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RANK-1 TENSOR PROPERTIES WITH APPLICATIONS TO A
CLASS OF TENSOR OPTIMIZATION PROBLEMS∗

YUNING YANG† , YUNLONG FENG† , XIAOLIN HUANG† , AND JOHAN A. K. SUYKENS†

Abstract. This paper studies models and algorithms for a class of tensor optimization prob-
lems, based on a rank-1 equivalence property between a tensor and certain unfoldings. It is first
shown that in dth order tensor space, the set of rank-1 tensors is the same as the intersection of
�log2(d)� tensor sets, of which tensors have a specific rank-1 balanced unfolding matrix. More-
over, the number �log2(d)� is proved to be optimal in some sense. Based on the above equivalence
property, three relaxation approaches for solving the best rank-1 tensor approximation problems are
proposed, including two convex relaxations and a nonconvex one. The two convex relaxations utilize
the matrix nuclear norm regularization/constraints. They have the advantage of identifying whether
the solution is a global optimizer of the original problem, by computing the nuclear norm or the
Frobenius norm of a certain matrix. Under certain assumptions, the optimal solution of the original
problem is characterized by the solution to the dual of the nuclear norm constrained problem. The
nonconvex relaxation can be solved via the conventional alternating minimization scheme, with the
output being always a rank-1 tensor. Numerical experiments demonstrate the effectiveness of the
proposed methods.

Key words. higher order tensor, balanced unfolding, rank-1 approximation, rank-1 equivalence
property, convex relaxation, nuclear norm
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1. Introduction. Tensors are higher order generalizations of vectors and matri-
ces. The structure of tensors makes it possible to explore the information behind data
that have intrinsically many dimensions from a higher order perspective. In recent
years, a variety of real-world problems have been modeled as optimization problems
where the variable is a low rank or even rank-1 tensor. For example, in video comple-
tion, one needs to recover a video from its partial observations, which can be modeled
as a tensor completion problem [35, 21, 44]; in [32], the web links are represented
as a third order tensor, where web link analysis is implemented by solving a tensor
decomposition problem; in higher order graph matching, higher order affinities are
represented by tensors, while finding the matching has been modeled as a rank-1 ten-
sor approximation problem [13]; in nonlinear elastic materials analysis, determining
whether the strong or ordinary ellipticity condition holds or not amounts to solving
an optimization problem where the variable is again a rank-1 tensor [41, 47].

Mathematically, applications mentioned above involve the following optimization
problem (or subproblem)

max 〈A, x1 ◦ · · · ◦ xd〉 s.t. xi ∈ RNi , ‖xi‖ = 1, i = 1, . . . , d.(1.1)

That is, one wants to find a rank-1 tensor X := x1 ◦ · · · ◦ xd to maximize the inner
product between the dth order tensors A and X , where ◦ denotes outer product.
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The maximum value of (1.1) is defined as the spectral norm of A [34], and the KKT
system of (1.1) is known as the tensor singular value/eigenvalue problem [34, 40].
On the other hand, (1.1) is closely related to the best rank-1 approximation problem
[17], i.e., to find a projection of A onto the set of rank-1 tensors. Theoretically,
(1.1) and its related tensor singular value/eigenvalue problem has been studied using
tools from algebraic geometry; see, e.g., [40, 10, 19]. However, it is proved in [28]
that solving (1.1) is NP-hard; more precisely, determining the spectral norm is NP-
hard when d > 2, and for any fixed nonzero rational number σ, deciding whether
σ is the spectral norm of A is also NP-hard. Therefore, several algorithms were
proposed to find local or approximation solutions to (1.1). To find a local maximum
or a KKT point of (1.1), the higher order power method (and its symmetric version)
was proposed [17, 30, 33]; a Newton-type method was introduced in [51] for (1.1)
when d = 3; Chen et al. [11] developed a maximum block improvement approach
that can find a KKT point. Another category of algorithms is focused on finding an
approximation solution to (1.1) with provable lower bound in polynomial time; see,
e.g., [36, 27, 45, 52, 26, 53], just to name a few.

Recently, Jiang, Ma, and Zhang [29] proposed convex relaxations for solving the
following symmetric version of (1.1),

(1.2) max 〈A, x ◦ · · · ◦ x〉 s.t. x ∈ RN , ‖x‖ = 1,

where A is a symmetric tensor, i.e., every entry Ai1···id is invariant under any per-
mutation of {i1, . . . , id}. In particular, [29] proved an equivalence property between a
rank-1 symmetric tensor and its balanced-unfolding matrix (the concept of balanced
unfolding will be introduced later), based on which the above tensor optimization
problem can be casted into a matrix optimization problem. Specifically, it is proved
that the set of even order symmetric rank-1 tensors is equivalent to the set of even
order symmetric tensors whose balanced-unfolding matrix is rank-1. Results reported
in [29] are promising in that in most cases, the solution to the convex relaxation is
found to be also an optimal solution to (1.2) numerically. Extensions of reformulating
third order and even order cases of (1.1) into (1.2) (or partially symmetric forms)
have been discussed in [29, section 8].

In this work, motivated by [29], without the symmetric property and the even
order assumptions, a rank-1 equivalence property between a dth order tensor and
�log2(d)� unfolding matrices is studied. More discussions on this property will be
detailed later. The equivalence property provides a simple way to determine whether
a tensor is rank-1 by only examining the ranks of �log2(d)� unfolding matrices. More-
over, thanks to this equivalence property, it is possible to cast (1.1) into a matrix
optimization problem with �log2(d)� rank-1 matrix constraints. To solve the result-
ing matrix optimization problem, three relaxations are introduced, two of which are
convex relaxations, based on matrix nuclear norm regularization/constraints, while
the other one is nonconvex. By using the equivalence property, it is proved that
the convex relaxations can identify whether the solution is a global optimizer of the
original problem (1.1), by only examining the magnitude of the nuclear norm or the
Frobenius norm of the solution. The nuclear norm constrained problem is then studied
from the dual. In particular, if a critical point of the dual satisfies certain assumptions,
then it is shown to relate to an optimal solution of (1.1). The nonconvex relaxation
is tailored for third or fourth order tensor cases. The relaxation can be solved via the
simple alternating minimization scheme, with the output being always a rank-1 ten-
sor. The nonconvex model can be extended to rank-R tensor approximation problems
with R > 1 as well.
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To be more specific, the rank-1 equivalence property consists of the following two
results. First, it is shown that the set of dth order rank-1 tensors is the same as the
intersection of �log2(d)� tensor sets, of which tensors have a specific rank-1 balanced-
unfolding matrix. In other words, if �log2(d)� specific balanced unfoldings of tensor
X are known to be rank-1, then X is also rank-1. How to choose these balanced
unfoldings is important to the equivalence property; to achieve this, a procedure is
provided. Then, it is proved that the number �log2(d)� is optimal in the sense specified
below. For any given �log2(d)�−1 tensor sets, of which tensors have a rank-1 unfolding
matrix, the intersection of these �log2(d)� − 1 sets properly includes the set of rank-1
tensors. That is to say, if �log2(d)� − 1 unfolding matrices of X are known to be
rank-1, then it is not sufficient to deduce that X is rank-1.

In fact, the first part of the equivalence property introduced above can be deduced
from [8, Theorem 8], which characterizes the upper bound of the rank of a certain
unfolding matrix via the product of ranks of some unfoldings (see Remark 3.2 for de-
tails). Nonetheless, the equivalence property introduced in this work differs from that
of [8] in the following ways. First, the ideas behind the equivalence property, e.g., how
to choose �log2(d)� balanced unfoldings, are proposed in this paper; second, although
the rank-1 equivalence property can be deduced from [8], for better understanding the
principle behind the equivalence property, an alternative proof is in turn provided;
third, the rank-1 equivalence property can be more practical, as introduced above.

This paper is organized as follows. Section 2 introduces basic multilinear algebra.
Properties and results of the rank-1 equivalence property are studied in section 3.
Relaxations based on the equivalence property for tensor approximation problems are
proposed and analyzed in section 4. Numerical experiments are provided in section 5.
This paper is ended with conclusions in section 6.

2. Notations and multilinear algebra. R denotes the real field. Vectors are
written as lowercase letters (x, y, . . .), matrices correspond to italic capitals (A,B, . . .),
and tensors are written as calligraphic capitals (A,B, . . .).

Tensors, tensor inner product, and Frobenius norm. A tensor is a multi-
way array. A dth order tensor A ∈ RN1×···×Nd is defined as A = (Ai1···id), 1 ≤ ij ≤
Nj , j = 1, . . . , d. For two tensors A,B ∈ RN1×···×Nd , their inner product is given

by 〈A,B〉 =
∑N1

i1=1 · · ·
∑Nd

id=1Ai1···idBi1···id . The Frobenius norm of A is defined by

‖A‖F = 〈A,A〉1/2.
Kronecker product and outer product. The Kronecker product A ⊗ B of

matrices A ∈ Rm×n and B ∈ Rp×q is the mp× nq block matrix given by

A⊗B :=

⎡
⎢⎣

a11B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

⎤
⎥⎦ = [a1b1 a1b2 · · · a1bq a2b1 · · · anbq].

The outer product a ◦ b of vectors a and b is the rank-1 matrix given by a ◦ b := abT .
Similarly, the outer product A := a1 ◦ · · · ◦ ad of d vectors ai ∈ RNi , i = 1, . . . , d, is
a rank-1 tensor A, whose entries are the product of the corresponding vector entries
Ai1···id = a1,i1 · · · ad,id for all 1 ≤ ij ≤ Nj.

Tensor-tensor unfolding and tensor-matrix balanced unfolding. Let the
dth order tensor be X ∈ RN1×N2×···×Nd , and denote μk, 1 ≤ k ≤ m as
m (m ≤ d) mode sets, satisfying ∩mk=1μk = ∅ and ∪mk=1μk = {1, . . . , d}. The
tensor-tensor unfolding is to map X to an mth order tensor X[μ1;...;μm] in the space

R
∏

i1∈µ1
Ni1×···×∏

im∈µm
Nim , where the jth mode of X[μ1;...;μm] is constructed by merg-
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1 2 3 4 5 6 7 8

5 6 3 4 1 2 7 8

1 6 7 4 5 2 3 8

Fig. 1. An illustration of choosing the balanced unfoldings. Nodes in light and dark gray
represent the modes corresponding to the row and column of the first matrix; curves with double
arrows represent the exchanging procedure.

ing the modes in μj together. Here a semicolon indicates a new mode. When m = 2,
it reduces to tensor-matrix unfolding.

The tensor-matrix balanced unfolding is to unfold X to a matrix X[μ;ν] with

card(μ) = �d2� and card(ν) = d− �d2�, where card(·) denotes the cardinality of a set.
Consider a 4th order tensor X ; X[1,2;3,4] is given by (X[1,2;3,4])(i1−1)N2+i2,(i3−1)N4+i4 =
Xi1,i2,i3,i4 , for all 1 ≤ ij ≤ Nj , j = 1, 2, 3, 4. The idea of the balanced-unfolding
technique has been adopted in the literature, e.g., [22, 29, 38].

Tensor CP-rank. The CP-rank of a tensor X , denoted by rankCP(X ), is defined
as the smallest number R such that X can be factorized as a sum of R rank-1 tensors.
In this paper, tensor rank is referred to CP-rank.

3. The rank-1 equivalence property. In this section, it is first shown that
the set of dth order rank-1 tensors is equivalent to the intersection of �log2(d)� tensor
sets with tensors having a specific rank-1 balanced-unfolding matrix. Moreover, it
is proved that the number �log2(d)� is optimal: for any given �log2(d)� − 1 tensor
sets with tensors having a certain rank-1 unfolding matrix, the intersection of these
�log2(d)� − 1 sets properly includes the set of rank-1 tensors.

3.1. Choosing the balanced-unfolding matrices. To clarify the analysis, in
this part, we restrict ourselves to tensors of order d = 2n, n ≥ 2, and consider the
general cases in what follows. For notation simplification, we may specify a matrix or
a tensor by its subscript, e.g., X[1,2;3,4] is represented by [1, 2; 3, 4].

In 4th order tensor cases, the two matrices [1, 2; 3, 4] and [3, 2; 1, 4] are chosen.
The proof of Lemma 3.1 explains why the above two matrices are selected. In 8th
order tensor cases, the following 3 specific balanced unfoldings are chosen. The first
is [1, 2, 3, 4; 5, 6, 7, 8]; then the second one [5, 6, 3, 4; 1, 2, 7, 8] is chosen by exchanging
(1, 2) and (5, 6); finally, [1, 6, 7, 4; 5, 2, 3, 8] is chosen by carrying out (5) ↔ (1) and
(3)↔ (7). The procedure of choosing the three matrices is visualized in Figure 1. The
principle behind this procedure is that, [1, 2, 3, 4; 5, 6, 7, 8] and [5, 6, 3, 4; 1, 2, 7, 8] be-
ing rank-1 implies the rank-1 property of tensor [1, 2; 3, 4; 5, 6; 7, 8]; [1, 2; 3, 4; 5, 6; 7, 8]
being rank-1 together with the last matrix [1, 6, 7, 4; 5, 2, 3, 8] being rank-1 lead to
the rank-1 property of [1; 2; 3; 4; 5; 6; 7; 8]. This will be shown in Lemma 3.2 and
Theorem 3.3.

For a 2nth order tensor, the pseudocode of the procedure for choosing balanced
unfoldings is provided in Algorithm 1. The principle of the procedure is based on
Lemmas 3.1 and 3.2 and Theorem 3.3, which discusses the equivalence between a
2nth order rank-1 tensor and the generated rank-1 balanced-unfolding matrices.
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Algorithm 1 . Procedure to choose n unfolding matrices for a 2nth
order tensor.

Input a tuple {1, . . . , 2n}. Denote μ1 := {1, . . . , 2n−1} and μ2 := {2n−1+1, . . . , 2n}.
Denote [μ1; ν1] := [μ1;μ2].
for i = 1 : n− 1 do % each i refers to a tuple to be generated
• Let μk = μl

k ∪ μr
k with μl

k ∩ μr
k = ∅ and card(μl

k) = card(μr
k) = card(μk)/2,

1 ≤ k ≤ 2i.
• Denote [μi+1; νi+1] := [μl

2i−1+1, μ
r
1, μ

l
2i−1+2, μ

r
2, . . . , μ

l
2i , μ

r
2i−1 ;

μl
1, μ

r
2i−1+1, . . . , μ

l
2i−1 , μr

2i ].

• Rewrite notations: μl
2i−1 ← μ1, μr

1 ← μ2, . . . ,
μl
2i ← μ2i−1, μr

2i−1 ← μ2i , . . . , μ
l
2i−1 ← μ2i+1−1, μr

2i ← μ2i+1 .
end for
Output [μ1; ν1], [μ2; ν2], . . . , [μn; νn].

3.2. The equivalence property. To introduce the equivalence property be-
tween a rank-1 tensor and its rank-1 balanced unfoldings, some notations and lemmas
are introduced below. Denote

X d := {X ∈ RN1×···×Nd | rankCP(X ) = 1}

as the set of dth order rank-1 tensors, and

X d,[μ;ν] := {X ∈ RN1×···×Nd | rank(X[μ;ν]) = 1}

as the set of tensors whose unfolding matrix X[μ;ν] is rank-1, where μ and ν are certain
mode sets satisfying μ ∩ ν = ∅, μ ∪ ν = {1, . . . , d}.

Lemma 3.1 (the equivalence property for 4th order tensors). There holds

(3.1) X 4 = X 4,[1,2;3,4] ∩X 4,[3,2;1,4].

In other words, if X[1,2;3,4] and X[3,2;1,4] of X are rank-1, then X is also rank-1.
Remark 3.1. The proof of Lemma 3.1 is based on matrix SVD, which is similar

to that of [8, Theorem 8]; nevertheless, to see more clearly why X[1,2;3,4] and X[3,2;1,4]

are chosen, a complete proof is still provided here.
Proof of Lemma 3.1. X 4 ⊆ X 4,[1,2;3,4] ∩ X 4,[3,2;1,4] is clear. Suppose X ∈

X 4,[1,2;3,4] ∩ X 4,[3,2;1,4]. Then X[1,2;3,4] may be expressed as the outer product of
two vectors, i.e.,

X[1,2;3,4] = x[1,2] ◦ x[3,4], where x[1,2] ∈ RN1N2 , x[3,4] ∈ RN3N4 .

Let X[1;2] and X[3;4] be the folded matrices of x[1,2] and x[3,4], respectively. Let the
SVDs of the two matrices be given by

(3.2) X[1;2] =

R1∑
s=1

as ◦ bs and X[3;4] =

R2∑
t=1

ct ◦ dt,

where R1 = rank(X[1;2]) and R2 = rank(X[3;4]), and the singular values are absorbed
in the corresponding singular vectors. Then

X[1,2;3,4] =

(
R1∑
s=1

as ⊗ bs

)
◦
(

R2∑
t=1

ct ⊗ dt

)
=

R1∑
s=1

R2∑
t=1

(as ⊗ bs) ◦ (ct ⊗ dt) .
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As a result, X can be decomposed as X =
∑R1

s=1

∑R2

t=1 as ◦ bs ◦ ct ◦ dt. Therefore, the
decomposition of X[3,2;1,4] is given by

X[3,2;1,4] =

R1∑
s=1

R2∑
t=1

(ct ⊗ bs) ◦ (as ⊗ dt) .

Since ct ⊗ bs, s = 1, . . . , R1, t = 1, . . . , R2, are linearly independent, and as ⊗ dt, s =
1, . . . , R1, t = 1, . . . , R2, are also linearly independent, X[3,2;1,4] is rank-1 if and only
if R1 = R2 = 1. This implies that (3.1) holds.

To extend Lemma 3.1 to higher order cases, we need the following lemma, where
ul
i, μ

r
i are some disjoint mode sets, i = 1, . . . , 2n, n ≥ 1, with card(μi) ≥ 1.
Lemma 3.2. Let the tensor [μl

1, μ
r
1;μ

l
2, μ

r
2; . . . ;μ

l
2n , μ

r
2n ] be rank-1. Furthermore,

assume that its unfolding matrix

[μl
2n−1+1, μr

1, μl
2n−1+2, μr

2, . . . , μ
l
2n , μr

2n−1 ; μl
1, μr

2n−1+1, . . . , μ
l
2n−1 , μr

2n ]

is rank-1. Then the tensor [μl
1;μ

r
1;μ

l
2;μ

r
2; . . . ;μ

r
2n ] is also rank-1.

Proof. This can also be proved based on SVD, following the argument of Lem-
ma 3.1.

The following theorem establishes the equivalence property for 2nth order tensors.
Theorem 3.3 (the equivalence property for 2nth order tensors). There holds

(3.3) X 2n =

n⋂
i=1

X 2n,[μi;νi],

where [μ1; ν1], . . . , [μn; νn] are generated by Algorithm 1. In other words, if the ma-
trices X[μ1;ν1], . . . , X[μn;νn] are known rank-1, then X is also rank-1.

Proof. Suppose X ∈ ∩ni=1X 2n,[μi;νi]. Consider the induction method on n.
Lemma 3.1 gives the result when n = 2. Suppose (3.3) holds when n = k. For
n = k + 1, let

μ1 = {1, 2}, μ2 = {3, 4}, . . . , μ2k = {2k+1 − 1, 2k+1}.

By induction, the unfolding tensor X[μ1;μ2;··· ;μ2k
] is rank-1 in the 2kth order tensor

space RN1N2×N3N4×···×N
2k+1−1

N
2k+1 . Let

μi = μl
i ∪ μr

i , i = 1, . . . , 2k, with card(μl
i) = card(μr

i ) = 1.

Then the rank-1 property of the last unfolding matrix [μk+1; νk+1] together with
Lemma 3.2 gives the rank-1 property of X[1;2;··· ;2k+1] in the 2k+1th order tensor space

RN1×···×N
2k+1 .

Denote f(d) := �log2(d)� in the following. To generalize Algorithm 1 as well as
Theorem 3.3 to any dth order tensor, we introduce the following virtual mode, which
can be used to lift a dth order tensor to a 2f(d)th order tensor.

Definition 3.4 (virtual mode). For a dth order tensor X ∈ RN1×···×Nd , we call
a mode k ∈ {1, . . . , d} virtual if Nk = 1.

In general, a dth order tensor can always be lifted to a 2f(d)th order tensor by
adding 2f(d) − d virtual modes. A balanced lifting way is illustrated in section 3.4.

In the following, the equivalence property for dth order tensors is provided.
Corollary 3.5 (the equivalence property for dth order tensors). There holds

X d =

f(d)⋂
i=1

X d,[μi;νi],
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where the matrices [μ1; ν1], . . . , [μf(d); νf(d)] are generated by first applying Algorithm 1

to the lifted 2f(d)th order tensor, and then eliminating the virtual modes.
In the introduction, we have mentioned that Theorem 3.3 can be deduced from

[8, Theorem 8]. We recall the theorem in the following. For a set μ, denote μC :=
{1, . . . , d} \ μ the complement of μ.

Theorem 3.6 (cf. Theorem 8 of [8]). For any μ1, . . . , μm ⊆ {1, . . . , d}, let
ν = ∩mi=1μi or ν = ∪mi=1μi. Then for a dth order tensor X

(3.4) rank(X[ν;νC ]) ≤
m∏
i=1

rank(X[μi;μC
i ]).

Remark 3.2. To use the above theorem to prove Theorem 3.3, it suffices to prove
that

(3.5) rank(X(i)) ≤
n∏

i=1

rank(X[μi;νi])

for i = 1, . . . , 2n, which in turn implies that rankCP(X ) = 1, where X(i) is the
mode-i unfolding of X . Nevertheless, to verify (3.5), it is also necessary to apply the
induction method on n, as that of Theorem 3.3. On the other hand, the analysis
of Theorem 3.3 might be helpful to understand the principle behind the equivalence
property. Therefore, we provide an alternative proof for Theorem 3.3, instead of
applying [8, Theorem 8].

Remark 3.3. The rank-1 equivalence property of [29] can be deduced from Corol-
lary 3.5, because for an even order symmetric tensor, all the balanced unfoldings are
the same. Therefore X d = X d,[μ;ν], where card(μ) = card(ν) = d/2.

3.3. The number �log2(d)� is optimal. In this subsection, it is shown that
the number f(d) = �log2(d)� is optimal.

Theorem 3.7 (�log2(d)� is optimal). Let tensors be of order d, d ≥ 3, with
Ni > 1, 1 ≤ i ≤ d. Denote μi, νi, i = 1, . . . , f(d)− 1, as some mode sets, with

(3.6) μi ∪ νi = {1, . . . , d}, μi ∩ νi = ∅;

then for any μi, νi satisfying (3.6), there holds

(3.7) X d �

f(d)−1⋂
i=1

X d,[μi;νi].

The above theorem indicates that the set of dth order rank-1 tensors is properly
included in the intersection of less than f(d) sets of tensors whose certain unfolding
matrix is rank-1. In other words, there exists at least a tensor that, even it has
f(d)−1 unfoldings which are known to be rank-1, the tensor itself may not be rank-1.
To prove the above theorem, we need the following technical lemma.

Lemma 3.8. Let tensors be of order d, d ≥ 3, with Ni > 1, 1 ≤ i ≤ d. Let
mode sets μi, νi, i = 1, . . . , f(d)− 1, satisfy (3.6). Then there exist at least two modes
{s, t} � {1, . . . , d}, such that for i = 1, . . . , f(d)− 1,

(3.8) either {s, t} � μi or {s, t} � νi.

Proof. We start with μ1 and ν1. Either μ1 or ν1 contains at least �d2� modes.

We may use α1 to denote the set of these �d2� modes and, without loss of generality,
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1 2 3 4 5

Fig. 2. An illustration of lifting a 5th order tensor to an 8th order tensor. Nodes in gray
represent the original modes. Nodes with a dotted line represent the added virtue modes.

Table 1

Matrices generated by Algorithm 1 for tensors from order 3 to order 10.

order 3 4 5 6

[1;2,3] [1,2;3,4] [1,2;3,4,5] [1,2,3;4,5,6]
matrices [2;1,3] [3,2;1,4] [3,2;1,4,5] [4,2,3;1,5,6]

[1,4;3,2,5] [1,5,3;4,2,6]

order 7 8 9 10

[1,2,3;4,5,6,7] [1,2,3,4;5,6,7,8] [1,2,3,4;5,6,7,8,9] [1,2,3,4,5;6,7,8,9,10]
matrices [1,6,7;4,5,2,3] [5,6,3,4;1,2,7,8] [5,6,3,4;1,2,7,8,9] [6,7,3,4,5;1,2,8,9,10]

[1,5,6,3;4,2,7] [1,6,7,4;5,2,3,8] [1,6,7,4;5,2,3,8,9] [1,7,8,4,5;6,2,3,9,10]
[5,2,3,8;1,6,7,4,9] [6,2,3,9,5;1,7,8,4,10]

assume that α1 ⊆ μ1. Consider μ2 and ν2. By (3.6), either μ2 or ν2 contains at least
�d4� of the modes in α1. Without loss of generality, we suppose that these modes are
contained in μ2, which are denoted as α2. Continue this argument. At last, either
μf(d)−1 or νf(d)−1 contains at least �d/2f(d)−1� modes from αf(d)−2, say, αf(d)−1.
Without loss of generality assume that αf(d)−1 ⊆ μf(d)−1. As a result, αf(d)−1 ⊆
αi ⊆ μi, i = 1, . . . , f(d)− 1. Since d ≥ 2f(d)−1+1, there holds card(αf(d)−1) ≥ 2, and
the results follow.

Proof of Theorem 3.7. According to Lemma 3.8, there are two modes {s, t}, such
that for i = 1, . . . , f(d)− 1, either {s, t} � μi or {s, t} � νi. Denote the set

X d,{s,t} := {X ∈ RN1×···×Nd | rankCP(X[{s,t};1;2;··· ;s−1;s+1;··· ;t−1;t+1;··· ;d]) = 1},

i.e., X d,{s,t} stands for the set of tensors which are rank-1 in a (d− 1)th order tensor
space. One then notices that for any X ∈ X d,{s,t}, it follows from (3.8) that X ∈
X d,[μi;νi], i = 1, . . . , f(d)− 1, and so X d,{s,t} ⊆ ∩f(d)−1

i=1 X d,[μi;νi]. On the other hand,
since Ni > 1, 1 ≤ i ≤ d, one also notices that X d � X d,{s,t}, and finally (3.7) holds,
as desired.

3.4. Balanced unfolding of a general tensor. We describe a way to add
virtual modes to proper positions of the modes of the tensor, such that a general
tensor can be unfolded into a balanced matrix.

Assume that M = 2f(d) − d �= 0. At the right-hand side of each mode beginning
from mode-1, mode-2, until mode-�M2 �, a virtual mode is added; at the right-hand

side of each mode beginning from mode-(�d2�+ 1) until mode-(�d2�+ �
M
2 �), a virtual

mode is also added. As a result, we get a 2f(d)th order tensor. Consider an example.
Suppose X ∈ RN1×···×N5 . In this case, M = 8 − 5 = 3. Then the lifted tensor X
belongs to RN1×1×N2×1×N3×1×N4×N5 ; see Figure 2.

Table 1 illustrates the matrices generated by Algorithm 1 for tensors from order
3 to order 10. For convenience, the matrix is denoted by its subscript.

4. Applications to low rank tensor approximation problems. This sec-
tion concentrates on low rank tensor approximation problems, particularly the best
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rank-1 approximation problems

min
1

2
‖A− λx1 ◦ x2 ◦ · · · ◦ xd‖2F s.t. λ ∈ R, xi ∈ RNi , ‖xi‖ = 1, i = 1, . . . , d,

(4.1)

or its equivalent formulation

max 〈A, x1 ◦ x2 ◦ · · · ◦ xd〉 s.t. xi ∈ RNi , ‖xi‖ = 1, i = 1, . . . , d,(4.2)

that has been introduced in the introduction. The key idea of the relaxations proposed
in this section is to first reformulate (4.1) or (4.2) to a tensor optimization problem
with rank-1 constraint. Then by using Corollary 3.5, the rank-1 tensor constrained
problem can be further reformulated to a matrix rank constrained problem.

To solve the matrix rank constrained problem, three approaches (relaxations) are
proposed, two of which are convex relaxations, based on matrix nuclear norm regular-
ization/constraints, while the other one is nonconvex. By examining the magnitude of
the nuclear norm or the Frobenius norm of the solution, the convex relaxations are able
to identify whether a solution is still a global optimizer of the original problem (4.2)
or not. The solution to the nuclear norm constrained problem is then studied from
the dual. The nonconvex relaxation can be solved by the alternating minimization
scheme, with the output being always a rank-1 tensor, serving as an approximation to
(4.1) or (4.2). Finally, the nonconvex relaxation is extended to rank-R approximation
problems.

For ease of notation, for a dth order tensor X , in this section we denote the f(d)
unfolding matrices chosen by Algorithm 1 as X[1], . . . , X[f(d)].

4.1. Convex relaxations of (4.2). In (4.2), by letting X := x1 ◦ x2 ◦ · · · ◦ xd,
we get the following reformulation

min 〈−A,X〉 s.t. X ∈ RN1×···×Nd , ‖X‖F = 1, rankCP(X ) = 1.(4.3)

By using Corollary 3.5, the rank-1 tensor constraint rankCP(X ) = 1 can be replaced
by a set of rank-1 matrix constraints, i.e., (4.3) can be equivalently reformulated into
the following optimization problem

min 〈−A,X〉 s.t. X ∈ RN1×···×Nd , ‖X‖F = 1, rank(X[i]) = 1, i = 1, . . . , f(d).

(4.4)

In recent years, it is popular to replace the rank function by the matrix nuclear norm.
By doing this, one expects to obtain a low rank solution via solving the nuclear norm
based problems. The nuclear norm ‖ · ‖∗ is defined as the sum of singular values of a
matrix and serves as a surrogate function to the rank function [43]. Following this line,
(4.4) can be relaxed to the following nuclear norm regularized convex optimization
problem

min 〈−A,X〉+ ρ � X �∗ s.t. X ∈ RN1×···×Nd , ‖X‖F ≤ 1,(4.5)

where ρ > 0 is a regularization parameter, and we denote

�X�∗ := f(d)−1

f(d)∑
i=1

‖X[i]‖∗

as a regularizer to control the rank of the tensor.
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It is also possible to employ the nuclear norms as constraints, instead of using
them as regularizers. This results in the following problem

min 〈−A,X〉 s.t. X ∈ RN1×···×Nd , ‖X[i]‖∗ ≤ 1, i = 1, . . . , f(d),(4.6)

where the spherical constraint ‖X‖F = 1 is dropped.
As convex relaxations, one is concerned with the relationship between their solu-

tions and the solution of the original problem. This will be studied in sections 4.1.1
and 4.1.2. On the other hand, as well-formulated convex optimization problems, (4.5)
and (4.6) can be solved by many state-of-the-art algorithms, e.g., the alternating di-
rection method of multipliers (ADMM). The implementation of ADMM for solving
(4.5) and (4.6) is given in section 4.1.3.

4.1.1. Determining whether a solution to (4.5) or (4.6) is a global min-
imizer of (4.3). Before stating the main results, we present a simple observation.

Proposition 4.1. Let X ∈ RN1×N2 . If ‖X‖F = 1 and ‖X‖∗ = 1, then
rank(X) = 1.

Proof. Let ‖X‖∗ =
∑

k=1 σk be the sum of its singular values. From the assump-
tions we have

∑
k=1 σ

2
k = 1 and

∑
k=1 σk = 1, which imply

∑
k1 �=k2

σk1σk2 = 0.
Since σk ≥ 0, the equality holds if and only if there is only one σk = 1 while other
singular values are zero. Therefore the result follows.

In the following, we study properties of (4.5). Denote p̂ as the optimal value of
(4.5). The following observations, which characterize some properties of the global
minimizers of (4.5), are presented first.

Proposition 4.2. If X̂ is an optimal solution to (4.5), X̂ �= 0, p̂ �= 0, and X ∗ is
a global optimal solution to (4.3), then

1. ‖X̂ ‖F = 1,
2. �X̂�∗ ≥ 1,
3. if �X̂�∗ = 1, then rankCP(X̂ ) = 1,

4. λ∗ ≤ λ̂ with λ∗ = 〈A,X ∗〉 and λ̂ = 〈A, X̂ 〉.
Proof. 1. Since the zero tensor is a feasible solution to (4.5) with the associated

objective value being zero, it holds that p̂ < 0. Suppose ‖X̂ ‖F < 1. Then the objective
value of (4.5) evaluated at X̂/‖X̂‖F is p̂/‖X̂‖F < p̂, which gives a contradiction.

2. Suppose that �X̂�∗ < 1. This means that there exists at least an X̂[i] such

that ‖X̂[i]‖∗ < 1. Let ‖X̂[i]‖∗ =
∑

k=1 σi,k be the sum of its singular values. Then

‖X̂ ‖2F = ‖X̂[i]‖2F =
∑
k=1

σ2
i,k
≤
(∑

k=1

σi,k

)2

< 1.

This contradicts item 1. Therefore, �X̂�∗ ≥ 1.
3. From �X̂�∗ = 1, we have ‖X̂[i]‖∗ = 1 for i = 1, . . . , f(d), otherwise the

same contradiction as for item 2 would happen. Then it follows from item 1 and
Proposition 4.1 that rank(X̂[i]) = 1, 1 ≤ i ≤ f(d), which together with Corollary 3.5

implies that rankCP(X̂ ) = 1.
4. Since X̂ is optimal to (4.5), we have

〈−A, X̂ 〉 − 〈−A,X ∗〉 ≤ ρ � X ∗ �∗ −ρ � X̂ �∗ .

From item 2, �X ∗�∗ = 1 ≤ �X̂�∗, and so λ∗ ≤ λ̂.
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Proposition 4.2 implies that it is possible to identify whether an optimizer of
(4.5) is an optimizer of (4.3) by computing the sum of balanced nuclear norms. The
following theorem summarizes this result.

Theorem 4.3. Assume that A �= 0. Assume that X̂ is a global minimizer of the
convex problem (4.5). Then X̂ is a global minimizer of the original problem (4.3) if
and only if X̂ �= 0, �X̂�∗ = 1, and p̂ �= 0.

Proof. The “only if” part is easy to verify by recalling the definition of problem
(4.3). For the “if” part, by Proposition 4.2 and the assumption, there holds ‖X̂ ‖F =

1, rankCP(X̂ ) = 1, and λ̂ = 〈A, X̂ 〉 ≥ 〈A,X ∗〉 ≥ λ∗. Therefore, X̂ is a global minimizer
of (4.3).

Next we study (4.6). The following observations also characterize some properties
of the global minimizers of (4.6).

Proposition 4.4. Assume that A �= 0. If X̂ is an optimal solution to (4.6), then
1. at least one constraint of (4.6) is active, i.e., there exists an i such that
‖X̂[i]‖∗ = 1,

2. ‖X̂ ‖F ≤ 1,
3. if ‖X̂ ‖F = 1, then all the constraints are active. Moreover, rankCP(X̂ ) = 1.

Proof. Items 1 and 2 are easy to verify. We consider 3. Consider the ith unfolding
X̂[i], whose nuclear norm is given by ‖X̂[i]‖∗ =

∑
k=1 σi,k, where σi,k denotes the kth

singular value of X̂[i]. It then follows from ‖X̂ ‖F = 1 that

‖X̂[i]‖2∗ =

(∑
k=1

σi,k

)2

≥
∑
k=1

σ2
i,k = ‖X̂ ‖2F = 1.

This together with the constraint ‖X̂[i]‖∗ ≤ 1 implies that ‖X[i]‖∗ = 1, i = 1, . . . , f(d).

Finally, applying Proposition 4.1 toX[i] and using Corollary 3.5, we have rankCP(X̂ ) =
1. The proof is completed.

Based on the above observations, it is also possible to determine whether an
optimizer of (4.6) is still an optimizer of (4.3) by computing the Frobenius norm of
the optimizer. The results are summarized in the following theorem.

Theorem 4.5. Assume that A �= 0 and X̂ is a global minimizer of the convex
relaxation (4.6). Then X̂ is a global minimizer of the original problem (4.3) if and
only if ‖X̂ ‖F = 1.

Proof. Similar to Theorem 4.3 we only verify the if part, which follows from
Proposition 4.4 and the fact that (4.6) is a relaxation of (4.3).

4.1.2. Solution properties of (4.6) from the dual. By introducing auxiliary
variables Yi and imposing the constraint ‖X‖F ≤ 1, (4.6) can be rewritten as

min
X ,Yi

〈−A,X〉 s.t. Yi = X , ‖X‖F ≤ 1, ‖Yi,[i]‖∗ ≤ 1, i = 1, . . . , f(d).(4.7)

According to item 2 of Proposition 4.4, ‖X‖F ≤ 1 is redundant in (4.7); in other
words, (4.7) is in fact equivalent to (4.6). Nonetheless, imposing this constraint is
helpful in deriving its dual. Denote the Lagrangian function of (4.7) as

L(X ,Yi,Λi) = 〈−A,X〉+
f(d)∑
i=1

〈Λi,X − Yi〉.
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Its dual problem is given by

(4.8) sup
Λi

d(Λ1, . . . ,Λf(d)) with d(Λi) := min
‖X‖F≤1,‖Yi,[i]‖∗≤1

L(X ,Yi,Λi).

It can be shown that the dual function has the following expression

d(Λ1, . . . ,Λf(d)) = min
‖X‖F≤1

〈
−A+

f(d)∑
i=1

Λi,X
〉

+

f(d)∑
i=1

min
‖Yi,[i]‖∗≤1

〈Λi,−Yi〉

= −

∥∥∥∥∥∥A−
f(d)∑
i=1

Λi

∥∥∥∥∥∥
F

−
f(d)∑
i=1

‖Λi,[i]‖2,

where Λi,[i] is the ith balanced unfolding of Λi. For any given (Λ1, . . . ,Λf(d)), denote
the set

X (Λ1, . . . ,Λf(d))

:=
{
(X ,Y1, . . . ,Yf(d)) | d(Λi) = L(X ,Yi,Λi), ‖X‖F ≤ 1, ‖Yi,[i]‖∗ ≤ 1

}
.

Since the sets associated with X and Yi are compact, X (Λi) is nonempty. According
to the expression of d(Λi), X (Λi) can also be written as

X (Λ1, . . . ,Λf(d)) =

{
(X ,Y1, . . . ,Yf(d)) | X ∈ arg min

‖X‖F≤1

〈
−A+

∑
Λi,X

〉
,

Yi ∈ arg min
‖Yi,[i]‖∗≤1

〈−Λi,Yi〉
}
.

(4.9)

Note that the Yi-related subproblem of (4.9) amounts to computing the leading sin-
gular value of Λi,[i], and hence the solution Yi,[i] to the subproblem can be chosen as a
rank-1 matrix. With the above notation, the first order optimality condition of (4.8)
can be written as
(4.10)
0 ∈ ∂d(Λ1, . . . ,Λf(d))⇐⇒ 0 ∈ conv

{
(X − Y1, . . . ,X − Yf(d)) | (X ,Yi) ∈ X (Λi)

}
,

where ∂d(·) is the subgradient of d(·) at Λi. The following proposition shows that,
under certain assumptions, a critical point of (4.8) can indicate a global minimizer of
the original problem (4.3).

Proposition 4.6. Let Λ∗
i be a critical point of (4.8). Assume that

∑
Λ∗
i−A �= 0,

and the leading singular value of Λ∗
i is unique, 1 ≤ i ≤ f(d). Assume that (X ∗,Y∗

i ) ∈
X (Λ∗

i ). Then X ∗ is a global minimizer of the original problem (4.3).
Proof. We first show that X ∗ is a rank-1 tensor. According to the assumption,

given Λ∗
i , the Yi-related subproblem in (4.9) must have a unique solution. Moreover,

it holds that Y∗
i,[i] must be a rank-1 matrix, 1 ≤ i ≤ f(d). On the other hand, since∑

Λ∗
i − A �= 0, X ∗ is unique, and X ∗ =

A−∑
Λ∗

i

‖∑
Λ∗

i −A‖F
. These two facts show that

∂d(Λi) at Λ
∗
i is singleton, i.e., d(·) is differentiable at Λ∗

i , which together with (4.10)
implies that X ∗ = Y∗

i . In particular, rank(X∗
[i]) = 1, which by Corollary 3.5 in turn

gives that rankCP(X ∗) = 1.
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To show that X ∗ is a global minimizer of (4.3), it remains to show that X ∗ is a
global minimizer of (4.7). By the definitions of X ∗ and Y∗

i , and that X ∗ = Y∗
i ,

〈−A,X ∗〉 =
〈
−A+

∑
i=1

Λ∗
i ,X ∗

〉
−
〈∑

i=1

Λ∗
i ,X ∗

〉

=

〈
−A+

∑
i=1

Λ∗
i ,
A−

∑
i=1 Λ

∗
i

‖A−
∑

i=1 Λ
∗
i ‖F

〉
−
∑
i=1

〈Λ∗
i ,Y∗

i 〉

= −
∥∥∥∥∥A−

∑
i=1

Λ∗
i

∥∥∥∥∥
F

−
∑
i=1

‖Λ∗
i ‖2

= d(Λ∗
1, . . . ,Λ

∗
f(d)).

The above equality shows that there is no duality gap between (4.7) and (4.8). As a
result, X ∗ is a minimizer of (4.7). This together with the rank-1 property of X ∗ and
the fact that (4.7) is a convex relaxation of the original problem (4.3) shows that X ∗

is also a global minimizer of (4.3).

4.1.3. Implementation of (4.5) and (4.6) via ADMM. By introducing f(d)
variables Yi, i = 1, . . . , f(d), problem (4.5) can be formulated as

min
X ,Yi

〈−A,X〉+ ρ

f(d)

f(d)∑
i=1

‖Yi,[i]‖∗

s.t. Yi = X , i = 1, . . . , f(d), ‖X‖F ≤ 1,

(4.11)

where Yi,[i] is the ith balanced unfolding of Yi. The ADMM for (4.11) is given in
Algorithm 2, where Dρ/(τ ·f(d)) is the matrix shrinkage operator [7].

Algorithm 2. ADMM for (4.5).

Input: tensor A, parameters ρ > 0, τ > 0, starting guess X 0,Y0
i ,Λ

0
i

for i = 1, 2, . . .do

X k+1 = P‖·‖F

[
1

τ ·f(d)(A+
∑f(d)

i=1 Λk
i + τ

∑f(d)
i=1 Yk

i )
]
.

Y k+1
i,[i] = Dρ/(τ ·f(d))

[
Xk+1

[i] −
1
τΛ

k
i,[i]

]
, i = 1, . . . , f(d).

Λk+1
i = Λk

i − τ(X k+1 − Yk+1
i ), i = 1, . . . , f(d).

end for

Similarly, (4.6) can be formulated as

min
X ,Yi

〈−A,X〉 s.t. Yi = X , ‖Yi,[i]‖∗ ≤ 1, i = 1, . . . , f(d).(4.12)

The ADMM for solving (4.12) is given in Algorithm 3, where P‖·‖∗ denotes the pro-
jection onto the nuclear norm ball {X |‖X‖∗ ≤ 1}. To compute P‖·‖∗ , one can first
compute the SVD, and then project the vector of singular values onto the L1 norm
ball.

4.2. A nonconvex relaxation of (4.1). We consider a nonconvex relaxation
of (4.1) in this subsection, and employ an alternating minimization scheme to solve
it. To ensure that the solution generated by the alternating minimization scheme is
rank-1, the tensor involved in the relaxation is of third or fourth order. First, we
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Algorithm 3. ADMM for (4.6).

Input: tensor A, parameters τ > 0, starting guess X 0,Y0
i ,Λ

0
i

for i = 1, 2, . . .do

X k+1 = 1
τ ·f(d)(A+

∑f(d)
i=1 Λk

i + τ
∑f(d)

i=1 Yk
i ).

Y k+1
i,[i] = P‖·‖∗

[
Xk+1

[i] −
1
τΛ

k
i,[i]

]
, i = 1, . . . , f(d).

Λk+1
i = Λk

i − τ(X k+1 − Yk+1
i ), i = 1, . . . , f(d).

end for

reformulate (4.1) as

min
1

2
‖A− X‖2F s.t. X ∈ RN1×···×Nd , rankCP(X ) = 1,(4.13)

where d = 3 or 4. By using the rank-1 equivalence property and introducing an
auxiliary variable Y, (4.13) can be reformulated as

min
1

2
‖A − X‖2F s.t. X = Y, rank(Y[1]) = 1, rank(X[2]) = 1.

By relaxing the constraint X −Y and imposing it on the objective function, we obtain
the following nonconvex relaxation of (4.13)

min F (X ,Y) := 1

2
‖A − Y‖2F +

ρ

2
‖X − Y‖2F s.t. rank(Y[1]) ≤ 1, rank(X[2]) ≤ 1,

(4.14)

where ρ > 0 is a regularization parameter. It is possible to employ the alternating
minimization scheme to solve (4.14), namely, for k = 0, 1, 2, . . . , compute
(4.15)
Yk+1 ∈ argminrank(Y[1])≤1 F (X k,Y), X k+1 ∈ argminrank(X[2])≤1 F (X ,Yk+1).

If the above scheme terminates at step K, then X := XK/‖XK‖F is returned, which
serves as an approximation solution to (4.13).

For any X k, finding Yk+1 reduces to solving

min
rank(Y[1])≤1

‖Y − (1 + ρ)−1(A+ ρX k)‖F ,

while computing X k+1 amounts to solving minrank(X[2])≤1 ‖X −Yk‖F . Therefore, the
alternating minimization scheme (4.15) is well-defined.

Since F (·, ·) is coercive and {F (X k,Yk)} is nonincreasing, the sequence {(X k,Yk)}
generated by scheme (4.15) is bounded. The following proposition holds.

Proposition 4.7. Let {(X k,Yk)} be a sequence generated by the alternating
minimization scheme (4.15). Then every limit point (X ∗,Y∗) of {(X k,Yk)} is a
stationary point of (4.14), i.e., there holds

F (X ∗,Y∗) ≤ F (X ,Y∗), F (X ∗,Y∗) ≤ F (X ∗,Y) ∀X ,Y feasible for (4.14).

A brief proof of the above proposition is provided in Appendix A.
It will be shown in the following that X k is always a rank-1 tensor. To this

end, denote T[i] the folding operator such that X = T[i](X[i]), and P[i] such that
P[i](X ) := argminrank(Z)≤1 ‖X[i] − Z‖F . Let τ[i] = T[i] ◦ P[i], 1 ≤ i ≤ f(d). The
following result holds for a dth order tensor.
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Proposition 4.8. For any dth order tensor X , d ≥ 3, X �= 0, let X0 =
τ[f(d)] · · · τ[1](X ). Then rankCP(X0) = 1.

Proof. Since any dth order tensor can be lifted to a 2f(d)th order tensor, without
loss of generality, we consider d = 2n. When n = 2, let Y = τ[1](X ). Then Y[1] can
be expressed as Y[1] = λy[1,2] ◦ y[3,4], where λ ∈ R is a scalar, y[1,2] and y[3,4] are
two normalized vectors. We further denote y[1,2] =

∑
i=1 σiy1,i ⊗ y2,i and y[3,4] =∑

j=1 ρjy3,j ⊗ y4,j as the SVDs of y[1,2] and y[3,4] (in terms of their folded matrix
forms), where σi and ρj are in decreasing order. Then

(4.16) Y[2] =
∑
i=1

∑
j=1

λσiρj
(
y3,j ⊗ y2,i

)
◦
(
y1,i ⊗ y4,j

)
.

Since y3,j⊗y2,i, y1,i⊗y4,j are normalized and mutually orthogonal, they form the left
and right singular vectors for Y[2], respectively, with σiρj being the singular values.
As a result, X0 = λσ1ρ1y1,1 ◦ y2,1 ◦ y3,1 ◦ y4,1. Suppose that the result holds when
n = k; when n = k + 1, let μ1 = {1, 2}, μ2 = {3, 4}, . . . , μ2k = {2k+1 − 1, 2k+1}. By
induction, the unfolding tensor Y[μ1;μ2;...;μ2k

] of Y = τ[k] · · · τ[1](X ) is rank-1. As a
result, Y[k+1] can be expressed in a similar manner to (4.16)

Y[k+1]

=
∑

i1=1
· · ·
∑

i
2k=1

λ̂σ1,i1 · · ·σ2k,i
2k
(yμl

1,i1
⊗· · ·⊗yμl

2k
,i

2k
)◦(yμr

1,i1
⊗· · ·⊗yμr

2k
,i

2k
),

where μl
i ∪ μr

i = μi, with card(μl
i) = card(μr

i ) = 1, and so X0 = λ̂σ1,1 · · ·σ2k,1y1,1 ◦
· · · y2k+1,1, showing that X0 is rank-1.

Corollary 4.9. If A �= 0, A is not rank-1, and X 0 �= −ρ−1A, then X k generated
by (4.15) is always a rank-1 tensor.

Proof. From the discussion after (4.15) and using the notation τ[i], the alternating
minimization scheme (4.15) can be written as

(4.17) X k+1 = τ[2]τ[1]((1 + ρ)−1(A+ ρX k)).

If X 0 �= −ρ−1A, then X 1 is rank-1. This together with A being not rank-1 implies
that X 2,X 3, . . . are rank-1.

Remark 4.1. Proposition 4.8 also tells us that to compute X k+1, one can first
compute the best rank-1 approximation to Y[1] = (A+ρXk)[1], and then, respectively,
compute the best rank-1 approximations to y[1,2] and y[3,4].

Remark 4.2. We explain why the nonconvex relaxation (4.14) are not suitable
for tensors of order higher than 4. Consider the following nonconvex relaxation

min
rank(Xi,[i])=1,i=1,...,f(d)

F (X1, . . . ,Xf(d)) :=
1

2
‖A− X1‖2F +

ρ

2

f(d)∑
i=2

‖X1 −Xi‖2F .

When f(d) > 2, with simple computation, one can verify that none of the resulting
X k

i are rank-1 tensors, if the alternating minimization scheme is applied to solve the
above problem. In this sense, the relaxation (4.14) and the scheme (4.15) are not
suitable for tensors of order higher than 4. However, it is possible to extend (4.17) to
the following iterative scheme

X k+1 = τ[f(d)] · · · τ[1]((1 + ρ)−1(A+ ρX k))

as a heuristic algorithm for rank-1 approximation to a general dth order tensor.
Remark 4.3. At first glance, there exists a similarity between the formula X0 =

τ[f(d)] · · · τ[1](X ) in Proposition 4.8 and higher order SVDs (HOSVDs) [16]. However,
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186 Y. YANG, Y. FENG, X. HUANG, AND J. A. K. SUYKENS

the noncommutativity of τ[i] and τ[j], i �= j makes the above formula quite different
from HOSVDs. In fact, due to the noncommutativity, it is not easy to estimate an
upper bound for ‖X −X0‖F . However, it has been proved that for HOSVDs, one has
‖X −XHOSV D‖F ≤

√
d‖X −X ∗‖F , where XHOSV D is generated by an HOSVD, and

X ∗ denotes a best rank-1 approximation to X ; see, e.g., [16, Property 10] and [22,
Lemma 2.6]. Nonetheless, with additional assumptions on the leading singular value
of X[1], it is still possible to give a reasonable upper bound for ‖X −X0‖F , as shown
in the following proposition.

Proposition 4.10. For any dth order tensor X , d ≥ 3, X �= 0, let X0 be defined
as in Proposition 4.8. Assuming rank(X[1]) = r, denoting the singular values of X[1]

as σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and satisfying σ1 ≤ α
√∑r

i=2 σ
2
i with α ≥ 1/

√
r − 1, we

have

(4.18) ‖X − X0‖F ≤ (1 + 2α)‖X − X ∗‖F ,

where X ∗ is a best rank-1 approximation to X . If d = 3 or 4, then the factor 1 + 2α
can be improved to 1 + α.

Proof. The proof goes as follows:

‖X − X0‖F ≤ ‖X − τ[1](X )‖F + ‖τ[1](X ) −X0‖F
≤ ‖X − τ[1](X )‖F + ‖τ[1](X )‖F + ‖X0‖F
≤ ‖X − τ[1](X )‖F + 2‖τ[1](X )‖F(4.19a)

≤ (1 + 2α)‖X − τ[1](X )‖F(4.19b)

≤ (1 + 2α)‖X − X ∗‖F ,(4.19c)

where (4.19a) comes from the property of τ[i] that

‖X0‖F = ‖τ[f(d)] · · · τ[1](X )‖F ≤ ‖τ[f(d)−1] · · · τ[1](X )‖F ≤ · · · ≤ ‖τ[1](X )‖F ;

(4.19b) holds because

‖τ[1](X )‖F = ‖P[1](X )‖F = σ1 ≤ α

√∑r

i=2
σ2
i = α‖X − τ[1](X )‖F ,

and (4.19c) is due to that P[1](X ) is a best rank-1 matrix approximation to X[1].
If d = 3 or 4, then we have ‖τ[1](X ) − τ[2]τ[1](X )‖F ≤ ‖τ[1](X )‖F . The result

follows.
Remark 4.4. In the above proposition, if in particular σ1 ≤

√∑r
i=2 σ

2
i , then

the factor in (4.18) is 3. The proposition also indicates that if all the singular values
of X[1] lie in a small interval, and rank(X[1]) is large enough, then ‖X − X0‖F may
get close to ‖X − X ∗‖F : Consider an extreme case that all the modes of X take the
same dimension n, rank(X[1]) = n�d/2�, and σ1 = · · · = σrank(X[1]). Then the factor

in (4.18) is 1 + 2/
√
n�d/2� − 1, showing that X0 is nearly optimal as n and d go large.

On the other hand, numerically we observe that without additional assumptions, the
relation ‖X − X0‖F ≤ �log2(d)�‖X − τ[1](X )‖F ≤ �log2(d)�‖X − X ∗‖F always holds.
This needs further research.

4.3. Extension of relaxation (4.14) to rank-R approximation when R >
1. Given a dth order tensor A ∈ RN1×···×Nd and an integer R, the low rank tensor

D
ow

nl
oa

de
d 

01
/2

1/
16

 to
 1

34
.5

8.
25

3.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-1 TENSOR PROPERTIES WITH APPLICATIONS 187

approximation can be formulated as [17, 31]

inf

∥∥∥∥∥A−
R∑
i=1

λix1,i ◦ · · · ◦ xd,i

∥∥∥∥∥
2

F

s.t. λi ∈ R, xk,i ∈ RNk , ‖xk,i‖ = 1, i = 1, . . . , R, k = 1, . . . , d.

(4.20)

The problem has succeeded in a wide range of applications [15, 20, 3, 2], and a variety
of methods have been proposed to address this problem; see, e.g., [9, 24, 42, 14, 39].
In particular, the alternating least squares (ALS) method [31] has been used most
widely due to its simple implementation. The best rank-R approximation problem is
degenerate when R > 1, due to the fact that the set of tensors of at most rank R is
not closed if R > 1; see, e.g., [18, 31].

With slight modifications, (4.14) can be extended as a relaxation for (4.20) when

d = 3 or 4 by denoting X :=
∑R

i=1 λix1,i ◦ · · · ◦ xd,i,

min F (X ,Y) := 1

2
‖A− Y‖2F +

ρ

2
‖X − Y‖2F s.t. rank(Y[1]) ≤ R, rank(X[2]) ≤ R,

(4.21)

and the following alternating minimization scheme can be applied

(4.22) Yk+1 ∈ arg min
rank(Y[1])≤R

F (X k,Y), X k+1 ∈ arg min
rank(X[2])≤R

F (X ,Yk+1).

When R > 1, the tensor X generated by (4.22) might not be rank-R. In this case,
one can apply the ALS method [31] to X to get a rank-R tensor.

5. Numerical experiments. Numerical experiments on rank-1 and rank-R ten-
sor approximations are presented in this section. In particular, in rank-1 tensor ap-
proximation problem, we show that the proposed methods can be used to solve the
maximum-clique problem (MCP) and tensor completion. All the computations are
conducted on an Intel i7-3770 CPU desktop computer with 16 GB of RAM. The
supporting software is MATLAB R2013a.

5.1. Rank-1 approximation. The first experiment is focused on solving (4.2).

The tensors A in this experiment are generated as A =
∑5

i=1 a1,i ◦ · · · ◦ ad,i, where
every vector ai,k is randomly generated by the standard normal distribution, and
d = 3 or 4, with the same dimension along each mode. Specifically, the dimensions
vary from 20 to 50. For each specified order and dimension, we generate 50 instances.

The two convex relaxations (4.5), (4.6), and the nonconvex one (4.14) are tested.
(4.5) and (4.6) are solved by ADMM (Algorithms 2 and 3, respectively), while (4.14)
is solved by scheme (4.15). In the following, these three methods are respectively
denoted as Model (4.5), Model (4.6), and Scheme (4.15). For Models (4.5) and (4.6),
we examine their ability to find the global solution to (4.2); for Scheme (4.15), the
value 〈A,X〉 will be evaluated, where X is the tensor generated by Scheme (4.15)
and is normalized. Besides, because Proposition 4.10 indicates that τ[2]τ[1](A) is an
approximation solution, we thus examine its quality as an initial guess for other local
search methods.

The ρ in Algorithm 2 for solving Model (4.6) is chosen as follows. Suppose that
X ∗ is a global minimizer of (4.5) with rankCP(X ∗) = 1. Then

〈−A,X ∗〉+ ρ � X�∗ = 〈−A,X ∗〉+ ρ ≤ 0 ⇒ ρ ≤ 〈A,X ∗〉 = v∗.

Therefore, it is reasonable to choose ρ ∈ (0, v∗) such that the global solution is not
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Table 2

Reports of Model (4.5), Model (4.6), Scheme (4.15), HOPM and MBI on different cases.

Model (4.5) Model (4.6) Scheme (4.15) HOPM MBI

[d,n] #succ time #succ time value time iter value time iter value time iter

[3,20] 42 0.36 45 0.79 111.2 0.10 17.7 106.4 0.02 8.5 108.4 0.13 26.7
[3,25] 46 0.31 46 0.60 154.3 0.11 18.7 148.1 0.02 7.4 150.9 0.12 22.9
[3,30] 45 0.36 46 0.68 195.2 0.11 18.7 182.6 0.02 7.8 183.7 0.13 25.9
[3,35] 45 0.54 47 0.85 250.1 0.12 17.6 225.7 0.02 6.9 230.2 0.11 20.2
[3,40] 42 0.61 45 1.15 299.3 0.14 18.9 267.1 0.03 7.6 280.7 0.14 25.6
[3,45] 41 0.83 42 1.57 337.1 0.16 21.1 319.4 0.02 6.7 321.3 0.11 21.3
[3,50] 41 1.31 44 2.23 412.9 0.18 20.5 390.0 0.02 6.2 389.1 0.09 16.5

[4,20] 43 4.20 48 5.56 513.5 0.20 12.7 405.9 0.03 5.2 412.3 0.13 15.4
[4,25] 47 18.13 46 21.61 810.9 0.30 12.7 670.3 0.04 4.8 663.4 0.17 14.3
[4,30] 37 44.35 48 51.44 1123.7 0.53 12.4 916.7 0.07 4.8 880.7 0.26 13.6
[4,35] 33 87.26 46 98.51 1455.5 0.96 12.9 1226.0 0.12 4.7 1239.3 0.47 13.0
[4,40] 35 369.76 45 396.41 2061.9 1.50 13.0 1733.7 0.17 4.6 1772.5 0.62 12.8
[4,45] 26 451.92 43 478.15 2536.0 2.30 12.7 2106.2 0.28 4.5 2116.1 1.02 12.3
[4,50] 26 1408.08 40 1405.89 3102.0 3.40 12.7 2619.7 0.42 4.6 2658.3 1.32 12.0

Table 3

Reports of Scheme (4.15), Model (4.5)+Scheme (4.15), and Model (4.6)+Scheme (4.15) on
different cases in terms of objective values.

[d, n] [3,20] [3,30] [3,40] [3,50] [4,20] [4,30] [4,40] [4,50]

Scheme (4.15) 125.2 253.2 378.9 541.8 611.3 1556.8 2368.8 3539.6
Model (4.5)+Scheme (4.15) 127.9 258.2 384.3 548.6 611.5 1555.9 2369.8 3539.9
Model (4.6)+Scheme (4.15) 127.9 258.2 384.3 548.6 612.6 1553.8 2370.1 3540.8

zero. On the other hand, a large ρ can potentially reduce the tensor rank. We
therefore apply Scheme (4.15) to A within 5 iterations, and let ρ = 〈A,X〉, where X
is generated by Scheme (4.15). The τ in Algorithm 2 is 50. The τ in Algorithm 3 is
100. The ρ in Scheme (4.15) is 0.25.

The stopping criterion for Algorithms 2 and 3 is maxi ‖Λk+1
[i] − Λk

[i]‖ ≤ 10−4; for

Scheme (4.15) it is ‖X k+1−X k‖F ≤ 10−4; for higher order power method (HOPM) [17]
(the code in Tensorlab [48] is used) and maximum block improvement (MBI) [11] (the
code is implemented from scratch, where the necessary tensor-vector multiplications
are supported also by Tensorlab) that will be used later, it is ‖xk+1 − xk‖ ≤ 10−4,
where x stands for the tuple (x1, . . . , xd). The starting guess for Algorithms 2 and 3 is
the zero tensor, while that for Scheme (4.15), HOPM, and MBI will be specified later.

Results of Models (4.5) and (4.6) are reported in Table 2, from columns 2 to 5,
where “#succ” denotes the number of times that Models (4.5) and (4.6) achieve the
global optimum of (4.2); the unit of computational time is seconds. From the table,
it seems that (4.6) performs better than (4.5). This is probably because it is not easy
to determine a good parameter ρ for Model (4.5). On the other hand, (4.5) is more
efficient than (4.6). In case that the two convex models cannot find a global solution
to the original problem, we compute an approximation solution as follows: Let X̂ be
generated by Model (4.5) or Model (4.6); then Scheme (4.15) is applied to find a rank-
1 approximation X to X̂ , with starting guess X 0 being the zero tensor. The methods
are, respectively, termed Model (4.5)+Scheme (4.15) and Model (4.6)+Scheme (4.15).
Their results in terms of values 〈A,X〉 are compared with Scheme (4.15) and shown
in Table 3, from which we can observe that the combined methods may have better
performance than only using Scheme (4.15).

Then, Scheme (4.15) is compared with HOPM and MBI. The starting guess takes
the same randomly generated and normalized x0 for HOPM, MBI, and Scheme (4.15)
(for Scheme (4.15), X 0 is the outer product of vectors in x0). Results are reported in
Table 2, from columns 6 to 14, where “value” denotes 〈A,X〉 for Scheme (4.15) with
X normalized, and 〈A, x1 ◦ · · ·xd〉 for HOPM or MBI; “iter” specifies the iterations.
From the table, we observe that in terms of the objective value, Scheme (4.15) may
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Fig. 3. Plots of error versus iteration, and objective value versus iteration.

Table 4

Reports of initial values from different initialization schemes.

Random HOSVD seq-HOSVD SP

[d, n] value time value time value time value time

[3,30] 1.8 0.00 162.4 0.03 189.7 0.03 189.7 0.02
[3,40] 1.6 0.00 222.7 0.03 278.3 0.03 278.3 0.02
[3,50] 1.3 0.00 328.9 0.03 394.2 0.04 394.2 0.02

[4,30] 1.4 0.00 765.0 0.20 1048.7 0.22 1152.7 0.06
[4,40] 1.2 0.00 1207.2 0.51 1756.1 0.59 1970.6 0.13
[4,50] 1.2 0.00 1927.1 1.21 2669.7 1.38 3017.7 0.28

have a better performance, followed by MBI; however, since Scheme (4.15) requires us
to solve matrix singular value problems, it is not as efficient as the other two methods.

To show that the three methods have become stable after reaching the stopping
criterion, we run the methods to 104 iterations on several instances, and illustrate the
results of one instance (d = 4, n = 30) in Figure 3. The results are shown by means
of plots of error versus iteration, and objective value versus iteration, where “error”
means ‖X k+1−X k‖F for Scheme (4.15), and ‖xk+1−xk‖ for HOPM and MBI. To give
a clearer view, only the results of the first 100 iterations are shown. In this instance,
the errors of Scheme (4.15), HOPM, and MBI reach the tolerance 10−4 within 13, 7,
and 18 iterations, while their associated objective values become stable after 9, 5, and
13 iterations, respectively. In fact, we find that when the errors reach the tolerance,
the x generated by HOPM and MBI are already stationary points of (4.2).

In this experiment, we use X 0 = τ[2]τ[1](A) (we denote it as SP, namely sequential
projection) as an initialization scheme, and compare it with random initializations,
HOSVD [16] and sequential HOSVD [23]. Their corresponding initial value 〈A,X 0〉
or 〈A, x0

1 · · ·x0
d〉 (with all the X 0 or x0 being normalized) and computational time are

recorded. Results are reported in Table 4. Empirically, in terms of the value, SP has
comparable or better results, while it is also more efficient. The efficiency is because
by Proposition 4.8, it only needs to compute two matrix singular value problems,
where according to Remark 4.1, the latter one can be further reduced to two much
smaller matrix singular value problems. Then, HOPM and MBI are initialized by
HOSVD, sequential HOSVD, and SP, respectively. Besides, HOPM with a randomly
generated guess served as a baseline. The results are reported in Table 5, which shows
that when d = 3, MBI initialized by HOSVD is slightly better, while HOPM and MBI
initialized by SP slightly outperform the others when d = 4. Overall, at least in d = 3
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Table 5

Reports of HOPM and MBI initialized by different guesses.

Random+ HOSVD+ seq-HOSVD+ SP+ HOSVD+ seq-HOSVD+ SP+
HOPM HOPM HOPM HOPM MBI MBI MBI

[d, n] value time value time value time value time value time value time value time

[3,30] 189.6 0.03 208.2 0.02 208.0 0.04 208.0 0.04 208.3 0.17 208.0 0.14 208.0 0.13
[3,40] 273.2 0.03 310.8 0.03 310.4 0.05 310.4 0.05 311.7 0.17 310.4 0.15 310.4 0.13
[3,50] 388.7 0.04 431.2 0.04 431.8 0.07 431.8 0.05 432.0 0.19 431.8 0.16 431.8 0.15

[4,30] 998.5 0.08 1163.3 0.28 1159.7 0.29 1164.0 0.11 1163.5 0.49 1159.7 0.45 1164.0 0.21
[4,40] 1603.0 0.17 1986.1 0.68 1988.2 0.73 1991.7 0.26 1991.1 1.06 1988.2 0.97 1991.7 0.51
[4,50] 2557.0 0.41 3026.1 1.60 3033.0 1.71 3036.4 0.57 3035.5 2.44 3033.0 2.20 3036.4 1.04

Table 6

Reports of counts that different methods need to find a global optimizer to problem (4.2). The
order of the tensors is 4. For each specified dimension, 50 instances with known optimal value have
been generated.

Random+ HOSVD+ seq-HOSVD+ SP+ Random+ HOSVD+ seq-HOSVD+ SP+
n HOPM HOPM HOPM HOPM MBI MBI MBI MBI

20 19 36 36 38 19 37 36 38
30 15 36 35 39 13 37 35 39
40 11 36 37 38 12 37 37 38
50 9 33 30 37 10 33 30 37

or d = 4 cases, SP can be an alternative way of generating a starting guess. Of course,
this procedure becomes expensive when the size goes larger, as it needs to solve larger
matrix singular value problems.

Remark 5.1. It is also interesting to examine whether HOPM and MBI with
different initializations can find a global optimizer to problem (4.2). In our experiment,
this is achieved by running the methods on instances where global optimizers have
been found by Model (4.6) solved by Algorithm 3. For each specified dimension, in 50
instances, the counts of different methods achieving a global optimum are reported in
Table 6.1 From the table, we observe that (1) at least on these instances, HOPM and
MBI can find a global optimizer in many cases; (2) a good starting guess can indeed
improve the chance of finding a global optimizer; (3) empirically, HOPM and MBI
initialized by SP, namely, τ[2]τ[1](A) seem to have a slightly better chance of finding
a global optimizer.

5.2. The MCP. In this experiment, we try to solve the MCP by relaxing it
to Model (4.6). Given an undirected unweighted graph G = (V,E) with vertex set
V and edge set E ∈ V × V , the MCP consists in finding a complete subgraph of
G of maximum cardinality ω(G). The MCP is known as one of the most famous
NP-complete problem [25]. It has been proved in [37] that

ω(G) = (1− 2LG(x
∗))−1, where LG(x) :=

∑
{i,j}∈E

xixj

is the Lagrangian of G, and x∗ is a global maximizer of LG(·) over the standard
simplex Δ = {x ∈ Rn |

∑n
i=1 xi = 1, x ≥ 0}. Moreover, if S is a maximum clique of

G, then the characteristic vector xS of S given by

(5.1) xS
i =

{
card(S)−1, i ∈ S,
0, i �∈ S,

1Because Scheme (4.15) is not sure to find a stationary point to (4.2), we do not compare it
with HOPM and MBI. Nevertheless, we also run the whole Scheme (4.15) with randomly generated
initializations on the same instances. We observe that although Scheme (4.15) cannot achieve the
global optimum, it can give a good approximation in that the difference between the objective value
generated by Scheme (4.15) and the global optimum is less than 10 in up to 70% of the instances.
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Table 7

Number of successes on computing the MCP by Model (4.6) on 50 instances.

[#clique,#edge] [10,200] [10,250] [10,300] [15,225] [15,275] [15,325] [20,500] [20,550] [20,600]

#succ 46 50 43 50 49 46 41 47 46

is a global maximizer of maxx∈Δ LG(x). This problem has been formulated as a
quartic problem over the unit sphere [6] as follows:

max
∑

{i,j}∈E
x2
ix

2
j s.t. ‖x‖ = 1.

The above problem can be relaxed to

(5.2) max
∑

{i,j}∈E
uivixjyj s.t. ‖u‖ = ‖v‖ = ‖x‖ = ‖y‖ = 1.

Since (5.2) is of the form (4.2), it can be further relaxed to Model (4.6).
In the experiment, we randomly construct graphs G with 40 vertices containing

a maximum clique S, where card(S) varies in {10, 15, 20}, and the vertices corre-
sponding to S are known at first; the edges of G varies from 200 to 600. When using
Algorithm 3 to solve Model (4.6), τ = 0.1, and we terminate the algorithm within
10 iterations. According to (5.1), during the experiment, we use the following way to
identify the maximum clique: Assume that X̂ is returned by Model (4.6); we com-
pute the left singular vector x1 associated with the leading singular value of X̂[1;2,3,4],
and record the largest card(S) entries of x1 as the maximum clique. The results are
reported in Table 7, showing the number of success over 50 instances, from which we
see that Model (4.6) can successfully find the maximum clique in most cases.

5.3. Tensor completion. In this experiment, we incorporate Scheme (4.15) as
a subroutine into the higher order relaxed matching pursuit (HoRMP) method [49] for
tensor completion (TC). The goal of TC is to recover a possibly low rank tensor from
its partial observations. TC finds applications in image/video processing, pattern
recognition, and spectral data recovery; see, e.g., [1, 35, 21, 46, 44]. Specifically, we
model TC as

(5.3) min J(X ) = 1

2
‖XΩ − BΩ‖2F s.t. rankCP(X ) ≤ R,

where BΩ denotes the partially observed tensor and Ω denotes the index set of observed
entries, and R > 0 is a parameter. The scheme of HoRMP for solving TC is given by

X k+1 = α1X k + α2Sk, (α1, α2) = argminα1∈R,α2∈R J(α1X k + α2Sk),

where Sk is a normalized rank-1 tensor that approximately solves the following prob-
lem

(5.4) max‖S‖F=1,rankCP(S)=1〈∇J(X k),S〉,

which may be approximately solved by Scheme (4.15).
In the following, we denote our method as HoRMP+(4.15) (ρ = 0.25 in (4.15)),

and compare it with some state-of-the-art TC algorithms: GCG [50], HaLRTC [35],
and STDC [12]. To examine the performance of Scheme (4.15), we also compare
HoRMP+(4.15) with HoRMP, where the subproblem (5.4) is solved by the subroutine
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Table 8

Comparisons of different methods on tensor completion on 10 instances. Due to efficiency, on
the dataset Tomato, the max iterations of STDC and HaLRTC are, respectively, set to 50 and 100.

HoRMP + (4.15) HoRMP ori [49] GCG [50] HaLRTC [35] STDC [12]

Datasets MR (%) relerr (%) time relerr (%) time relerr(%) time relerr (%) time relerr (%) time

70 1.52 63.80 1.55 51.70 6.02 65.29 0.003 133.55 0.13 85.96
MRI 80 2.09 49.58 2.13 39.97 6.61 46.93 0.29 148.43 0.20 115.82

(181×217×181) 90 3.83 31.17 3.94 24.96 7.33 27.70 9.06 160.64 0.42 151.10
95 8.17 10.42 8.29 7.83 8.67 17.23 34.48 188.61 27.29 124.78

70 1.53 39.06 1.18 52.24 3.36 48.37 2.99 35.53 3.66 443.82
Hyperspectral 80 1.77 30.88 1.46 40.03 3.72 34.46 4.23 34.30 6.62 445.66
(205×246×96) 90 2.40 21.57 2.25 26.76 3.90 21.97 6.46 56.09 6.73 209.95

95 3.81 10.38 3.83 7.54 4.39 14.78 10.50 131.89 17.62 91.20

70 7.18 286.72 7.19 211.72 10.01 362.53 7.41 327.57 7.57 1195.18
Tomato 80 7.83 212.30 7.78 152.94 10.70 264.34 9.63 437.16 8.00 1203.36

(242×320×3×167) 90 8.58 127.36 8.54 87.66 11.40 158.03 13.75 645.45 9.51 1214.15
95 9.54 75.27 9.56 50.41 11.80 98.16 24.22 632.10 43.20 822.46

used in [49] (to distinguish it, it is denoted as HoRMP ori). At each iteration, we
stop Scheme (4.15) within 5 steps. The stopping criterion for our method is when
|J(X k+1) − J(X k)| is less than a threshold. For all the methods except HaLRTC,
the threshold of the stopping criteria is ε = 10−5. For HaLRTC, 10−6 is chosen since
10−5 is too loose. The max iteration for all the methods is 500. The parameter R in
(5.3) is selected from {200, 300, 400, 500}via cross validation. Datasets including brain
MRI, Hyperspectral images, and Tomato2 are used to evaluate the performance of the
methods. In the datasets, some entries are randomly missing, with the missing ratio
(MR) varying in {0.7, 0.8, 0.9, 0.95}. All the results are averaged over ten instances.

The relative error ‖X − B‖F/‖B‖F and computational time are reported in Ta-
ble 8, where the best two results of each setting are marked by underlines. From
the table, we can first observe that in most cases, the recovery results of our method
are comparable to or better than other methods; even comparing with the original
HoRMP, our method has slight improvements, e.g., on the MRI dataset. Consider-
ing the efficiency, the two HoRMP methods and GCG perform better, which is more
evident on the Tomato dataset; on the Hyperspectral dataset, our method is a bit
faster than the original HoRMP. Totally speaking, HoRMP+(4.15) may be a practical
method for tensor completion.

5.4. Rank-R approximation. The tensors A in this experiment are generated
as follows: First, we randomly generate a dth order tensor X ∗ =

∑R
i=1 x1,i ◦ · · · ◦ xd,i.

Then we impose a noisy tensor N to X ∗, whose nonzero entries obey the standard
normal distribution, with �nonzeros entries of N

�entries of N = ratio, where ratio is a prescribed

number. Finally A := X ∗ +N . The rank R is chosen from {5, 7, 9, 12, 15}, while the
ratio varies among {0.2, 0.5, 0.9, 1}.

We test Scheme (4.22) and Scheme (4.22)+ALS in this experiment, where the
latter one means that Scheme (4.22) is first applied to A, and then ALS is applied to
the result generated by Scheme (4.22). There are available MATLAB toolboxes that
implement the ALS method [4, 48]. Here we employ the latter one. Our methods
are compared with ALS+ELS and ALS+ELS+GEVD, where ALS+ELS stands for
the ALS incorporated with the enhanced line search rule [42]. GEVD is an initial-
ization strategy for ALS implemented in [48]. This initialization requires that the
first two factor matrices of the tensors have full column rank, otherwise it will fall
back to a random initialization. The results are reported in Table 9, where relerr=
‖X − X ∗‖F /‖X ∗‖F . All the results presented are averaged over 50 instances. From

2The datasets are available from https://code.google.com/p/tensor-related-code/source/browse/
trunk/Model/Tensor+Completion/LRTC Package Ji/?r=6#LRTC Package Ji%2Fadditional%20results.
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Table 9

Comparisons of different methods on rank-R approximation on 50 instances.

Scheme (4.22) Scheme (4.22)+ALS ALS+ELS ALS+ELS+GEVD

R ratio relerr (%) iter time relerr (%) iter time relerr (%) iter time relerr (%) iter time

3rd order tensors of size 50 × 50 × 50

0.5 4.16 10.0 0.26 2.42 10.0 0.25 18.57 6.9 0.14 2.69 2.5 0.17
7 0.9 5.66 10.0 0.26 3.31 9.7 0.24 14.40 6.4 0.13 3.75 2.5 0.16

1 5.89 10.0 0.29 4.00 9.8 0.28 14.60 6.8 0.15 4.10 2.4 0.18

0.5 4.68 10.0 0.28 3.02 9.9 0.29 12.95 7.0 0.17 3.53 2.8 0.20
9 0.9 6.18 10.0 0.26 3.26 10.1 0.28 13.65 7.3 0.16 3.25 3.2 0.19

1 6.51 10.0 0.29 3.61 10.3 0.31 16.39 7.3 0.18 3.44 3.4 0.21

0.5 5.20 10.0 0.29 2.44 10.0 0.34 12.2 8.0 0.18 3.69 3.3 0.21
12 0.9 7.05 10.0 0.32 3.30 10.3 0.39 11.8 8.2 0.22 5.31 3.8 0.25

1 7.45 10.0 0.29 3.49 11.3 0.36 13.3 7.9 0.18 3.72 4.1 0.23

0.5 5.72 10.0 0.32 2.44 11.6 0.44 12.7 8.4 0.2 3.77 3.9 0.23
15 0.9 7.72 10.0 0.3 3.29 11.0 0.41 15.02 8.7 0.21 5.72 4.7 0.24

1 8.16 10.0 0.32 3.46 12.1 0.48 13.55 8.7 0.22 5.18 4.8 0.27

4th order tensors of size 30 × 30 × 30 × 30

0.5 0.93 10.4 1.99 0.88 5.1 0.47 17.72 5.7 1.11 9.81 2.5 1.71
7 0.9 1.23 10.3 2.02 1.17 4.9 0.47 18.57 5.8 1.15 8.30 2.5 1.75

1 1.31 10.2 1.99 1.24 5.0 0.47 17.95 6.4 1.26 8.52 3.1 1.84

0.5 0.92 10.9 2.36 0.85 5.5 0.55 17.4 6.6 1.40 8.83 4.4 2.19
9 0.9 1.26 10.9 2.56 1.17 6.3 0.66 21.43 6.5 1.51 13.85 4.2 2.35

1 1.31 10.9 2.35 1.22 6.6 0.61 19.64 6.6 1.40 15.93 4.5 2.19

0.5 0.97 11.0 2.88 0.88 6.7 0.7 14.56 7.9 1.77 15.97 6.4 2.76
12 0.9 1.28 11.0 2.84 1.16 7.5 0.77 14.98 7.3 1.69 13.40 6.2 2.72

1 1.35 11.0 2.94 1.22 6.9 0.76 22.19 7.0 1.68 15.14 6.9 3.01

0.5 0.98 11.0 3.33 0.87 8.8 0.97 17.67 7.9 2.02 18.82 9.5 3.74
15 0.9 1.29 11.0 3.62 1.14 8.5 1.05 16.45 8.0 2.25 17.04 9.2 3.91

1 1.36 11.0 3.18 1.20 8.1 0.88 18.76 7.8 1.91 18.56 9.0 3.48

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Instances

R
e
l
a
t
i
v
e
 
e
r
r
o
r

 

 

Scheme (4.22)
ALS + ELS
Scheme(4.22)+ALS
ALS + ELS + GEVD

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Instances

R
e
l
a
t
i
v
e
 
e
r
r
o
r

 

 

Scheme (4.22) 3
ALS + ELS
Scheme(4.22)+ALS
ALS + ELS + GEVD

Fig. 4. Each figure shows 50 instances on different A’s. The left one presents 50 × 50 × 50
tensors with R = 12 and ratio = 0.9, while the right one presents 30 × 30 × 30 × 30 tensors, with
R = 7 and ratio = 1. The y-axis stands for the relative error, while the x-axis denotes runs.

the table, we first observe that all the algorithms perform efficiently, while ALS-type
methods need less time. Considering the relative error, Scheme (4.22) outperforms
ALS+ELS. Based upon the results generated by Scheme (4.15), Scheme (4.22)+ALS
also performs well, particularly on 4th order tensors. To emphasize the effectiveness of
the proposed method, Figure 4 illustrates 50 instances, which shows that the proposed
methods may be more stable than other algorithms.

6. Conclusions and remarks. In this paper, the rank-1 equivalence property
as well as its applications to tensor optimization problems was studied. It was shown
that in the dth order tensor space, the set of rank-1 tensors is the same as the inter-
section of the �log2(d)� set of tensors for which a certain balanced unfolding is rank-1.
The number �log2(d)� was shown to be optimal as well. Although the equivalence
property can be deduced from [8, Theorem 8] (Theorem 3.6), differences should be
clarified: The ideas behind the property are proposed, a new proof is presented, and
the property can be directly used in tensor optimization problems.

Based on the rank-1 equivalence property, three relaxation approaches were pro-
posed for solving the best rank-1 approximation problem, where the nonconvex re-
laxation was generalized to solving the rank-R approximation problem when R > 1.
Numerical experiments demonstrated the effectiveness of the proposed methods.

D
ow

nl
oa

de
d 

01
/2

1/
16

 to
 1

34
.5

8.
25

3.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

194 Y. YANG, Y. FENG, X. HUANG, AND J. A. K. SUYKENS

From the discussions in section 4.1.2, it is possible to use the dual subgradient
ascent [5] to solve the nuclear norm constrained problem (4.6) with the scheme

Λk+1
i = Λk

i + αk
i (X k+1 − Yk+1

i )

with suitably chosen αk
i , where

X k+1 ∈ arg min
‖X‖F≤1

〈
f(d)∑
i=1

Λk
i −A,X

〉
, Yk+1

i ∈ arg min
‖Yi,[i]‖∗≤1

〈−Λk
i ,Yi〉.

Solving the Yi-related subproblem can be more efficient than computing a full SVD,
however, it is commonly known that the subgradient method is not efficient. There-
fore, how to solve (4.8) by taking advantage of the efficiency on solving the sub-
problems while improving the performance of the subgradient method is a possible
direction for future research.

Appendix A. Convergence of the alternating minimization scheme (4.15).
Proof of Proposition 4.7. We have demonstrated that {(X k,Yk)}∞k=1 is bounded.

Suppose {X ∗,Y∗} is a limit point and suppose the subsequence {X kl ,Ykl}∞l=1 →
{X ∗,Y∗}. Denote the best response functions by

R(X ∗) ∈ arg min
rank(Y[1])=1

F (X ∗,Y), R(Y∗) ∈ arg min
rank(X[2])=1

F (X ,Y∗).

Then the following two inequalities hold:

F (R(Y∗),Ykl) ≥ F (X kl ,Ykl),

F (X kl , R(X ∗)) ≥ F (X kl ,Ykl+1) ≥ F (X kl+1,Ykl+1) ≥ · · · ≥ F (X kl+1 ,Ykl+1).

Letting l→∞ in the above two inequalities gives us that

F (R(Y∗),Y∗) ≥ F (X ∗,Y∗), F (X ∗, R(X ∗)) ≥ F (X ∗,Y∗).

These in connection with the definition of the best response function give the re-
sult.

Acknowledgments. We would like to thank the associates editor and two anony-
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manuscript.
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