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Abstract

During the last decade or so, the amount of data that is generated and becomes
publicly available is rapidly growing. This makes it impossible to extract useful
information from this huge amount of data manually without using automatic tools
and algorithms. Data mining has been defined as the process of automatic extraction
of useful and previously unknown information from a large dataset using techniques
from statistics, artificial intelligence and database management. Furthermore, in many
applications, such as Bioinformatics, the world wide web, social and technological
and communication networks, data are usually represented with graphs. This makes
graph mining practically interesting, while also a challenging research area, due
to high computational cost involved in processing graph data. In this dissertation,
we investigate two key problems in graph mining: frequent pattern mining and
betweenness centrality computation.

Existing algorithms for finding frequent patterns from large single networks mainly
use subgraph isomorphism. However, subgraph isomorphism is expensive to compute:
deciding whether one graph is subgraph isomorphic to another graph is NP-complete
in terms of the sizes of the graphs. Recently, a few algorithms have used subgraph
homomorphism. However, they find very restricted classes of patterns such as trees.
The main challenge with pattern mining under subgraph homomorphism is the pattern
generation phase. In this work, we go beyond trees and propose an efficient algorithm
for mining graph patterns from large networks under homomorphism. We introduce a
new class of patterns, called rooted graphs, and present an algorithm for complete
generation of rooted graphs. We also propose a new data structure for compact
representation of all frequent patterns. By performing extensive experiments on
several real-world and synthetic large networks, we show the empirical efficiency of
our proposed algorithm, called HoPa.

We then present an efficient algorithm for subtree homeomorphism with application
to frequent pattern mining. We propose a compact data-structure, called oce, that can
encode and represent several occurrences of a tree pattern and define efficient join
operations on the occ data-structure, that help us to count occurrences of tree patterns
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according to occurrences of their proper subtrees. Based on the proposed subtree
homeomorphism method, we develop an effective pattern mining algorithm, called
TPMiner. We evaluate the efficiency of TPMiner on several real-world and synthetic
datasets. Our extensive experiments confirm that TPMiner always outperforms well-
known existing algorithms, and in several cases the improvement with respect to
existing algorithms is significant.

Finally, we propose a randomized algorithm for unbiased estimation of betweenness
centrality. We discuss the conditions that a promising sampling technique should
satisfy to minimize the approximation error. We then propose a sampling method that
fits better with these conditions. By performing extensive experiments on synthetic
and real-world networks, we compare our proposed method with existing algorithms
and show that our method works with a better accuracy.



Beknopte samenvatting

Tijdens de laatste 10 jaar is de hoeveelheid gegevens die gegenereerd en publiek
beschikbaar gemaakt wordt snel aan het groeien. Dat maakt het onmogelijk om nuttige
informatie uit deze grote hoeveelheden gegevens te halen zonder gebruik te maken van
automatische tools en algoritmes. Data mining is het proces dat nuttige en voorheen
onbekende informatie op een automatische manier afleidt uit een grote databank,
gebruik makende van technieken uit de statistiek, de kunstmatige intelligente en
databankenbeheer. Bovendien worden in vele toepassingen zoals bioinformatica, het
wereldwijde web en sociale, technologische en communicatienetwerken de gegevens
meestal voorgesteld door grafen. Dit maakt graph mining praktisch nuttig, terwijl het
door de hoge computationele kosten die gepaard gaan met het verwerken van grafen
ook een uitdagend onderzoeksdomein vormt. In deze dissertatie onderzoeken we twee
belangrijke problemen uit graph mining: het zoeken naar frequente patronen en de
berekening van betweenness-centraliteit.

Bestaande algoritmes voor het vinden van frequente patronen in grote netwerken
gebruiken vooral subgraaf isomorfisme. Subgraaf isomorfisme is echter heel duur
om te berekenen: beslissen of een graaf subgraaf isomorfisch is t.0.v. een andere
graaf is NP-compleet in functie van de groottes van de grafen. Onlangs hebben
enkele algoritmes het subgraaf homomorfisme toegepast. Ze beperkten zich echter
tot heel gelimiteerde klassen van patronen zoals bomen. De grote uitdaging van het
zoeken naar patronen m.b.v. subgraaf homomorfisme is het genereren van de patronen.
In dit werk gaan we verder dan bomen alleen en stellen we een efficiént algoritme
voor dat graafpatronen kan afleiden uit grote netwerken m.b.v. homomorfisme. We
introduceren een nieuwe klasse van patronen, rooted graphs genaamd, en presenteren
een algoritme voor de volledige generatie van dergelijke patronen. We stellen ook
een nieuwe datastructuur voor die alle frequente patronen compact kan representeren.
Aan de hand van een uitgebreide experimentele analyse op meerdere bestaande en
artificiéle grote netwerken tonen we de efficiéntie van ons algoritme HoPa aan.

Vervolgens stellen we een efficiént algoritme voor deelboom homeomorfisme voor als
toepassing op het zoeken naar frequente patronen. We introduceren een compacte
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datastructuur, genaamd oce, die verschillende voorkomens van een boompatroon kan
encoderen en representeren, en we definiéren ook efficiénte join operaties voor de
occ datastructuur, die ons helpen om voorkomens van boompatronen te tellen op
basis van de voorkomens in hun deelbomen. We hebben een algoritme ontwikkeld
voor het zoeken naar patronen op basis van dit deelboom homeomorfisme, dat we
TPMiner noemen. We evalueren de efficiéntie van TPMiner op meerdere bestaande
en synthetische datasets. Onze uitvoerige experimenten bevestigen dat TPMiner beter
presteert dan bekende algoritmes, en in meerdere gevallen is de verbetering significant.

Tenslotte stellen we een gerandomiseerd algoritme voor onbevooroordeelde bena-
dering van betweenness-centraliteit. We bespreken de voorwaarden aan dewelke
een sampling techniek moet voldoen om de benaderingsfout zo klein mogelijk te
houden. Dan stellen we een sampling techniek voor die beter aan deze voorwaarden
voldoet. Aan de hand van uitvoerige experimenten op netwerken vergelijken we onze
voorgestelde methode met bestaande algoritmes en tonen we aan dat onze methode
een betere accuraatheid heeft.
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Chapter 1

Introduction

During the last years, the amount of data that is generated and becomes publicly
available is rapidly increasing. This makes it impossible to extract useful and
interesting information from this data manually by hand and without using automatic
tools and algorithms. To satisfy this requirement, the field of data mining emerged that
deals with automatic extraction of useful and previously unknown information from
a large dataset using techniques from statistics, artificial intelligence and database
management (Han and Kamber, 2000). Furthermore, in many applications, such as
Bioinformatics, the world wide web, social and technological and communication
networks, data are usually represented with graphs. Informally speaking, a graph is a
set of vertices (nodes) joined by a set of edges. Examples of using graphs for modeling
data include:

* A road network, where vertices are intersections of roads and (undirected) edges
are roads connecting these intersections.

e The link structure of a website, where vertices represent web pages and
(directed) edges represent links from one page to another.

e A social network, such as facebook, where vertices are individuals and
(undirected) edges represent friendship relations between them.

As an example of representing a (small and real-world) network with a graph, consider
Figure 1.1, where vertices of the graph represent different language versions of
Wikipedia during July 2013 and a directed edge between two vertices (versions) shows
the existence of at least one user primarily editing one language who has edited another
language as well (Hale, 2014).
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Figure 1.1: A graph formed by Wikipedia language versions as vertices and Wikipedia
editors as edges (Hale, 2014).

1.1 High level description of the studied problems

The huge amount of available graph data makes graph mining an interesting and
important research challenge. The concern of this dissertation is graph mining
and in particular, the following problems: frequent pattern mining and betweenness
centrality computation.

Frequent pattern mining A key task in graph mining is frequent pattern
mining. A graph (pattern) is frequent in a database DB iff its frequency in
DB, under a matching operator, is more than a user-defined threshold minimum
support. The frequency of a pattern in a database is defined as e.g., the number
of occurrences/embeddings/instances of the pattern in the database. The matching
operator defines how the pattern is matched onto a graph in the database, called
a database graph. There are three widely-used matching operators: subgraph
isomorphism, subgraph homomorphism and subgraph homeomorphism. Subgraph
isomorphism is an injective mapping of the vertices such that an edge in the pattern
is mapped onto an edge in the database graph. Subgraph homeomorphism is also
an injective mapping, however, an edge in the pattern is mapped onto a path in the
database graph. Finally, subgraph homomorphism is a mapping where an edge in the
pattern is mapped onto an edge in the database graph. In this mapping, two vertices in
the pattern might be mapped onto the same vertex in the database graph.

For example, in Figure 1.2, 1.2a presents a database graph (left) and a pattern (right).



HIGH LEVEL DESCRIPTION OF THE STUDIED PROBLEMS 5

Under subgraph isomorphism the pattern has no embedding in the database graph,
however, under subgraph homomorphism and subgraph homeomorphism, it has 2
and 4 embeddings, respectively. If the user-defined threshold minimum support
is 3, the pattern will not be frequent under subgraph isomorphism and subgraph
homomorphism, however, it will be frequent under subgraph homeomorphism.

(W)
® @
&—F

(a) A database graph (left) and a
pattern (right).

(b) Under subgraph homomorphism, the pattern has 2 embeddings in the database
graph.

(&)
® ©
E&—6-

(&)
® ©
E&—6)

(c) Under subgraph homeomorphism, the pattern has 4 embeddings in the
database graph.

Figure 1.2: Different matching operators between a pattern and a database graph.

In the frequent pattern mining problem, given a database of graphs and an integer
minimum support, the goal is to find all frequent patterns in the database.
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Figure 1.3: In the graph of this figure, vertices v2 and v4 have higher betweenness
scores than vertices v1, vs and wvs and hence, they have more control over
communications/information flow in the network.

v3

v2 v4

%l v

Betweenness centrality computation. An essential index in determining the
centrality or importance of a vertex in a graph is betweenness centrality. Betweenness
score of a vertex v is defined as the ratio (or the number) of shortest paths from all
vertices to all others in the graph that pass through v. With the assumption that in a
graph (network) communications are done through shortest paths, betweenness of a
vertex indicates its influence on the communications/information flow/transfers. For
example, in Figure 1.3:

* There is no shortest path passing through vertex v .
* The following shortest paths pass through vertex vs:
- V1 — V2 — U3,
— V1 — Vg — U4, and
- VU] — Uy —Ug — Us.
» There is no shortest path passing through vertex vs.
* The following shortest paths pass through vertex vy:
— V2 — V4 — Us,

- v3 —v4 — Us, and
= V1 — V2 —Ug — VUs.
* There is no shortest path that passes through vertex vs.
Therefore, vertices v, and v, have more influence than vertices v, v3 and vs on the
information flow in the graph and hence, they are more important.

In the betweenness centrality computation problem, given a graph (and one or more
vertices of it), the goal is to compute betweenness centrality of the (given) vertices of
the graph.
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1.2 Contributions

In this dissertation, we have made a number of novel and important contributions to
the field of graph mining. A summary of our key contributions is listed below.

Single network mining under subgraph homomorphism. Existing algorithms
for finding frequent patterns from large single networks mainly use subgraph
isomorphism. However, subgraph isomorphism is expensive to compute: deciding
whether a graph G is subgraph isomorphic to another graph G4 is NP-complete
in terms of |V(Gy)| and |V (G2)|, even if GGy is a simple graph such as a path.
Recently, a few algorithms have used subgraph homomorphism. However, they find
very restricted classes of patterns such as trees. The main challenge with pattern
mining under subgraph homomorphism is the pattern generation phase; in particular, a
larger graph might be subgraph homomorphic to a smaller graph. In this work, we go
beyond tree patterns and address the aforementioned problems for graph patterns. We
introduce a new class of patterns, called rooted patterns, and present an algorithm for
complete generation of rooted patterns. We also propose a new notion of closedness
for compact representation of all frequent patterns and investigate its properties. We
then present HoPa, an efficient algorithm for finding frequent rooted patterns from
large single networks under subgraph homomorphism. HoPa uses the querying system
developed by Fannes et al. (2015) for frequency counting. Finally, by performing
extensive experiments over several real-world and synthetic large networks, we show
the empirical efficiency of HoPa. This chapter is recent unpublished work in close
collaboration with my supervisors. A very preliminary version has been presented at

e M. H. Chehreghani, J. Ramon and T. Fannes: Mining large networks under
homomorphism, In Dutch-Belgian Database Day (DBDBD), Rotterdam, the
Netherlands, 29 November 2013.

Mining rooted ordered trees under subtree homeomorphism. The crucial
step in frequent tree pattern mining is frequency counting, which involves a matching
operator to find occurrences (instances) of a tree pattern in a given collection of trees.
A widely used matching operator for tree-structured data is subtree homeomorphism,
where an edge in the tree pattern is mapped onto an ancestor-descendant relationship
in the given tree. Tree patterns that are frequent under subtree homeomorphism are
usually called embedded patterns. In this work, we present an efficient algorithm
for subtree homeomorphism with application to frequent pattern mining. We
propose a compact data-structure, called occ, which can encode and represent several
occurrences of a tree pattern. We then define efficient join operations on the occ
data-structure, which help us to count occurrences of tree patterns according to
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occurrences of their proper subtrees. Based on the proposed subtree homeomorphism
method, we develop an effective pattern mining algorithm, called TPMiner. We
evaluate the efficiency of TPMiner on several real-world and synthetic datasets. Our
extensive experiments confirm that TPMiner always outperforms well-known existing
algorithms, and in several cases the improvement with respect to existing algorithms
is significant. This chapter was previously published as:

e M. H. Chehreghani and M. Bruynooghe: Mining rooted ordered trees under
subtree homeomorphism, Data Mining and Knowledge Discovery journal
(DMKD), in press, DOI: 10.1007/s10618-015-0439-5. This paper will also
be presented in the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery (ECML-PKDD), Riva del Garda, Italy,
September 19-23, 2016.

Approximate betweenness centrality computation. In this work, we propose
a randomized algorithm for unbiased estimation of betweenness scores of vertices of
a graph. The proposed framework can be adapted with various sampling techniques
and give algorithms with different characteristics. We discuss the conditions that a
promising sampling technique should satisfy to minimize the approximation error and
propose a sampling method that fits better with the conditions. We perform extensive
experiments on synthetic networks as well as networks from real-world and show that
compared to existing inexact and exact algorithms, our method works with higher
accuracy or gives significant speedups. This chapter was published in the following
papers:

e M. H. Chehreghani: An efficient algorithm for approximate betweenness
centrality computation, Computer Journal (Comp. J.), Oxford University press,
57(9), 1371-1382, 2014.

e M. H. Chehreghani: An efficient algorithm for approximate betweenness
centrality computation, In 22nd ACM International Conference on Information
and Knowledge Management (CIKM), 2013.

1.3 Outline of the dissertation

The rest of this dissertation consists of 5 chapters. Chapter 2 presents basic definitions,
Chapters 3-5 describe the key contributions of the dissertation, and Chapter 6 presents
conclusion and future work.

* In Chapter 2, we review the necessary background on graph theory and data
mining.
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e In Chapter 3, we introduce rooted patterns, a new notion of closedness for
compact representation of frequent rooted patterns, and the HoPa algorithm
for finding frequent rooted patterns from large single networks under subgraph
homomorphism.

* In Chapter 4, we introduce a new algorithm for subtree homeomorphism with
application to frequent pattern discovery, and present the TPMiner algorithm for
finding frequent patterns from rooted ordered trees and show its high efficiency
compared to existing algorithms.

e In Chapter 5, we propose a randomized algorithm for unbiased estimation
of betweenness scores and discuss the conditions that a promising sampling
technique should satisfy to minimize the approximation error and propose a
sampling method that fits better with the conditions.

* Finally in Chapter 6, we summarize our contributions and present our conclu-
sions and suggestions for future work.

1.4 Connections between different chapters

Two important types of statistics frequently computed for graphs and networks are:
i) statistics related to the patterns and motifs that frequently occur in the graph, and
ii) statistics that measure the (relative) importance of a vertex or a set of vertices in
the graph. In this PhD dissertation, we try to provide a coverage of both types. For
the first type, we investigate two different classes of graphs and for each one, we
investigate frequency counting under a proper matching operator (Chapters 3 and 4).
For the second type, we study centrality of a vertex under the widely used notion of
betweenness centrality (Chapter 5).

The interesting research question arising in the end of this dissertation is whether there
is any algorithmic connection between these two types of statistics. In other words,
can having statistics of one type improve the efficiency of computing statistics of the
other type? In the end of this dissertation, we present this as a conjecture and open
problem for future research.






Chapter 2

Background

In this chapter, we introduce basic definitions and concepts widely used in the
dissertation. First in Section 2.1, we review the necessary background in graph theory.
Then in Section 2.2, we present a brief description of poset and closure operator and in
Section 2.3, fundamentals and basic definitions from data mining. Finally in Section
2.4, we present the necessary background in betweenness centrality computation.

2.1 Graph theory

We assume the reader is familiar with the basic concepts in graph theory. The
interested reader can refer to e.g., Diestel (2010). Let G be a graph. We refer to its
vertices and edges by V(G) and E(G), respectively. We assume graphs are connected,
simple (i.e., there is at most one edge between two vertices and there are no reflexive
edges) and finite and have labels on both edges and vertices that are selected from
a vertex alphabet 3y, and an edge alphabet X g, respectively. This is without loss
of generality as we can assume all vertices/edges have the same label in case of an
unlabeled graph. Unless explicitly mentioned, we suppose graphs are undirected. For
anz € V(G) U E(G), Ag(z) gives the label of « in G. If G is clear from the context,
we drop it and write A(z). Two graphs G; = (V1,E1, A1) and Go = (Va, Ea, A\2)
(either both are directed or both are undirected) are identical, written as G = Ga, if
Vi = Vo, By = Es,andVz € V1 U Ep @ A(x) = A2(x). G is a subgraph of G,
denoted by G1 =X Go, iff V1 C Vo, By C Es, and Vo € V1 U E; : A(x) = Ao(x).
For a set S C V(G), the graph induced by S, denoted by G[S], is the subgraph G’ of
G, where V(G') = S and E(G’) = {{u,v} € E(G) | u € S Av € S}. The size of
G is defined as the number of vertices of G.

11
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A path from a vertex vg to a vertex v,, in a graph G = (V, E, \) is a sequence of
vertices such that Vi, 0 < i < n — 1, {v;,v;41} € E(G). The length of a path is
defined as its number of edges (number of vertices minus 1). A cycle is a path with
Vo = Un.

Two graphs G and G5 are isomorphic, denoted by G ' G, if there is a bijection
v : V(G1) — V(Gy) satisfying: 1) {u,v} € E(Gy) if and only if {¢(u), p(v)} €
E(Gs) for every u,v € V(Gy), ii) Ag, (1) = A, (@(w)) for every u € V(G1), and
iii) Ag, ({u, v}) = Aa, ({e(u), p(v)}) for every {u,v} € E(G1). The mapping ¢
is called a graph isomorphism from G; to G3. We say (G is subgraph isomorphic
to Go, denoted by G; =<' Gs, if G, is isomorphic to a subgraph of Gy. A graph
automorphism of a graph G is a graph isomorphism from G to itself.

A graph homomorphism from a graph G, to a graph G, is a surjective mapping
¢ : V(G1) = V(Go) satisfying: i) if {u,v} € E(G1), then {p(u), p(v)} € E(G2)
for every u,v € V(Gy), il) Mg, (1) = Ag,(p(u)) for every u € V(Gy), and iii)
Ac, ({u,v}) = Ag,({o(u), p(v)}) for every {u,v} € E(G1). Gy is homomorphic
to G2, denoted by G ~hm q, iff there exists a graph homomorphism from G to
Gs. G is subgraph homomorphic to G, denoted by G <™ G4, iff there exists a
graph homomorphism from G to a subgraph of G.

A subgraph homeomorphism from a graph G to a graph G5 is a pair of injective
mappings ¢1 and (o, the first one from vertices of G; to vertices of G2 and the
second one from edges of (G1 to simple paths of G, that satisfy: i) for every u,v €
V(Gh), if {u,v} € E(Gy), then there exists a simple path P between ¢;(u) and
©1(v) in Go such that po({u,v}) = P, and ii) Ag, (u) = Ag, (¢1(w)), for every u €
V(G1). If the mappings of the edges of G are edge-disjoint paths of G5, the subgraph
homeomorphism is called an edge-disjoint subgraph homeomorphism (LaPaugh and
Rivest, 1980).

Trees An undirected graph not containing any cycles is called a forest and a
connected forest is called a (free) tree. A rooted tree is a directed acyclic graph (DAG)
in which: 1) there is a distinguished vertex, called root, that has no incoming edges,
ii) every other vertex has exactly one incoming edge, and iii) there is an unique path
from the root to any other vertex. In a rooted tree 7', w is the parent of v (v is the child
of w) if (u,v) € E(T). The transitive closure of the parent-child relation is called the
ancestor-descendant relation. A rooted ordered tree is a rooted tree such that there is
an order over the children of every vertex. In the rest of this paragraph about trees and
also throughout Chapter 4, we refer to rooted ordered trees simply as trees.

Preorder traversal of a tree T is defined recursively as follows: first, visit root(T);
and then for every child ¢ of root(T) from left to right, perform a preorder traversal
on the subtree rooted at c. The position of a vertex in the list of visited vertices during
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a preorder traversal is called its preorder number. We use p(v) to refer to the preorder
number of vertex v. The rightmost path of T is the path from root(T") to the last vertex
of T visited in the preorder traversal. Two distinct vertices u and v are relatives if u is
neither an ancestor nor a descendant of v. With p(u) < p(v), u is a left relative of v,
otherwise, it is a right relative.

A tree T is a rightmost path extension of a tree T’ iff there exist vertices u and v
such that: (i) {v} = V(T)\ V(T"), (i) {(uw,v)} = E(T) \ E(T"), (iii) u is on the
rightmost path of 7", and (iv) in T, v is a right relative of all children of u. We say
that T is the rightmost path extension of 7" with v attached at u and we denote T as
RExtend(T',v,u).

For trees, more specific definitions of morphisms are typically used. Let P and T be
two trees. P is subtree isomorphic to T (denoted P =<' T) iff there is a mapping
¢ : V(P) = V(T) such that:

s Yo € V(P): Ap(v) = Ar(p(v)),

* Yu,v € V(P): (u,v) € E(P) = (¢p(u),p(v)) € E(T), and

* Yu,v € V(P) : p(u) < p(v) & p(p(u) < ple(v)).

P is isomorphic to T (denoted P =; T) iff P <; T and |V(P)| = [V(T)].
P is subtree homomorphic to T (denoted P <"™ T) iff there is a mapping ¢ :
V(P) — V(T) such that:

e Yo € V(P) : Ap(v) = Ar(p(v)),

* Yu,v € V(P) : (u,v) € E(P) = (¢(u),p(v)) € E(T), and

* Vu,v € VI(P) : p(u) < p(v) < ple(u)) < p(e(v)).
Note that, under subtree homomorphism, successive children of a vertex in P can be
mapped onto the same vertex in 7.
P is subtree homeomorphic to T (denoted P <" T) iff there is a mapping ¢ :
V(P) — V(T) such that:

e Yo € V(P): Ap(v) = Ar(p(v)),

* Yu,v € V(P) : u is the parent of v in P iff ¢(u) is an ancestor of ¢(v) in T,
and

* Vu,v € V(P) : p(u) < p(v) & plp(u)) < ple(v)).
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Note that a tree P under a subtree morphism can have several mappings to another
tree 7. In the context of tree mining, when the matching operator is subtree
homeomorphism, we refer to every mapping as an occurrence (or embedding) of P in
T. An occurrence (embedding) of a vertex v is an occurrence (embedding) of the tree
consisting of the single vertex v. The number of occurrences of P in T is denoted by
NumOcc(P,T).

Tree decomposition A tree decomposition of a graph G is defined as a pair (T, B)
with T" a rooted tree and B = (B(2)).cv (r) a family of subsets of V(&) satisfying:
i) U.ev(r)B(2) = V(G), ii) for every {u,v} € E(G), there is a z € V(T such
that w,v € B(z), and iii) B(z1) N B(z3) C B(z2) for every 21, 22,23 € V(T such
that z5 is on the path connecting z; with z3 in 7. The set B(z) associated with a
node z of T is called the bag of z. The width of the tree decomposition is defined
as max.cv ()| B(z)| — 1 and the treewidth of G is the minimum width over all tree
decompositions of G (Diestel, 2005; Halin, 1976). We use treewidth(G) to refer to
the treewidth of G. The height of the tree decomposition, denoted by height(T), is
defined as the size of its longest path starting from the root. As a common convention,
we call the vertices of G "vertices" and those of 7'D(G) "nodes" (with the associated
"bags"), the edges of G "edges" and those of TD(G) "branches". To distinguish
between the vertices of a graph and those of its tree decomposition, we use vy, va, . . .
for the former and z1, 2o, ... for the latter. Given an integer tw, it is NP-complete
in terms of tw and |V (G)], to decide if G is a tw-bounded-treewidth graph (Arnborg
et al., 1987). For example, Figure 2.1 shows three different tree decompositions of
the same graph. For a node z in a tree decomposition, Vr(z) denotes the union of the
vertices in the bags of the nodes of the subtree of the tree decomposition rooted at z.

Figure 2.1: G is a graph and 7'1, T2 and 7'3 are three tree decompositions of it.
For example, 77 has three nodes z1, 2z and z3, where B(z1) = {va,v4}, B(z2) =
{v1,v3},and B(z3) = {vs, v4,vs}. T'1, T2 and T'3 have width 2, 2 and 4, respectively.
Observe that no tree decomposition with width 1 is possible for the subgraph with
vertices vs, v4 and vs, hence the treewidth is 2.

v5(Q)

o o 0
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G T1 T2 T3
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2.2 Poset and closure operator

Poset. A partial order is a binary relation < over a set .S which is reflexive,
antisymmetric and transitive. In other words, for all a, b, ¢ € S the followings hold:

e a < a (reflexivity);

e ifa < band b < a then ¢ = b (antisymmetry);

e ifa < band b < cthen a < c (transitivity).

S is called a partially ordered set (or a poset, in short) (Simovici and Djeraba, 2014).
We may refer to it as (.5, <) to emphasize the binary relation <.

Closure operator. Let (S, <) be a poset. A mapping o : S — S is called a closure
operator iff it satisfies the following conditions for all s1, so € S:

* (C1.) s1 < o(s1) (extensivity),

e (C2) s1 < 592 = 0(s1) < o(sa) (monotonicity),

* (C3) o(o(s1)) = o(s1) (idempotence).

An element s € S is o-closed if o(s) = s.

Another, slightly weaker operator of interest is the pseudo closure operator. A
mapping o : S — 2% is called pseudo closure operator' iff it satisfies the following
conditions for all s1, s5 € S:

e (Pl.) Forall s € 0(s1), s1 < s, (extensivity),

e (P2) If 81 < soq, then there do not exist different elements p, € o(s2) and
p1 € o(s1) such that ps < p1, (pseudo-monotonicity),

* (P3.) Forall s € 0(s1), |o(s)| =1 and o(s) = {s} (idempotence).

An element s € S is o-pseudo closed if o(s) is singleton and o (s) = {s}.

The pseudo closure operator is a relaxation of the closure operator in two aspects.
First, instead of the monotonicity property, it has the pseudo-monotonicity property.
Second, in the pseudo closure operator an element may have more than one closure.
The following proposition follows directly from the definitions.

Note that the notion of pseudo closure operator introduced here is different from the notion of pseudo
closure operator used by Pasquier et al. (1999).
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Proposition 1. A closure operator is a pseudo-closure operator; too.

2.3 Data mining

Extension (refinement) operator. Let G be a graph class and < the subgraph
relation on G. Given the poset (G, <), an extension (refinement) operator is a function
p : G — 29 such that for every P € G and every P’ € p(P) the followings hold:
i) P < P’ ie., P’ is an extension of P, and ii) there does not exist Q € G such
that P < Q < P’, i.e., P’ is a minimal extension (Raedt and Dehaspe, 1997). In
the literature, in some cases the minimality condition on the extensions is dropped,
especially when homomorphism is considered (Nienhuys-Cheng and De Wolf, 1997).

Given an extension operator p, we define p’(P) = {P} and for an integer i > 0,
p'(P) = Upre,ppyp' ™ (P'). Moreover, p*(P) = U2, p'(P). We denote the empty
graph by L, i.e., for every graph P, L < P. The extension operator p is complete iff
for every P, € G such that P < Q, there is a P’ € p*(P) such that P’ 22* Q. Tt is
optimal iff for every Py, P> € G such that p*(Py) N p*(Py) # (), we have Py € p*(P;)
or P, € p*(Pg).

Figure 2.2 presents all minimal extensions of a rooted ordered tree, a rooted unordered
tree, and a free tree.

A) rooted ordered tree B) Rooted unordered tree C) Free tree
Figure 2.2: All minimal extensions of a rooted ordered tree, a rooted unordered tree,
and a free tree.

Pattern mining. A pattern mining setting is a triple (Lq, L,,, <) where :

» L4 is aclass of graphs, called the database language,

* L, is a subclass of Lg, called the pattern language, and
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» < is a matching operator between two graphs P € L, and D € L.

A database for the pattern mining setting (Lg, Ly, <) is a multiset of graphs of L,
(Moens et al., 2014). There are two main settings for pattern mining: transactional
pattern mining where the database is a collection of graphs, and single network mining
where the database is one large graph.

An interestingness predicate ¢ for (Lq, L,,, <) maps every pair (D, P) to either true
or false, where D € Lg and P € L,. The input of the problem of :-interesting
pattern mining for (Lg, Ly, <) is a database D € L4 and the task is to list all elements
P € L, for which «(D, P) is true (Moens et al., 2014). A widely used interestingness
predicate is the frequency (support) measure. In transactional pattern mining, this
measure can be defined e.g., as follows. Let (Lg, L,, <) be a pattern mining setting,
D € Lyand P € L,. Frequency (support) of P in D, denoted with freq(D, P), is
defined as follows (Moens et al., 2014):

freq(D,P) =T € D| P <T}| 2.0

P is frequent in D with respect to a user-defined threshold minsup if freq(D, P) >
minsup. In single network mining, defining an appropriate frequency measure is not
always straight forward. We briefly discuss it in Chapter 3.

The input of the problem of frequent pattern mining for the pattern mining setting
(L4, Ly, <) is a database D € L, and a user-defined threshold minsup, and the task
is to list all patterns P € L,, for which freq(D, P) > minsup (Moens et al., 2014).

Closed patterns. There are two widely used pseudo-closure operators in the
context of data mining: the frequency based closure operator, denoted by o (Chi
et al., 2005b), and the image based closure operator, denoted by o; (Garriga et al.,
2007). A pattern P is op-closed iff it does not have any super pattern P’ such that
the frequency of P is equal to the frequency of P’ (Chi et al., 2005b). A pattern P is
o-closed iff it does not have any super pattern P’ such that every image of P can be
extended to an image of P’ (Garriga et al., 2007).

2.4 Betweenness centrality

Let G be a simple and connected graph. A shortest path (which is also called a
geodesic path) between two vertices u,v € V(G) is a path whose size is minimum,
among all paths between u and v. For two vertices u,v € V(G), we use d(u,v) to
denote the number of edges of a shortest path connecting wu to v.
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For s,t € V(QG), 0 denotes the number of shortest paths between s and ¢ and o (v)
the number of shortest paths between s and ¢ that also pass through v. We have

o)=Y ouv)

teV(G)\{s,v}

Betweenness centrality of a vertex v is defined as:

ost(v)
BC(v) = .
(v) > o (2.2)
s,teV(G)\{v}
In Equation 2.2, undefined terms % are treated as 0.

A widely used notion in counting the number of shortest paths in a graph is the directed
acyclic graph (DAG) that contains all shortest paths starting from a vertex s (see e.g.,
(Brandes, 2001)). In this dissertation, we refer to it as the shortest-path-DAG, or
SPD in short, rooted at s. For every vertex s in graph G, the SPD rooted at s is
unique, and it can be computed in O(|E(G)|) time for unweighted graphs and in
O(|E(G)| + [V(G)|log(]V(G)|)) time for weighted graphs (with positive weights)
(Brandes, 2001) .

Brandes (2001) introduced the notion of the dependency score of a vertex s € V(G)
onavertex v € V(G) \ {s}. Itis defined as:

(55. (’U) _ Z Ost (U) (23)

Ost
teV(G)\{v,s}

‘We have:
BC)= Y Julv) (2.4)

seV(G)\{v}

Brandes (2001) showed that dependency scores of a source vertex on other vertices in
the (unweighted) network can be computed using the following recursive relation:

b)) = > T+ b (w)) (2.5)

w:v€ Py (w) sw

where P, (w) is:
{u e V(G) : {u,w} € E(G) Nd(s,w) = d(s,u)+ 1}

In other words, P;(w) contains the set of all parents (predecessors) of w in the SPD
rooted at s.

As mentioned by Brandes (2001), given the SPD rooted at s, dependency scores of s
on all other vertices in the graph can be computed in O(|E(G)|) time.



Chapter 3

Mining Large Single Networks
under Subgraph
Homomorphism

3.1 Introduction

The problem of finding frequent patterns from a database of graphs or from a single
network has several important applications in different areas such as the World Wide
‘Web, bioinformatics, chemo-informatics and social and information networks. It is
also a fundamental problem in many other data mining tasks such as association rule
mining, classification and clustering. The focus of this chapter is the single network
mining setting.

Existing algorithms for finding frequent patterns from a large single network mainly
use subgraph isomorphism (Ghazizadeh and Chawathe, 2002; Cook et al., 1995;
Kuramochi and Karypis, 2004, 2005; Vanetik et al., 2002). Subgraph isomorphism
is an injective mapping, i.e., two vertices in the pattern graph may not be mapped onto
the same vertex in the network at the same time. However, subgraph isomorphism
is expensive to compute: deciding whether one graph, even if it is as simple as a
path, is subgraph isomorphic to another graph is NP-complete in terms of network
size and pattern size. Therefore, in massive networks consisting of millions of
vertices subgraph isomorphism is intractable. For this reason, we argue that it may be
interesting to use subgraph homomorphism since for patterns of bounded-treewidth
complexity of this matching operator only depends polynomially on the network size

19
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and pattern size. Subgraph homomorphism is not an injective mapping: two vertices
in the pattern graph might be mapped onto the same vertex of the network.

Besides the efficiency concern, pattern mining under homomorphism has also an
intrinsic value as there are patterns that are frequent under homomorphism but not
under isomorphism. For example, as discussed by Dries and Nijssen (2012), assume a
database is given in which vertices are labeled by Author, Paper and keywords of the
papers; and edges indicate the authors and keywords of a paper (see Figure 3.1; there
is also a single vertex labeled by Publications list which is connected to all Authors
to build a connected network). Suppose we are looking for patterns that occur in the
database graph at least twice. A pattern that is expressed using homomorphism but
not using isomorphism, is depicted in Figure 3.1. This pattern presents the authors
who have at least 2 papers in Data mining and two (not necessarily different) papers
in Databases. Here, the key point is that under homomorphism an object can have
multiple roles, while it may have only one role under isomorphism. In the given
example, under homomorphism, the database Paper vertex which is the image of 2
pattern Paper vertices, finds two roles in the pattern: a paper on Databases and at the
same time a paper on Data mining.

Figure 3.1: A database graph (left) and a pattern that is expressed using
homomorphism but not using isomorphism (right).

Publications list

A

Author Author Author

Paper Paper Paper Paper Paper

N\ | TN | |

Data Artificial Databases Data Databases Data mining  Databases
mining intelligence mining

Database graph Pattern graph

The most challenging phase in single network mining under homomorphism is the
pattern generation phase (that involves a refinement operator (Muggleton and Raedt,
1994)). In particular, as mentioned by Dries and Nijssen (2012),

(¢) an infinite number of patterns can be frequent.

(i7) two patterns of different sizes may be homomorphic with each other. This
makes the ordered search more complicated than in the case of subgraph
isomorphism (Dries and Nijssen, 2012).
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In the field of Inductive Logic Programming (ILP), there is a long history of attempts
that tackle the above mentioned problems. It can be shown that under homomorphism,
an optimal refinement operator does not exist, even for simple classes of patterns
(Nijssen and Kok, 2010; Ramon et al., 2011). Ramon et al. (2011) showed that
homomorphism-free bounded-treewidth graphs can be enumerated efficiently with a
polynomial delay. Existing pattern mining algorithms mainly deal with the above
mentioned problems by restricting the pattern class and/or the database class. For
example, in the Warmr system proposed by Dehaspe and Toivonen (1999), frequent
cores are discovered from an acyclic database. A graph is core iff it is not subgraph
homomorphic to any of its (strict) subgraphs. Any non-core is equivalent, under
homomorphism, to a core. Restricting the patterns to cores and also the database
to acyclic graphs resolves the above mentioned problems. Dries and Nijssen (2012)
presented the htreeminer algorithm to find frequent rooted patterns from an arbitrary
large single network. They addressed the above mentioned problems by restricting the
patterns to height-bounded trees that are core.

In the current work, we study the problem of single network mining under
homomorphism for a class of patterns more general than rooted trees. We introduce
the class of rooted graph patterns and address the aforementioned pattern generation
problems for this class:

 In order to have always a finite set of frequent patterns (i.e., to address problem
(7)), on the one hand, we define the notion of height of a rooted pattern and
generate only rooted patterns that have a bounded height. On the other hand, we
only generate rooted patterns that are core. Both these conditions, i.e., being a
core and having a bounded height, are necessary to have a finite set of patterns.
We show that these two conditions are sufficient for the finiteness of patterns
under homomorphism.

* By generating only patterns that are core, problem (i) is also addressed, since
no two cores, of different sizes, are homomorphic to each other.

In order to have a polynomial time matching operator (in terms of both network
size and pattern size), we further restrict our patterns to bounded-treewidth
graphs, i.e., every generated pattern has a bound on its treewidth.

The class of height-bounded cores that are investigated by Dries and Nijssen (2012),
is a special case of our pattern class where the treewidth is bounded by 1.
Our key contributions in this work are:

1. We formulate the problem of finding frequent bounded-treewidth height-

bounded cores. As mentioned above, this class of patterns is finite and can
be discovered effectively.
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2. We propose a new method for generating bounded-treewidth height-bounded
cores, and show its completeness.

3. We present an efficient algorithm, called HoPa', for listing bounded-treewidth
height-bounded cores that are frequent with respect to a database and a
minimum support threshold. We also present optimization techniques to
improve the algorithm.

4. We introduce a new data structure for the compact representation of all frequent
rooted patterns. Compact representations are useful when the set of all frequent
patterns is huge. Most of existing closedness data structures for single network
mining are not based on a real closure operator. We show that the proposed
data structure gives a closure operator for finding rooted patterns from a single
network under homomorphism.

5. We empirically evaluate HoPa on different synthetic and real-world networks
and show its high efficiency, compared to existing methods.

Our proposed pattern mining algorithm is a level-wise method that follows the
following steps: first it generates a new bounded-treewidth height-bounded rooted
pattern P, then it checks if P is core and, if so, it counts the frequency of P, and
finally it computes the closed pattern of P. The empirical efficiency of the algorithm is
improved by several optimization techniques. For example, since it is computationally
very expensive to count frequency of a pattern in a large network, HoPa stores a list
of already found infrequent patterns. Then, before counting frequency of the pattern,
it checks if it is a supergraph, under homomorphism, of any infrequent patterns. If so,
it immediately discards the pattern without counting its frequency.

The rest of this chapter is organized as follows. A short overview of related work
is given in Section 3.2. In Section 3.3, we present the notion of rooted graphs and
an algorithm for generating them. In Sections 3.4 and 3.5, we respectively introduce
our proposed algorithms for finding frequent patterns and frequent closed patterns. In
Section 3.6, we empirically evaluate the proposed algorithm and finally, the chapter is
concluded in Section 3.7.

3.2 Related work

In this section, we provide a short overview of related work. First in Section 3.2.1,
we discuss efficient pattern matching algorithms. Then in Section 3.2.2, we briefly
investigate two main categories of pattern mining approaches. Finally in Sections

"HoPa is an abbreviation for Homomorphism Subgraph Patterns
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3.2.3 and 3.2.4, we discuss some of the well-known algorithms for pattern mining in
single networks and in transactional databases, respectively.

3.2.1 Efficient pattern matching algorithms

For general graphs, both subgraph isomorphism and subgraph homomorphism are NP-
complete (Garey and Johnson, 1979). There are several approaches in the literature
to deal with the hardness of the problems. One approach is to use heuristics that
make the algorithms empirically efficient. The widely used subgraph isomorphism
algorithms for the general graphs are the algorithm of Ullmann (1976) and the VF2
algorithm (Cordella et al., 2001) that both use the branch-and-bound and backtracking
techniques to prune the search space. VF2 usually outperforms the Ullman algorithm
in terms of running time (Cordella et al., 2004). Note that these algorithms can be used
for subgraph homomorphism as well. Another approach is to restrict the pattern class
and/or the database class. There exist several polynomial time algorithms, in terms of
both network size and pattern size, for the specific classes of graphs. Hajiaghayi
and Nishimura (2007) proposed such an algorithm for the subgraph isomorphism
between a log-bounded fragmentation graph G and a bounded-treewidth graph H. A
graph of size n is a log-bounded fragmentation graph if the removal of any set of at
most k vertices from it results in O(klogn) connected components. This algorithm
is an extension of the polynomial time subgraph isomorphism algorithm presented
by Matousek and Thomas (1992a) between a graph GG with a bounded degree and a
graph H with a bounded treewidth. Matousek and Thomas (1992a) also showed that
when H is a bounded-treewidth graph and G is an arbitrary general graph, subgraph
homomorphism between G and H can be done in polynomial time in terms of |V (G)]
and |V (H)|. Before that, Robertson and Seymour (1986) showed that subgraph
homomorphism between G and H can be done in O(|V (H)|?) time for every fixed G
and in O(|V (H)|) time if G is a path.

A third approach is to employ randomized techniques. Koutis and Williams (2009)
presented a randomized algorithm for subgraph isomorphism between a tree and a
network that runs in time O(k? log?(k)m2¥), where k is the pattern size and m is the
number of edges of the network. The algorithm consists of two main parts. In the
first part, it constructs an arithmetic circuit computing a polynomial that represents
all possible homomorphisms of the tree in the network. Subgraph homomorphism
between a tree and a network can be done in a time polynomial in terms of both
network size and pattern size. In its second part, it evaluates the polynomial on an
appropriate commutative group algebra, that ensures all terms that are not multilinear
(i.e., all homomorphisms that are not isomorphisms) vanish. Later, Fomin et al. (2012)
extended this algorithm to bounded-treewidth graphs and showed that if the treewidth
of the pattern G is bounded by tw, there is a randomized algorithm for subgraph
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isomorphism between G and a network H running in time O(2*n?'*), where k and n
are the sizes of G and H, respectively.

In summary, while the morphism problems are intractable in theory, several efforts
have been done to make them empirically tractable. In this section, we briefly
reviewed the three main approaches that are useful in different domains, including
frequent pattern discovery.

3.2.2 Pattern mining strategies

Two main categories of pattern mining strategies are breadth-first search algorithms
and depth-first search algorithms. In the breadth-first approach, patterns are generated
level-wise, i.e., first all patterns of size 1 are generated and counted; then patterns of
size 2 are generated and counted, and so on. In these algorithms, when a pattern is
generated, the frequency of all patterns that are more general is already counted. This
means there is a maximal opportunity to find out if the pattern under consideration has
any infrequent sub-pattern. However, this also means that the breadth-first algorithms
store lots of information in memory. Examples of breadth-first algorithms include
Inokuchi et al. (2002) and Kuramochi and Karypis (2001).

In the depth-first approaches, patterns are generated depth-first. These algorithms
have the advantage that when one branch of the search is finished, all information
concerning that branch can be discarded. As a result, only a minimum of memory is
required to store patterns, and available memory can be used for other optimizations.
Examples of depth-first algorithms include Borgelt and Berthold (2002) and Yan and
Han (2002).

3.2.3 Single network mining

SUBDUE (Cook et al., 1995) is a well-known algorithm for finding frequent
subgraphs from a single network under subgraph isomorphism. It employs the
minimum description length (MDL) principle to discover subgraphs that compress the
network and represent structural concepts. However, the heuristics used in SUBDUE
make it hard to find large frequent patterns. SEuS, proposed by Ghazizadeh and
Chawathe (2002), uses a summary data structure to prune the search space and provide
interactive feedback. In this method, all vertices with the same label are collapsed
together. This technique is especially useful at the presence of a relatively small
number of highly frequent subgraphs.

Kuramochi and Karypis (2004) presented GREW to find large patterns that have a
large number of vertex-disjoint embeddings (under isomorphism) in a dense network.
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However, because of the heuristic nature of GREW, the number of patterns discovered
by it is significantly smaller than those discovered by complete algorithms. In
Kuramochi and Karypis (2005), the same authors presented two algorithms to find
connected subgraphs that have a sufficient number of edge-disjoint embeddings in
a single large sparse graph. In their method, in order to reduce the number of
redundant candidates, subgraphs of size k are joined for growth only if they share
a certain subgraph of size £ — 1. They also used a structure, called anchor-edge-list,
to efficiently handle the edge-disjoint embeddings of a frequent pattern and reduce the
cost of the subgraph isomorphism test.

Zhu et al. (2011) developed the Spider-Mine algorithm for mining top-K largest
frequent patterns from a single network. Spider-Mine finds small patterns of a
bounded diameter, called spiders, and uses them in a probabilistic mining framework
to find the top-k largest patterns. The interesting techniques used in this work
are the identification of a set of promising growth paths toward large patterns and
the reduction of the cost of graph isomorphism tests with a new graph pattern
representation based on a multi-set of spiders. Based on the subgraph isomorphism
algorithm of Koutis and Williams (2009), Kibriya and Ramon (2012) proposed an
algorithm for mining frequent trees in a network. For a fixed parameter & (maximal
pattern size), their mining algorithm can mine all rooted trees with a delay linear in
the size of the network and exponential in k.

Dries and Nijssen (2012) presented the first algorithm, called htreeminer, that finds
frequent rooted trees from a large network under homomorphism in incremental
polynomial time. Incremental polynomial time means that the time spent between
listing two consecutive patterns is polynomial in the size of the input and the number
of patterns found till that point. They introduced novel support measures and extended
the method to find closed and maximal patterns under homomorphism. The mining
problem studied in our current work is a generalization of the mining problem
investigated by Dries and Nijssen (2012). In particular, we go beyond tree patterns
and propose an algorithm for finding frequent graph patterns from a large single
network under homomorphism. As mentioned before, the most challenging step in
pattern mining under homomorphism is the pattern generation phase. Hence, the main
concern in the current work is to address the pattern generation problem for a class
of patterns more general than rooted trees, called bounded-treewidth height-bounded
cores. We then present an efficient algorithm, called HoPa, for finding this class
of patterns from large single networks under homomorphism. The frequent patterns
found by htreeminer is a special case of the frequent patterns found by HoPa, where
the treewidth of the patterns is bounded by 1. Our extensive experiments show that in
this special case, HoPa mostly outperforms htreeminer.
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3.2.4 Transactional graph mining

There are several efficient algorithms for finding frequent patterns in the transactional
setting, where the database consists of many relatively small graphs, instead of a
single large graph (Inokuchi et al., 2000; Kuramochi and Karypis, 2001; Yan and
Han, 2002). Yan and Han (2002) proposed gSpan (graph-based Substructure pattern
mining) for finding frequent graph substructures. The gSpan algorithm builds a new
lexicographic order among graphs, and maps each graph to a unique minimum DFS
code as its canonical label. Based on this lexicographic order, gSpan adopts the depth-
first search strategy to mine frequent connected subgraphs. Later, Yan and Han (2003)
developed the CloseGraph algorithm for discovering frequent closed graph patterns.
CloseGraph is a variation of gSpan that takes advantage of early pruning techniques
in order to avoid generation of all frequent patterns. Hasan and Zaki (2009) proposed
the idea of output space sampling in the domain of frequent subgraph mining, which
samples interesting subgraph patterns without enumerating the entire set of candidate
frequent patterns. They presented a generic sampling framework, that is based on the
Metropolis-Hastings algorithm.

3.3 Rooted patterns and their generation

In this section, first in Section 3.3.1 we introduce rooted graphs, which will be used
as patterns. Then, in Section 3.3.2, we present our proposed algorithm for generating
them.

3.3.1 Rooted patterns

In choosing the class of patterns that are listed in a mining problem, someone may
consider either rooted patterns or unrooted ones. Using any of them may result in
different consequences, e.g.,

* For rooted patterns there exist simple and effectively computable support
measures such as the number of root images (Bringmann and Nijssen, 2007);
whereas for unrooted patterns more complicated support measures, such as
those that are based on overlap graph (Calders et al., 2011), are required.

* Since several rooted patterns may represent the same underlying unrooted graph,
the number of rooted patterns generated during the mining process may be
considerably larger than the number of unrooted ones. This can affect the
efficiency of the mining problem.
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In frequent patterns discovery, every individual pattern can be generated effectively,
however, it is computationally expensive to count its frequency. In the current work,
we choose rooted patterns as our pattern language which is consistent with the support
measure and the closure operator we use. As we will respectively discuss in Sections
3.4 and 3.5, we use the number of root embeddings as the support measure; and a
closure operator based on root embeddings for compact representation of patterns.
There are several algorithms in the literature that find unrooted patterns (Ghazizadeh
and Chawathe, 2002; Kuramochi and Karypis, 2004).

Definition 1 (rooted graph). A rooted graph PX is a graph P where a set X C V (P)
is distinguished.

The class of rooted graphs is denoted by G". Since rooted graphs will form our class of
patterns, we also refer to them as rooted patterns. Throughout the chapter, we assume
rooted patterns are connected, simple and finite. For a rooted pattern P, R(P™X)
refers to the subgraph of P induced by the root vertices.

The root of the pattern will allow us to define the height of a rooted pattern; putting a
bound on the height of the patterns to be generated will help us to ensure termination
of the generation process.

Let PX and QY be two rooted patterns. P is a root subgraph of Q¥ iff E(P) C
E(Q),X CYand V(P)\ X CV(Q)\Y. A root graph homomorphism from PX
to QY is a homomorphism mapping ¢ from P to () that maps root vertices of P~
(i.e., vertices that are in X) to root vertices of QY (i.e., vertices that are in Y) and
non-root vertices of PX (i.e., vertices that are not in X)) to non-root vertices of QY
(i.e., vertices that are not in Y). We use PX =" QY to mention that P¥ is root
homomorphic to QY . PX %Zm QY is used to explicitly mention the homomorphism
mapping . PX is root subgraph homomorphic to QY , denoted by PX <" QY if
it is root homomorphic to a root subgraph of QY. We use PX jgm QY to explicitly
mention the mapping ¢. A root subgraph isomorphism from a rooted pattern PX to a
rooted pattern ¥, denoted by PX <’ QY, is a root subgraph homomorphism where
no two vertices have the same image. We use PX <! QY to explicitly mention
the isomorphism mapping ¢. PX is rooted graph isomorphic to QY , denoted by
PX = QY iff PX < QY and QY <* PX 2

With ¢ a mapping from P to @ and S a subset of V' (P), ¢|, denotes ¢ restricted to
the vertices of S. Let PX =<5 QY (PX jgm QY)and QY jfa, NZ QY jﬁfn N7Z).
Then, ¢’ o ¢ is a mapping from PX to NZ that maps every vertex v € V(PX) to
@' (p(v)).

2The matching operators presented in this paragraph are used when we compare two rooted patterns. As
we will discuss in Section 3.4, for counting frequency of a rooted pattern in a network, we use the subgraph
homomorphism matching operator presented in Chapter 2.
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As mentioned earlier, when the pattern graph has a bounded treewidth, time
complexity of subgraph homomorphism depends only polynomially on the network
size and pattern size. This motivates us to restrict rooted patterns to the class of
rooted bounded-treewidth graphs. Hence, in the rest of this chapter, we assume the
treewidth of every rooted pattern is bounded by an integer tw. This, further, motivates
us to generate rooted patterns in the form of tree decompositions, i.e., instead of
enumerating rooted patterns and checking if every generated rooted pattern has a
bounded treewidth, we generate rooted tree decompositions of rooted patterns in such
a way that the underlying pattern has its treewidth bounded by tw.

A first difficulty with enumerating tree decompositions is that different rooted patterns
can have the same tree decomposition. To overcome this, in Definition 2 we introduce
extended tree decompositions, where the bag not only consists of vertices, but also of
edges, so that each tree decomposition identifies a unique rooted pattern.

Definition 2 (extended tree decomposition (ETD)). An extended tree decomposition
(ETD) of a rooted pattern PX is a tree decomposition of P~ in which each bag
contains the subgraph of P induced by the vertices in the bag. We refer to the induced
subgraph of a node z by B(z) and to the vertices and edges of B(z) by V(z) and £(z),
respectively.

Let (T, B) be an extended tree decomposition. We denote with Pat(T') the underlying
rooted pattern represented by the tree decomposition, and with 7, the tree T" where
the node z and its whole subtree are removed.

Generating extended tree decompositions is also no easy undertaking. To start with, a
single pattern can have an infinite number of extended tree decompositions (even for
a single node pattern "a", any tree with (identical) nodes "a" is a tree decomposition).
So, we need to impose constraints on the shape of an extended tree decomposition as
to eliminate redundancy (while still ensuring all patterns have a tree decomposition)

and to obtain a finite set.
A first step is to limit attention to rooted extended tree decompositions:

Definition 3 (rooted extended tree decomposition (RETD)). A rooted extended tree
decomposition of a rooted pattern PX is an extended tree decomposition of PX that
satisfies the following additional constraints:

(i) The subgraph in the root node of the tree decomposition is R(PX), and
(ii) It does not have any (directed) edge (z, z') such that B(z) (i.e., the graph of the
parent node) is a subgraph of B(2') (i.e., the graph of the child node).

The conditions expressed in Definition 3 put an extra constraint on rooted patterns: a
rooted pattern PX must have a RETD whose root bag consists of the vertices in X.
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The width of an RETD (T, B) is defined as max.cy (1) [V(2)| — 1. In Definition 4,
we define freewidth and height of rooted patterns.

Definition 4 (treewidth and height of a rooted pattern). The treewidth of a rooted
pattern is defined as the minimum width of all its RETDs. The height of a rooted
pattern with treewidth tw is defined as the minimum height of all its RETDs with
width at most tw.

Another problem is that under homomorphism, there can be an unbounded number
of frequent rooted patterns of treewidth tw. For example, in Figure 3.2, there are
an infinite number of rooted patterns P; X t P2X2, e PnX", ... that are subgraph
homomorphic to the network H and to each other. This motivates us to consider only
rooted patterns that are core.

Definition 5 (core). A rooted pattern P~ is a core iff every subgraph homomorphism
@ : P — P is a graph automorphism.

For example in Figure 3.2, only P, is a core. It follows directly from the definition
of core that any rooted pattern PX is equivalent, under homomorphism, to a core,
denoted with Core(PX). We note that slightly different definitions of core are also
possible, e.g., PX is core iff every root subgraph homomorphism ¢ form PX — PX
is a root graph automorphism. While both definitions suit our mining algorithm fine
and any definition can be easily replaced by the other, in the rest of the current chapter
we use the first definition.

Figure 3.2: There are an infinite number of rooted patterns P1X t P2X2, N PnX",
... that are subgraph homomorphic to the network H and to each other. The tree
decomposition above each rooted pattern shows its BRETD.
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The set of rooted patterns that are core, without any further restriction, may still be
infinite. For example, suppose that the database graph is a directed cycle v; — vy, —

. — v, — v1, where all vertices and all edges have the same label. Then, any
directed path u; — uo — ... of an arbitrary size, rooted at the first vertex, will be a
core and subgraph homomorphic to the database graph.

All the above motivates the following definition of BRETD.

Definition 6 (bounded rooted extended tree decomposition (BRETD)). A bounded
rooted extended tree decomposition (BRETD) (7', B) with width bound tw and height
bound h is a rooted extended tree decomposition (T, B) that satisfies the following
additional constraints:

(i) height(T) < h,

(ii) For every non-leaf node z and every child c of z, there is exactly one vertex
which is in V(z) but not in V(c), i.e, [V(2) \ V(¢)| =1,

(iii) For every leaf node z, |V(z)| = 1; and for every non-leaf node z, |V(z)| > 1,

(iv) For every node z with multiple children cq,...c, (n > 1), Pat(T) #
Pat(T-.,), and

(v) For every node z with multiple children ¢1,...c, (n > 1), Core(Pat(T)) #
Core(Pat(T—.,)).

Note that in Definition 6, Condition (v) does not imply Condition (iv). For example,
in Figure 3.3, removing the subtree of T px rooted at z7 changes the pattern but not
the core.

A candidate BRETD is a rooted extended tree decomposition that only satisfies
conditions (i)-(iii) of Definition 6. Each candidate BRETD also defines a rooted
pattern. With r the root of a BRETD and c a child of r, we refer to the subtree rooted
at ¢ as the c-child BRETD or, when c is clear from the context, child BRETD. In
Proposition 2, we prove that every tw-bounded-treewidth height-h-bounded core has
a BRETD with width at most tw and height at most tw x h 4 1. Note that the rooted
pattern presented in Figure 3.3 is not core. So, while every tw-bounded-treewidth core
has a BRETD, not every BRETD represents a core.

Proposition 2. Let PX be a connected core rooted pattern with treewidth tw and
height h. Then there exists a BRETD T bounded by width tw and height tw x h + 1
such that Pat(T) = PX.

Proof. Given the properties of PX, there exists a finite RETD 7" with width tw and
height h such that Pat(T) = PX. It can be transformed into a BRETD of width
bound tw and height bound tw x h + 1 as follows:
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1. Every leaf node z with more than one vertex is replaced by a path consisting of

nodes 21, ..., z; such that:
[ Zl = Z’
eFor 1 < i < [i zyy is a child of z; and V(zi41) = V(z) \
{an arbitrary vertex in V(z;)},
° |V(Zl)| =1.

2. Every non-leaf and non-root node z with O or 1 vertices is deleted and its
children are added to the children of the parent of z.

3. Every path (z, z") with 2’ a child of z and [V(z) \ V(z’)| > 1 is replaced by a
path consisting of nodes 21, . . ., z; such that:

e z1 =zand z; = 2/, and

efor 1 < ¢ < I: 241 is a child of z; and V(z;41) = V(z) \
{an arbitrary vertex in V(z;) N (V(z) \ V(2'))}.

Note that step 1 is applied at most once on every leaf node, step 2 at most once on
every non-leaf and non-root node and step 3 at most once on every parent child pair
of the original tree decomposition 7'; moreover, these steps preserve the pattern and
ensure conditions (ii) and (iii) of Definition 6 hold for the resulting tree decomposition
7.

Next, for every node z such that Pat(T’) = Pat(T”,), the subtree rooted at z
is removed; this preserves conditions (ii) and (iii) while also ensuring condition
(iv). Let T"” be the resulting tree decomposition. Note that Pat(7') is a core and
Pat(T") = Pat(T), hence also condition (v) holds. Finally, note that application of
step 1 replaces a leaf node in the worst case by a path of size tw + 1 and step 3 a path
of size 2 in the worst case by a path of size tw, so the height of the tree decomposition
T" is bounded by tw x h + 1 and hence 7" is a BRETD bounded by width tw and
height tw x h + 1. O

Figure 3.3 shows a rooted pattern and a BRETD of it. As we will show later
in Corollary 1 of Section 3.3.2, the set of bounded-treewidth height-bounded core
BRETD:s is always finite.

A rooted pattern may still have more than one BRETD. For example, in Figure 3.4, T'1,
T2 and T'3 are three different BRETDs of the rooted pattern P~X. While we cannot
avoid to generate different BRETDs that represent the same rooted pattern, we need
to eliminate a BRETD when the rooted pattern it represents is not new. This boils
down to detecting rooted graph isomorphism between the underlying rooted patterns.
In general, the check has an exponential cost in terms of the pattern size. However, for
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Figure 3.3: Figure (a) shows a rooted pattern PX, (b) a BRETD of it and (c)
Core(P™X).

71 T2 T3
Figure 3.4: The possible BRETDs for the rooted pattern PX are 71, T2 and T'3.

tw-bounded-treewidth patterns, there are algorithms that check graph isomorphism

with a O(n“"“) time cost, where n is the pattern size (Daenen, 2009; Ramon et al.,
2011).

In the current chapter, when a BRETD with the underlying rooted pattern PX is
generated, we use the algorithm of Daenen (2009); Ramon et al. (2011) to compute
the canonical form of PX. Since here our patterns are rooted, we first compute the
canonical form of R(PX) and then, the canonical form of the rest of the pattern, i.e.,
the subgraph of the pattern obtained by removing vertices in X that are only connected
to other vertices in X and the edges that connect two vertices in X. Our algorithm
stores the canonical forms of the generated rooted patterns in a trie data structure
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to achieve a compact representation and fast access. Then, when a new BRETD is
generated, its canonical form is computed and compared with the canonical forms of
all already generated rooted patterns to see if the rooted pattern represented by the
new BRETD is a new one.

3.3.2 Generating BRETDs

As mentioned earlier, we generate rooted patterns in the form of BRETDs which are
rooted trees. Hence, in order to generate BRETDs, one can follow an approach for
generating rooted trees. A first approach is rightmost path extension where a new tree
is generated by adding a node to a node in the rightmost path of an input tree (see
Chapter 2 for more details).

The second approach is a bottom-up method, which is based on two operators. An
extension operator that extends an input rooted tree with a new root node that has
the input tree as only child and a join operator that takes a set of rooted trees with
isomorphic root nodes as input and produces a rooted tree with the same root node
and as its children all the children of the roots of the input trees. In this approach,
all core rooted trees can be generated by extending/joining smaller core rooted trees,
however, in rightmost path extension some core rooted trees can only be generated by
extending non-cores (Dries and Nijssen, 2012). This motivates us to use the second
approach for generating BRETDs. As we will discuss later, when the second approach
is extended to patterns with a root larger than 1, in order to generate all cores, some
non-cores should also be generated.

We start the section with defining the extension and join operators for BRETDs. While
they can generate all BRETDs, the patterns they represent are not unique and post-
processing is needed to eliminate redundant ones. So we introduce some pruning
and conclude with an algorithm that is guaranteed to terminate and to generate all
bounded-treewidth height-bounded core BRETDs.

Definition 7 (the extension operator). Let Tpx be a BRETD of the pattern PX.
The extension operator applied on Tpx constructs a set of new BRETDs. Each
new BRETD consists of a new root node r that has Tpx as single child BRETD.
The vertices Y of the root node r are obtained by adding a new vertex v to a
non-empty subset X' of X. The edges of the root node are the ones from the
root node of Tpx induced by the subset X' extended with new edges connecting
v with a (non-empty) subset X" of X'. Labeling functions p1 and po assign
labels to the new vertex and edges from ¥y and Y g respectively. By selecting at
most tw vertices from X, it is ensured that the allowed treewidth is not exceeded.
The resulting BRETD is parametrized by the choices for pi, X', X", and o
and is denoted as peyt(Tpx,p1, X', X" p2). The set of patterns extending P~
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Figure 3.5: An example of the extension operator. On the left a pattern (bottom) and
a tree decomposition of it (top); on the right an extension of the tree decomposition
(top) and the pattern it represents (bottom).
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is given by {Pat(pest(Tpx, 1, X, X" pu2)) | X' € X,|X'] < tw, X" C
X', 1 afunction from v to Yy, o a function from {(v,z2") | 2" € X"} to .

Note that each valid combination of p1, X', X" and ps gives a different BRETD.
A BRETD (rooted pattern) generated by the extension operator is called an extended
BRETD (extended rooted pattern). Figure 3.5 presents an example of extending a
BRETD Tpx with the underlying rooted pattern P . In this example, the new vertex
v4 is labeled by ¢ and X’ contains both vertices in X, i.e., v2 and v3. X" contains
both v2 and v3, that means v4 is connected to both v2 and v3. The function p2 maps
both {v4,v2} and {v4, v3} to a.

Definition 8 (the join operator). Let T xi,...,Tp x, be BRETDs of patterns P,
.., P respectively, such that:

(i) Foralli: height(Tp x,) > 1, and

(ii) R(P,™),..., R(P,*) are isomorphic.
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The join operator first renames the vertices of the participating BRETDs such that
forall i # j: V(PX")NV(P;*7) = 0. Then, a candidate BRETD is generated
by selecting a set of mappings ¢1,...,9r—1 such that p;_1 is an isomorphism
from PXi 10 P,X'.  Each candidate consists of the root node of P and
its children are obtained by copying the children from Tp x,,Tp,xs,...,Tp x;
where each TPHIXi 4 (1 >= 1) is transformed by the isomorphism ;. The
new BRETD is parametrized by the isomorphisms o1, ... @r—1 and is denoted
as pjoin(Tp,x1,-- s Tp xis¢1,---pr—1). The set of BRETDs is denoted as
pjom(Plxl, ol Pka) and is given by {T | there exist isomorphisms 1, ..., Pr—1

such that T = pjom(TPlx1 Yo ’TPka @1,y pr—1) and T is a BRETD}.

Note that condition (iii) of the definition of tree decomposition (Chapter 2) implies
that the only vertices shared by different children of a node are vertices from that
node and hence, the join operator does not need to rename non-root vertices to obtain
all possible joins (up to renaming of the vertices). Each valid combination of Tp x,,
e Tpkxk, 1, ...and p,_1 gives a different BRETD. A BRETD (rooted pattern)
generated by the join operator is called a joint BRETD (joint rooted pattern). Figure
3.6 presents an example of the join operator.

Proposition 3. Given BRETDs P, ... P,* foranyie1,... k:
Pioin(PrXt, pjoin(PL ., Pe™%) =)

Proof. The generated candidate BRETDs are not BRETD because they violate either
Condition (iv) or Condition (v) of Definition 6. Condition (iv) is violated when
V(PZ-X") = X;; otherwise, Condition (v) is violated. O

Proposition 4. We have:
Pioin (P P) = poin(pjoin (PN, oy Pemt 1), P

= pjoin(~ .. pjoin(pjoin(P1X1 ) P2X2)7 P3X3)a ey Pka)
Proof. It follows directly from the definition of the join operator. O

One can observe here that it suffices to do a binary join between every single child
BRETD and every BRETD derived before.

Proposition 5. Given all BRETDs of height 1, all BRETDs of width tw (> 1) and
height h (> 1) can be derived by a finite number of applications of join and extension
operators where each join is a binary one with one of the inputs a single child BRETD.
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Proof. The proof is done by induction. We prove that given BRETDs of width tw and
height h, all BRETDs of width tw and height h 4 1 are derived by a finite number of
applications of join and extension operators where each join is a binary one with one
of the inputs a single child BRETD. Every BRETD T'px of height h + 1 falls into one
of the following categories:

* root(Tpx ) has one child. In this case, T’px is generated by extending a BRETD
Tgv , with underlying rooted pattern @Y, of height . P~ has one more vertex
than QY which is connected to some vertices in X. Since during extending
BRETDs of height h, all possible vertex labels and all possible sets X’ and
X' and mappings ps (as defined in Definition 7) are considered, Tpx will be
generated.

* root(Tpx) has k > 1 children. In this case, root(Tpx) is generated by
the join operator. Let Cy,Cy,...,C) be the children of root(Tpx). For
1 < i < k, consider single child BRETDs T’ x, consisting of root(Tpx )
and the subtree of Tpx rooted at C;. For any T'p x,, root(Tp x;) has only
one child, therefore, all T, x, are generated by extension. Tpx can be
generated by pjoin(T'p,x1,...,Tp, x,) and hence as Proposition 4 says, by

Pioin (- - - Pjoin(Pjoin (PN, PaX2), Py) L. P%).
O

Algorithm 1 shows the high level pseudo code of our pattern generation method.
Although every core pattern has a BRETD, there are patterns that can only be
generated from non-core patterns. As a simple example, assume that the database
graph is the undirected pathd — a — b — a — c. Then, the BRETD with the underlying
undirected pattern d — a — b* — a* (rooted at the vertices indicated by *) is not core,
however, the BRETD with the underlying pattern d — a — b — a* — ¢* (rooted at the
vertices indicated by ) is core and it can only be generated by extending a non-core.
So our algorithm generates also non core patterns. For a similar reason (i.e., a frequent
pattern may only be generated by extending/joining non-frequent ones), the algorithm
also generates infrequent patterns. However, if the frequency of a rooted pattern is 0,
none of the patterns generated by its extensions/joins can be frequent. Therefore, it can
be pruned. In the algorithm, C,, (resp. Cheyt) is intended to contain all BRETDs
of height h (resp. h + 1) with a distinct canonical form and C' all BRETDs with a
distinct canonical form and a height less or equal to maxz Height. CanForms holds
the canonical forms of all BRETDs found so far (in a trie).

The algorithm performs a level-wise search where BRETDs of height h are extended
and joined to generate larger BRETDs. First, by one pass over the database graph H,
Yy and Y g are extracted. From Xy,, BRETDs of height 1, i.e., C1, are generated: for
every vertex label pp in Xy, a BRETD T'px is generated where T px consists of one
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Figure 3.6: An example of joining two BRETDs T'px and Ti,v, that have respectively
the underlying rooted patterns PX and QY. The isomorphism mapping between
R(P¥X) and R(QY) is depicted by arrows. It maps vy to v7, v to vg, and vz to
vg. In the generated rooted pattern SZ, v is replaced by vg and v; is replaced by vg.

single node that has only one vertex labeled by y;. These patterns are extended/joined
to generate larger patterns, using the EXTEND and JOIN methods. For every 1 < h <
max Height, first the extended BRETDs of height ~ + 1 are generated by extending
BRETDs of height h (Line 10 of Algorithm 1). Then, every extended BRETD of
height i + 1 joins with already generated BRETDs to generate the joint BRETDs of
height i + 1 (Line 14 of Algorithm 1).

We store canonical forms of already generated rooted patterns in a trie, called
CanForms. Then, when a new BRETD Tpx with the underlying pattern PX is
generated, the canonical form of PX is computed and it is checked if CanForms
already contains this canonical form. If so, this means PX is already generated (by
some other BRETD), hence, it is discarded. Otherwise, the canonical form of PX is
added to the trie. The reason for using a trie for storing canonical forms is that looking
up data in a trie is done very fast in O(m) time in the worst case, where m is the length
of the search string.

Algorithm 2 describes how a BRETD T is extended. In every extension of it, the new
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Algorithm 1 High level pseudo code of the pattern generation algorithm.

1: PATTERNGENERATOR

® W

21:

26:
27:
28:

Input. a database graph H, an integer tw, and an integer maz H eight.
Output. the set of BRETDs with treewidth bounded by tw and height bounded
by maxHeight.
CanForms < 0 {CanForms stores the canonical forms of the generated
rooted patterns. }
Yy < extract vertex alphabet from H
Y g ¢ extract edge alphabet from
Cy < BRETDs of height 1
h < 1, C < (C; {all BRETDs of height up to h}, C.y < C; {all BRETDs of
height h}, Cpezt < O {all BRETDs of height h + 1}
while i < mazHeight do
C’" < {EXTEND(T, tw, CanForms) | T € Ceyr}
forall T € C' do
C" 10
if Pat(T) <™ H then
C" « {JOIN(T, T") | T' € C U Chext}
Add T to Cpegt
end if
forall 7”7 € C" do
if Pat(T") <"™ H then
Add T" to Cpeat
end if
end for
end for
C+Cu Cnezt
Ccur — Cnert
Cne:ct — @
h<h+1
end while
return C
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root node consists of a new vertex z, a subgraph of the root node of 7" with at most tw
vertices, so that the new node does not violate the width constraint and x is connected
to the vertices in a non-empty subset of the root of the extended pattern.

Algorithm 3 shows how two BRETDs T and 75 join. For every isomorphism mapping
¢, a new candidate joint BRETD pjin (T4, T2, ¢) is generated. Every isomorphism
mapping may give a different rooted pattern. The isomorphism mapping makes the
mapped vertices identical.

Algorithm 2 High level pseudo code of extending a BRETD.

1: EXTEND
2: Input. T: a BRETD, tw: an integer, CanForms: stores the canonical forms of
the generated patterns.
3: Output. C: BRETDs generated by extending 7.
Side effect. The canonical forms of the new patterns are inserted into
CanForms.
C+ 10
for all vertex labels 111 do
for all X’ C X such that | X’| < tw and X' # () do
for all X" C X’ such that X" # () do
for all mappings po that map every element of X" to X do

T < pewt(T, p1, X', X 112)

Str < the canonical form of Pat(71")

if Str ¢ CanForms then

Add T’ to C
Insert Str into CanForms

end if
16: end for
17: end for
18:  end for
19: end for
20: return C

&

_ e e
W T 20w

[ —
[T N

Corollary 1. The set of bounded-treewidth height-bounded cores is finite.

Proof. 1t follows directly from Proposition 5. O

3.4 Mining frequent rooted patterns

In this section, we present our proposed algorithm for finding frequent rooted patterns.
We first introduce a number of notions.
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Algorithm 3 High level pseudo code of joining BRETDs.

1: JOIN

2: Input. 77 and T5: two BRETDs, CanForms: stores the canonical forms of the
generated patterns.

3: Output. C: BRETDs generated by the join of 73 and 7%.

4: Side effect. The canonical forms of the new patterns are inserted into
CanForms.

5:C« 0

6: if R(Pat(Ty)) and R(Pat(T>)) are isomorphic and they have a height greater
than 1 then

7: Rename the vertices of Pat(Ts) such that V (Pat(P,**)) NV (Pat(Py*?)) =

0

8:  for all isomorphism mappings ¢ between R(Pat(T})) and R(Pat(T5)) do
9: T Pjoin (Tl, Ts, QO)
10: if T is a BRETD then
11 Str < the canonical form of Pat(T")
12: if Str ¢ CanForms then
13: AddT toC
14: Insert Str into CanForms
15: end if
16: end if
17 end for
18: end if

19: return C

Definition 9 (root embeddings). The set of root embeddings of a rooted pattern P~
in a database graph H is defined as follows:

RE(PX, H) = {o1x | ¢ is a subgraph homomorphism mapping from P to H }
3.1)

Figure 3.7 shows an example of root embeddings, where the graph on the left is a
database graph presenting a toy social network. It has 3 types of vertices: c refers to
a country, i refers to an individual, and p refers to a page. Every vertex is labeled by
its type. An individual might be in different countries, so a vertex of type i might be
connected to several vertices of type c. If two individuals are friends, an edge is drawn
between them. An edge is drawn between a vertex of type i and a vertex of type p if
the individual (vertex of type i) likes the page (vertex of type p). If two pages (vertices
of type p) have links to each other, an edge is drawn between them. The graph on the
right side is a rooted pattern. The rooted pattern has three embeddings in the database
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Figure 3.7: An example of root embedding. The graph on the left is a database
graph. The graph on the right is a rooted pattern that has three embeddings in the
database graph. The first and second embeddings have the same root embeddings, that
is {ug, u1, ua }. The third one has a different root embedding {ug, uz, u; }. Therefore,
the frequency of the rooted pattern is 2.

root image u3

/ '\root

graph, where two of them, the first and second ones, have the same root embeddings.
The third one has a different root embedding.

In order to precisely define a frequent pattern mining problem, a support measure
(also called frequency measure) is required. Several frequency measures have been
proposed in the literature for single graph mining (Bringmann and Nijssen, 2007;
Calders et al., 2011; Dries and Nijssen, 2012; Wang and Ramon, 2012). Our mining
method is general and can work with any support measure. However, for the sake
of simplicity, we here restrict ourselves to the frequency measure computed as the
number of embeddings of the root of a rooted pattern (Bringmann and Nijssen, 2007;
Dries and Nijssen, 2012).

Definition 10 (support (frequency) of a rooted pattern). Let PX be a rooted pattern
and H be a database graph. Root embedding support (Root embedding frequency) of



42 MINING LARGE SINGLE NETWORKS UNDER SUBGRAPH HOMOMORPHISM

PX in H, denoted by suprp(PX, H) is defined as:
suppp(P~, H) = |RE(PX, H)| (3.2)

PX is frequent iff its root embedding support is more than (or equal to) a user-defined
threshold minsup.

Note that this notion of frequency is not anti-monotonic, i.e., the frequency of a rooted
pattern may be less than the frequency of its super patterns. As a simple example,
suppose that the database graph is the path a-b-a and minsup is 2. Then, while the
pattern consisting of a single vertex b is not frequent, the rooted pattern a-b rooted at
a is frequent and it can only be generated by extending an infrequent pattern. We may
develop extensions of supgrz (P, H) that are anti-monotonic. Let Tpx be a BRETD
of PX and T1, ..., T. the subtrees of Tpx rooted at the children of root(Tpx ). Then
suphp(PX, H,Tpx ) defined as:

min{supRE(PX,H), suprpg(Pat(Th), H),...,supre(Pat(T.), H)}

is an anti-monotonic support measure.

Our goal in this chapter is to find frequent (under subgraph homomorphism) rooted
patterns that are core®. More formally, given:

 a graph (network) H,
* auser defined integer minsup,
¢ auser defined maximum treewidth tw, and

¢ auser defined maximum height max Level,

we want to find tw-bounded-treewidth cores that have a frequency higher than (or
equal to) minsup and a BRETD with height bound max Level.

To address this problem, we propose the HoPa algorithm. Algorithm 4 shows the high
level pseudo code of HoPa. In this algorithm, F contains all bounded-treewidth height-
bounded cores that are frequent. The algorithm first calls Algorithm 1 to generate
candidate rooted patterns that have a height at most maxz Level. Then, for every
generated BRETD Tpx with underlying rooted pattern PX, it checks whether PX
is a core and if so, root embeddings of PX are computed and its frequency is counted.
If P¥ is frequent and core, it is stored as a frequent pattern (it is added to JF).

30ur proposed mining algorithm can work with both supr g and supp, - Our focus in Sections 3.4
and 3.5 is suprE, however in order to have an empirically efficient algorithm, in the experiments reported
in Section 3.6 we use supg, ;-
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If a graph G is not core, there exists a graph G_,,, generated by removing a vertex v
and its incident edges from G, such that G is subgraph homomorphic to G_,,. Hence,
to check if a rooted pattern P is core, we act as follows: by removing each vertex v
of PX (and its incident edges) a new graph P_,, is generated. If for at least one v, P
is subgraph homomorphic to P_,, P¥X is not core; otherwise, it is core. For example
in Figure 3.2, only P,*4 s a core.

For enumerating root embeddings of a rooted pattern, we use an underlying querying
system that takes as input a rooted tree decomposition and a database graph and
computes the set of all root embeddings of the tree decomposition in the database
graph (Fannes et al., 2015).

Algorithm 4 High level pseudo code of the pattern mining algorithm

1: HoPa

2: Input. a database graph H, an integer tw, an integer max Level and an integer
minsup.

3: Output. the set of tw-bounded-treewidth height-max Level-bounded frequent
rooted patterns that are core

4 F« 0

5: C <— PATTERNGENERATOR(H, tw, maz Level)

6: forall Tpx € C do

7

8

9

{let PX be the underlying rooted pattern of Tpx }
if PX is core then
re < compute RE(PX, H)

10: if |re| > minsup then
11 Add PX to F

12: end if

13:  end if

14: end for

15: return F

Optimization techniques. We discuss some optimization techniques that can be
used to improve the efficiency of our proposed algorithm.

+ Infrequent parent check. Let PX and QY be two rooted patterns such that
QY is root subgraph homomorphic to PX and R(QY') is isomorphic to R(PX).
If QY is infrequent, then PX will be infrequent, too. We use this property to
reduce the number of patterns that are generated but are potentially infrequent.
In this technique, called infrequent parent check, a set Z of infrequent patterns
is kept. Then, when a new rooted pattern P~ is generated, before counting
its frequency, it is checked whether there exists any rooted pattern Q¥ € T
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such that QY is root subgraph homomorphic to P*X and R(QY) is isomorphic
to R(PX ). If QY exists, PX cannot be frequent, hence, its frequency is
not counted. This technique can significantly improve the efficiency of the
mining algorithm by reducing the number of rooted patterns that are tested for
frequency.

 Partitioning patterns into equivalence classes. One way to find out what
BRETDs are joinable with a given BRETD Tpx is to check every already
generated BRETD T(,v and see if they have isomorphic roots. However, this
can decrease the efficiency of the algorithm, as only a small percentage of
the already generated BRETDs may be joinable with Tpx. A more effective
technique is to partition all generated BRETDs into equivalence classes so that
every two BRETDs Tpx and T are in the same equivalence class iff they
have isomorphic roots. In this way, every BRETD is joined with all members
of its equivalence class. When a new BRETD is generated, it is added to the
appropriate equivalence class (or a new class is created).

3.5 Condensed representations of frequent pat-
terns

The set of all frequent rooted patterns can be huge so that it becomes difficult to use
and interpret them. Therefore, in many applications, it may be desirable to have a
condensed representation of all frequent patterns. Mining closed patterns is one of the
most common techniques used for compact representation of frequent patterns.

A problem with widely used closedness data structures for single network mining is
that they are based on a pseudo closure operator rather than a closure operator. For
example, consider the frequency based closedness data structure. The used operator
maps a pattern to its maximal super pattern that have the same frequency as the pattern.
Now, assume that the pattern class is the class of rooted trees and the frequency
measure is the number of root embeddings. Then in the database graph H of Figure
3.8, patterns P1, P2 and P3 have the same frequency 3. Furthermore, P2 and P3
are the maximal super patterns of P1 that have frequency 3. As P1 has no unique
maximal supper pattern, choosing an arbitrary one as its closure violates condition C2
for the other one. This means the frequency based closedness data structure is not
a closure operator. It motivates us to present in Definition 13 a new closedness data
structure. This data structure is based on the concept of root embedding equivalence
class, defined in Definition 11. We later prove that it gives a closure operator for single
network mining under homomorphism.

Definition 11 (equivalent under root embeddings (root embedding equivalence class)).
Let PX and QY be two rooted patterns. Given a database graph H, PX and QY are



CONDENSED REPRESENTATIONS OF FREQUENT PATTERNS 45

Figure 3.8: Let H be a database graph. P2 and P3 are the maximal super patterns of
P1 that have the same frequency as P1. As P1 has no unique maximal supper pattern,
choosing an arbitrary one as its closure violates condition C2 for the other one. As a
result, the frequency based closedness data structure is not a closure operator.
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Figure 3.9: Rooted patterns P~ and QY are in the same root embedding equivalence
class. H is the database graph and NZ is generated by a merge of PX and QY .
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equivalent under root embeddings for H (they belong to the same root embedding
equivalence class for H), denoted by PX =rp QY iff:
1. R(PX) and R(QY) are isomorphic,

2. |[RE(PX,H)| = |RE(QY, H)|, and

3. There is a root embedding pp with image I of P in H iff there is a root
embedding pq with the same image I of QY in H.

For example, rooted patterns PX and QY presented in Figure 3.9 belong to the same
root embedding equivalence class.

Before presenting our closure operator, we need to introduce the merge operator.

Definition 12 (the merge operator). The merge of a set {Ty,...,T,} (n > 1) of
BRETDs, denoted as ppyrq(Th, ..., Ty), is defined as the join of Ty, ..., T, for a set
of isomorphism mappings between R(Pat(T1)) and R(Pat(T3)),..., R(Pat(T),))
that gives the pattern with the lexicographically smallest canonical form. The merge
of a single BRETD T}, denoted as pr,rq(Th), is defined as T\ itself.

A tree decomposition generated by merge is a candidate BRETD. For example, in
Figure 3.9, the candidate BRETD with the underlying pattern N2 is the merge of the
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BRETD with the underlying pattern PX and the BRETD with the underlying pattern
QY. Note that in merge the order of BRETDs is not important, i.e., pprqg(Th,72)
is the same as pp,rq(72,71) up to root isomorphism. It is possible that in a merge
more than one set of isomorphism mappings generate the pattern with the smallest
canonical form. However, doing merge with any of them yields the same pattern up to
root isomorphism.

Proposition 6. Let T4, ..., T, be a set of BRETDs such that R(Pat(T1)), ..., R(Pat(T,))
are isomorphic. We have

s Pat(T;) <™ Pat(pmrg(Th,...,Ty)) for 1 <i < n, and

o If Pat(T;) =" QY foralli’s, then Pat(pmrg(Th, ..., Th)) <hm QY

Proof. 1t follows directly from Definition 12. O

Definition 13 (the orp closure operator). Let P be a set of bounded-treewidth
height-bounded cores that are partitioned into root embedding equivalence classes
eqi, ... eq for a database H; and P' = U._;{Pat(pmrq(eq;))}. For the pattern
class P U P’ and partial order root subgraph homomorphism, the closure operator
oRE Is defined as follows:

o For each PX € P, o maps PX to PX.

e For each PX € P, let {Ty,...,T,} denote the root embedding equivalence
class of PX for H. Then, o rg maps PX to Pat(pmrg(Th, ..., Tn)).

Note that in Definition 13 members of the equivalence classes are merged only once,
hence, since there are a finite number of finite equivalence classes, P’ is finite, too. In
Proposition 7, we prove that o gy is a closure operator.

Proposition 7. The operator o g introduced in Definition 13 is a closure operator.
Proof. To be a closure operator, o p must be extensive, increasing and idempotent.

* Extensive: We need to prove that for every rooted pattern PX, PX <hm
ore(PX). It follows directly from Proposition 6.

« Increasing: We need to prove that for every two rooted patterns PX,QY ¢
PUP, PX <hm QY implies opp(PX) 2" orp(QY). If PX € P/, by
definition orp(PX) = PX; hence PX =<' QY implies ogrp(PX) <™
QY =" 5rp(QY). Now, suppose PX € P and leteq = {T1,T5,...,T,} be
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the root embedding equivalence class to which the BRETD of P¥ belongs. We
need to prove

ore(PX) = Pat(ppry(Th, ..., Ty)) 2" ore(QY)

The proof is by induction on the size n of the root embedding equivalence class
of PX. Without loss of generality, let PX be Pat(T}).

Base case (n = 1): In this case, Pat(pmrg(T1)) is P~. Since P¥ is
root subgraph homomorphic to Q¥ and QY is root subgraph homomorphic to
ore(QY), PX is root subgraph homomorphic to o (QY ).

Induction step: Assume

Pat(pmrg(Th, ..., Tio1)) 2" orp(QY) (3.3)

We prove

Pat(pmrg(Th, ..., Ti—1,T;)) =" opp(QY) (3.4)
To do so, we prove

Pat(T;) =" orp(QY) (3.5)

Then using Proposition 6, Relations 3.3 and 3.5 yield Relation 3.4.
To show that Relation 3.5 holds, in the following, (i) we construct a rooted
pattern Q’Y/ such that Pat(T;) <™ Q’Y/, and (ii) we show that Q’Y/ and
QY are in the same root embedding equivalence class. @’ Y is not necessarily
a core, however, since our pattern generation algorithm produces all height-
bounded bounded-treewidth rooted cores, there is a rooted core Q)" v such that
Q' Y hm Q" Y and Q' v (also QY) have the same set of root embeddings
as Q”Y”. Therefore, by definition, Q"Y” <" ope(QY) which yields
QY <" p5(QY) and consequently, Pat(T;) <" orp(QY).

(i) First, we introduce rooted pattern Q’ Y Let 1 be a canonical isomor-
phism mapping from R(Pat(T;)) to R(Pat(T})) and ¢2 a root subgraph
homomorphism mapping from Pat(T}) to QY. The mapping o5 o ¢y
yields a subgraph homomorphlsm mapping from R(Pat(T;)) to R(QY).
The rooted pattern Q’ is constructed as follows: first, Vertlces of Pat(T;)
are renamed such that V (Pat(T;)) N V(QY) = (); then Q'” is initialized
by QY finally Pat(T;) is added to Q""" so that every root vertex v of
Pat(T;) is transformed to @2 o ¢1(v) and non-root vertices of Pat(T;)
are added to Q’ " as new vertices. We have:

Pat(T;) <™ Q"Y'
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(ii) Now, we show that Q' Y and QY have the same set of root embeddings.
Since 77 and T; are in the same root embedding equivalence class and
for each embedding g of QY in H there exists an embedding @7, of
Pat(Ty) in H such that o7, and ¢g have the embeddings of the root
vertices of Pat(77) in common, the same holds for T}, i.e., for each
embedding ¢g of QY in H there exists an embedding 7, of Pat(T;)
in H such that ¢, and ¢ have the embeddings of the root vertices of
Pat(T;) in common. As a result, for each embedding ¢ of Q¥ in H,
there exists an embedding ¢ of @’ Y in H such that @ and ¢’ have

the embeddings of the root vertices of QY (the root vertices of Q’ Y ) in
common.

Conclusion step: By the principle of induction, Relation 3.4 is true for all 7,
1<i<n.

o Idempotent: we need to prove that for every rooted pattern PX, opp(PX) =
O'RE(O'RE(PX)).

- If PX € P, by definition, ogrp(0pe(PY)) = orp(PX) = PX.

— If PX € P, by definition, opp(cre(PY)) = orp(P™), where
P'X' s the merge of the patterns in the root embedding equivalence
class of PX. Furthermore by definition, URE(PIXI) — P'X". Hence,
orp(orp(PY)) = P = opp(PX).

O

The closed pattern of a root embedding equivalence class gives a complex represen-
tation of all members of the class in the sense that all the members of the class are
subgraph homomorphic to its closed pattern. We may also be interested in having
a simple representation of the root embedding equivalence class. This motivates us
to introduce in Definition 15 the notion of the simplest member of a root embedding
equivalence class.

Definition 14 (simpler pattern). A rooted pattern PX is simpler than another rooted
pattern QY , denoted by PX <simp QY. iff:
e treewidth(PX) < treewidth(QY), or

o treewidth(PX) = treewidth(QY) and |V (PX)| + |E(PX)| < [V(QY)| +
[E@QY)].
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We say PX < simp QY if in the above mentioned conditions, '<’ is replaced by "<’

Definition 15 (simplest pattern). A simplest member of a root embedding equivalence
class eq is a rooted pattern PX € eq so that there is no other rooted pattern Q¥ € eq
which is simpler than P~ .

Note that <j;,,, does not apply a total ordering on the members of a root embedding
equivalence class and as a result, several members of the equivalence class may satisfy
the conditions of the simplest member. When during a mining process we want to
find the simplest member of a root embedding equivalence class, among all members
satisfying the conditions, we may choose an arbitrary one, e.g., the one discovered
earlier by the mining algorithm.

In finding root embedding equivalence classes (and distinguishing their closed and
simplest members), an elementary task is to check if two rooted patterns have the
same set of root embeddings. Comparing two sets of root embeddings can be time
and space consuming as patterns may have many root embeddings. A more effective
way is to hash the set of root embeddings into keys and compare the keys, instead of
the sets. It is based on the assumption that if two rooted patterns have the same key,
they will have the same set of root embeddings, and vice versa. In Definition 16, we
propose a method for hashing a set of root embeddings.

Definition 16 (root embeddings hash key). Let p and q be two prime numbers, P~ a
rooted pattern and H a database graph. Suppose that vertices in X (and as a result,
elements of every root embedding of PX in H) are sorted by a canonical order, i.e.,
an order that yields the canonical form of R(PX). Root embeddings hash key of P~
in H, denoted by hkey(PX, H), is defined as follows

) id(v)
hkey(PX, H) = Z quGX ()P mod 2%4 (3.6)
@ERE(PX,H)

where id is a function mapping a vertex to its (unique integer) index.

s an example, consider Figure 3.7 and suppose vertices ug, u; and ug have vertexIds
A pl der Figure 3.7 and supp t dug h rtexId
, 1 and 2, respectively. The rooted pattern has two root embeddings in the database
0, 1 and 2, respectively. Th ted pattern has t t embeddings in the datab
graph. Suppose the root vertices are sorted as ug < u; < ug. Their root embeddings
. 0 1 2 (0] 1 2 . .

hash key is ¢% 1P 420" 4 0P 420 +10" \where setting p to 3 and ¢ to 2 gives 22! +
215,

Algorithm 5 shows the high level pseudo code of the algorithm of finding frequent
patterns, frequent closed pattern and frequent simplest patterns, called CHoPa. The
algorithm keeps a hash table HT' that maps a root embeddings hash key rekey to
the root embedding equivalence class whose root embeddings are hashed to rekey.
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Algorithm 5 High level pseudo code of the algorithm of finding closed and simplest
patterns.

1:
2:

22:
23:
24:
25:
26:
27:
28:
29:

CHoPa
Input. a database graph H, an integer tw, an integer max Level and an integer
minsup.
Output. the set of frequent tw-bounded-treewidth, height-max Level-bounded
cores, the set of closed patterns and the set of simplest patterns
{Let HT be a hash table that maps a root embeddings hash key rekey to the root
embedding equivalence class whose root embeddings are hashed to rekey.}
HT 0
F 0
C < PATTERNGENERATOR(H, tw, max Level)
for all Tpx € C do
{Let PX be the underlying rooted pattern of Tpx }
if PX is core then
re + compute RE(PX H)
if |re| > minsup then
rekey < hkey(re)
if rekey is already added to HT then
Add Tpx to HT [rekey)
Update the closed pattern of HT [rekey]
if PX is simpler than the current simplest member of HT [rekey| then
Set simplest member of HT [rekey] to PX
end if
else
Generate a new root embedding equivalence class eq and add T'px
to it
Add the pair (rekey, eq) to HT
Set the closed pattern of HT [rekey] to PX
Set the simplest member of HT[rekey] to PX
end if
end if
end if
end for
return F and closed and simplest members of root embedding equivalence
classes.
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Then, the closed and simplest members of root embedding equivalence classes are
distinguished. First, Algorithm 1 is called to generate candidate rooted patterns that
have a height at most maxLevel. Then, for every generated BRETD Tpx with
underlying rooted pattern P, its root embeddings are computed, its frequency is
counted, and its root embeddings hash key is calculated. The root embeddings hash
key is stored in rekey. If the pattern is frequent and core, it is added to the set F.
The root embedding equivalence class related to rekey is referred by HT [rekey]. If
HT[rekey] already exists, it is checked whether P* can be the simplest member of
the equivalence class. Otherwise, a new root embedding equivalence class is generated
and its closed and simplest members are set to P~

3.6 Experimental results

In this section, we empirically evaluate the efficiency of our proposed algorithms on
both real-world and synthetic data. In our experiments, HoPa and CHoPa refer to the
respective algorithms. Note that CHoPa generates the same number of simplest and
closed patterns, therefore, we report only the number of one of them.

3.6.1 Experimental setup

For our experiments, we are interested in answering the following experimental
questions:

Q1. For listing frequent rooted trees, is HoPa more efficient than the methods with
similar output, e.g., the htreeminer algorithm (Dries and Nijssen, 2012)?

Q2. For the small values of tw, what size of networks, what values of max Level
and what values of minsup can our algorithm handle within reasonable time?
How does the ratio

the number of closed patterns

" the number of frequent patterns discovered for finding closed patterns
change by changing minsup and max Level for different networks?
Q3. What is the influence of the parameters minsup and maxLevel on the

efficiency and output size of HoPa?

The experiments were performed on a AMD processor with 16 GB main memory and
2 x 1 MB L2 cache. Our program was compiled using the GNU C++ compiler 4.8.4.
In our experiments, HoPa and CHoPa have almost the same running time, therefore,
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we report a single time for both of them. However, they produce different sets of
patterns, hence, we distinguish the number of patterns they generate.

3.6.2 Datasets

To assess the efficiency of the proposed method, we use synthetic datasets as well as
real-world networks. For synthetic data we generated networks of size n € {10°,107}
according to a power-law model with degree distribution P(d) oc d~3. We assigned
randomly one of a set of four labels to each of the vertices. Such graphs show
significant clustering, as is often seen in real-world data. We refer to these datasets
as BA105 and BA107, respectively. For real-world data, we use the Facebook social
network* and the IMDB movie database”.

Facebook The Facebook data is the Facebook friendship network obtained by two
sampling methods: one by uniform sampling (called facebook-uniform), and the other
by independent Metropolis-Hastings random walks (called facebook-mhrw) (Gjoka
et al., 2010). For each method, the data consists of two files: one is the friendship
network represented by an adjacency list; and the other contains extra properties such
as total numbers of friends and privacy settings. Here, as was done by Kibriya and
Ramon (2012), the two files of raw data are merged into a single network. They
started with the friendship network and removed all userids that were not present in
the properties file. Then, they labeled each vertex (userid) with its privacy setting and
used a default label for all edges.

IMDB We use the movie-actor dataset, extracted by Kibriya and Ramon (2012).
The network consists of movie, year, role and actor vertices. Movie and role vertices
were labeled by movie and role type, whereas year vertices were labeled by the year
the movie was released in. Actor vertices as well as all edges are left with a default
label.

Table 3.1 presents basic statistics of all our real-world networks.

4http://odysseas.calitZ.uci.edu/doku.php/public:onlineisocialfnetworks
Shttp://www.imdb.com/interfaces
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Table 3.1: Summary of real-world networks.

Dataset # vertices # edges # vertex labels # edge labels
Facebook-uniform | 984, 830 185,508 17 1
Facebook-mhrw 957,359 1,792,188 16 1
IMDB 30,835,467 53,686,381 144 1

3.6.3 Results

Mining frequent rooted trees.

By setting tw to 1, every generated pattern will be a tree. However, the generated
patterns, except those consisting of only one vertex, will have a root of size 2. Every
rooted pattern generated in this way represents 2 different single root patterns; for each,
we generate the canonical form (See Section 3.3.1) to ensure no duplicate patterns are
generated and we count its frequency. In this way, we generate the set of frequent
rooted trees where the root is a single vertex. The generated patterns are directed and
the direction of the edges is from the end-point which is closer to the root to the other
end-point. Therefore, in the experiments in this subsection, we consider the databases
as directed graphs. Note that the facebook datasets are undirected. In the directed
graphs made of them, the edges are directed from the vertex with the smaller vertex id
to the vertex with the larger vertex id.

For each of the five datasets, we perform a range of experiments. First, we measure
the number of patterns and runtime as functions of the minimum support. Second,
we measure the number of patterns and runtime as functions of the maximum level.
In each experiment we compare our proposed algorithm with htreeminer (Dries and
Nijssen, 2012). The results are shown in Figures 3.10-3.19. In all charts of this section,
running times of the algorithms and the numbers of patterns found are plotted in log-
scale.

As discussed earlier, to find the complete set of patterns that are frequent under suprg,
in Algorithm 4 all non-redundant (up to root isomorphism) generated patterns (either
frequent or infrequent) are extended/joined to generate larger patterns. However, this
may lead to a very large state space when using a bottom-up pattern generation strategy
and suprg, and make the HoPa algorithm practically intractable. Therefore, in our
experiments, we use supp With respect to the generated BRETDs of the patterns
and hence, find a subset of the patterns returned by htreeminer. In Figures 3.10-3.17,
one can see what is the difference in the number of frequent patterns caused by the
difference in frequency measure. In particular, patterns that are frequent under suprg
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but infrequent under sup¥y usually form only a small fraction of the patterns that
are frequent under suprg. A closer inspection reveals that usually these are patterns
having a vertex with an infrequent label.

As reflected in Figures 3.10-3.19, in most cases HoPa significantly outperforms
htreeminer in terms of running time. In particular, there are several cases where
htreeminer fails (or does not terminate within a reasonable time, e.g., 2 days), but
HoPa effectively finds frequent patterns (see Figures 3.11, 3.12, 3.13, 3.14, 3.15, 3.18
and 3.19, in the IMDB and BA107 figures there is no line for htreeminer because for
none of the parameter settings it completed). By examining the slopes of the curves
in the figures plotting runtime, one can get see that HoPa usually scales well towards
more difficult settings.
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Figure 3.10: Experimental results for mining frequent rooted trees from facebook-
mhrw for different values of minsup; maxLevel is 3.
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Figure 3.11: Experimental results for mining frequent rooted trees from facebook-
mhrw for different values of max Level; minsup is 64,000.



EXPERIMENTAL RESULTS 55

10000 1000 0.6

—&—HoPa 905

1000 =4 htreeminer
100 . N

04

03 o
4

=
o
S

—— HoPa

10 —+— htreeminer 02
CHoPa

s @ RL 01

running time (sec)
#patterns

N
5]

1

0
10 20 30 40 50 500 1000 4000 0 20 30 40 S0 500 1000 4000

minimum support minimum support

(a) Running time vs. minsup. (b) The number of patterns vs. minsup.

Figure 3.12: Experimental results for mining frequent rooted trees from facebook-
uniform for different values of minsup; maxLevel is 3.
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Figure 3.13: Experimental results for mining frequent rooted trees from facebook-
uniform for different values of maz Level; minsup is 4,000.

Mining frequent rooted graphs.

We go beyond rooted tree patterns and find frequent rooted graph patterns that may
have a treewidth larger than 1. Here rooted patterns larger than 1 will have a root of
size 2 or 3 or ... or treewidth + 1; and only patterns consisting of one vertex will
have a root of size 1. Therefore, rooted tree patterns with a root of size 1 that are
found in the case of mining frequent rooted trees are not found anymore and instead,
rooted tree patterns that have a root of size 2 or 3 or treewidth + 1 are found. Here,
the generated patterns are not directed as there is no single root vertex to define the
direction of the edges. Therefore, in the experiments of this case, we consider the
databases as undirected graphs.

We noticed that in this case, there are patterns that have extremely large number of
root embeddings; even several times more than the number of vertices in the network.
Computing this huge number of root embeddings renders the algorithm practically
intractable. To overcome this problem, we set the number of network vertices as an
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Figure 3.14: Experimental results for mining frequent rooted trees from IMDB for
different values of minsup; maxLevel is 3.
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Figure 3.15: Experimental results for mining frequent rooted trees from IMDB for
different values of max Level; minsup is 150, 000.

upper bound on the number of root embeddings that are computed for a pattern. This
means while computing the set of root embeddings of a pattern, when the set becomes
larger than the network size, we stop finding the next element.

Figures 3.20, 3.21 and 3.22 present the empirical results for treewidth = 1,2,3
over the facebook-mhrw, facebook-uniform and BA108 datasets, respectively. To
the best of our knowledge, there is no algorithm for finding bounded-treewidth graph
patterns (with treewidth > 1) from large networks under homomorphism, therefore,
the charts report only the empirical behavior of HoPa. In order to find patterns with
treewtdth 3, we have to set max Level to at least 4. This is our reason for setting
max Level to 4 in our experiments in Figures 3.20 and 3.21. However, for the BA10°
dataset, when we set max Level to 4, HoPa does not finish within a reasonable time
(3-4 days), hence, we only report the results for maxLevel = 3. Note that in the
case of maxLevel = 3, the set of found patterns are the same for treecwidth = 2
and treewidth = 3, therefore, in Figure 3.22 we show the results for trecwidth =
1,2. Over the IMDB and BA10” datasets, the algorithm does not terminate within a
reasonable time (3-4 days), therefore, we do not report any empirical results for them.
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Figure 3.16: Experimental results for mining frequent rooted trees from BA10° for
different values of minsup; maxLevel is 3.
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Figure 3.17: Experimental results for mining frequent rooted trees from BA10° for
different values of max Level; minsup is 30, 000.

To better understand frequent patterns that have a root larger than 1, in Tables 3.2 and
3.3 we respectively provide for facebook-mhrw and facebook-uniform the statistics of
frequent patterns, where max Level is 4 and treewidth 3. Note that patterns that have
a root of size maz Level cannot join with any other pattern. In fact, BRETDs of such
patterns are path. The reason is that for a pattern to have a root of size maxz Level, in
all its extensions, the whole root of the pattern which is extended must be transfered
to the new pattern. This means the pattern is joinable only with itself; such a join does
not result in a valid BRETD. As a result, as shown in Tables 3.2 and 3.3, the number
of patterns with a root of size 4 is less than the number of patterns with a root of size
2 (or a root of size 3); and these patterns have only 4 vertices.
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Figure 3.18: Experimental results for mining frequent rooted trees from BA107 for
different values of minsup; maz Level is 3.
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Figure 3.19: Experimental results for mining frequent rooted trees from BA107 for
different values of max Level; minsup is 350, 000.
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Figure 3.20: Experimental results over the facebook-mhrw dataset for treewidth =
1,2, 3; minsup is 1,500 and max Level is 4.
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Figure 3.21: Experimental results over the facebook-uniform dataset for treewidth =
1,2, 3; minsup is 10 and maz Level is 4.
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Figure 3.22: Experimental results over the BA10% dataset for trecwidth = 1,2;
minsup is 30,000 and max Level is 3.
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3.6.4 Discussion

Based on the results reported above, we can answer the experimental questions as
follows:

Q1. For finding rooted tree patterns from a large single network, HoPa is almost
always significantly faster than htreeminer. In our experiments, the only
situation where htreeminer outperforms HoPa is the facebook-uniform dataset.
However, even over this dataset, by increasing maxLevel or decreasing
minsup, HoPa outperforms htreeminer. The reasons for high efficiency of
HoPa are the use of infrequent parent check and also the faster frequency
counting method.

Q2. For mining frequent rooted trees, while over very large networks such as IMDB
and BA10" htreeminer fails, HoPa can effectively find frequent patterns (see
e.g., Figures 3.14, 3.15, 3.18 and 3.19).

On the one hand, by fixing minsup and treewidth and increasing max Level,
the ratio R1 usually decreases. This means most of patterns found in higher
levels belong to one of the already formed root embedding equivalence classes.
This can be seen e.g., in Figures 3.11b and 3.13b. On the other hand, by fixing
treewidth and max Level and decreasing minsup, the ratio R1 usually does
not change considerably, i.e., patterns that appear in lower values of minsup,
form some new root embedding equivalence classes. This is expected as
these patterns have different root embeddings and hence, belong to new root
embedding equivalence classes.

Q3. In our experiments, by increasing maxLevel or decreasing minsup, both
running time and the number of frequent patterns usually grow exponentially
(see e.g., Figures 3.11 and 3.13 for max Level and Figures 3.10 and 3.12 for
minsup).

3.7 Conclusion

In this chapter, we studied the problem of single network mining under homomor-
phism. We introduced a new class of patterns, called rooted patterns, and proposed
an algorithm for complete generation of rooted patterns. We presented a new closure
operator for compact representation of all frequent rooted patterns and investigated
its properties. Then, we introduced a new algorithm, called HoPa, for finding
frequent rooted patterns from a large single network under homomorphism. Finally,
by performing extensive experiments over large real-world and synthetic networks,
we showed the high efficiency of HoPa. In particular, by restricting our patterns to
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rooted trees, we compared HoPa against htreeminer (Dries and Nijssen, 2012) and
showed that there are several cases where htreeminer fails (due to lack of memory) or
it does not terminate within a reasonable time (e.g., 3-4 days), but HoPa finds frequent
patterns effectively.

Acknowledgements

We are thankful to Dr Anton Dries for providing us the htreeminer code. This
work was supported by ERC Starting Grant 240186 "MiGraNT: Mining Graphs and
Networks: a Theory-based approach".



Chapter 4

Mining Rooted Ordered Trees
under Subtree
Homeomorphism

4.1 Introduction

Many semi-structured data such as XML documents are represented by rooted ordered
trees. One of the most important problems in the data mining of such data is frequent
pattern discovery. Mining frequent tree patterns is very useful in various domains such
as network routing (Cui et al., 2002), bioinformatics (Zaki, 2005b) and user web log
data analysis (Ivancsy and Vajk, 2006). Furthermore, it is a crucial step in several
other data mining and machine learning problems such as clustering and classification
(Zaki and Aggarwal, 20006).

In general, algorithms proposed for finding frequent tree patterns include two main
phases: 1) generating candidate tree patterns, and 2) counting the frequency of every
generated tree pattern in a given collection of trees (called the database trees from now
on). The generation step (which involves a refinement operator) is computationally
easy. There are methods, such as rightmost path extension, that can generate efficiently
all non-redundant rooted ordered trees, i.e., each in O(1) computational time (Asai
et al., 2002; Zaki, 2005b). The frequency counting step is computationally expensive.
Chi et al. (2003) made an empirical comparison of these two phases; they showed
that a significant part of the time required for finding frequent patterns is spent on
frequency counting. Thereby, the particular method used for frequency counting can
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(a) The predictive model. (b) The user web log tree.

Figure 4.1: Under subtree homeomorphism, the tree 1" can be classified as C'1 while
it does not match the model under subtree isomorphism and subtree homomorphism.

significantly affect the efficiency of the tree mining algorithm.

The frequency counting step involves a matching operator (Kilpelainen and Mannila,
1995). A widely used matching operator is subtree homeomorphism; an injective
mapping that maps a parent-child relationship in the tree pattern onto an ancestor-
descendant relationship in the database tree. Frequent tree patterns under subtree
isomorphism are called induced patterns and frequent tree patterns under subtree
homeomorphism are called embedded patterns. Our focus in this chapter is frequent
embedded tree patterns.

Frequent embedded tree patterns have many applications in different areas. Zaki
and Aggarwal (20006) presented XRules, a classifier based on frequent embedded tree
patterns, and showed its high performance compared to classifiers such as SVM. In
this algorithm, during the training phase, the frequent embedded tree patterns that
are most closely related to a class variable are found. These tree patterns form
structural rules. Then during the testing phase, these rules are used to perform
the structural classification. Frequent tree patterns can be used for analyzing the
navigational behavior of the web users, where they are useful for advertising, dynamic
user profiling, etc (Ivancsy and Vajk, 2006). Zaki (2005b) suggested to use frequent
embedded tree patterns for predicting the function of RNA. The idea is to look for
RNA that is similar to RNA molecules with known structure and function. Frequent
embedded patterns are used as features to predict the function.

Figure 4.1 illustrates the difference between subtree homeomorphism and subtree
isomorphism in the context of prediction. Figure 4.1a presents a predictive model
consisting of two structural rules (Zaki and Aggarwal, 2006). These rules characterize
two classes C'1 and C2. Figure 4.1b presents a tree 7' that models a user web log
data. We aim at predicting the class of T". If either subtree isomorphism or subtree
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homomorphism is used, it is not possible to determine the class of 1" based on the
structural rules depicted in Figure 4.1a. However, if subtree homeomorphism is used,
the predictive model will put 7" in the class C'l. Zaki and Aggarwal (2006) used
frequent tree patterns under subtree homeomorphism for prediction tasks and showed
that the model outperforms algorithms such as SVM.

Two widely used frequency notions are per-tree frequency, where only the occurrence
of a tree pattern inside a database tree is important; and per-occurrence frequency,
where the number of occurrences is important, too. While there exist algorithms
optimized for the first notion (Zaki, 2005b), (Tatikonda et al., 2006) and (Wang
et al., 2004), this notion is covered also by the algorithms proposed for the second
notion. Per-occurrence frequency counting is computationally more expensive than
per-tree frequency counting. In the current chapter, our concern is per-occurrence
frequency. An extensive discussion about the applications in which the second notion
is preferred can be found e.g., in (Tan et al., 2008). One of the investigated examples
is a digital library where author information are separately stored in database trees in
some form, e.g., author-book—area—publisher. A user may be interested in finding
out information about the popular publishers of every area. Then, the repetition of
items within a database tree becomes important, hence, per-occurrence frequency is
more suitable than per-tree frequency (Tan et al., 2008).

Two categories of approaches have been used for counting occurrences of tree patterns
under subtree homeomorphism. The first category includes approaches that use one of
the algorithms proposed for subtree homeomorphism between two trees. HTreeMiner
(Zaki, 2005b) employs such an approach. The second category includes approaches
that store the information representing/encoding the occurrences of tree patterns.
Then, when the tree pattern is extended to a larger one, its stored information is also
extended, in a specific way, to represent the occurrences of the extended pattern. These
approaches are sometimes called vertical approaches. VTreeMiner (Zaki, 2005b) and
MB3Miner (Tan et al., 2008) are examples of the methods that use such vertical
approaches. As studied by Zaki (2005b), vertical approaches are more efficient than
the approaches in the first category.

Many efficient vertical algorithms are based on the numbering scheme proposed by
Dietz (1982). This scheme uses a tree traversal order to determine the ancestor-
descendant relationship between pairs of vertices. It associates each vertex with a
pair of numbers, sometimes called scope. For instance, VTreeMiner and TreeMinerD
(Zaki, 2005b) and TwigList (Qin et al., 2007) use this scheme in different forms, to
design efficient methods for counting occurrences of tree patterns.

The problem with these algorithms is that in order to count all occurrences, they
use data-structures that represent whole occurrences. This renders the algorithms
inefficient, especially when patterns are large and have many occurrences in the
database trees. In the worst case, the number of occurrences of a tree pattern
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can be exponential in terms of the size of pattern and database (Chi et al., 2005a).
Therefore, keeping track of all occurrences can significantly reduce the efficiency of
the algorithm, in particular when tree patterns have many occurrences in the database
trees.

The main contribution of the current chapter is to introduce a novel vertical algorithm
for the class of rooted ordered trees. It uses a more compact data-structure, called
occ (an abbreviation for occurrence compressor) for representing occurrences, and a
more efficient subtree homeomorphism algorithm based on Dietz’s numbering scheme
(Dietz, 1982). An occ data-structure stores only information about rightmost paths of
occurrences and hence can represent/encode all occurrences that have the rightmost
path in common. The number of such occurrences can be exponential, even though
the size of the occ is only O(d), where d is the length of the rightmost path of the
tree pattern. We present efficient join operations on occ that help us to efficiently
calculate the occurrence count of tree patterns from the occurrence count of their
proper subtrees.

Furthermore, we observed that in most of widely used real-world databases, while
many vertices of a database tree have the same label, no two vertices on the same path
are identically labeled. For this class of database trees, worst case space complexity
of our algorithm is linear; a result comparable to the best existing results for per-
tree frequency. We note that for such databases, worst case space complexity of the
well-known existing algorithms for per-occurrence frequency, such as VTreeMiner
(Zaki, 2005b) and MB3Miner (Tan et al., 2008), is still exponential. Based on the
proposed subtree homeomorphism method, we develop an efficient pattern mining
algorithm, called TPMiner. To evaluate the efficiency of TPMiner, we perform
extensive experiments on both real-world and synthetic datasets. Our results show that
TPMiner always outperforms most efficient existing algorithms such as VTreeMiner
(Zaki, 2005b) and MB3Miner (Tan et al., 2008). Furthermore, there are several cases
where the improvement of TPMiner with respect to existing algorithm is significant.

The rest of this chapter is organized as follows. In Section 4.2, the problem
studied in this chapter is introduced. In Section 4.3 a brief overview on related
work is given. In Section 4.4, we present the occ data-structure and our subtree
homeomorphism algorithm. In Section 4.5, we introduce the TPMiner algorithm for
finding frequent embedded tree patterns from rooted ordered trees. We empirically
evaluate the effectiveness of TPMiner in Section 4.6. Finally, the chapter is concluded
in Section 4.7.
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Figure 4.2: In the database tree T and for minsup = 2, while P1 is infrequent, it has
two frequent supertrees P2 and P3.

4.2 Problem statement

Given a database D consisting of trees and a tree P, per-tree support (or per-tree
frequency) of P in D is defined as: |[{T € D : P <" T}|. Per-occurrence support (or
per-occurrence frequency) of P in D is defined as: ) .., NumOcc(P,T'). In this
work, our focus is per-occurrence support. For the sake of simplicity, through this
chapter, we use the term support (or frequency) instead of per-occurrence support (or
per-occurrence frequency), and denote it by sup(P, D). P is frequent (P is a frequent
embedded pattern), iff its support is greater than or equal to an user defined integer
threshold minsup > 0. The problem studied in this chapter is as follows: given a
database D consisting of trees and an integer minsup, find every frequent pattern P
such that sup(P, D) > minsup.

We observe that when per-occurrence support is used, anti-monotonicity might be
violated: it is possible that the support of P is greater than or equal to minsup, but it
has a subtree whose support is less than minsup. For example, consider the database
tree T' of Figure 4.2 and suppose that minsup is 2. Then, while the pattern P1 is
infrequent, it has two frequent supertrees P2 and P3. Therefore, in a more precise
(and practical) definition, which is also used by algorithms such as VTreeMiner (Zaki,
2005b), tree P is frequent iff: 1) sup(P,D) > minsup, and 2) the subtree P’
generated by removing the rightmost vertex of P is frequent. This means only frequent
trees are extended to generate larger patterns.
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4.3 Related work

Recently, many algorithms have been proposed in the literature for finding frequent
tree patterns from a database of tree-structured data.

Mining frequent tree patterns from tree databases under subtree home-
omorphism. Zaki (2002) presented VTreeMiner to find embedded patterns from
trees. For frequency counting he used an efficient data structure, called scope-list,
and proposed rightmost path extension to generate non-redundant candidates. Zaki
(2005b) presented TreeMinerD to find embedded patterns when per-tree support
is used. For frequency counting, he developed an efficient data structure, called
SV-list, and introduced efficient join operators on SV-lists. Later, Zaki (2005a)
proposed the SLEUTH algorithm to mine embedded patterns from rooted unordered
trees. Xiao et al. (2005) proposed TreeGrow for mining maximal embedded tree
patterns from rooted unordered trees. However, TreeGrow assumes that the labels
for the children of every vertex are unique. XSpanner uses a pattern growth-based
method to find embedded tree patterns (Wang et al., 2004). Tatikonda et al. (2006)
proposed a generic approach for mining embedded or induced subtrees that can be
labeled, unlabeled, ordered, unordered, or edge-labeled. They developed TRIPS and
TIDES algorithms for the per-tree support setting using two sequential encodings
of trees to systematically generate and evaluate the candidate patterns. Tan et al.
(2008) introduced the MB3Miner algorithm, where they use a unique occurrence
list representation of the tree structure, that enables efficient implementation of their
Tree Model Guided (TMG) candidate generation. TMG can enumerate all the valid
candidates that fit in the structural aspects of the database.

A drawback of these algorithms is that in order to count the number of occurrences
of a tree pattern P in a database tree T, they need to keep track of all occurrences of
P in T'. For example, in VTreeMiner, for every occurrence ¢ of P in 7' a separate
element is stored in scope-list, that consists of the following components: (i) T'Id
which is the identifier of the database tree that contains the occurrence, (i7) m which
is {(v)|v € V(P)\ {rightmost vertex of P}}, and (i¢3) s which is the scope of ¢ (u),
where u is the rightmost vertex of P. In the current chapter, we propose a much
more compact data-structure that can represent/encode all occurrences that have the
rightmost path in common in O(d) space, where d is the length of the rightmost path
of P. The number of such occurrences can be exponential. We then present efficient
algorithms that calculate the occurrence count of tree patterns from the occurrence
count of their proper subtrees.

A slightly different problem over rooted ordered trees is the tree inclusion problem:
can a pattern P be obtained from a tree 7" by deleting vertices from 7. In our
terminology, is P present in 7" under subtree homeomorphism? Bille and Gortz (2011)
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recently proposed a novel algorithm that runs in linear space and subquadratic time,
improving upon a series of polynomial time algorithms that started with the work of
Kilpelainen and Mannila (1995).

Mining frequent tree patterns from tree databases under subtree isomor-
phism. Asai et al. (2002) independently proposed the rightmost path extension
technique for candidate generation. They developed FreqT for mining frequent
induced tree patterns. Algorithms for discovering similar structure and structural
association rules among a collection of tree-structured data can be found in (Wang and
Liu, 1998) and (Wang and Liu, 2000). Chi et al. (2003) proposed FreeTreeMiner for
mining induced patterns from rooted unordered trees and free trees. Other algorithms
for mining induced patterns from rooted unordered tree are PathJoin (Xiao et al.,
2003), uFreqt (Nijssen and Kok, 2003), uNot (Asai et al., 2003) and HybridTreeMiner
(Chi et al., 2004a). Miyahara et al. (2001) presented an algorithm for finding all
maximally frequent tag tree patterns in semi-structured data. Chi et al. (2004b)
proposed CMTreeMiner for mining both closed and maximal frequent tree patterns.
Their algorithm traverses an enumeration tree that systematically enumerates all
subtrees, and uses an enumeration DAG to prune the branches of the enumeration
tree that do not correspond to closed or maximal frequent subtrees. Chehreghani et al.
(2011) presented the Olnduced algorithm for finding frequent induced tree patterns.
They introduced three novel encodings for rooted ordered trees and showed that when
the matching operator is subtree isomorphism, frequency of every pattern can be
computed effectively, using these tree encodings. Later, Chehreghani (2011) proposed
other encodings for rooted unordered trees and accordingly, presented an efficient
method for frequency counting of unordered tree patterns under subtree isomorphism.

A brief comparison of pattern mining under the three matching operators.

» From the viewpoint of complexity of the frequency counting phase, in general,
subgraph homomorphism is easier than subgraph isomorphism and subgraph
homeomorphism. There are graph classes such as bounded treewidth graphs
for which subgraph homomorphism is solvable in a time polynomial in terms
of network size and pattern size; however, subgraph isomorphism and subgraph
homeomorphism are still hard problems (Matousek and Thomas, 1992b).

» The candidate generation phase under subtree homomorphism is more challeng-
ing than subtree isomorphism and subtree homeomorphism. In particular, a
larger pattern P might be more general than a smaller pattern P’, i.e., P might
be subtree homomorphic to P’. This makes the ordered search more com-
plicated than the cases of subtree isomorphism and subtree homeomorphism.
Furthermore, under subtree homomorphism, a pattern P might be generated
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from a smaller pattern P’ by adding any arbitrary number of edges, rather than
a fixed number of edges. This makes traversing the search space non-trivial.

* From the applicability point of view, as mentioned in Section 4.1, when longer
range relationships are relevant, subtree homeomorphism becomes more useful
than subtree isomorphism and subtree homomorphism.

4.4 Efficient tree mining under subtree homeomor-
phism

In this section, we present our method for subtree homeomorphism of rooted ordered
trees. First in Section 4.4.1, we introduce the notion of occurrence tree and its
rightmost path extension. Then in Section 4.4.2, we present the occ-list data-structure
and, in Section 4.4.3, the operators for this data structure. In Section 4.4.4, we
analyze space and time complexities of our proposed frequency counting method.
We briefly compare our approach with other vertical frequency counting methods in
Section 4.4.5.

4.4.1 Occurrence trees and their extensions

Under rightmost path extension, a pattern P with k£ + 1 vertices is generated from a
pattern P’ with k vertices by adding a vertex v, as the rightmost child, to a vertex in the
rightmost path of P. Occurrences of P are rightmost path extensions of occurrences
of P’ with an occurrence of v. Therefore, an interesting way to construct occurrences
of P is to look at the occurrences of v that can be a rightmost path extension of an
occurrence of P’. First, we introduce the notion of occurrence tree. Then, we present
the conditions under which a rightmost path extension of an occurrence tree yields
another occurrence tree.

Definition 17 (Occurrence tree). Given an occurrence @ of P in T, we define the
occurrence tree OT (p) as follows: (i) V(OT (¢)) = {e) : v € V(P)}, (ii)
root(OT (¢)) = @(root(P)), for every v € V(OT(¢)), AoT(p)(v) = Ar(v), and
(iii) E(OT (¢)) = {(¢(v1), (v2))|(v1, v2) € E(P)}.

Notice, when (v1,v2) € E(OT (p)) and vy is not the parent of vy in 7', then all
intermediate vertices on the path from v; to v are not part of V(OT (¢)). For
example, in Figure 4.3, the tree P has 3 occurrences in tree 7.

Selecting a vertex not yet in the occurrence tree and performing a rightmost path
extension does not always result in another occurrence tree. Proposition 8 below lists
properties that hold when the rightmost path extension is an occurrence tree.
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Figure 4.3: From left to right, a database tree 7, a pattern P and three occurrence
trees OT (1), OT (¢2), and OT (p3). Labels are inside vertices, preorder numbers
are next to vertices. The occurrence trees are represented by showing the occurrences
of the pattern vertices in bold. Their edges are the images of the edges in the pattern;
for example, OT (p3) refers to the tree formed by vertices 0, 4 and 5, with 0 as the
root, and with (0, 4) and (0, 5) as edges.
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Figure 4.4: A database tree is shown in 4.4a, together with four rightmost path
extensions of different occurrence trees in that database tree. However, only 4.4b
is itself an occurrence tree in the database tree; 4.4c, 4.4d and 4.4e violate conditions
(ii), (iii) and (i) of Proposition 9, respectively.

Proposition 8. Let o' be an occurrence of a pattern P’ in a database tree T and
OT’ = OT (¢'). Let x be a vertex of T outside OT’, and y a vertex on the rightmost
path of OT'. If OT = RExtend(OT’,x,y) is an occurrence tree in T, then: (i)
root(OT") is an ancestor of x in T, (ii) of all ancestors of x in T that belong to OT",
vy is the largest one in the preorder over T, and (iii) for each vertex w in OT’ such
that p(w) > p(y), w is a left relative of x in OT and in T.

Proof. By the definition of rightmost path extension presented in Chapter 2, either y
is root(OT") or it is a descendant of root(OT"); moreover y is the parent of z, hence
(i) holds. As y is on the rightmost path in OT" and y is the parent of z in OT (and
children of y are relatives of x in T, y is, among the ancestors of x in 7', the largest
one that belongs to OT” (ii). If p(w) > p(y) for a vertex w € V(OT"), since y is
on the rightmost path of OT’, w is a descendant of y. Furthermore, since x is the
rightmost child of y in OT', w is a left relative of = in OT and in T (iii). ]
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As an example of Proposition 8, consider Figure 4.4, where 4.4a presents a database
tree and 4.4b shows that an occurrence tree OT’ consisting of vertices 0 and 1 is
extended to another occurrence tree O consisting of vertices 0, 1 and 5. Vertex 0
is an ancestor of vertex 5 in the database tree (condition (z)); among all ancestors of
vertex 5 in the database tree that belong to OT”, vertex 0 is the largest one in the
preorder over the database tree (condition (¢%)); and vertex 1 is a left relative of vertex
5in OT and in the database tree (condition (#47)).

Let P’ be a tree pattern. The next proposition lists the conditions that are sufficient
to ensure that a rightmost path extension of an occurrence tree OT'(¢’) of P’ with an
edge (y, z) yields an occurrence tree of another tree pattern P, where P is a rightmost
path extension of P’.

Proposition 9. Let ¢’ be an occurrence of a pattern P’ in a database tree T and
OT" = OT (¢'). Let x be a vertex of T outside OT’, and y a vertex on the rightmost
path of OT'. If: (i) y is an ancestor of x in the database tree T, (ii) of all vertices
of OT" that are ancestors of x in the database tree T, vy is the largest one, and (iii)
p(z) > p(w) for all w € OT’, then RExtend(OT',x,y) is an occurrence tree.
For a given vertex x and an occurrence tree OT, if there exists a vertex y such that
RExtend(OT, x,y), y is unique.

Proof. Let u be the vertex of P’ such that y = ¢(u). To define P, we set V(P) =
V(P') U {v} with v a new vertex with the same label as =, and E(P) = E(P') U
{(u, v)} such that v is the rightmost child of u. Define OT as V(OT) = V(OT') U
{z} and E(OT) = E(OT) U {(y,x)} and set p(P) = ¢'(P') U{v — x}. By the
construction and the assumptions, OT = RExtend(OT’,z,y). We show OT is a
occurrence tree of P in T'. From (i) and (ii) it follows that z is on the rightmost path
from root(OT') and it is a descendant of y in 7" and from (iii) that the children of
y in OT are left relatives of x, hence, ¢ is an embedding of P in T and OT is an
occurrence tree of P in T". We note since all vertices of a tree have a unique preorder
number, y is unique, if it exists. ]

Figure 4.4 shows a database tree (4.4a) and four rightmost path extensions of
occurrence trees; however, only one of these extensions is another occurrence tree
(4.4b), the other ones violate the conditions of Proposition 9.

To turn the conditions of Proposition 9 into a practical method, we need a compact
way to store occurrence trees and an efficient way to check the conditions. For
the latter, we take advantage of the solution of Dietz (1982). He has designed a
numbering scheme based on tree traversal order to determine the ancestor-descendant
relationship between any pair of vertices. This scheme associates each vertex v with
a pair of numbers (p(v), p(v) + size(v)), where size(v) is an integer with certain
properties (which are met when e.g., size(v) is the number of descendants of v).
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Then, for two vertices u and v in a given database tree, u is an ancestor of v iff
p(u) < p(v) and p(v) + size(v) < p(u) + size(u), and v is a right relative of u iff
p(u) + size(u) < p(v). In several algorithms, such as VTreeMiner and TreeMinerD
(Zaki, 2005b) and TwigList (Qin et al., 2007), variants of this scheme have been
used to design efficient methods for counting occurrences of tree patterns based on
occurrences of their subtrees.

Our contribution is to introduce data structures, based on the Dietz numbering scheme,
that allow us to speed up counting of all occurrences of tree patterns. For example,
while the algorithm of Zaki (2005b) keeps track of all occurrences, we only store
the occurrences that have distinct rightmost paths. We start with introducing some
additional notations. The scope of a vertex x in a database tree T', denoted x.scope, is
a pair (I, u), where [ is the preorder number of x in T" and w is the preorder number of
the rightmost descendant of x in 7. We use the notations x.scope.l and x.scope.u to
refer to [ and u of the scope of x.

Definition 18 (rdepth). Let x be a vertex on the rightmost path of a tree T'. The rdepth
of © in T, denoted rdepr(x), is the length of the path from the root of T to x.

A vertex z on the rightmost path of T is uniquely distinguished by rdepr(z). For
example in Figure 4.4a, the rdepth of vertices 0, 3 and 5 is 0, 1 and 2, respectively
(and for the other vertices, rdepth is undefined).

Proposition 10. Let OT' be an occurrence tree of a tree pattern P’ in a database
tree T, x € V(T)\ V(OT') and y a vertex on the rightmost path of OT" but
not the rightmost vertex (i.e., the rightmost path of OT' has a vertex z such that
rdepor (z) = rdepor (y) + 1). We have: RExtend(OT',x,y) is an occurrence
tree iff

z.scope.u < x.scope.l < y.scope.u “4.1)

Proof. First, assume RExtend(OT’, xz,y) is an occurrence tree. By Proposition 8, y
is the largest vertex of OT" that is an ancestor of x, hence, in the database tree T, the
tree rooted at x is a subtree of the tree rooted at y. That means

y.scope.l < z.scope.l < x.scope.u < y.scope.u “4.2)

Vertex z and all vertices in the subtree of z are left relatives of x and have a preorder
number smaller than that of z. Hence z.scope.u < x.scope.l. Combining with
Inequation 4.2, we obtain z.scope.u < x.scope.l < y.scope.u.

For the other direction, Inequation 4.1 yields that x is a right relative of z and it is in
the scope of the subtree of y, hence, y is an ancestor of x ((¢) of Proposition 9) and
z is not an ancestor of x, so y is the largest ancestor of x that belongs to OT” ((i4)
of Proposition 9). Also, the preorder number of x is larger than that of any vertex in
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the subtree of z and hence of any vertex in OT" ((iii) of Proposition 9). Hence, by
Proposition 9, RExtend(OT’, x,y) is an occurrence tree. O

Proposition 11. Let OT' be an occurrence tree of a tree pattern P’ in a database
tree T, x € V(T)\ V(OT') and y the rightmost vertex of OT'. We have:
RExztend(OT',x,y) is an occurrence tree iff

y.scope.l < z.scope.l and x.scope.u < y.scope.u 4.3)

Proof. First, assume RExtend(OT’, x,y) is an occurrence tree. Similar to the proof
of Proposition 10, by Proposition 8, we get

y.scope.l < z.scope.l < x.scope.u < y.scope.u 4.4)

For the other direction, we assume y.scope.l < x.scope.l and z.scope.u < y.scope.u.
This implies that the tree rooted at = is a subtree of the tree rooted at y and that
the preorder number of x is larger than the preorder number of y and hence that all
conditions of Proposition 9 are satisfied, and RExtend(OT’, x,y) is an occurrence
tree. O

For example, in Figure 4.4, first let OT" refer to the occurrence tree consisting of
a single vertex 0. The scopes of vertices 0 and 1 are (0,5) and (1, 1), respectively.
The lower bound of the scope of vertex 1 is greater than the the lower bound of the
scope of vertex 0; and the upper bound of the scope of vertex 1 is smaller than or
equal to the upper bound of the scope of vertex 0. Therefore, Inequation 4.3 holds and
RExtend(OT",1,0) is an occurrence tree. Now, let OT" refer to the occurrence tree
consisting of vertices 0 and 1. The scope of vertex 5 is (5, 5). The lower bound of the
scope of vertex 5 is greater than the upper bound of the scope of vertex 1; and it is
smaller than or equal to the upper bound of the scope of vertex 0. Hence, Inequation
4.1 holds and RExtend(OT’,5,0) is an occurrence tree.

4.4.2 Occ-list: an efficient data structure for tree mining
under subtree homeomorphism

For the rightmost path extension of an occurrence tree, it suffices to know its rightmost
path. Different occurrences of a pattern can have the same rightmost path. The key
improvement over previous work is that we only store information about the rightmost
path of occurrence trees and that different occurrence trees with the same rightmost
path are represented by the same data element. All occurrences of a pattern in a
database tree are represented by occ-list, a list of occurrences. An element occ of
occ-list represents all occurrences with a particular rightmost path. The element has
four components:
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e T'Id: the identifier of the database tree that contains the occurrences represented
by occ.

* scope: the scope in the database tree T'Id of the last vertex in the rightmost path
of the occurrences represented by occ,

* RP: an array containing the upper bounds of the scopes of the vertices in the
rightmost path of the occurrences represented by oce, i.e., with = the vertex at
rdepth 7 in the rightmost path of the pattern P and ¢ one of the occurrences
represented by oce, RP[j] = ¢(x).scope.u; note that this is the same value for
all occurrences ¢ represented by occ!.

* multiplicity: the number of occurrences represented by occ.

For all occurrences of a pattern P that have the same T'Id, scope and RP, one occ
in the occ-list of P is generated and its multiplicity shows the number of such
occurrences. All oces of a pattern of size 1 have multiplicity 1 as their (single vertex)
rightmost paths are all different. Every occurrence is represented by exactly one occ.
We refer to the occ-list of P by occ-list(P). It is easy to see that the frequency of
P is equal to > occocelist(P) oc.multiplicity. An example of occ-list is shown in
Figure 4.5.

4.4.3 Operations on the occ-list data structure

Let P be a tree of size k + 1 generated by adding a vertex v to a tree P’ of size k.
There are two cases:

1. v is added to the rightmost vertex of P’. We refer to this case as leaf join.

2. v is added to a vertex in the rightmost path of P’, but not its rightmost vertex.
We refer to this case as inner join.

They correspond to Propositions 10 and 11.

Proposition 12 (leaf join). Let v be a one element pattern, P’ a pattern with u as
the rightmost vertex, d = rdepp: (u) and P = RExtend(P’,v,u). Let occ-list(P’),
occ-list(v) and occ-list( P) be the representations of the occurrences of P’, v and P,
respectively. We have: oc € occ-list(P) iff there exist an oc' € occ-list(P') and an
ov € occ-list(v) such that

The upper bound of the scope of the last vertex is already available in scope; for convenience of
presentation, the information is duplicated in RP.
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Figure 4.5: An example of occ-list. 70 and 7'1 are two database trees and minimum-
support is equal to 2. The figure presents the occ-lists of some frequent 1-tree patterns,
frequent 2-tree patterns, frequent 3-tree patterns and frequent 4-tree patterns.
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(i) od . TId = ov.TId = oc.TId (all occurrences are from the same database
tree),

(1i) oc’.scope.l < ov.scope.l and ov.scope.u < oc'.scope.u,

(iii) oc.RP[i] = oc’.RP[i] (0 < i < d) and oc.RP[d + 1] = ov.scope.u (i.e., copy
of oc'.RP and an extra element),

(iv) oc.scope = ov.scope, and

(v) oc.multiplicity = oc’ .multiplicity

Proof. First, assume oc € oce-list(P), hence it represents oc.multiplicity occurrence
trees of pattern P in database tree oc.TId. Each of these occurrence trees share
the same rightmost path. Hence they can be decomposed into occurrence trees of
pattern P’ sharing the same rightmost path and a particular occurrence of v. The latter
is represented by an element ov of ocec-list(v). The formers are represented by an
element oc’ of occ-list(P’). Now we show that conditions (), ..., (v) hold between
oc and these elements oc’ and ov. Condition (¢) holds because all occurrences are in
database tree oc.T'1d, (¢7) follows from Proposition 11, condition (zi¢) follows because
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Figure 4.6: Details of the relationship between occ-list(P’), occ-list(v) and occ-
list(P) for the database trees of Figure 4.5. The entries oc}, ovs and oc; satisfy the
properties of Proposition 12. Also the tuples (och, ovy, ocs) and (och, ovs, ocs) satisfy
the properties. The proposition is exploited in Algorithm 6 below. Its leaf_join
operation uses oce-list(P’) and occ-list(v) to compute occ-list(P).

the rightmost path of the occurrence trees represented by oc’ is identical to that of oc,
except for the last element which is removed, (zv) follows from the definition of scope,
and (v) holds because oc and oc’ represent the same number of occurrences.

Second, assume there are an oc’ € occ-list(P’) and an ov € oce-list(v) such that
conditions (%), ..., (v) hold. From (z) it follows that o¢’ and ov present occurrences
in the same database tree. Because (iz) holds, if follows from Proposition 11 that
all occurrence trees of P’ represented by oc’ can be extended with ov into occurrence
trees of P; all these occurrence trees have the same rightmost path and have ov as
their rightmost vertex, moreover they are the only ones in the database tree oc’.T'Id
with such a rightmost path. Hence, the element oc that satisfies properties (2), ..., (v)
is indeed an element of occ-list(P) as has to be proven. O

Figure 4.6 illustrates the proposition. The proposition is the basis for the leaf_join
operation in Algorithm 6 below.

In contrast with leaf join, which is performed between one occ of a tree pattern and
one occ of a vertex, inner join is performed between a set of occs of a tree pattern and
one occ of a vertex.

Proposition 13 (Inner join). Let v be a one element pattern, P' a pattern, u a
vertex on the rightmost path of P’ but not the rightmost vertex, ¢ = rdepp:(u)
and P = RExtend(P’,v,u). Let occ-list(P’), occ-list(v) and occ-list(P) be the
representations of the occurrences of P’, v and P, respectively. We have: oc €
occ-list(P) iff there exist a subset ocy,...,oc,, (m > 1) of occ-list(P’) and an
ov € occ-list(v) such that
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(i) ov.TId =o0cy.TId=...=oc,. TId = oc.TId (all occurrences are from the
same database tree),

(ii) oc;.RP[k] = oc};.RP[k], for all i, j € [1..m] and for all k € [0..c],
(#it) oc;.RP[c+ 1] < ov.scope.l < oc,.RP[c| foralli € [1..m],
(iv) ocl, ..., oc,, is maximal with the conditions (i)-(iii),

(v) oc.RP[i] = o .RPJi], 0 < i < ¢, and oc.RP[c + 1] = ov.scope.u (copy of
part of oc’.RP and an extra element ov.scope.u,),

(vi) oc.scope = ov.scope, and

(vii) oc.multiplicity = >\ | oc;.multiplicity.

Proof. First, assume oc € occ-list( P), hence it represents oc.multiplicity occurrence
trees of pattern P in database tree oc.T'Id. All these occurrence trees share the same
rightmost path. Hence, they can be decomposed into occurrence trees of pattern P’
sharing the first ¢ + 1 vertices of the rightmost path and a particular occurrence of v.
The latter is represented by an element ov of occ-list(v). The formers are represented
by elements oc}, . .., oc), of occ-list(P’). Now we show that conditions (4), ..., (vii)
hold between oc and these elements oc], . . ., oc},, and ov. Condition (¢) holds because
all occurrence trees are in database tree oc.T'Id, (i7) holds because all occurrence trees
represented by ocf, . .., oc,, share the first ¢ + 1 vertices of the rightmost paths, (77)
and (iv) follow from Proposition 10, (v) follows because the first ¢ + 1 vertices of
the rightmost paths of the occurrence trees represented by oc are identical to those of
ocl,...,oc, . and the rightmost vertex of the occurrence trees represented by oc is the
vertex represented by ov, (vi) follows from the definition of scope, and (vii) holds
because oc represents Y .-, oc;.multiplicity occurrences.

Second, assume there are a maximal subset oc], . . ., oc,,, of occ-list(P’) and an ov €
occ-list(v) such that conditions ((3), . . ., (vii) hold. From () it follows that oc’ and ov
present occurrences in the same database tree. Because (#4¢) and (iv) hold, if follows
from Proposition 10 that all occurrence trees of P’ represented by ocj, ..., oc), can
be extended with ov into occurrence trees of P; all these extended occurrence trees
have the same rightmost path and have ov as their rightmost vertex, moreover they
are the only ones in the database tree oc’.T Id with such a rightmost path. Hence, the
element oc that satisfies properties (2), ..., (viz) is indeed an element of occ-list(P) as
has to be proven. O

Figure 4.7 illustrates the proposition. The proposition is the basis for the inner_join
operation in Algorithm 6 below.
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Figure 4.7: Details of the relationship between occ-list(P’), occ-list(v) and occ-
list(P) for the database trees of Figure 4.5. The entries {oc}, och}, ov; and oc satisfy
the properties of Proposition 13. As ¢ = 0, rightmost paths of the occurrence trees
represented by oc} and oc), share the first vertex, that is vertex 0 of 7°0; and rightmost
paths of the occurrence trees represented by oc share the first and second vertices, that
are vertices 0 and 3 of 7°0. The proposition is exploited in Algorithm 6 below. Its
inmer_join operation uses occ-list(P’) and occ-list(v) to compute occ-list(P).

4.4.4 Complexity analysis

Space complexity. Given a database D, space complexity of the occ-list of a
pattern of size 1 is O(n x |D|), where n is the maximum number of vertices that
a database tree T' € D has. For larger patterns, space complexity of the occ-list of a
pattern P is O(b x d x |D|), where b is the maximum number of occurrences with
distinct rightmost paths that P has in a database tree 7' € D, and d is the length of the
rightmost path of P.

Compared to data-structures generated by other algorithms such as VTreeMiner, occ-
list is often substantially more compact. Given a database D, the size of the data-
structure generated by VTreeMiner for a pattern P is O(e x k x |D|), where e is
the maximum number of occurrences that P has in a database tree T' € D and k is
|V (P)|. We note that on one hand, k > d and the other hand, e > b. In particular,
e can be significantly larger than b, e.g., it can be exponentially (in terms of n and
k) larger than b. Therefore, in the worst case, the size of the data-structure generated
by VTreeMiner is exponentially larger than occ-list (and it is never smaller than occ-
list). An example of this situation is shown in Figure 4.8. In this figure, pattern P has

k-1
(Zj) > (Z—j) > (%)k/2 occurrences in the database tree T (k > 2 and n > k).
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Figure 4.8: Figure (a) shows a tree pattern P and (b) a database tree 7. The number
of occurrences of P in 7" is exponential in terms of n and k. In this case, the size
of occ-list is linear, however, the size of the data-structures generated by the other
algorithms is exponential.

0@ 0@
@ @

k-1 @ n-1 @
(@) (b)

Figure 4.9: Figure (a) shows a tree pattern P and (b) a database tree T'. The number
of occurrences of P in T is exponential in terms of n and k. In this case, the size of
the occ-list and the size of the data-structures generated by the other algorithms for P
are exponential.

If K = (n + 1)/2, the size of the data-structure generated by VTreeMiner will be
Q(2"/4). However, in this case, the size of the occ-list generated for P is Q(n). More
precisely, occ-list(P) has n — k + 1 oces, where foreach ¢, k — 1 < ¢ < n — 1, there
exists an occ with T'1d = 0, scope = (i,i), RP = {n — 1,4} and multiplicity =
(k2)-

We note that there are cases where the size of occ-list (as well as the size of the data-
structures used by the other algorithms) becomes exponential. An example of this
situation is presented in Figure 4.9, where for k& = n/2, the size of occ-list as well as
the size of scope-list used by VTreeMiner become exponential. More precisely, for
each k-element combination of the vertices of the database tree, there exists an occ
in the occ-list of the tree pattern, where T'Id is 0, the lower bound of scope is the
preorder number of the vertex with the largest depth in the combination, the upper
bound of scope is n — 1, RP is an array of size k filled by n — 1, and multiplicity is
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1.

In most of real-world databases, such as CSLOGS (Zaki, 2005b) and NASA
(Chalmers et al., 2003), while several vertices of a database tree have the same

label,

no two vertices on the same path are identically labeled. For trees with this

property, while worst case space complexity of occ-list becomes linear (with an
efficient implementation of occ-list using linked lists), worst case size of scope-list
remains exponential.

Time complexity. We study time complexity of leaf join and inner join:

A leaf join between two occs takes O(d) time with d the length of the rightmost
path of P. Since a pattern larger than 1 has O(b x |D|) oces and a pattern of
size 1 has O(n x |D]) oces and leaf join is performed between every pairs of
occs with the same T'1d, worst case time complexity of leaf join between two
occ-lists will be O(d x b x n x |D|).

In the inner join of the occ-lists of a tree pattern P’ and a vertex v, given an occ
ov of v, it takes O(h X d) time to find subsets of the occ-list of P’ that satisfy
the conditions of Proposition 13, where h is the number of occs in the occ-list
of P’. We note that occs of an occ-list can be automatically sorted first based on
their T'Ids and second, based on their RPs. This makes it possible to find the
subsets of the oce-list of P’ that satisfy the conditions of Proposition 13 only
by one scan of the oce-list of P’. During this scan, it is checked whether: (i)
the current and the previous oces have the same 7'1d, (ii) the current and the
previous oces have the same RP|0],..., RP]c], (iii) RP[c + 1] of the current
occ is less than ov.scope.l, and (iv) RP|c] of the current occ is greater than or
equal to ov.scope.l. During the scan of occ-list(P’), after finding a subset S
that satisfies the conditions of Proposition 13, it takes O(d) time to perform the
inner join of S and ov. As a result, it takes O(h X d) time to perform the inner
join of the occ-list of P’ and an occ of v. Since h is O(b x |D]) and v has
O(n x |DJ) oces, and since inner join is done between every pairs of subsets
S and occs ov that have the same 7'Ids, time complexity of inner join will be
O(d x b xn x |DJ).

Therefore, frequency of a pattern can be counted in O(d x b x n x |D|) time. We note
that in VTreeMiner, frequency of a pattern is counted in O(k x €2 x |D|) time (recall
k > dand e > b, in particular, it is possible that e >> b).
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4.4.5 A brief comparison with other vertical frequency count-
ing approaches

As mentioned before, algorithms such as VTreeMiner (Zaki, 2005b) and MB3Miner
(Tan et al., 2008) need to keep track of all occurrences. Obviously, our approach is
more efficient as it simultaneously represents and processes all occurrences sharing
the rightmost path in O(d) space, where d is the length of the rightmost path of the
pattern. TreeMinerD developed by Zaki (2005b) for computing per-tree frequency,
is more similar to our approach as it also processes rightmost paths of occurrences.
However, there are significant differences. First, while TreeMinerD computes only
per-tree frequency, our algorithm performs a much more expensive task and computes
per-occurrence frequency. Second, TreeMinerD applies different join strategies.

4.5 TPMiner: an efficient algorithm for finding
frequent embedded tree patterns

In this section, we first introduce the TPMiner algorithm and then, we discuss an
optimization technique used to reduce the number of generated infrequent patterns.

4.5.1 The TPMiner algorithm

Having defined the operations of leaf join and inner join and having analyzed their
properties, we can now introduce our tree pattern miner, called TPMiner (Tree Pattern
Miner). TPMiner builds all frequent patterns and maintains the rightmost paths of all
their occurrences.

TPMiner follows a depth-first strategy for generating tree patterns. First, it extracts
frequent patterns of size 1 (frequent vertex labels) and constructs their oce-lists. This
step can be done by one scan of the database. Every occ of a pattern of size 1 represents
one occurrence of the pattern, where its R P contains the upper bound of the scope of
the occurrence, its scope contains the scope of the occurrence, and its multiplicity is
1. Then, larger patterns are generated using rightmost path extension. For every tree
P of size k + 1 (k > 1) which is generated by adding a vertex v to a vertex on the
rightmost path of a tree P’, the algorithm computes the oce-list of P by joining the occ-
lists of P’ and v. If v is added to the the rightmost vertex of P’, a leaf join is performed;
otherwise, an inner join is done. The high level pseudo code of TPMiner is given in
Algorithm 6. P is used to store all frequent patterns. Every tree pattern is generated in
O(1) time, hence, time complexity of Algorithm 6is O(d x b x n x |D| x C), where
C is the number of generated candidates.
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Algorithm 6 High level pseudo code of the TPMiner algorithm.

—_

R I AN A

—_ = = =
@ N e

14:

20:

I I Y U N

: TPMiner

: Input: D {a set of database trees}, minsup {the minimum support threshold}
: Output: P {the set of frequent patterns}

: Compute the set P of frequent patterns of size 1 along with their occ-lists

PP

: for each P in P; do

Extend(P,P;, minsup, P)

: end for

: Extend(P,P1, minsup, P)
: Input: P {afrequent pattern}, P; {the set of frequent patterns of size 1}, minsup

{the minimum support threshold}

: Input and Output: P {the set of frequent patterns}
: Side effect: P is updated with frequent rightmost path extensions of P
. for each P; in P; do

{Let d be the length of the rightmost path of P}
for i = 0to ddo
{Let u be the vertex of P such that rdepp(u) = i}
P, + REztend(P, Py, u)
if ¢ = d then
occ-list(P,,) < leaf_join(P, Py)
else
occ-list(P,,) < inner_join(P, Py)
end if
if sup(P,,, D) > minsup then
Add P, to P
Extend(P,,P1, minsup, P)
end if
end for
end for
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4.5.2 An optimization technique for candidate generation

In rightmost path extension, a new tree P is generated by adding a new vertex to
some vertex on the rightmost path of an existing frequent pattern P’, therefore, it is
already known that P has (at least) one frequent subtree. In an improved method
proposed by Zaki (2005b), to generate the tree P, two patterns P1 and P2 such that
their subtrees induced by all but the rightmost vertices are the same, are merged. In
this merge, the rightmost vertex of P2 (which is not in P1) is added to P1 as the
new vertex. In this way, we already know that P has (at least) two subtrees that are
frequent, therefore, trees that have only one frequent subtree are not generated. This
can reduce the number of trees that are generated but are infrequent.

4.6 Experimental Results

We performed extensive experiments to evaluate the efficiency of the proposed
algorithm, using data from real applications as well as synthetic datasets. The
experiments were done on a AMD Processor with 16 GB main memory and 2 x 1
MB L2 cache.

VTreeMiner (also called TreeMiner) (Zaki, 2005b) is a well-known algorithm for
finding all frequent embedded patterns from trees. Therefore, we select this algorithm
for our comparisons. Recently more efficient algorithms, such as TreeMinerD (Zaki,
2005b), XSpanner (Wang et al., 2004), TRIPS and TIDES (Tatikonda et al., 2006),
have been proposed for finding frequent embedded tree patterns. However, they only
compute the per-tree frequency instead of the per-occurrence frequency. Some other
algorithms, such as (Xiao et al., 2003) and (Miyahara et al., 2004), find maximal
embedded patterns which are a small subset of all frequent tree patterns. To the best
of our knowledge at the time of writing this chapter, MB3Miner (Tan et al., 2008)
is the most efficient recent algorithm for finding frequent embedded tree patterns.
MB3Miner works with both per-tree frequency and per-occurrence frequency. Here,
we use the version that works with the per-occurrence frequency. We note MB3Miner
generates only the frequent patterns such that all subtrees are frequent, therefore, it
might produce fewer frequent patterns than VTreeMiner and TPMiner. Tatikonda
and Parthasarathy (2009) proposed efficient techniques for parallel mining of trees on
multicore systems. Since we do not aim at parallel tree mining, their system is not
proper for our comparisons.

We used several real-world datasets from different areas to evaluate the efficiency of
TPMiner. The datasets do neither have noise nor missing values. Table 4.1 reports
basic statistics of our real-world datasets.
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Table 4.1: Summary of real-world datasets.

Dataset # Transactions  # Vertices  # Vertex labels T.ransacuon sue
Maximum  Average
CSLOGS32241 | 32,241 240,716 10,698 435 13.9323
Prions 17,551 227,203 111 37 24.9497
NASA 1,000 163,753 333 471 326.506
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Figure 4.10: Comparison over CSLOGS32241.

The first real-world dataset is CSLOGS (Zaki, 2005b) that contains the web access
trees of the CS department of the Rensselaer Polytechnic Institute. It has 59,691
trees, 716,263 vertices and 13, 209 vertex labels. Each distinct label corresponds to
the URLs of a web page. As discussed by Tan et al. (2008), when per-occurrence
frequency is used, none of the algorithms can find meaningful patterns, because
by decreasing minsup, suddenly lots of frequent patterns with many occurrences
appear in the dataset that makes the mining task practically intractable. Tan et al.
(2008) progressively reduced the dataset and generated the CSLOGS32241 dataset
that contains 32, 241 trees. Figure 4.10 compares the algorithms over CSLOGS32241.
For all given values of minsup, VTreeMiner does not terminate within a reasonable
time (i.e., 1 day!), therefore, the figure does not contain it. TPMiner is faster than
MB3Miner by a factor of 5-20 and it requires significantly less memory cells. In order
to have a comparison with VTreeMiner, we tested the algorithms for minsup = 1000;
while TPMiner finds frequent patterns within around 1.3 seconds, VTreeMiner takes
more than 1000 seconds to find the same patterns.

The second real-world dataset used in this chapter is Prions that describes a protein
ontology database for Human Prion proteins in XML format (Sidhu et al., 2006).
Tan et al. (2008) converted it into a tree-structured dataset by considering tags as
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Figure 4.11: Comparison over Prions.
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Figure 4.12: Comparison over NASA.

vertex labels. It has 17,551 wide trees. Figure 4.11 reports the empirical results
over this dataset, where TPMiner is faster than VTreeMiner by a factor of 5-5.2, and
it is faster than MB3Miner by a factor of 7.3-11. The third real-world dataset is a
dataset of IP multicast. The NASA dataset consists of MBONE multicast data that
was measured during the NASA shuttle launch between the 14th and 21st of February,
1999 (Chalmers and Almeroth, 2001; Chalmers et al., 2003). It has 333 distinct vertex
labels where each vertex label is an IP address. The data was sampled from this
NASA dataset with 10 minutes sampling interval and has 1, 000 trees. In this dataset,
large frequent patterns are found at high minimum support values. As depicted in
Figure 4.12, over this dataset, TPMiner is 3-4 times faster than VTreeMiner and both
methods are significantly faster than MB3Miner. At minsup = 902, MB3Miner fails.

We also evaluated the efficiency of the proposed algorithm on several synthetic
datasets generated by the method of Zaki (2005b). The synthetic data generation
program mimics the web site browsing behavior of the user. First a master web site
browsing tree is built and then the subtrees of the master tree are generated. The
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Figure 4.13: Comparison over synthetic datasets.
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program is adjusted by 5 parameters: (¢) the number of labels (/V), (i¢) the number of
vertices in the master tree (M), (¢47) the maximum fan-out of a vertex in the master
tree (F), (iv) the maximum depth of the master tree (D), and (v) the total number
of trees in the dataset (71'). Figure 4.13 compares the algorithms over the synthetic
datasets. The first synthetic dataset is D10 and uses the following default values for
the parameters: N = 100, M = 10,000, D = 10, F' = 10 and T' = 100, 000.
Over this dataset, TPMiner is around 3 times faster than VTreeMiner and VTreeMiner
is slightly faster than MB3Miner. The next synthetic dataset is D5, where D is set
to 5 and for the other parameters, the default values are used. Over this dataset, at
mansup = 10, 20 and 30, MB3Miner is aborted due to lack of memory. We also
evaluated the effect of M. We set M to 100,000 and used the default values for
the other parameters and generated the M100k dataset. Over this dataset, TPMiner
is faster than MB3Miner by a factor of 2-3, and both TPMiner and MB3Miner are
significantly faster than VTreeMiner.

Discussion. Our extensive experiments report that TPMiner always outperforms
well-known existing algorithms. Furthermore, there are several cases where TPMiner
by order of magnitude is more efficient than any specific given algorithm. TPMiner
and VTreeMiner require significantly less memory cells than MB3Miner. This is due
to the different large data-structures used by MB3Miner such as the so-called EL, OC
and VOL data structures and also to the breadth-first search (BFS) strategy followed by
MB3Miner (Tan et al., 2008). Although TPMiner uses a more compact representation
of occurrences than VTreeMiner, this is hardly noticeable in the charts. The reason is
that the memory use is dominated by the storage of the frequent patterns.

In our experiments, we can distinguish two cases. First, over datasets such as
NASA and D5 (in particular for low values of minsup), the Tree Model Guided
technique used by MB3Miner does not significantly reduce the state space, therefore,
the algorithm fails or it does not terminate within a reasonable time. In such cases,
TPMiner find all frequent patterns very effectively. Second, over very large datasets
(such as CSLOGS32241) or dense datasets (such as M100K) where patterns have
many occurrences, TPMiner becomes faster than VTreeMiner by order of magnitude.
This is due to the ability of TPMiner in frequency counting of patterns with many
occurrences. As discussed earlier, the oce data-structure used by TPMiner can often
represent and handle exponentially many occurrences with a single occ element, while
in VTreeMiner these occurrences are represented and handled one by one.
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4.7 Conclusion

In this chapter, we proposed an efficient algorithm for subtree homeomorphism with
application to frequent pattern mining. We developed a compact data-structure, called
occ, that effectively represents/encodes several occurrences of a tree pattern. We
then defined efficient join operations on occ that help us to count occurrences of tree
patterns according to occurrences of their proper subtrees. Based on the proposed
subtree homeomorphism method, we introduced TPMiner, an effective algorithm for
finding frequent tree patterns. We evaluated the efficiency of TPMiner on several real-
world and synthetic datasets. Our extensive experiments show that TPMiner always
outperforms well-known existing algorithms, and there are several situations where
the improvement compared to existing algorithms is significant.
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Chapter 5

An Efficient Algorithm for
Approximate Betweenness
Centrality Computation

5.1 Introduction

Centrality is a structural property of vertices in a network that measures the importance
of a vertex within the network (Freeman, 1979). For example, it determines how
important a person is within a social network, or how well-used a road is within a
road network. Betweenness centrality of a vertex, introduced by Freeman, is defined
as the number of shortest paths (geodesic paths) from all (source) vertices to all others
that pass through that vertex. He used it as a measure for quantifying the control of a
human over the communications among others in a social network (Freeman, 1977).
Betweenness centrality is also used in some well-known algorithms for clustering
and community detection in social and information networks. For example, the
community detection algorithm proposed by Girvan and Newman (2002) iteratively
partitions the network by finding edges with high betweenness centrality, removing
them from the network and recomputing betweenness centrality of remaining edges.

Although there exist polynomial time and space algorithms for betweenness centrality
computation, the algorithms are expensive in practice. Currently, the most efficient
existing exact method is the algorithm of Brandes (2001). Time complexity of this
algorithm is O (nm) for unweighted graphs and O(nm+n? logn) for weighted graphs
with positive weights (n is the number of vertices and m is the number of edges in
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the network). Therefore, exact betweenness centrality computation is not practically
applicable, even for mid-size networks.

Fortunately, in several applications it is required to only compute betweenness
centrality of one vertex (or a few vertices). For instance, this index may be computed
only for core vertices of communities in social/information networks (Wang et al.,
2011), or hubs in communication networks. However, the next bad news is that
computing exact betweenness centrality of a single vertex is not easier than computing
betweenness centrality of all vertices. Therefore, the above mentioned complexities
also hold if someone wants to compute betweenness centrality of only one vertex (or
a few vertices).

As a simple example motivating betweenness centrality computation of only one
vertex, consider Figure 5.1(a) that shows a toy road network. In a road network,
vertices are intersections of roads and (undirected) edges are roads connecting these
intersections. Suppose that the intersection presented by vertex 1 is very crowded
and we want to change the structure of the network to reduce the traffic-jam in this
intersection. Three new configurations are suggested:

1. blocking the road between vertices 1 and 6 and building a new road between
vertices 5 and 6 (Figure 5.1(b)),

2. blocking the road between vertices 1 and 2 and building a road between vertices
2 and 4 (Figure 5.1(c)), and

3. blocking the road between vertices 1 and 5 and building a new road between
vertices 2 and 4 (Figure 5.1(d)).

We want to examine the effect of the suggested configurations on the traffic of the
intersection 1 and choose the best one. In the existing road network which is depicted
in Figure 5.1(a), betweenness score of vertex 1 is 6. In the networks of Figures 5.1(b),
5.1(c), and 5.1(d) it is 3, 3 and 2, respectively. Therefore, among the three suggested
configurations, the one depicted in Figure 5.1(d) is the best one for reducing the traffic-
jam of intersection 1. Note that real-world road networks can be very large. For
example, the road network of California has 1, 965, 206 vertices and 2, 766, 607 edges
(Leskovec et al., 2009).

To make computation of betweenness centrality tractable in practice, in recent
years several algorithms have been proposed for approximate betweenness centrality
computation (Brandes and Pich, 2007; Bader et al., 2007; Geisberger et al., 2008).
Existing algorithms fall into one of the following categories.

1. Some algorithms such as the algorithms of Brandes and Pich (2007) and
Geisberger et al. (2008) approximate betweenness centrality of all vertices in
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Figure 5.1: Figure (a) shows a toy road network where betweenness score of vertex
1 is 6 and it is desired to reduce this score. Three new configurations are suggested,
that are depicted in Figures (b), (c) and (d). Betweenness scores of vertex 1 in the
networks of Figures (b), (c), and (d) are 3, 3 and 2, respectively.

the network. For these methods the value computed for every vertex is not of
high importance, instead, the main goal is to correctly estimate the relative rank
of all vertices.

2. Some others, such as the method of Bader et al. (2007), aim to approximate
betweenness centrality of a single vertex (or a few vertices) in time faster
than computing betweenness centrality of all vertices. For these methods, the
accuracy of the estimated betweenness centrality is important.

Our focus in this chapter is the second category, i.e., we aim at developing an efficient
and accurate algorithm for betweenness centrality computation of a single vertex (or
a few vertices) in the network.

In this chapter, we propose a randomized algorithm for unbiased approximation of
betweenness centrality. In the proposed algorithm, a source vertex ¢ is selected by
some strategy, single-source betweenness scores of all vertices on ¢ are computed,
and the scores are scaled as estimations of betweenness centralities. Our proposed
algorithm can be adapted with different sampling techniques to give diverse methods
for approximating betweenness centrality. As we will see later, some existing methods
can be seen as special cases of our proposed algorithm adapted with particular
samplings. We propose a condition that a promising sampling technique should satisfy
to minimize the approximation error for a single vertex. Then, we present a sampling
technique that fits better with the condition.

While the algorithm of Bader et al. (2007) is intuitively presented for high centrality
vertices, in our method, the sampling technique can be optimized for both high
centrality vertices and low centrality vertices. Finally, our proposed method can be
used to compute similar centrality notions, such as stress centrality (Shimbel, 1953),
that are also based on counting shortest paths.
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We perform extensive experiments on synthetic networks as well as networks from
real-world, and show that compared to existing exact and inexact algorithms, our
method works with higher accuracy or gives significant speedups.

The rest of this chapter is organized as follows. A brief overview on related work
is given in Section 5.2. In Section 5.3, we present a randomized algorithm for
betweenness centrality computation. In Section 5.4, we discuss the sampling methods.
We empirically evaluate the proposed method in Section 5.5 and show its efficiency
and high accuracy. Finally, the chapter is concluded in Section 5.6.

5.2 Related work

Centrality measures defined for the vertices of a network, are an important and
essential tool for the analysis of social networks. The widely used centrality indices
include betweenness centrality (Freeman, 1977), closeness centrality (Sabidussi,
1966), degree centrality (Wasserman and Faust, 1994) and eigenvector centrality
(Bonacich and Lloyd, 2001).

Betweenness centrality, which is widely used as a precise estimation of the informa-
tion flow controlled by a vertex in social and information networks, assumes that
information flow is done through shortest paths (Yan et al., 2006). Brandes (2001)
introduced new algorithms for computing betweenness centrality of a vertex, which
is performed in O(nm) and O(nm + n? logn) times for unweighted and weighted
networks, respectively.

Holme (2003) showed that betweenness centrality of a vertex is highly correlated
with the fraction of time that the vertex is occupied by the traffic of the network.
Barthelemy (2004) showed that many scale-free networks (Barabasi and Albert, 1999)
have a power-law distribution of betweenness centrality. Borgatti (2005) proposed a
dynamic model-based view of centrality that focuses on the outcomes of vertices in a
graph. He said that here the fundamental questions are: i) how often does traffic flow
through a vertex, and ii) how long do things take to get to a vertex.

Variants Newman (2005) proposed random walk betweenness, that prefers shorter
paths over the longer ones. Goh et al. (2001) defined Load Centrality (LC), which is a
variant of betweenness centrality. It assumes that traffic flows over shortest paths, but
uses a different routing mechanism. Another set of variants is obtained by limiting
the length of paths. It is based on the idea that very long paths are used rarely
and should not contribute to betweenness of a vertex. Such measures are called k-
betweenness centrality, where k is the maximum length of counted paths. Friedkin
(1991) proposed a 2-betweenness centrality measure. Similarly, Gould and Fernandez
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(1990) developed brokerage measures that are specific variants of 2-betweenness
centrality. There are also several variants of betweenness centrality that are used to
determine the structural prominence of web pages (Kleinberg, 1999) and (Brin et al.,
1998).

Generalization to sets There are several applications where a centrality notion
for sets of vertices is more useful (Everett and Borgatti, 1999). Everett and Borgatti
(1999) defined group betweenness centrality as a natural extension of betweenness
centrality for sets of vertices. Group betweenness centrality of a set is defined as
the number of shortest paths passing through at least one of the vertices in the set
(Everett and Borgatti, 1999). The other natural extension of betweenness centrality
is co-betweenness centrality. Co-betweenness centrality is defined as the number of
shortest paths passing through all vertices in the set. Kolaczyk et al. (2009) presented
an O(n?) time algorithm for co-betweenness centrality computation of sets of size
2. Chehreghani (2014) presented efficient algorithms for co-betweenness centrality
computation of any set or sequence of vertices in weighted and unweighted networks.
For example, he showed that co-betweenness centrality of a set K of vertices can
be computed in O(nm — |K|m + n|K|log|K| — |K|?log |K|) time in unweighted
graphs.

Puzis et al. (2007a) proposed an O(|K|?) time algorithm for computing successive
group betweenness centrality, where | K| is the size of the set. Puzis et al. (2007b)
presented two algorithms for finding most prominent group. A most prominent group
of a network is a set vertices of minimum size, so that every shortest path in the
network passes through at least one of the vertices in the set. The first algorithm
is based on a heuristic search and the second one is based on iterative greedy
choice of vertices. Dolev et al. (2010) defined the Routing Betweenness Centrality
(RBC) measure and presented algorithms for computing RBC of single vertices in the
network and algorithms for computing group RBC of sets or sequences of vertices.

Approximate algorithms Brandes and Pich (2007) proposed an approximate be-
tweenness centrality computation algorithm based on selecting k vertices, computing
dependency scores for them, and extrapolating dependency scores of the rest. In the
method of Bader et al. (2007), some source vertices are selected uniformly at random,
and their dependency scores are computed and scaled for all vertices. Their sampling
technique is adaptive in the sense that the number of samples varies based on the
betweenness score. Geisberger et al. (2008) presented a framework for approximate
ranking of vertices based on their betweenness scores. In this method, the method for
aggregating dependency scores changes so that vertices do not profit from being near
the selected source vertices.
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Lee et al. (2012) proposed an algorithm to efficiently update betweenness centralities
of vertices in a graph, when the graph obtains a new edge. They tried to reduce the
search space by finding a candidate set of vertices whose betweenness centralities can
be updated. Then, they proposed a method to compute betweenness centralities using
candidate vertices only.

5.3 Approximate betweenness centrality computa-
tion

Algorithm 7 shows the high level pseudo code of our proposed algorithm for
approximate betweenness centrality computation. First the following probabilities are
computed in accordance with the used/applied sampling method (see below)

P1,P2, - .-, Pn > 0 such that Zpizl 6D
i=1

Then, at every iteration ¢ of the loop in Lines 8-15 of Algorithm 7:

e ani € {1,...,n} is selected with probability p;,
* the SPD rooted at ¢ is computed,

* dependency score of vertex ¢ on v, d;e(v), is computed,

51'. (U)

is the estimation of BC'(v) in iteration ¢.

The average of betweenness centralities estimated in different iterations is returned as
the final estimation of the betweenness centrality.

Algorithm 7 estimates betweenness centrality of all vertices of the graph. The reason
is that after forming the SPD rooted at a vertex ¢, in the worst case time complexity
of computing dependency score of ¢ on one vertex is the same as time complexity of
computing dependency scores of 7 on all vertices. However, as we will see later in
Section 5.4, probabilities p;1, po, ..., p, can be calculated in a way to minimize the
approximation error of a specific vertex in the graph.

Lemma 1. In Algorithm 7, for a vertex v we have
E(B[v]) = BC(v) (5.2)

and

Var(B[v]) = %Z 5“;:’) _B CT(“) (5.3)
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Algorithm 7 High level pseudo code of the algorithm of approximate betweenness
centrality computation.

APPROXIMATEBETWEENNESS
Require. A network (graph) GG, the number of samples 7.
Ensure. Betweenness centrality of vertices of G.
Compute probabilities p1, ..., P,
for each vertex v € V(G) do
Bv] + 0
end for
for eacht =1to T do
Select a vertex ¢ with probability p;
Form the SPD D rooted at %
Compute dependency scores of vertex ¢ on all vertices v
for each vertex v € V(G) do
B[v] + B[v] + 22
end for
. end for
: foreachi e {1,...,n} do
Bli] + 4
. end for
: return B

R AN A R ol s

= e e e e e e e
R AN R T

Proof. We have:

n Pidie(v
_TYL

E(Bv]) 7 — =BC)

and
Var(B,[v]) = E(B,[v]*) — E(B,[v])?

n (Si.UQ
-y <i>

P BC(v)

where index ¢ stands for the iteration ¢t. Since B[v] is the average of T independent
copies of Bi[v], we have

" s ()2 )2
Var(B[v]) = %Z 5"}5; S BCI(, ) 5.4
i=1 ¢

O
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For unweighted graphs, in every iteration of the loop in Lines 8-15 of Algorithm 7,
forming the SPD rooted at ¢ and computing dependency scores of 7 on all vertices
takes O(m) time. Other steps inside the loop can be performed in O(1) time. This
means that for unweighted graphs, if probabilities p;, po, . .., p, are already known,
time complexity of Algorithm 7 will be O(T'm).

For weighted graphs with positive weights, in every iteration of the loop in Lines 8-15,
it takes O(m + nlogn) time to form the SPD rooted at ¢ and O(m) time to compute
dependency scores of i on every vertex v. Therefore, for weighted graphs with
positive weights, if probabilities p1, pe, ..., p, are already known, time complexity
of Algorithm 7 will be O(T'm + Tnlogn). For weighted graphs where negative
weights are allowed, the problem is NP-Hard.

Algorithm 7 provides a randomized framework for approximate betweenness central-
ity computation, so that some existing algorithms can be described as adaptations of
Algorithm 7 with specific sampling methods. For example, if vertices ¢ are selected
uniformly at random (i.e. p; = % for 1 < i < n), then it will give the randomized
algorithm presented by Bader et al. (2007). Note that instead of taking exactly T’
samples, we can define a condition for the termination of the loop in Lines 8-15
of Algorithm 7. For example, similar to the algorithm of Bader et al. (2007), our
algorithm can be terminated when B[v] > ¢n for some constant c.

5.4 Sampling methods

In this section, we discuss sampling methods, i.e. how probabilities py,...,p, are
computed. Suppose that we want to estimate betweenness centrality of a vertex
v. We first present the optimal sampling which minimizes variance of B[v]. It
might be computationally expensive to use the optimal sampling. Based on the
optimal sampling, we present conditions that a promising sampling technique should
satisfy, in order to give a better approximation of betweenness score of v. We then
introduce a sampling technique, called distance-based sampling, that fits better with
the mentioned condition.

5.4.1 Optimal sampling

Suppose that we want to estimate betweenness centrality of a vertex v. The following
Lemma defines the probabilities minimizing variance of B[v].

Lemma 2. Ifin Algorithm 7 source vertices i are selected with probabilities

(Si. (’U)
i = = 5.5
P S (o) ©:3)
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the approximation error (i.e., variance of B[v]) is minimized. In this case, variance of

Blv] will be 0.

Proof. In order to minimize Var(B[v]), we need to minimize » .., ‘5’3'17(7:)2, because
other parts of Var(B[v]) in Equation 5.4 are independent of i.

We define

n

f(pl,.--,pn)Zz:M

Pi

i=1

and substitute p,, by 1 — Z;:ll p; and form equations aan =0,forl1 <i<n-1.

We get
5io v 2 671,0 v 2
p<2) = (7)1 5 (5.6)
N CRp>=E)
which gives:
1— anl P D
_ —j=117 s =" 5. 5.7
i 5ra(0) ie(V) 5re(0) ie(V) (5.7
Summing p;’s, for 1 <7 < n — 1, and doing simplifications, we get
» n—1
1-— DPn = §n. ; 5,‘.(11)
which gives
Pn = 0a(0) D Bia ()
i=1
Plugging this in Equation 5.7 gives
51‘. v
2 j=19je(v)
If we put this value of p; into Equation 5.4, variance of B[v] becomes 0. O

Hence in optimal sampling, p; is proportional to the fraction of shortest paths passing
through v that starts in 7. Using probabilities p; defined in Equation 5.5, gives an exact
method in the sense that it makes the approximation error 0. However, time complexity
of computing optimal p;’s is the same as exact betweenness centrality computation.
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5.4.2 A property of promising sampling methods

Although it is not practically efficient to use probabilities p; defined in Equation 5.5,
they can help us to define the desired properties of sampling techniques.

Based on optimal sampling, when estimating betweenness centrality of a vertex v, we
present the following as a property desired for a sampling technique:

Vi, i' € V(G) \ {v} : pi < pir & ia(v) < dire(v) (5.8

which means vertices with higher dependency scores on v, must be chosen as source
vertices with a higher probability.

Then, the quality of a sampling technique with respect to a network can be defined
in terms of the number of (unordered) pairs of vertices 7 and 4’ satisfying the above
mentioned property, divided by % which is the number of subsets of size 2
of V(G) \ {v}. In other words, the quality of the sampling is the fraction of pairs for

which Equation 5.8 holds.

What the property mentioned in Equation 5.8 suggests, somehow contradicts the
source vertex selection procedure presented by Geisberger et al. (2008). In the method
of Geisberger et al. (2008) the procedure for aggregating dependency scores changes
so that vertices do not profit from being near the selected source vertices. However,
Equation 5.8 says that it is better to select source vertices based on their dependency
scores on v, and as we will see later, it may result in preferring the source vertices
that are closer to v. The reason for this contradiction is that while we here aim
at approximating betweenness centrality of some specific vertex v, the method of
Geisberger et al. (2008) aims to rank all vertices based on their betweenness scores.

5.4.3 A new sampling technique

In this section, we present a new sampling technique that fits better with the property
mentioned in Section 5.4.2. Suppose we want to estimate betweenness score of a
vertex v. In our proposed sampling, every vertex k # v is chosen as a source vertex
with probability py, defined as follows:

1

d(k,v)
n 1
2 =1 aGw)

i.e., pi is proportional to the inverse of the distance between vertices k and v. Note
that in Equation 5.9, Zzzl pr = 1.

Pk = (5.9

The rationale behind this sampling is as follows:
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1. Let v, v’ and i be three vertices such that d(v, i) < d(v’,7) and v and v’ have
(almost) the same betweenness score. Suppose v is the only ancestor of v’
in the SPD rooted at 4 that has depth d(i,v). Every shortest path from i to
some vertex ¢’ that passes through v’, also passes through v, therefore, for each
t' € V(G)\ {i,v,v'}, we have: o, (v") < 0+ (v) and hence

Uit/(’l}/) S Ot/ (’U)
gt/ Ot
which yields
i1/ / it/
3 o (V) _ oiv (V) (5.10)

o O
veV(GN\ i’} it

Furthermore, all shortest paths between 4 and v’ pass through v, i.e.,

Oy’ (7})
v’

=1 5.11)

Equations 5.10 and 5.11 yield ;¢ (v) > d;e (V).

2. Consider a random ER graph G = (n, p) that has n vertices and with probability
p an edge is drawn independently at random between every two vertices.
Recently, Agarwal et al. (2015) showed that when G is sparse, E(d;6(v)) =
uce(i,d — 1)(1 + pe(i,d)), where d = d(i,v), c(i,d) is the fraction of the
expected number of vertices that have a distance larger than d from ¢ and  is the
average degree of G. For two vertices ¢ and ¢’ in G such that d(v, ) < d(v,%’),
c(i,d(v,1)) is greater than ¢(¢’,d(v,7’)) and hence, E(d;e(v)) £ E(dire(v)).
Note that in Equation 5.9, d(v, i) < d(v,#’) yields p; > p;:.

Now, lets investigate the quality of the proposed sampling method and compare it
with the uniform sampling. Consider the network of Figure 5.1(d) and suppose that
we want to estimate betweenness centrality of vertex 1. For convenience, we present
the graph again in Figure 5.2 with its SPD rooted at vertex 1.

Dependency scores of other vertices on vertex 1 are:

vertex dependency score

vertex 2 z
vertex 3 0
vertex 4 %
vertex 5 0
vertex 6 1

Probabilities pj, calculated for the vertices of the network using Equation 5.9 are
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Figure 5.2: A graph (left) and its SPD rooted at vertex 1 (right).

-

(6)

(a) (b)

vertex probability

6
vertex 2 %—3
vertex 3 %
vertex 4 55
vertex 5 %
vertex 6 25

All pairs of vertices, except {6,2} and {6, 4}, satisfy the property of Equation 5.8.
Therefore, the quality of our proposed sampling technique for this network is %.
However, the uniform sampling assigns equal probabilities to all vertices. In this
sampling, only pairs {2,4} and {3, 5} satisfy the property of Equation 5.8. Hence, its
quality is 1%.

A nice property of our proposed sampling technique is that it only requires to compute
the distance between the vertex v and all other vertices in the graph: the single-source
shortest path, or SSSP in short, problem. For unweighted graphs, this problem can be
solved in O(m) time and for weighted graphs with positive weights, it is solvable in
O(m+nlogn) time (Fredman and Tarjan, 1987). This means that using our proposed
sampling technique will not increase time complexity of Algorithm 7. Therefore, with
probabilities p; defined in Equation 5.9, a vertex ¢ is selected and dependency score of
¢ on v is computed, and the result is scaled. For unweighted graphs, it gives an O(T'm)
time algorithm for approximate betweenness centrality computation. For weighted
graphs (with positive weights), time complexity of the algorithm will be O(T'm +
Tnlogn).
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5.5 Experimental results

We performed extensive experiments on both synthetic datasets and real-world
networks to assess the quantitative and qualitative behavior of the proposed sampling
technique. The experiments were done on a AMD Processor with 8 GB main memory
and 2 x 1 MB L2 cache.

We compared our proposed method with the algorithm of Bader et al. (2007). As
mentioned earlier, methods such as Brandes and Pich (2007) and Geisberger et al.
(2008) aim to rank vertices based on betweenness scores (and the betweenness score
of an individual vertex is not of high importance for them). Therefore, they are not
suitable for our comparisons. We refer to the algorithm of Bader et al. (2007) as the
uniform sampling, since it chooses source vertices uniformly at random, and to our
proposed method as the distance-based sampling. We also compared the algorithms
against the exact algorithm of Brandes (2001).

5.5.1 Datasets

For synthetic data, using the Barabasi-Albert (BA) model (Barabasi and Albert, 1999),
we generated power-law graphs with degree distribution p(k) o k~3. We generated
networks of size n € {103,10%}. We refer to the network of size 103 as BA10?, and
to the network of size 10* as BA10™.

For real-world data, we used the DBLP co-authorship network, the Wiki-Vote social
network, the Enron-Email communication network, the CA-CondMat collaboration
network, and the CA-HepTh collaboration network.

DBLP This dataset is constructed from a snapshot of DBLP!, that has yearly time
granularity. Vertices represent authors and edges represent co-authorship relations.
Two graph snapshots were extracted from two different periods: dblp0305 (from 2003
to 2005) and dblp0507 (from 2005 to 2007) (Berlingerio et al., 2009).

Wiki-Vote network This dataset contains all administrator elections and vote
history data in Wikipedia?, using the latest complete dump of Wikipedia page edit
history (from January 3, 2008). It contains 2, 794 elections, 103, 663 votes and 7, 066
users. A user either casts a vote or gets a vote. About half of the votes in the dataset
are by the existing admins and the rest comes from Wikipedia users. Vertices of the

IDigital Bibliography and Library Project http: //www.informatik.uni-trier.de/~ley/db/.
2http://en.wikipedia.org/wiki/Main_Page
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Table 5.1: Summary of real-world networks.

Dataset # vertices #edges  Avg. degree
dblp-0305 109,044 233,961 4.29
dblp-0507 135,116 290,363 4.28
Enron-Email 36,692 367,662 20.04
Wiki-Vote 7,115 103,689 29.14
CA-CondMat 23,133 93,497  8.08
CA-HepTh 9,877 25,998  5.26

network represent wikipedia users and an edge from vertex v to vertex u represents
that user v voted on user u (Leskovec et al., 2010).

Enron-Email network This email communication network contains all email
communications within a dataset of email addresses. Vertices of the network are email
addresses and if an address w sent at least one email to address v, the graph contains
an undirected edge between u and v (Leskovec et al., 2009).

CA-CondMat network This network contains scientific collaborations among
authors of papers submitted to the Condense Matter category. If an author v co-
authored a paper with author u, the graph contains an undirected edge between v
and u. The network covers papers in the period from January 1993 to April 2003 (124
months) (Leskovec et al., 2007).

CA-HepTh network This network contains scientific collaborations among au-
thors of papers submitted to the High Energy Physics - Theory category. If an author
v co-authored a paper with author u, the graph contains an undirected edge between
v and u. The network covers papers in the period from January 1993 to April 2003
(Leskovec et al., 2007).

Table 5.1 summarizes specifications of our real-world networks.

5.56.2 Empirical results

For a vertex v, the empirical approximation error, reported in our experiments, is

defined as follows: A BC
err(v) = | pp(gc_(v) @1 100 (5.12)
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where App(v) is the calculated approximate betweenness score.

In our experiments, we consider several vertices of a dataset and for every vertex, we
compute distance-based probabilities, exact betweenness centrality and approximate
betweenness scores using distance-based and uniform samplings. Table 5.2 summa-
rizes the average results (i.e. the sum of the results obtained for different vertices
divided by their number) obtained for different datasets.

Figure 5.3 plots approximation errors of the uniform and distance-based samplings for
different vertices in the BA10? dataset. In the plots of this section, we order vertices by
the difference in the error rate of their distance based sampling and uniform sampling.
For most vertices, distance-based sampling gives a better approximation. As depicted
in Table 5.2, the average approximation error for distance-based sampling is 41.77%,
while it is 56.13% for the uniform sampling. The extra time needed by the distance-
based sampling to compute required shortest path distances is quite tiny and ignorable
compared to the running time of the whole process. For example, for different vertices
of BA103 it is always less than 0.2. In all experiments, for both uniform and distance-
based samplings, the number of samples is 10% of the number of vertices in the
network. Therefore, the running time of the approximate methods is around 10%
of the running time of the exact method.
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Figure 5.3: A comparison between approximation errors of uniform sampling and
distance-based sampling for 57 different vertices in the BA10? dataset.
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Figure 5.4 compares the methods on the BA10* dataset. Over this dataset, the average
error of distance-based sampling is 16.54%, while it is 29.79% for the uniform
sampling. We note that since the number of iterations is a fixed ratio (10%) of the
network size, we have more iterations over larger datasets. This increase in the number
of iterations might reduce the approximation error over large datasets, as we see for
BA10? vs. BA10%.

To further study the quality of approximations, we test the methods on real-world
datasets. Figure 5.5 reports the results obtained for Wiki-Vote. It is a very dense
dataset (its average degree is 29.14). For most vertices of the Wiki-Vote network,
distance-based sampling gives a better approximation. The next real-world dataset is
Email-Enron. It is less dense than Wiki-Vote, but still a dense graph. As reported

Figure 5.4: A comparison between approximation errors of uniform sampling and
distance-based sampling for 155 different vertices in the BA10* dataset.
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Figure 5.5: A comparison between approximation errors of uniform sampling and
distance-based sampling for 89 different vertices in the Wiki-Vote dataset.
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Figure 5.6: A comparison between approximation errors of uniform sampling and
distance-based sampling for 118 different vertices in the Email-Enron dataset.
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in Figure 5.6, for most vertices of Email-Enron, the approximation error of distance-
based sampling is better than the uniform sampling.

Dblp0305 and dblp0507 are large and relatively sparse datasets. As reflected in
Figures 5.7 and 5.8 and Table 5.2, over these datasets, distance-based sampling
works much better than uniform sampling. This means that on sparse networks, the
difference between quality of two methods is more substantial. It has several reasons.
The first reason is that in very dense datasets, many vertices have the same (and small)
distance from vertex v (v is the vertex whose betweenness centrality is estimated).
Therefore, distance-based sampling becomes closer to the uniform sampling.

The second reason is that in sparse networks, in the SPD rooted at 7, the probability that
a vertex v’ has only one ancestor at some level & is lower than this probability in dense
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Figure 5.7: A comparison between approximation errors of uniform sampling and
distance-based sampling for 28 different vertices in the dblp0305 dataset.
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graphs. Figure 5.11 compares these two situations. It means that in sparse networks,
distance-based sampling is closer to the optimal sampling, because by distance-based
sampling, a larger number of vertices will satisfy the condition expressed in Equation
5.5. As aresult, over sparse networks, distance-based sampling becomes much more
effective than uniform sampling. Fortunately, most of real-world networks are sparse.

Then, the methods are compared on the CA-CondMat dataset which contains scientific
collaborations between authors of papers submitted to Condense Matter category
(Leskovec et al., 2007). The average degree in this dataset is 8.08. It is denser
than dblp0305 and dblp0507, but less dense than Wiki-Vote and Email-Enron.
Over this dataset, the approximation error of uniform sampling is almost twice the
approximation error of distance-based sampling.

Finally, to study the behavior of the methods on small datasets, we use the CA-HepTh
network. It has only 9877 vertices and its average degree is 5.26. As depicted
in Figure 5.10, for most vertices of this network, distance-base sampling gives a
better approximation than the uniform sampling. The average approximation error
of uniform sampling is higher than the average approximation error of distance-based
sampling and the time required to compute distance-based probabilities is always less
than 0.4.

5.6 Conclusion

In this chapter, we presented a randomized algorithm for unbiased approximation of
betweenness centrality. In the proposed algorithm, a source vertex ¢ is selected by
some strategy, single-source betweenness scores of all vertices on ¢ are computed, and
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Figure 5.8: A comparison between approximation errors of uniform sampling and
distance-based sampling for 9 different vertices in the dblp0507 dataset.
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Figure 5.9: A comparison between approximation errors of uniform sampling and
distance-based sampling for different vertices in the CA-CondMat dataset.
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Figure 5.10: A comparison between approximation errors of uniform sampling and
distance-based sampling for different vertices in the CA-HepTh dataset.
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Figure 5.11: In sparse graphs, distance-based sampling is closer to optimal sampling.
The graph in the left side shows an SPD in a dense graph, and the graph in the right
side shows an SPD in a sparse graph.

the scores are scaled as estimations of betweenness scores. Our proposed algorithm
can be adapted with different sampling techniques to give diverse betweenness
estimation methods. Some existing methods can be seen as special cases of the
proposed algorithm adapted with particular samplings.

We discussed the conditions that a promising sampling technique should satisfy to
minimize the approximation error and proposed a sampling technique that fits better
with the conditions. We performed extensive experiments on synthetic networks as
well as networks from real-world and showed the high efficiency and quality of our
proposed method.






Chapter 6

Conclusion and Future Work

In this chapter, we present a summary of our key contributions and provide directions
for future work.

6.1 Summary of main contributions

The main goal of this dissertation was to improve state of the art algorithms in graph
mining. The contributions can be summarized as follows.

Single network mining under subgraph homomorphism. In this work, we
studied the problem of single network mining under subgraph homomorphism for a
class of patterns more general than rooted trees. We introduced the class of rooted
graph patterns and presented a method for complete generation of rooted graphs.
We defined the notion of height of a rooted pattern and proposed an algorithm for
generating height-k-bounded core rooted patterns (for some given integer k). We
also introduced a new data structure for compact representation of all frequent rooted
patterns and showed that it gives a closure operator for the rooted patterns that are
frequent under subgraph homomorphism. Finally, we presented the HoPa algorithm
for finding frequent core rooted patterns. We empirically evaluated HoPa on different
synthetic and real-world networks and showed its high efficiency. In particular, by
restricting our patterns to rooted trees, we compared HoPa against htreeminer (Dries
and Nijssen, 2012) and showed that there are several cases where htreeminer fails (due
to lack of memory) or it does not terminate within a reasonable time (e.g., 3-4 days),
but HoPa finds frequent patterns effectively.

113
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Mining rooted ordered trees under subtree homeomorphism. In this work,
we introduced a novel algorithm for subtree homeomorphism of rooted ordered trees.
It uses a more compact data-structure, called oce, for representing occurrences, and a
more efficient subtree homeomorphism algorithm based on Dietz’s numbering scheme
Dietz (1982). An occ data-structure can represent/encode all occurrences that have
the rightmost path in common. The number of such occurrences can be exponential,
even though the size of the occ is only O(d), where d is the length of the rightmost
path of the tree pattern. We presented efficient join operations on oce that help us to
efficiently calculate the occurrence count of tree patterns from the occurrence count
of their proper subtrees.

We observed that in most of widely used real-world databases, while many vertices of
a database tree have the same label, no two vertices on the same path are identically
labeled. For this class of database trees, worst case space complexity of our algorithm
is linear; a result comparable to the best existing results for per-tree frequency. For
such databases worst case space complexity of the well-known existing algorithms for
per-occurrence frequency, such as VTreeMiner (Zaki, 2005b) and MB3Miner (Tan
et al., 2008), is still exponential. Based on the proposed subtree homeomorphism
method, we developed an efficient pattern mining algorithm, called TPMiner. To
evaluate the efficiency of TPMiner, we performed extensive experiments on both real-
world and synthetic datasets. Our results showed that TPMiner always outperforms
most efficient existing algorithms such as VTreeMiner (Zaki, 2005b) and MB3Miner
(Tan et al., 2008). Furthermore, there were several cases where the improvement of
TPMiner with respect to existing algorithms was significant.

Approximate Betweenness Centrality Computation. In this work, we pro-
posed a randomized algorithm for unbiased approximation of betweenness centrality.
In the proposed framework, a source vertex ¢ is selected by some strategy, single-
source betweenness scores of all vertices on i are computed, and the scores are
scaled as estimations of betweenness centralities. Our proposed algorithm can be
adapted with different sampling techniques to give diverse methods for approximating
betweenness centrality. We discussed the conditions that a promising sampling
technique should satisfy to minimize the approximation error for a single vertex. Then,
we proposed a sampling technique that fits better with the conditions. Finally, we
performed extensive experiments on synthetic networks as well as networks from real-
world, and showed that compared to existing algorithms, our proposed method works
with a higher accuracy.



FUTURE WORK 115

6.2 Future work

Graph mining is a hot and challenging research area that has many interesting
directions for future research. In this section, we discuss some future work related
to the content of this dissertation.

Applications of frequent patterns Finding frequent patterns is useful; but only
a first step in graph mining. A next step can be to investigate usefulness of frequent
patterns in different applications, such as social and information networks, the world
wide web and XML documents; as well as in other data mining tasks such as clustering
and classification. For example, it is interesting to investigate if rooted patterns
extracted by the HoPa algorithm (Chapter 3) can be used to characterize very large
real-world networks. Furthermore, it is also useful to study the utilization of the found
patterns in predictive models. For example, frequent patterns can be used in rule-based
predictive models to classify structured data such as graphs (Deshpande et al., 2005)
and trees (Zaki and Aggarwal, 2006). Here the arising questions are: what patterns
should be used to form predictive rules? how these rules should be ordered? etc.

Interestingness of frequent patterns Defining proper interestingness predicates
for patterns is a challenging and non-trivial problem. It is well-known that using only
support as the interestingness measure is not proper (Kontonasios and Bie, 2010) and
several alternatives have been proposed such as the product of the size with the support
(Geerts et al., 2004), the ability to compress a database (Siebes et al., 2006), partial
support (Poernomo and Gopalkrishnan, 2009) and non-drivable pattern (Calders and
Goethals, 2007). However, these measures are mostly restricted to simple classes
such as itemsets and in some cases, they are extensible to sequences. Hence, it is an
interesting research direction to develop interestingness measures for complex pattern
classes such as trees and graphs. These measures can help us to find richer patterns
that reflect more aspects of the database. Afterwards, a next step would be to develop
efficient algorithms for finding patterns that are interesting based on the proposed
measures.
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