1) the �ow dependent signal setting, the average cost curve of Route 2 is

given by:
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AC2(X2) =


23 + 0.0005X2 if X1 < 4, 500

35.31 if X1 = 4, 500

22.01 + 0.0005X2 if X1 > 4, 500

The average cost curve of Route 1 equals:

AC1(X1) =


19 + 0.003X1 if X1 < 4, 500

34.56 if X1 = 4, 500

27.01 + 0.003X1 if X1 > 4, 500

Remark that for all X1 > 4, 500 AC1 is always greater than 35.31 and AC1 is always

greater than AC2. Similarly, for all X1 < 4, 500, AC2 is always greater than 34.56 and AC2

is always greater than AC1.

4.5 Practical considerations

In the previous section, we have shown that a signal setting determined by the inverse

Stackelberg approach allows to obtain the same results as when the tra�c authority has

both tra�c lights and a toll to work with. In the user equilibrium that is brought about

when the inverse Stackelberg approach is used, the average cost on Route 1 and Route 2 is

generally not equal. This might raise concerns regarding the stability of this user equilib-

rium. To determine the e�ect on the stability of the equilibrium, we distinguish between

the situation in which drivers learn the average cost by experience and the situation in

which the average cost is common knowledge.

If the average cost is known only be experience, then a driver who uses the highest

cost route in equilibrium, might experience a lower cost if he deviates from the equilibrium

distribution at the same moment as another driver who takes the other route in the equi-

librium. This could then result in swapping behaviour. At a certain point, however, the

drivers who take the route with the lowest cost in equilibrium will not deviate anymore.

Consequently, the drivers on the route which has the highest cost in equilibrium will always

experience a higher cost when deviating and will also stop deviating.

Currently many cars are equipped with route guidance and information systems. These

devices can provide information or guide drivers to certain routes. If the average cost

functions are known to all drivers, the tra�c authority could obtain the socially optimal

distribution of vehicles over the two routes by each day randomly assigning X∗1 drivers
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to Route 1 and X∗2 drivers to Route 2. As for every individual driver, the resulting time

averaged cost is lower than the time averaged cost when the signal setting is determined by

a Stackelberg approach (which is the second best alternative in this case), a rational driver

has no incentive to deviate from the assigned route. The assumption of rationality could,

however, be very strong in this case. When this assumption is relaxed, the optimal policy

for the authority would be to randomly assign X∗1 drivers to Route 1 and X∗2 drivers to

Route 2 and �ne each driver who deviates from his assigned route. The optimal �ne would

then equal the incurred cost of all the other drivers due to the deviation of this driver,

which would then be redistributed among the other drivers.

Another line of approach can be found in Jahn et al. (2005). This paper adopts a

system optimum approach but honors the individual needs by imposing additional con-

traints to ensure the drivers are assigned to acceptable paths only. Acceptable paths are

determined by their level of fairness with respect to the user cost in the user equilibrium

and several notions of unfairness are introduced. Jahn et al. (2005) show that their model

leads to a signi�cantly better utilization of a tra�c network.

4.6 Conclusion

In this paper, we have compared the performance of tra�c lights and tolls for two di�er-

ent networks. For the network with two parallel routes, we have modeled both the signal

setting procedure and the toll setting procedure as a Stackelberg game. We �nd that tolls

generally perform better than tra�c lights.

For the network in which tra�c lights regulate the intersection of two routes connect-

ing one OD pair, we have used a Stackelberg approach as well as an inverse Stackelberg

approach. We have derived the conditions a signal setting has to satisfy to be able to obtain

the same results as when both tra�c lights and a toll can be used to optimize the network.

With a numerical example, this paper showed that it is possible to �nd a �ow-dependent

signal setting that can render road pricing redundant.

This study is designated as an initial step towards �nding �ow-dependent signal set-

tings that can render road pricing redundant. A possible extension to this paper would

then study di�erent functional forms that allow �ow-dependent signal setting to reach the

same result as road pricing.
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E�cient transportation policies
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Chapter 5

E�cient transportation policies for

sustainable cities

5.1 Introduction

In the context of sustainability, many European cities want to increase the liveability of

their city center. Di�erent cities have explored alternative ways to curb tra�c. London

charges a congestion fee for commuters who drive into the city center, Copenhagen is cre-

ating bicycle superhighways to connect the suburbs to the city, Hamburg is working on a

�Green network� that would eliminate the need for cars within the city, . . .What is now the

most e�cient transport policy to reduce congestion externalities, accident risk and noise

and air pollution? It is to this question that this paper formulates an answer.

To analyze the e�ects of alternative transport policies, this paper develops a model in

a multi-user multi-period multimodal context, keeping locations �xed. This model �ts in

the tradition of MOLINO-models (De Palma et al. (2010), Kilani et al. (2014)).

The supply part of the model is de�ned by several �xed origin destination pairs that

are connected by combinations of links. The generalized cost of a link contains several com-

ponents: a monetary cost, taxes levied by the government, and a time cost which can be

a function of the number of users. In urban transportation, many trips use more than one

mode of transport. The model therefore allows for combined trips as well as unimodal trips.
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5.2. Literature

Consumers choose between alternative ways of transportation on the basis of their

subjective preferences and the perceived generalized cost of the di�erent transport alter-

natives. For each user category and each OD pair we compose an aggregate nested CES

utility function with three levels: choice between transport and consumption of a com-

posite commodity (�rst nest), choice between peak and o�-peak period (second nest), and

choice between the transport alternatives (third nest). As in many cities a large share of all

transport externalities comes from incoming tra�c (such as commuting tra�c) and from

pure through tra�c (i.e., tra�c that has neither origin nor destination within the city), the

model distinguishes between di�erent types of transport users. Furthermore, multiple user

classes are considered, as fares can di�er according to the purpose of the trip.

The model can be used in two ways. First, it can be used to measure the e�ects of

di�erent types of transport policies and trade o� their total welfare e�ects. Second, the

model can be used to maximize social welfare by adjusting transit design variables, network

pricing and changing network design.

The model is illustrated to the city of Leuven, Belgium. Three transport policies to

reduce the tra�c externalities in the city center are considered: introducing road pricing in

the city center, raising parking fees in the center of Leuven and expanding public transport.

The remainder of the paper is organized as follows. Section 2 gives an overview of

the relevant literature. Section 3 develops the theoretical model. Section 4 discusses the

properties of the numerical model and the characteristics of the reference equilibrium in

Leuven. Section 5 presents the results and Section 6 o�ers a conclusion.

5.2 Literature

The available urban transport studies di�er in terms of the amount of spatial, temporal

and modal detail in the representation of urban transport, as well as in the transport cost

components that are taken into account.

The most common approach in the urban transportation literature is to deal with each

mode of transport separately. Mohring (1972) developed a model that considers optimal

frequency and spacing of stops. He found the optimal frequency to be proportional to the

square root of demand. Jansson (1980) extended the square root principle to a model in
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which service frequency is optimized simultaneously with bus size. Ahn (2009) extended

Mohring's work to the case where buses share the congestion interaction road with other

automobiles. Tirachini (2014) reconsidered the problem of choosing the number of bus

stops along urban routes.

Going beyond systems with a single mode of transportation, some papers concentrate on

the bimodal problem. Basso and Jara-Díaz (2012) focus on the analytical properties of op-

timal prices and design of transport services in a bimodal context. In a two-mode system,

De Borger and Wouters (1998) study the joint optimisation of transport prices and supply

decisions of urban transport services. This paper extends this literature by focusing on a

multimodal setting.

From spatial point of view, many papers focus on a single corridor setting. Tirachini

and Hensher (2011), for instance, study the impact of fare payment technology on a bus

corridor. Tirachini et al. (2014) develops a model that allows to analyse the interplay be-

tween congestion and externalities in the design of public transport services. The model is

applied to a single transport corridor in Sydney, Australia. Unlike previous literature, this

paper takes a network approach.

Another paper that takes a network approach is Tirachini et al. (2010). Using data

from Australian cities, this paper compares light rail, heavy rail, and BRT on a radial tran-

sit network. The analysis, however, only focuses on costs, which does not allow to make

welfare comparisons between di�erent scenarios, as the consumer utility is not taken into

account. Unlike this paper, we also account for changes in consumer surplus.

Among the models that include environmental, accident or noise externalities in their

analysis we can cite De Borger et al. (1996), Proost and Van Dender (2008) and Parry and

Small (2009).

5.3 The model

The case study results presented in Section 5 are based on a multimodal model of the

transport system. This section develops this model theoretically by �rst focusing on the

demand side, subsequently unfolding the supply side, and �nally constructing the di�erent

components of the welfare function.
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5.3.1 Demand

The demand for travel is subdivided into M classes of representative users with di�erent

socio-economic characteristics. These classes di�er with respect to their travel preferences,

incomes, and costs of travel. For every user class and every OD pair, we calibrate a nested

CES utility function with four levels as illustrated in Figure 5.1.

Utility

Transport

Peak

r1 r10 rRw

O�-Peak

r1 r10 rRw

Other consumption

· · ·· · · · · ·· · ·

Level 3

Level 2

Level 1

Level 0

Figure 5.1: CES implementation of the utility function

The travelers can decide on the number of trips (�rst nest), whether to travel in the

peak or o�-peak period (second nest) and which combination of links to use to go from their

origin to their destination (third nest). The elasticity of substitution for every branching

of the choice tree will determine the ease of substitution between di�erent transport alter-

natives. When travelers consider di�erent routes to be perfect substitutes, the Wardrop

equilibrium (Wardrop (1952)) prevails. In this paper we focus on the more realistic stochas-

tic user equilibrium (Daganzo and She� (1977)), which departs from the assumption that

travelers try to minimize their perceived travel cost.

The main advantage of the nested CES formulation is its ease of calibration. If the

elasticities of substitution at each branch plus the total quantities and prices at the lowest

level of the utility tree are available, the shareparameters ψi,e can be calculated to exactly

reproduce this exogenous baseline. In this way, the CES functions are calibrated.

When the preferences and behaviour of the travelers are described by a nested CES

utility function, it can be shown that the demand functions take the following form (Keller

(1976)):
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q0,i =
I

P3

3∏
e=1

ψe−1,i(
Pe,i
Pe−1,i

)σe,i ∀i (5.1)

where ψ is a share parameter, σ is the elasticity of substitution, P is the general-

ized price, I equals total income, index i stands for the di�erent commodities that a�ect

consumer utility and e denotes the level. These demand functions are the solution of a

constrained utility maximization problem in which all the utility components are linear

homogeneous functions of the associated components at the next lower level.

The demand for transport services q0,i corresponds to the number of trips on route

r from OD pair w from user class m in period p. We will further denote this demand by

Y m,p
r,w . From equation (5.1) it is clear that demand is a function of the generalized price. In

the next section, we will discuss the generalized price in detail.

5.3.2 Supply

A directed transportation network G(N;L) is de�ned by a set N of nodes and a set L of

directed links (denoted l=1,. . . ,L). Let W be the set of all OD pairs in the network (denoted

w=1, . . . , W), and Rw be the set of routes between OD pair w ∈W. We furthermore de�ne

a set of dummy indicators δlr to denote whether link l is part of route r.

This paper de�nes a link by the two nodes it connects and by the mode that is used. The

set L thus includes the set of automobile links LU , the set of transit links LZ , the set of

bike links LB and the set of pedestrian links LV . Each link in the multimodal network has

an associated travel cost which consists of a monetary cost and a time cost. These two cost

components are discussed in detail in the next subsections.

5.3.2.1 Monetary cost

For travelers on a public transport link, the monetary cost equals the fare the user pays. We

assume this fare to vary between the peak and the o�-peak period, and between di�erent

public transport modes. Furthermore, we assume the fare to be charged proportionally to

the travel distance.

The monetary cost for a car link is the sum of the resource cost and, if applicable, the

congestion toll and the parking cost. The resource cost includes fuel costs, maintenance

and operational costs, and investment costs. We assume that these costs are shared by the

occupants of the car.
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For a bicycle link the monetary cost equals the resource cost, which includes the pur-

chasing price of the bicycle and the maintenance cost. For a trip on foot, there is no

monetary cost.

De�ning a dummy indicator λli that equals 1 if link l is associated with mode i, the

monetary cost for link l in period p is given by

mcpl =

(
Z∑
z

hpz λlz +
τpl + rcu

n
λlu + rcb λlb

)
al, (5.2)

where hpz is the fare in period p for public transport mode z [AC/km], rcu is the resource

cost for a car [AC/km], τpl is the congestion toll in period p for a car on link l [AC/km], n is

the car occupancy, rcb is the resource cost for a bicycle [AC/km] and al is the length of link

l [km].

5.3.2.2 Time cost

The generalized travel time cost is a weighted sum of in-vehicle time, waiting time and

walking time. First, consider in-vehicle time. When formulating the in-vehicle time, we

follow Basso and Silva (2014) and distinguish between the case in which infrastructure is

shared between di�erent modes and the case in which infrastructure is separate. The time

it takes to travel one km on link l in period p when infrastructure is separated is given by:

ivtpl = freel

(
1 + α

(
cepl
Cl

)β)
(5.3)

With parameter values α = 0.15 and β = 4, this function is known as the BPR

(Bureau of Public Roads) function. In the above equation freel is the free-�ow travel

time on link l [h/km], Cl is the capacity of the infrastructure measured in equivalent car

trips per hour, and cepl represents the �ow on link l (in car equivalents per hour) in period p.

Depending on the mode that operates on a link, the formulation of the �ow di�ers.

The car �ow is given by:

cepl =

∑
w∈W

∑
r∈Rw

∑
m∈M δlr Y

m,p
r,w

n Hp
∀l ∈ LU (5.4)

where Y m,p
r,w is the demand on route r from OD pair w and user class m in period p,

Hp is the period duration [h], n is the car occupancy and δlr is a dummy indicator that
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equals 1 if route r uses link l and 0 otherwise.

For public transit links the �ow is given by:

cepl = fpl µ ∀l ∈ LZ (5.5)

where fpl [veh/h] is the frequency on link l in period p, and µ is an equivalence factor.

For bike and pedestrian links, we assume the car equivalents to be zero. The �ow on

link l in period p can thus be modelled as follows:

cepl =

∑
w∈W

∑
r∈Rw

∑
m∈M δlr Y

m,p
r,w

n Hp
λlu + fpl µ λlz (5.6)

When tra�c conditions are mixed, we have to consider congestion across modes. The

in-vehicle time for link l in period p is then represented as follows:

ivtpl = freel

1 + α

(
cepl +

∑L
ρ6=l ce

p
ρ γlρ

Cl

)β (5.7)

In this equation γlρ is a dummy indicator that equals one if link l shares its infras-

tructure with link ρ.

Next, consider waiting time. For travel by car, foot or bicycle there is no need to wait,

so only trips by public transit have a waiting cost component. When modeling the waiting

time for public transit links, we follow Tirachini et al. (2010) in distinguishing between

services with a low frequency and services with a high frequency.

For high frequency services1 we can assume a uniform arrival distribution of passengers

at the station. Consequently, the waiting time can be modeled as a fraction (θi) of the

headway. For low frequency services, the waiting time consists of two components. First,

passengers incur schedule delay, as they have to travel either earlier or later than they

would like to. The schedule delay cost increases proportionally with the headway, so it can

be modeled as a fraction of the headway. Besides schedule delay cost, travelers also incur a

safety waiting cost. Indeed, travelers generally calculate in some additional safety time at

the station. The average waiting time can then be modeled as follows:

waitpl =

(
εl

(
θ1
fpl

)
+ (1− εl)

(
s+ κ

θ2
fpl

))
lz

(5.8)

1For the applications we will follow Tirachini et al. (2010) and use 12 minutes as threshold headway.
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where fpl is the frequency of the transit mode on link l in period p, κ is a factor in-

dicating that waiting time at the station outweighs waiting time at home, εl is a dummy

indicator that equals 1 if the frequency is high and 0 otherwise and s is the safety time.

Finally, consider access time. It is clear that only public transit link costs have an

access time component. We assume this to be a �xed component dependent on the link,

accessl.

When we multiply the di�erent time components with their respective value of time,

we get a monetary cost. The generalized cost for link l in period p is thus given by:

gtcpl = V OTivt ivt
p
l al + V OTwait wait

p
l + V OTaccess accessl (5.9)

where V OTivt is the value of in-vehicle time [AC/h], ivtpi is the in-vehicle time in period

p for link l [h], V OTwait is the value of waiting time [AC/h], waitpl stands for the waiting time

on link l in period p [h], V OTaccess is the value of access time [AC/h] and accessl represents

the time needed to access the transport mode [h].

The travel time on route r ∈ Rw in period p between OD pair w ∈ W is given by the

sum of the generalized costs gc of the links that are used:

cw,pr =
∑
l∈Ltl

δwlr gc
p
l ∀r ∈ Rw, ∀w ∈W (5.10)

where δwlr = 1 if route r between OD pair w uses link l, and 0 otherwise.

5.3.3 Welfare function

The objective function includes consumer surplus, external costs, government revenue, tran-

sit agency net revenues, operational transit costs, and implementation costs of policies.

Total consumer surplus is given by the sum of the consumer surplus of all types of

users and all OD pairs: ∑
w∈W

∑
m∈M

Um,w (5.11)

We consider the external costs of congestion, accidents, air pollution and noise. The

external congestion costs enter the utility function via the generalized consumer prices. The
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external costs of accidents, air pollution and noise are considered separately. We assume

these costs to be constant per vehicle kilometer. As a result the total external cost per day

is given by:

L∑
l

P∑
p

(ecl ce
p
l )al (5.12)

In the above equation, ecl represents the external cost [AC/km], cepl is the �ow, in car

equivalents per hour, on link l in period p and al is the length of link l.

The government revenues per day consist of the sum of the daily parking and toll

revenues.

∑
l∈LUtoll

P∑
p

τpl ce
p
l +

∑
l∈LUpark

P∑
p

parl ce
p
l (5.13)

where U toll contains the car links that are part of a tolling zone, Upark is the set

of car links that have a parking component and parl stands for the parking fee on link

l [AC/vehicle]. The changes in toll revenue receive a di�erent weight than the changes in

consumer and producer surplus to account for the marginal cost of public funds.

The transit agency collects the daily fare revenues:

Z∑
z

P∑
p

W∑
w

M∑
m

∑
r∈Rw

(hpz λlz) al δ
w
lr Y

n,p
r,w ∀l ∈ LZ (5.14)

In equation (5.14) hpz is the fare of public transit mode z in period p, λlz is a dummy

indicator that equals 1 if link l is associated with mode z, Y m,p
r,w is the demand on route r

from OD pair w and user class m in period p, δwlr = 1 if route r between OD pair w uses

link l and al is the length of link l.

The operating costs of the transportation system encompass vehicle maintenance costs

(fuel, tires, vehicle servicing), vehicle operation costs (operating sta� wages, administration,

ticketing and fare collection, system security) and non-vehicle maintenance costs (roadway,

track, signals, and stations). In equation (5.15) below, the �rst term captures the daily

distance-related costs, the second term represents the daily time-related costs and the third

term route-related costs.
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∑
z

∑
p

∑
l

lenghtlH
p fpl vmcz λlz+

∑
l

∑
p

lenghtl
Hp fpl
speedpl

vocl+
∑
l

lenghtl nvmcl (5.15)

The daily vehicle-kilometers are the sum of the vehicles-kilometers in both periods:∑
l

∑
pH

p fpl lengthl, where length is the length of the route on link l. vmcz is the vehicle

maintenance cost [AC/vehkm] for public transit mode z. vocl is the vehicle operation cost

[AC/vehh] which is multiplied by the total daily vehicle hours:
∑

l

∑
p lengthl

Hp fp

speedpl
. Finally,

nvmcl is the non-vehicle maintenance cost per route kilometer.

We model the net investment cost of public transit vehicle capacity as a function of

the �eet (FL) in the following way:

(1 + soft) (implz lengthl λlz + FL price)−RV (5.16)

In this equation, soft stands for the fraction of soft costs, implz is the implementation

cost for public transit mode z [AC/km], lengthl is the length of the track [km], price represents

the purchasing price per vehicle and RV is the residual value of the investment at time T,

where T is determined by the technical life of the vehicle. The required �eet is determined

by the following equation:

FL =
L∑
l

disl
0, 85

max
p

fpl
speedpl

(5.17)

where disl is the total distance that a vehicle covers before starting a new cycle and

speedpl is the speed on link l in period p. To account for a �eet reserve capacity of 15%,

this term is divided by 0.85.

To allow for comparison between di�erent scenario's, the net present value is calcu-

lated.

5.4 Case study

The geographical area covered by the case study is the zone encompassing the conurbation

of Leuven. Figure 5.2 represents this area schematically by distinguishing four regions: the

center of Leuven (C), the periphery (PER), the suburban employment center (SEC), and

the surrouding region (O). Like many European cities, Leuven has a radial structure. The

90



CHAPTER 5. EFFICIENT TRANSPORTATION POLICIES

model assumes the parts in between the radials in the surrounding region to be symmetrical

in terms of demand, capacity, costs, etc.

Figure 5.2: Schematical representation of the conurbation of Leuven

In the morning, travelers from the outside region travel to the center or the suburban

employment center. Travelers living in the center either go to a destination in the center or

travel to the suburban employment center. And travelers residing in the periphery either

go to the center or the suburban employment center. In Table 5.1 the �ow between the

di�erent OD pairs in the reference year 2009 is presented.

Table 5.1: Number of passengers per hour in the reference year 2009

O→ C C→ C PER→ C C→ SEC O→ SEC

Peak 11,002 32,660 14,515 9,081 4,421

O�-peak 6,348 21,154 8,707 5,400 2,288

Users can choose to travel by car, train, bus, bike or they can walk to their destination.

In Table 5.2 the di�erent modes that can be used to go from an origin to a destination are

listed. Both unimodal and multi-modal trips are considered. Car and bus can be used for

all trips. Only trips in the city center can be done on foot. The train is only used for
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trips between the city and the outside region. The bike can be used for all trips except for

the trips between the city and the outside region. In Table 5.3 the trip purpose shares per

mode in the city center are given for the reference year 2009.

Table 5.2: Model combinations considered

O→ C C→ C PER→ C C→ SEC O→ SEC

car x x x x x

walk x

bike x x x

bus x x x x x

train+walk x

train+bus x x

train+bike x x

bus+bike x x

bus+walk x

Table 5.3: Mode choice shares and trip purpose shares in the city center for the reference year
2009

Car Bus Bike Pedestrian Total
School 54% 85% 60% 66% 61%

Work 40% 14% 39% 20% 32%

Other 6% 1% 1% 14% 7%

Figure 5.3 shows the multimodal network. This hypernetwork consists of �ve sub-

networks: the auto network, the train network, the bike network, the bus network and

the pedestrian network. The hypernetworks or supernetworks combine networks of various

modes (car, bike, train, etc) and include special links to interconnect them (represented by

the dashed lines in Figure 5.3). To these links transfer costs are attributed. A path trough

the network including such a transfer link then represents a multimodal trip. Apart from

transfer links, transit links and private transport links, we also include embarking links and

alighting links. These links capture the relevant waiting and access time.
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Figure 5.3: Network representation of the conurbation of Leuven

The model is implemented by adapting the MOLINO-model and calibrated for the

reference year 2009 using observed prices and quantities for all transport modes together

with information on the ease of substitution between transport and other goods as well as

between the di�erent means of transport.

Observed quantities per OD pair and per trip purpose are obtained from Vlaams

Verkeerscentrum (See Appendix M). Data per mode share is calculated using mode share

data in Janssens et al. (2012). Observed prices consist of a monetary and a time cost. Table

5.4 lists the resource cost for the di�erent modes.

Table 5.4: Resource costs

resource cost
car 0.32 euro/vehiclekm
bike 0.23 euro/km
train 0.06 euro/personkm
bus 26.51 euro/vehiclekm

Source: Delhaye et al. (2010)
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To calculate the time costs in the reference case we have used observed speed data.

Table 5.5 shows the travel time per mode in the city center for commuters in the reference

case.

Table 5.5: Travel time in the center (min)

car pedestrian bus bike
work peak 3.00 16.67 4.20 3.33
work o�-peak 2.10 16.67 3.30 3.33

Remark that, although cars and buses are assumed to use the same infrastructure, the

travel time when driving is lower than when taking the bus. This is because we have taken

into account the delay at bus stops.

The calibrate the nested CES functions we need two more inputs; for each level we

need to specify the elasticity of substitution (Table 5.6) and we need to determine the share

of income per user class (Table 5.7).

Table 5.6: The elasticities of substitution

work other school
transport/other 1.4 1.4 1.4
peak/o�-peak 1.2 2 1.5
paths 2 2 2

Source: Kilani et al. (2014)

Table 5.7: Percentage of income spent on transportation

work school other
5% 10% 7%

The capacity of each link is chosen to �t the observed speeed-�ow data. As such, truck

tra�c is also incorporated, though as a constant.

For the city of Leuven, 3 scenarios to reduce externalities in the city center are con-

sidered: introducing road pricing, expanding public transport and raising parking fees. In

the next section, the e�ects of these three scenarios is assessed.
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5.5 The e�ects of alternative policies

This section presents the impact of three transport policies on tra�c volumes, external

costs, welfare, etc. We �rst assess the e�ects of the introduction of road pricing. Second,

we describe the consequences of an increase in parking fees in the city center. Third, we

examine the impact of the construction of a tram lane. And �nally, we compare the welfare

e�ects of the di�erent policies from the viewpoint of the city authority on the one hand,

and from societal perspective, on the other hand.

5.5.1 Introducing zonal pricing

In the �rst scenario, we analyze the e�ect of introducing a zonal congestion charge in the

city center for car tra�c. The toll comprises the full external cost and amounts to 0.28 euro

in the peak period and 0.06 euro in the o� peak period. The toll revenues are collected by

the city authority.

Introducing road pricing reduces �ows by approximately 10% in the city center, which

leads to travel speed increases of more than 20% (see Table 5.8). The resulting decrease

in time cost, can however, not compensate for the price increase due to the toll levy. The

increase in generalized price will thus lower consumer surplus which induces travelers to

divert from the city center roads to the ringroad, or to divert from car use to public transit

or soft means of transportation (biking, walking). The increase in patronage for public

transit increases the frequency and reduces the waiting time, which, on its turn, attracts

new users.2 The introduction of a road toll on cars also reduces the total amount of travelers

by 3%. As drivers either refrain from travelling, or switch to lower externality modes, the

total noise, accidents and pollution cost decreases by approximately 10%.

5.5.2 Increasing the cost of parking

In the second scenario, the parking fee is increased by the weighted average of the exter-

nality in peak and o�-peak, where the di�erent weights are given by the relative elasticity.

In the reference scenario the parking cost was 2.1 euro per hour.3 After the increase the

parking fee amounts to 2.24 euro per hour. We assume commuters to have parking provided

by their employer. As such they are not a�ected by the increase in parking fees.

2We do not take into account congestion discomfort costs.
3We will assume that drivers park on average for three hours.
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Due to the increase in parking fees, the number of cars in the city center decreases with

approximately 3%. This results in a decrease of accident, pollution and noise externalities

by more than 3% as drivers change from a mode with a large externality to a mode with a

small (or positive) externality (public transit, soft modes).

The e�ects are similar to the road pricing case, though smaller in magnitude. This

can be attributed to the fact that a large group of travelers, i.e. commuters, is not a�ected

by the increase in parking fees.

5.5.3 Expanding public transit

As there was mention of a tram in Leuven (Rijnders (2014)), we assess the impact of the

construction of a separated tram lane in the city center and between the city center and the

suburban employment center. The total investment cost amounts to 154.625.250 euro and

is based on data from Van Oppens (2013) and RebelGroup Advisory Belgium NV (2013).

When a tram line runs between the city center and the SEC, buses are banned out of the

city center and also the buses between the city center and the SEC are dispensed with. The

capacity that has become available on the car links, as a result of the absence of buses on

the road and the construction of a separated tram lane, is ocupied by additional cars. As

a result, the speed in the city remains approximately at the same level as does the travel

cost for car travelers.

Table 5.8: E�ects of the di�erent scenarios in the city center

Reference Full external Parking Tram
equilibrium cost pricing charges

Change w.r.t. the reference (%)

NPV (mio euro)
Total delay cost 0.577 -44 -11 -33
Total noise, accidents
and pollution cost 23.06 -10.34 -3.11 -2.35
Tra�c �ow (CE/day) 221,266 -10.66 -3.21 -0.008
Speed (km/h)
Peak 19.99 +20.06 +3.05 +0.15
O�-peak 28.5 +0.7 +0.7 +0.14
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5.5.4 Welfare e�ects

The welfare functions of the city authority divert from the welfare function of society. The

city authority takes into account the consumer surplus of the local citizens, the accidents,

pollution and noise in the city and the revenues for the city. The welfare function for soci-

ety, on the other hand, includes consumer surplus and accidents, pollution and noise costs

for all those involved, also in the outside region. It furthermore includes revenues for all

authorities, local and central, and the �nancial result of the transit agency.

Table 5.9: Welfare e�ects of the di�erent scenarios

Reference Full external Parking Tram
equilibrium cost pricing charges

NPV (mio euro) Change w.r.t. the reference (%)

Welfare city 42,425.97 +0.49 -0.06 +0.001
CS city 40,379.98 -0.16 -0.04 +0.002
Parking city 2,082.12 +0.58 -0.45 -0.03
Externalities city 44.13 -9.83 -2.68 1.37
Welfare society 166,777.36 +0.04 -0.08 -0.03
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Table 5.9 summarizes the welfare e�ects of the di�erent scenarios and compares them

with the reference situation. We �nd that the �rst choice for the city authority would be

to implement road pricing in the city center as this increases local welfare by 0.49%. The

result for society is also positive (+0.04%), though smaller. This can be explained by the

fact that the bene�ts of tolling are now balanced by a larger amount of people who see their

consumer surplus decrease.

Suppose that the city authority is impeded from introducing road pricing by political

reasons. In this case the city authority will opt for the construction of a tram lane, as

this will increase city welfare by 0.001%. The construction of a tram line is, however,

welfare decreasing from societal point of view. This bifurcation does not surprise as the

city authority does not take into account the investment cost of the project.

Even though the price of driving through the city increases on average by the same

amount when parking charges are increased as when a toll is levied, total welfare decreases

in this case (as opposed to the total welfare increase in the toll case). This loss in welfare

can be attributed to di�erent factors. First, commuters are not a�ected by this increase

in parking fees, as employers are assumed to provide parking for their employees. Second,

travelers who drive through the city without parking are not a�ected either. Third, we

have assumed the parking fees to be constant throughout the day. E�ciency is lost because

parking fees are not di�erentiated by time. Further simulations have shown that when

parking fees can be di�erentiated between peak and o�-peak periods, the welfare e�ect of

an increase in parking fees becomes positive.

5.6 Conclusion

In this paper, we have compared the e�ects and welfare changes of alternative urban trans-

port policies. We have built a stochastic, multimodal, multi-class, multi-period model,

which allows for endogenous congestion and total demand elasticity. Pure as well as mixed

modes of transport are considered, and di�erent government perspectives are compared.

For the conurbation of Leuven, we �nd that Leuven would pro�t from a introduction of

road pricing in the city center. Another �nding is that the expansion of public transit in

Leuven implies a welfare increase from the point of view of the city authority, while it is

welfare decreasing from the perspective of society. As a result we conclude that caution is

recommended for when transit agencies are state-owned as city authorities can lobby for

projects which are welfare decreasing from societal point of view.
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Chapter 6

Epilogue

How can transportation be organized as e�ciently as possible? From di�erent angles,

transport economists contribute to answering this question by studying various aspects of

e�ciency in the context of transportation. This PhD-thesis within the �eld of transporta-

tion economics also does its part by focusing on the e�cient use of tra�c lights and on the

implementation of e�cient transportation policies.

In Chapter 2 of this thesis, we studied the e�ects of a priority rule, tra�c lights, and a

toll on an intersection of two routes connecting one O-D pair. We derived the intersection

regulation that minimizes total travel cost, taking into account Wardrop's principles and

the delay at the intersection.

We have four major results. First, if the intersection is regulated by a priority rule, the

optimal policy is generally to block one of the two routes. Second, if the intersection is

regulated by tra�c lights, and only one route is congestible, the optimal policy is again to

block one route. However, the addition of a toll allows for an optimal alternating signal

setting. Third, if the intersection is regulated by tra�c lights, the optimal alternating sig-

nal setting is always independent of the elasticity of demand. Finally, if only one route is

subject to congestion, the superiority of a regulation by tra�c lights over a priority rule

becomes more likely the lower the reaction time of the drivers, and the higher the cycle

time.

These results are important for three reasons. First, the counter-intuitive nature of these

results con�rms the importance of a good understanding of the causal mechanisms that

govern the optimal regulation. Second, these insights allow to solve larger networks more

e�ciently as well as more e�ectively. More e�cient, because the increased insight in the

location of the optimal solution allows for a reduction in computation time. More e�ective,
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because local optima can be detected more easily. Finally, the obtained results can be ap-

plied in practice. Our results can be useful in di�erent contexts. We primarly think about

two parallel roads (e.g. a road through an urban area and a parallel road bypassing the

city) or two parallel modes (e.g. a train and a road connecting two cities).

In Chapter 3 of this thesis, we compared two di�erent regulations for an intersection of two

routes connecting one O-D pair where only one route is subject to congestion. In particular,

we contrasted tra�c-responsive control with anticipatory control.

We have shown that (1) tra�c responsive signal control can only perform just as well or

worse than anticipatory signal control and that (2) the expected performance of tra�c re-

sponsive signal control is worse than the performance of anticipatory signal control. The

game theoretic perspective taken in this paper furthermore suggests that these results can

also be extended to larger instances.

These results have important implications for policy. The counter-intuitiveness of these

results indicates that great attention needs to be given to the accuracy of the appraisal of

signal control investments. Since both the costs of road transportation infrastructure and

user costs are large, policy should be based on careful analysis rather than on intuition

alone. The allocation of public money to the intuitively superior tra�c-responsive signal

control, may actually make society worse o� as the money could be more e�ciently spent on

anticipatory signal control. This paper furthermore intends to raise awareness that policies

based on intuition alone can have unintended consequences in the hope that these can be

recognized and avoided.

In Chapter 4 of this thesis, we studied the extent to which tra�c lights can provide an

alternative to road pricing in a simple network with two routes connecting one O-D pair.

We have compared the performance of tra�c lights and tolls for two di�erent networks. For

the network with two parallel routes, we have modeled both the signal setting procedure

and the toll setting procedure as a Stackelberg game. We �nd that tolls generally perform

better than tra�c lights.

For the network in which tra�c lights regulate the intersection of two routes connecting one

OD pair, we have used a Stackelberg approach as well as an inverse Stackelberg approach.

We have derived the conditions a signal setting has to satisfy to be able to obtain the same

results as when both tra�c lights and a toll can be used to optimize the network. With

a numerical example, this paper showed that it is possible to �nd a �ow-dependent signal

setting that can render road pricing redundant.

In Chapter 5 of this thesis, we have compared the e�ects and welfare changes of alternative

urban transport policies. We have built a stochastic, multimodal, multi-class, multi-period
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CHAPTER 6. EPILOGUE

model, which allows for endogenous congestion and total demand elasticity. Pure as well as

mixed modes of transport are considered, and di�erent government perspectives are com-

pared. For the conurbation of Leuven, we �nd that Leuven would pro�t from a introduction

of road pricing in the city center. Another �nding is that the expansion of public transit

in Leuven implies a welfare increase from the point of view of the city authority, while it

is welfare decreasing from the perspective of society. As a result we conclude that caution

is recommended for when transit agencies are state-owned as city authorities can lobby for

projects which are welfare decreasing from societal point of view.
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Appendix A

Derivation of τ* and r* and second

order conditions for X1 > 0, X2 > 0

(only 1 route liable to congestion)

min
X1,X2,r,τ

(a1X1 + ω + φ1 + T1 (c, r) + τ)X1 + (ω + φ2 + T2 (c, r))X2 − τX1 (A.1)

s.t.

X1 +X2 = N (A.2)

a1X1 + ω + φ1 + T1 (c, r) + τ = ω + φ2 + T2 (c, r) (A.3)

0 < r < c (A.4)

X1 > 0 (A.5)

X2 > 0 (A.6)

τ > 0 (A.7)

This can be rewritten as follows:

min
r,τ

(ω + φ2 + T2 (c, r))N − τ
(
φ2 − φ1 + T2 (c, r)− T1 (c, r)− τ

a1

)
(A.8)

φ2 − φ1 + T2 (c, r)− T1 (c, r)− τ > 0 (A.9)

a1N − φ2 + φ1 − T2 (c, r) + T1 (c, r) + τ > 0 (A.10)
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0 < r < c (A.11)

−τ < 0 (A.12)

L (r, τ) = (−ω − φ2 − T2 (c, r))N + τ

(
T2 (c, r)− T1 (c, r) + φ2 − φ1 − τ

a1

)
(A.13)

−λ1 (−T2 (c, r) + T1 (c, r) + φ1 − φ2 + τ) (A.14)

−λ2 (−τ + T2 (c, r)− T1 (c, r)− a1N + φ2 − φ1) (A.15)

−λ3 (r − c)− λ4 (−r)− λ5 (−τ) (A.16)

Derivation to τ

∂L

∂τ
=

(
T2 (c, r)− T1 (c, r) + φ2 − φ1 − τ

a1

)
− τ

a1
− λ1 + λ2 + λ5 = 0 (A.17)

λ1 = 0, φ2 − φ1 + T2 (c, r)− T1 (c, r) > τ, (A.18)

λ1 (−T2 (c, r) + T1 (c, r) + φ1 − φ2 + τ) = 0 (A.19)

λ2 = 0, a1N − φ2 + φ1 − T2 (c, r) + T1 (c, r) > −τ, (A.20)

λ2 (−τ + T2 (c, r)− T1 (c, r)− a1N + φ2 − φ1) = 0 (A.21)

λ5 = 0, −τ < 0, (A.22)

λ5 (−τ) = 0 (A.23)

For 0 < r < c:

τ =
φ2 − φ1 + T2 (c, r)− T1 (c, r)

2
(A.24)

Derivation to r

∂L

∂r
= −∂T2 (c, r)

∂r
N +

(
τ

a1
+ λ1 − λ2

)(
∂T2 (c, r)

∂r
− ∂T1 (c, r)

∂r

)
− λ3 + λ4 = 0 (A.25)

λ1 = 0, −T2 (c, r) + T1 (c, r) < −τ + φ2 − φ1, (A.26)

λ1 (−T2 (c, r) + T1 (c, r) + φ1 − φ2 + τ) = 0 (A.27)
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APPENDIX A. DERIVATION OF τ* AND R* AND SOC

λ2 = 0, T2 (c, r)− T1 (c, r) < τ + a1N − φ2 + φ1, (A.28)

λ2 (−τ + T2 (c, r)− T1 (c, r)− a1N + φ2 − φ1) = 0 (A.29)

λ3 = 0, r < c, λ3 (r − c) = 0 (A.30)

λ4 = 0, −r < 0, λ4 (−r) = 0 (A.31)

The second order conditions are given by the following equations:

∂2L

∂r2
= −N

c
< 0 (A.32)

∂2L

∂τ2
= − 2

a1
< 0 (A.33)

∂2L

∂rτ
=

1

a1
(A.34)

It is clear that if 2a1N ≥ c, then 2
a1
N
c −

1
a21
≥ 0 and so the optimal (τ , r) is a minimum.

However, if N < c
2a1

the optimal (τ , r) is a saddle point. In this case, the lowest point will

be near the corner.
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Appendix B

Derivation of r* for X1 > 0, X2 > 0

(both routes liable to congestion)

min
X1,X2,r

(a1X1 + ω + φ1 + T1 (c, r))X1 + (a2X2 + ω + φ2 + T2 (c, r))X2 (B.1)

s.t.

X1 +X2 = N (B.2)

a1X1 + ω + φ1 + T1 (c, r) = a2X2 + ω + φ2 + T2 (c, r) (B.3)

0 < r < c (B.4)

X1 > 0 (B.5)

X2 > 0 (B.6)

This can be written as follows:

min
r

(
a1

(
a2N + φ2 − φ1 + T2 (c, r)− T1 (c, r)

a1 + a2

)
+ ω + φ1 + T1 (c, r)

)
N (B.7)

s.t.

a2N + φ2 − φ1 + T2 (c, r)− T1 (c, r) > 0 (B.8)

a1N − φ2 + φ1 − T2 (c, r) + T1 (c, r) > 0 (B.9)

0 < r < c (B.10)

The corresponding Lagragian is given by:
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L =

(
−a1

(
a2N + φ2 − φ1 + T2 (c, r)− T1 (c, r)

a1 + a2

)
− ω − φ1 − T1 (c, r)

)
N (B.11)

−λ1 (−a2N − φ2 + φ1 − T2 (c, r) + T1 (c, r)) (B.12)

−λ2 (−a1N + φ2 − φ1 + T2 (c, r)− T1 (c, r)) (B.13)

−λ3 (r − c)− λ4 (−r) (B.14)

The FOC are as follows:

∂L

∂r
= − a1N

a1 + a2

(
∂T2 (c, r)

∂r
− ∂T1 (c, r)

∂r

)
− ∂T1 (c, r)

∂r
N (B.15)

−λ1
(
−∂T2 (c, r)

∂r
+
∂T1 (c, r)

∂r

)
− λ2

(
∂T2 (c, r)

∂r
− ∂T1 (c, r)

∂r

)
(B.16)

−λ3 + λ4 = 0 (B.17)

−a2N − φ2 + φ1 − T2 (c, r) + T1 (c, r) < 0, λ1 = 0, (B.18)

λ1 (−a2N − φ2 + φ1 − T2 (c, r) + T1 (c, r)) = 0 (B.19)

−a1N + φ2 − φ1 + T2 (c, r)− T1 (c, r) < 0, λ2 = 0, (B.20)

λ2 (−a1N + φ2 − φ1 + T2 (c, r)− T1 (c, r)) = 0 (B.21)

r < c, λ3 = 0, λ3 (r − c) = 0 (B.22)

−r < 0, λ4 = 0, λ4 (−r) = 0 (B.23)

If the optimal r is inserted in constraints (B.8) and (B.9), then it becomes clear that

the interior solution is only feasible if:

2 (a1 + a2) (a2N + φ2 − φ1) > a1c− a2c (B.24)

and

2 (a1 + a2) (a2N − φ2 + φ1) > a2c− a1c (B.25)

108



Appendix C

Derivation of the aggregate AC

We will assume the properties of the routes connecting CB to be the same as those con-

necting AC.

AC1ac = a1X1ac + ω + φ1 + T1 (c, r)

AC2ac = a2X2ac + ω + φ2 + T2 (c, r)

AC1cb = a1X1cb + ω + φ1

AC2cb = a2X2ac + ω + φ2

demand = δ − π (X1 +X2)

XT = X1cb +X2cb = X1ac +X2ac

X1ac =
ACac − ω − φ1 − T1 (c, r)

a1
(C.1)

X2ac =
ACac − ω − φ2 − T2 (c, r)

a2
(C.2)

a1a2XTac = (a1 + a2)ACac − (a1 + a2)ω − a1(φ2 + T2 (c, r))− a2(φ1 + T1 (c, r)) (C.3)

ACac =
a1a2XTac

a1 + a2
+ ω +

a1
a1 + a2

(φ2 + T2 (c, r)) +
a2

a1 + a2
(φ1 + T1 (c, r)) (C.4)

ACcb =
a1a2XTcb

a1 + a2
+ ω +

a1
a1 + a2

(φ2) +
a2

a1 + a2
(φ1) (C.5)

ACcb+ACac =
2a1a2XT

a1 + a2
+ω+

2a1
a1 + a2

(φ2)+
2a2

a1 + a2
(φ1)+

a1
a1 + a2

(T2 (c, r))+
a2

a1 + a2
(T1 (c, r))

(C.6)
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Figure C.1: The aggregate cost

In Figure C.1 the aggregated cost curve is shown. The kink in the cost curve is due

to the change from using only one route, to using both routes.
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Appendix D

Derivation of the total cost for an

intersection regulated by a priority

rule (both routes liable to congestion)

min
X1,X2

(a1X1 + ω + φ1)X1 +

(
a2X2 + ω + φ2 +

v2X1

2

)
X2 (D.1)

s.t.

X1 +X2 = N (D.2)

a1X1 + ω + φ1 = a2X2 + ω + φ2 +
v2X1

2
(D.3)

X1 > 0 (D.4)

X2 > 0 (D.5)

The total cost at the interior solution equals:

(a1X
e
1 + ω + φ1)N (D.6)

The total cost at the corner solution (X1 = N) equals:

(a1N + ω + φ1)N (D.7)

The total cost at the corner solution (X2 = N) equals:

(a2N + ω + φ2)N (D.8)
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D.1. Derivation of r* when demand is elastic (both routes liable to congestion)

D.1 Derivation of r* when demand is elastic (both routes li-

able to congestion)

To �nd r*, the derivative of the following equation to r is taken. After which it is checked

if r* satis�es the constraints.

The total cost equals:

δXe
T −

π

2
(Xe

T )
2− a1a2

a1 + a2
(Xe

T )
2−2ωXe

T −
2(a1φ2 + a2φ1)

a1 + a2
Xe
T −

a1T2 (c, r) + a2T1 (c, r))

a1 + a2
Xe
T

(D.9)

The derivation to r gives us the following condition:

∂Xe
T

∂r
Xe
T

(
π

2
+

a1a2
a1 + a2

)
= 0 (D.10)

The signal setting for which Xe
T = 0, would imply that no driver would make the trip

and the welfare would be equal to zero. In this case, the road could just as well be closed

o�. The signal setting for which
∂Xe

T
∂r = 0 equals:

a2c

a1 + a2
(D.11)
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Appendix E

Waiting time computation for one

route

Figure E.1: Composition of the cycle time

It is assumed that tra�c conditions are undersaturated. Then the average waiting

time for drivers arriving when the tra�c light is red is equal to r
2 . Given that the chance

thar drivers arrive when it is red is r
c , the average waiting time for all drivers equals:

r2

2c
(E.1)

and the waiting time for Route 1 (with c-r red) equals:

(c− r)2

2c
(E.2)

In cases where the intersection is regulated by a priority rule, the red time is replaced

by v (v seconds before a car on the main road passes the intersection, cars on the minor
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road already wait until the car on the main road has passed the intersection), and the cycle

time is replaced by the interarrival time of cars on the main road ( 1
X1

). The waiting time

for cars on the minor road then equals:

v2X1

2
(E.3)
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Appendix F

Area AIFE > area ABCD

Area AIFE- area CDEF >0(
φ2 − φ1 − c

2

)2
4a1

+

(
φ2 − φ1 + r ∗ − c

2

)
r∗

2a1
+
r∗2

4a1
−N r∗2

2c
> 0 (F.1)

(
φ2 − φ1 − c

2

)2
2a1

> 0 (F.2)
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Appendix G

Comparison of the interior solution

and the corner solutions

TC(interior*) < TC(X2=N)(
(φ1 − φ2 + c

2)
2

2 (−2a1N + c)
+ ω + φ2

)
N < (ω + φ2)N (G.1)

(φ1 − φ2 + c
2)

2

2 (−2a1N + c)
< 0 (G.2)

As the left hand side is negative, this is always satis�ed.

TC(interior*)< TC(X1=N)((
φ1 − φ2 + c

2)
2

2 (−2a1N + c)
+ ω + φ2

)
N < (a1N + ω + φ1)N (G.3)

(
φ1 − φ2 + c

2)
2

2 (−2a1N + c)
+ φ2 − φ1 < a1N (G.4)

As 2aN − c
2 + φ1 > φ2 for an interior optimum, this is always satis�ed.
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Appendix H

One instrument can account for the

ine�ciency in a parallel network with

inelastic demand

min
τ1,X1,X2,τ2

(a1X1 + f1 + τ1)X1 + (a2X2 + f2 + τ2)X2 − τ1X1 − τ2X2 (H.1)

s.t.

a1X1 + f1 + τ1 = a2X2 + f2 + τ2 (H.2)

X1 +X2 = N (H.3)

X1 > 0 (H.4)

X2 > 0 (H.5)

τ1 > 0 (H.6)

τ2 > 0 (H.7)

The optimal τ2 is given by

τ2 = τ1 +
f1 − f2

2
(H.8)

The optimal τ1 equals

τ1 = τ2 +
f2 − f1

2
(H.9)
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It is clear that only the di�erence between τ1 and τ2 is uniquely determined.

Remark that in equation (H.10), τ1 − τ2 can be replaced by τ .

(a1(
a2N + f2 − f1 − τ

a+a2
) + f1 + τ)N − τ(a2N + f2 − f1 − τ

a+a2
) (H.10)

The optimal τ then equals

τ =
f2 − f1

2
(H.11)

120



Appendix I

Computation of the total cost for a

network without intersection with

road pricing

Figure I.1: Road pricing to in�uence route choice

Suppose that in the network in Figure I.1 a toll is levied on Route 1. Then all drivers

will take Route 1 in equilibrium if f2 > a1N + f1 + τ . If however, f1 + τ > a2N + f2

then all drivers will take Route 2 in equilibrium. Finally, if f2 ≤ a1N + f1 + τ and

f1 + τ ≤ a2N + f2, then the drivers will use both routes in equilibrium. When both routes

are used in equilibrium, the average cost of the two routes has to be equal.

f1 + a1X1 + τ = a2X2 + f2 (I.1)

Substituting this constraint in the total cost function, and using X1 + X2 = N , the

total cost takes the following form:
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(
f1 +

a1(a2N + f2 − f1)
a1 + a2

) +
a2τ

a1 + a2

)
N − τ(a2N + f2 − f1 − τ

a1 + a2
) (I.2)
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Appendix J

Computation of the total cost for a

network without intersection with

tra�c lights

Figure J.1: A tra�c light to in�uence route choice

Consider the network in Figure J.1. All drivers will take Route 1 in the equilibrium if

f2 > a1N + f1 + T1. If, however, f1 + T1 > a2N + f2 then all drivers will take Route 2 in

the equilibrium. Finally, if f2 ≤ a1N + f1 + T1 and f1 + T1 ≤ a2N + f2, then the drivers

will use both routes in the equilibrium. If all drivers take Route 1, then the total cost is

the sum of the minimal time cost, the congestion cost and the tra�c light waiting cost for

every driver. In this case, the total cost can be minimized by setting the tra�c light always

to green. The total cost then equals (a1N + f1)N . On Route 2 there is no tra�c light, so
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the average cost will be the sum of the minimal time cost and the congestion cost. If all

drivers take Route 2 in equilibrium, the total cost will thus be (f2 + a2N)N . When both

routes are used in equilibrium, the average cost of both routes has to be equal:

f1 + a1X1 + T1 = a2X2 + f2 (J.1)

Substituting the result of this equation together with X1 + X2 = N in the total cost

(f1 + a1X1 + T1 (c, r))X1 + (f2 + a2X2)X2, we obtain:(
f1 +

a1(a2N + f2 − f1)
a1 + a2

) +
a2T1
a1 + a2

)
N (J.2)
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Appendix K

Optimization of the network with

road pricing and tra�c lights

min
r,X1,X2,τ

(f1 + a1X1 + T1 (c, r2) + τ)X1 + (f2 + a2X2 + T2 (c, r2))X2 − τX1 (K.1)

s.t.

f1 + a1X1 + T1 (c, r2) + τ = f2 + a2X2 + T2 (c, r2) (K.2)

X1 +X2 = N (K.3)

X1 > 0 (K.4)

X2 > 0 (K.5)

r2 > 0 (K.6)

r2 < c (K.7)

The associated Langragian is given by:

L = (f1 + a1X1 + T1 + τ)X1+(f2 + a2X2 + T2)X2−τX1+λ1(N−X1−X2)+λ2(f2−f1−a1X1−T1+T2+a2X2)

(K.8)

The FOC are the following:
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dL

dX1
= a1X1 + f1 + a1X1 + T1 (c, r2)− λ1 − λ2a1 = 0 (K.9)

dL

dX2
= a2X2 + f2 + a2X2 + T2 (c, r2)− λ1 − λ2a2 = 0 (K.10)

dL

dλ1
= N −X1 −X2 = 0 (K.11)

dL

dλ2
= f2 + a2X2 + T2 (c, r)− f1 − a1X1 − T1 (c, r)− τ = 0 (K.12)

dL

dτ
= −λ2 = 0 (K.13)

dL

dr2
=
dT1 (c, r2)

dr2
X1 +

dT2 (c, r2)

dr2
X2 + λ2

(
dT2 (c, r2)

dr2
− dT1 (c, r2)

dr2

)
= 0 (K.14)

Combining λ2 = 0 and the �rst order conditions for X1 and X2, we �nd that MC1 =MC2

in the optimum.

If we combine λ2 = 0, the �rst order conditions for X1 and X2 and the �rst order condition

for λ2, we obtain the optimal toll:

τ = a1X1 − a2X2 (K.15)

Finally, if we combine λ2 = 0 and the �rst order condition for r2, we �nd that the optimal

signal setting is determined by the following equation:

dT1 (c, r2)

dr2
X1 = −

dT2 (c, r2)

dr2
X2 (K.16)

The optimal variables are then:

τ =

(
f2 − f1 − c

2

)
(a1 + a2)N + a2Nc

2 (a1 + a2)N − c
(K.17)

r =

(
f2 − f1 − c

2 + 2a2N
)
c

2 (a1 + a2)N − c
(K.18)

Xe
1 =

(
f2 − f1 − c

2 + 2a2N
)
N

2 (a1 + a2)N − c
(K.19)

And the minimum cost equals:

TCint =
N(c2 + 4c(f1 − f2)− 4(4a2Nf1 − (f1 − f2)2 + 4a1N(a2N + f2)

8(c− 2(a1 + a2)N)
(K.20)

126



Appendix L

Implications of

AC2(X
∗
2 , r
∗
2) > AC1(X

∗
1 , r
∗
2) and

AC2(X
∗
2 , r
∗
2) < AC1(X

∗
1 , r
∗
2)

If AC2(X
∗
2 , r
∗
2) > AC1(X

∗
1 , r
∗
2), then equation (4.25) implies equation (4.26) for allX1 > X∗1 .

Indeed, if there exists a rh2 for which AC1(X
∗
1 , r

h
2 ) ≥ AC2(X

∗
2 , r
∗
2) and AC2(X

∗
2 , r
∗
2) >

AC1(X
∗
1 , r
∗
2), then AC1(X

∗
1 , r

h
2 ) > AC1(X

∗
2 , r
∗
2), which implies that rh2 < r∗. As a conse-

quence, AC2(X
∗
1 , r

h
2 ) < AC2(X

∗
2 , r
∗
2), and AC1(X

∗
1 , r

h
2 ) > AC2(X

∗
1 , r

h
2 ).

If, on the other hand, AC2(X
∗
2 , r
∗
2) < AC1(X

∗
1 , r
∗
2), then equation (4.26) implies equa-

tion (4.25).

From Figure L.1 is clear that for r∗2 equation (4.23) and equation (4.24) are satis�ed.

If rh2 increases, then the average cost curve of Route 1 shifts down (AC ′1 in Figure L.1) and

the average cost curve of Route 2 shifts up (AC ′2 in Figure L.1). Figure L.1 shows that

there exists a rh2 for which equation (4.24) is violated while equation (4.23) is still satis�ed.

For rh2 < r∗2, both equations (4.23) and (4.24) are always satis�ed.
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Figure L.1: If AC∗
2 < AC∗

1 , then equation (4.26) implies equation (4.25).
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Appendix M

Data

M.0.1 Quantities

Road tra�c (cars) between 7h-8h in 2009:

Table M.1: Flow (number of cars/h)

work school other
O→ C 2729.1 2671.63 167.83
O→ SEC 1727.77 573.33 66.84
C→ SEC 1173.75 1465.88 146.09
PER→ C 1794.2 2641.66 254.32
C→ C 1730.05 3700.9 649.59

Source: Computations on basis of data from Verkeerscentrum Vlaanderen

This data needs to be converted into passengers per OD pair and per user class for

each period. The data we need is represented in the following tables:
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Table M.2: O→ C (number of passengers in %)

work school other
bike 9.89 13.29 4.7
bus/bike 0.33 1.06 0.39
bus/bus 4.87 15.51 5.74
bus/pedestrian 3.78 12.02 4.44
car/parking center 80.04 54.63 79.44
car/parking periphery 0 2.88 4.18
train/bike 0.15 0.58 0.07
train/bus 0.18 0.71 0.09
train/pedestrian 1.70 6.61 0.80

Source: computations on the basis of Janssens et al. (2012).

Table M.3: O→ SEC (number of passengers in %)

work school other
bike 9.89 13.29 4.7
bus/bike 0.41 1.30 0.48
bus/bus 4.87 15.51 5.74
car 80.04 57.5 83.62
train/bike 1.19 4.63 0.56
train/bus 1.19 4.63 0.56

Source: computations on the basis of Janssens et al. (2012).

Table M.4: C→ SEC (number of passengers in %)

work school other
bike 40.08 39 16.12
bus 2.21 15.6 3.41
car 53.85 40 72.52
pedestrian 0 1.39 6.4

Source: computations on the basis of Janssens et al. (2012).
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Table M.5: PER→ C (number of passengers in %)

work school other
bike 40.08 33.43 16.12
bus 2.21 18 3.41
car/center 51.16 42.75 68.89
car/periphery 2.69 2.25 3.63
pedestrian 0 1.39 6.4

Source: computations on the basis of Janssens et al. (2012).

Table M.6: C→ C (number of passengers in %)

work school other
bike 39.83 32.20 17.44
bus 2.34 5.97 0.34
car 31.14 27.18 32.45
pedestrian 25.54 31.53 49

Source: computations on the basis of Janssens et al. (2012).

Table M.7: Peak/o�-peak ratio

work* other* school**
peak 0.7 0.47 0.6
o�-peak 0.3 0.53 0.4

*Source: Van Der Loo and Proost (2010)

**Source: author's own estimate

Table M.8: Duration peak/o�-peak (h)

peak o�-peak
6 18

Table M.9: Occupancy

car
peak 1.58

o�-peak 1.68

Source: Delhaye et al. (2010)
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M.0.2 Generalized prices

To calculate the time cost, we need the following data:

Table M.10: Observed speed (km/h)

observed speed car/bus
outside∗ 60
in PER∗ 60
in city center∗∗ 20
on ringroad∗∗ 40
between SEC and city center∗∗ 50

∗Source: Verkeerscentrum (2014)

∗∗Source: author's own estimate

Table M.11: Average distance of trips (km)

Average distance of trips between:
O-C C-C PER-C C-SEC O-SEC
11 1 3 3.5 14.5

Table M.12: Stop-time bus (hours/km)

center outside SEC
0.02 0.0067 0.0017

Source: authors' calculations based on timetables of De Lijn

Table M.13: Value of time (euro/h)

work school other
car 7.71 6.47 6.47
bus/tram/metro 5.48 4.59 4.59
pedestrian/bike 6.71 5.62 5.62

Source: Hertveldt et al. (2009)

The frequencies of bus and tram are determined assuming that the transit agency only

increases frequency when all vehicles are full.
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Table M.14: Free �ow speed (km/h)

free �ow speed car/bus
outside 90
in PER 90
in city center 30
on ringroad 50
between SEC and city center 60

Table M.15: Free �ow speed (km/h)

pedestrian∗ bike∗∗ train∗∗∗ tram
free �ow speed 3.6 18 50 30±/50±±

∗Source: Basso and Silva (2014)

∗∗Source:van der Steenhoven and Borgman (2009)

∗∗∗Source: timetables NMBS

±Speed in center

±±Speed between SEC and center

Table M.16: Capacity (number of passengers)

bus*
70 - 100

*Source: author's own estimate

Table M.17: Access time (h)

train bus
0.15 0.1-0.14

Source: author's own estimate

Table M.18: Frequency train (vehicles/h)

frequency train
peak 6.84
o�-peak 3

Source: author's computation based on the timetables of NMBS

M.0.3 Welfare

The operation, maintenance and investment costs are listed in Table M.19
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Table M.19: Cost

tram bus
cost per vehiclekm (euro) 3.78 2.77
cost per vehiclehour (euro) 111.14 82.83
cost per routekm (euro) 264.88 /
cost per vehicle (euro) / 99.1

Source: Van Oppens (2013)

The external congestion cost is included in the generalised cost. The other external

costs are the environmental, noise and accident costs in Table 4.15

Table M.20: Marginal external cost (euro)

bus∗ car∗ tram∗∗

marginal external cost 0.233 0.022 0.57
∗Source: Delhaye et al. (2010)

∗∗Source: Delhaye et al. (2010)/De Lijn
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