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novo Lipogenesis Protects Cancer Cells from Free
icals and Chemotherapeutics by Promoting
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ivation of de novo lipogenesis in cancer cells is increasingly recognized as a hallmark of aggressive
s and has been implicated in the production of membranes for rapid cell proliferation. In the current
, we provide evidence that this activation has a more profound role. Using a mass spectrometry–based
holipid analysis approach, we show that clinical tumor tissues that display the lipogenic phenotype
an increase in the degree of lipid saturation compared with nonlipogenic tumors. Reversal of the lipo-
switch in cancer cells by treatment with the lipogenesis inhibitor soraphen A or by targeting lipogenic
es with small interfering RNA leads to a marked decrease in saturated and mono-unsaturated phospho-
pecies and increases the relative degree of polyunsaturation. Because polyunsaturated acyl chains are
susceptible to peroxidation, inhibition of lipogenesis increases the levels of peroxidation end products
nders cells more susceptible to oxidative stress–induced cell death. As saturated lipids pack more
ly, modulation of lipogenesis also alters lateral and transversal membrane dynamics as revealed by
on of membrane-targeted green fluorescent protein and by the uptake and response to doxorubicin.
data show that shifting lipid acquisition from lipid uptake toward de novo lipogenesis dramatically
es membrane properties and protects cells from both endogenous and exogenous insults. These findings
e important new insights into the role of de novo lipogenesis in cancer cells, and they provide a rationale
provid

for the use of lipogenesis inhibitors as antineoplastic agents and as chemotherapeutic sensitizers. Cancer Res;
70(20); 8117–26. ©2010 AACR.
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elopment and progression of cancer are frequently
ated with increased de novo production of fatty acids
or cells. Activation of de novo lipogenesis correlates
prognosis and shorter disease-free survival
r types (1–4). This metabolic change occurs
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sult of common oncogenic insults and is mediated by
tivation of multiple lipogenic enzymes. These enzymes
ected at all levels of regulation including transcription,
ation, protein stabilization, and protein phosphoryla-
ncreased lipid production has been linked to an in-
d need for membranes during rapid cell proliferation,
considered to be part of a more general metabolic

ormation that provides cancer cells with more auto-
in terms of their supply of building blocks for growth
support of this hypothesis, blockade of lipogenesis by
cal inhibitors or RNA interference (RNAi)–mediated si-
g of lipogenic enzymes or their regulators attenuates
oliferation and ultimately leads to cell death (6–16).
eral cancer types, overexpression of lipogenic enzymes
erved very early in cancer development and is indepen-
f the proliferative status of the individual cells (17, 18).
uggests that the role of tumor-associated lipogenesis
xtend beyond bulk membrane biosynthesis to meet
eds of rapid cell proliferation. Activation of growth
signaling and protection from cell death are just a
the emerging novel roles of this pathway (19–22).

his study, we investigated the most direct effects of
nesis, specifically the changes in the lipid composition
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cer cells, and assessed the consequences of these
ions on cancer cell biology. Our findings suggest that
-associated lipogenesis protects cancer cells from
ogenic- and therapeutic-associated insults by promot-
embrane lipid saturation. They also provide a
ale for the use of lipogenesis inhibitors as chemo-
eutic sensitizers.

rials and Methods

ulture and treatments
aP, 22Rv1, PC-3, Du145, BT474, and HCT116 cells
btained from the American Type Culture Collection
een 2008 and 2010) and authenticated by checking
ology and by karyotyping in December 2009. Cells were
ed in RPMI 1640, DMEM/F-12, or McCoy's 5A medium
mented with 10% FCS (Invitrogen). Palmitic, linoleic,
olenic acid (Sigma) were complexed to fatty acid–free
serum albumin (Invitrogen) as described (8). Soraphen
kindly provided by Drs. Klaus Gerth and Rolf Jansen
holtz-Zentrum für Infektionsforschung, Braunschweig,
ny; refs. 23, 24). Doxorubicin and verapamil were ob-
from Sigma. Small interfering RNAs (siRNA) targeting
cid synthase (FASN) and acetyl-CoA carboxylase-α
were obtained from Ambion. Multiple siRNA sets were
. Those with the least off-target effects as judged by
array analysis (data not shown) were selected for subse-
experiments (s883 and s5030). Silencer Select Negative
ol #1 siRNA from Ambion was used as control. Cells
reverse transfected with siRNAs (50 nmol/L) using
ctamine RNAiMAX (Invitrogen).

al tissue specimens
h, snap-frozen prostate cancer tissues and matching
l samples were obtained from patients who had under-
radical retropubic prostatectomy for localized pros-

carcinoma. Harvesting of the tissue samples was
med as previously described (25). The normal and tu-
ssues were identified by histologic analysis of areas ad-
to the tissue that was used for lipid and Western
g analysis. The use of clinical samples was approved
Local Commission for Medical Ethics and Clinical

s at the University of Liège.

]acetate incorporation assay and TLC analysis
C–labeled acetate (57 mCi/mmol; 2 μCi/dish; Amer-
International) was added to the culture medium.
were extracted according to a modified Bligh-Dyer
d and analyzed by TLC analysis as described (9).

tification of total cellular phospholipids,
cerides, and cholesterol
spholipids, triglycerides, and cholesterol were quanti-
as described (26–28).

hromatographic analysis of fatty acyl chains

T

uots of Bligh-Dyer lipid extracts (9) were supplemen-
ith tricosanoic acid as internal standard, subjected to

band-
calcul
methanolysis, and analyzed by gas chromatography–
spectrometry (Trace GC-MS, Thermo Finnigan) using
rcap 5HT column (15 m × 0.25 mm; 0.10 μm; Alltech).
ion current signals, obtained in EI+ mode, were related
internal standard signal and converted to nmol fatty
sing experimentally obtained relative response factors.

sis of intact phospholipid species by electrospray
tion tandem mass spectrometry
ue or cells were homogenized in 1 N HCl/CH3OH (1:8,
HCl3, 200 μg/mL of the antioxidant 2,6-di-tert-butyl-4-
lphenol (Sigma; ref. 29), and lipid standards were
. The organic fractions were evaporated and reconsti-
in CH3OH/CHCl3/NH4OH (90:10:1.25, v/v/v). Phospho-
were analyzed by electrospray ionization tandem mass
ometry (ESI-MS/MS) on a hybrid quadrupole linear
ap mass spectrometer (4000 QTRAP system, Applied
tems) equipped with a robotic nanoflow/ion source
n Biosciences). The collision energy was varied as fol-
prec 184, 50 eV; nl 141, 35 eV; nl 87, −40 eV; prec 241,
. The system was operated in the multiple reaction
oring (MRM) mode for quantification of individual
s. Typically, a 3-minute period of signal averaging
sed for each spectrum. Data were corrected for 13C iso-
ffects if the contribution was >10%. Corrected data
presented as heat maps using the HeatMap Builder
re (Clifton Watt, Stanford University).

peroxidation product assay
al amounts of cells were scraped in ice-cold PBS. After
tion, 3,000 × g supernatants were analyzed using a
ercial lipid peroxidation assay kit (Oxford Biomedical
rch).

noblotting analysis
al amounts of protein were loaded onto precast gels
GE, Invitrogen), transferred to nitrocellulose mem-
s, and incubated with antibodies against FASN (30),
Cell Signaling Technology), α-tubulin (Cell Signaling
ology), and β-actin (Sigma) as described (8, 9). The
Master 1D software (GE Healthcare) was used for
ometric quantification.

mination of lateral membrane dynamics by
scence recovery after photobleaching and
scence diffusion after photoactivation
s, grown on Lab-Tek II chambered cover glass (Nunc),
ransfected with pAcGFP1-F (Clontech) for FRAP (fluores-
recovery after photobleaching) or with PA-GFP-F (farne-
photoactivatable form of GFP; ref. 31) for fluorescence

ion on photoactivation using an Olympus FluoView
0 confocal microscope (Olympus America, Inc.) and a
d Radiance 2100 confocal system, respectively (31–33).
-nm laser diode was used for bleaching (10 seconds at
) and activation. Full-frame images (512 × 512 pixels)

ecorded using a 488-nm argon laser and a 500- to 600-nm

pass emission filter. Changes in fluorescence were
ated using the FluoView FV1000 software (Olympus).

http://cancerres.aacrjournals.org/
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mination of flip-flop rate and doxorubicin
ulation
measure the flip-flop rate of doxorubicin, cells were
d with 10 μmol/L 7-nitrobenzo-2-oxa-1,3-diazole phos-
ylethanolamine (NBD-PE; Invitrogen), exposed to
ubicin, and monitored in a fluorimeter (excitation,
; emission, 510 nm) at 37°C. The difference between
D fluorescence 2 seconds after the addition of doxo-

n and the NBD fluorescence 4 minutes later was used
measurement for the relative flip-flop rate of doxoru-
(34). To measure doxorubicin accumulation, the cells
analyzed using a fluorescence microscope (515-nm
ass emission filter) 30 minutes after addition of doxo-
n (10 μmol/L) or fluorimetrically (excitation, 490 nm;
on, 580 nm).

eath assay
he indicated time after compound exposure, the adher-
d floating cells were collected and combined. The via-
d dead cells were counted using the trypan blue dye
ion assay (9). Synergism was determined using the
nation index (CI) method (35).

tical analysis
results were analyzed by a Student's t test or by one-
NOVA using a Tukey multiple comparison test. P
of <0.05 were considered to be statistically significant.
ta presented represent means ± SE, as indicated in the
legends.

lts and Discussion

sal of the lipogenic phenotype depletes cancer
f saturated and mono-unsaturated acyl chains
auses a shift toward polyunsaturation
tudy the effect of tumor-associated lipogenesis on cel-
ipid composition, we treated LNCaP prostate cancer
hich have a high lipogenic activity, with soraphen A
r referred to as soraphen). Soraphen is a highly potent
or of ACC (23, 24, 36) and is an ideal tool to reverse
ogenic phenotype in cancer cells (12). Consistent with
us studies (12), soraphen treatment decreased the
oration of 14C- from 2-14C–labeled acetate into phos-
ids and triglycerides by 7- and 13-fold, respectively
A) and led to a 1.7- and 4.2-fold reduction of the total
holipid and triglyceride levels, respectively (Fig. 1B).
terol levels remained unaffected.
ause mammalian cells have a limited ability to synthe-
lyunsaturated fatty acids de novo, as they lack the Δ12
rase required to produce fatty acids of the ω3 and ω6
we hypothesized that de novo lipogenesis would enrich
cells mainly with saturated and/or mono-unsaturated
hains and that reversal of the lipogenic phenotype
cause a selective reduction in the levels of these latter
pecies. To test this hypothesis, the total cellular lipid
ts were methanolysed, and the generated fatty acyl

l esters were analyzed by gas chromatography. Sora-
treatment decreased the total levels of palmitoyl

Weste
corde
stearoyl (18:0), and oleoyl (18:1) species by ∼2-fold.
vels of polyunsaturated acyl chain species, the precur-
f which were obligatorily derived from the medium
ining 10% serum), substantially increased (Fig. 1C).
et result was (a) an overall decrease in cellular acyl
t, confirming the importance of de novo lipogenesis
antitative lipid supply, and (b) a major shift in cellular
ain composition toward polyunsaturation; the relative
r contribution of saturated acyl chains dropped from
o 29% and polyunsaturated fatty acids increased from
20%.
ed on our observation that most of the labeled acyl
were incorporated into phospholipids in cancer cells
A) and given the importance of phospholipid acyl
composition in numerous membrane-related func-
we further investigated the effects of soraphen treat-
on intact phospholipids by ESI-MS/MS. As shown in
D, soraphen treatment substantially decreased phos-
ylcholine (PC) species with zero or one degree of un-
tion (both acyl chains combined) up to 4-fold, whereas
s with polyunsaturated chains (more than three unsa-
ns in both chains combined) increased up to 8-fold,
ding on the species. A similar trend toward decreased
tion and increased polyunsaturation was also observed
osphatidylethanolamine and phosphatidylserine (Sup-
ntary Fig. S1); however, these effects were less pro-
ed and less general compared with those of PC.
observed changes in membrane lipid saturation were
ique to LNCaP cells. Similar effects were observed in
ogenic cancer cell lines tested. These included three
prostate cancer cell lines (22Rv1, PC-3, and Du145), a
cancer cell line (BT474), and a colorectal cancer cell
CT116; Fig. 1D). Changes were most outspoken in
and in HCT116 cells. Importantly, a similar shift in

rane lipid saturation was seen after siRNA-mediated
down of the lipogenic enzymes FASN or ACC (siRNA)
d of treatment with soraphen (Fig. 1E). Effects were
hat less pronounced than after soraphen treatment,

ting the less potent inhibition of lipogenesis [2- to
reduction in the incorporation of 14C- from 2-14C–
d acetate into lipids (Supplementary Fig. S2) versus
old reduction after soraphen treatment]. Overall, these
trongly support the hypothesis that the lipogenic
type in cancer cells provides cells with saturated and
-unsaturated acyl chains, which replenishes the cells
embrane components and simultaneously increases

lative degree of saturation of phospholipids, particular-
t of PC.

tion of the lipogenic pathway is associated with
sed saturation of phospholipids in vivo in
n tumor specimens
assess whether the lipogenic phenotype of cancer cells
ciated with an increased saturation of phospholipids
, prostate tumor specimens and normal matching con-
ssues were analyzed for overexpression of FASN by

rn blot analysis, and the phospholipid profiles were re-
d. Three of the five matched samples (tumor versus

http://cancerres.aacrjournals.org/
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with 50 nmol/L siRNA targeting FASN or ACC, respectively. Lipid profiling was performed after 72 to 96 h in two pairs of samples (1–2). The heat maps
show th
l) showed a substantial overexpression of FASN in tu-
ssue (Fig. 2). Analysis of the phospholipid composition
-MS/MS showed a different profile for PC in the lipo-

e siRNA/siCtrl ratio (expressed as log2) for different PC species.
tumors compared with the nonlipogenic tumors. The
s with increased FASN expression showed a consistent

port o
with t
se in saturated and mono-unsaturated acyl chains and
ease in polyunsaturated species in tumor tissue com-
with matching normal tissue (Fig. 2). These data sup-
1. Effect of inhibition of de novo lipogenesis on the cellular lipid composition of cancer cells in vitro. A, effect of soraphen on lipid synthesis.
cells were treated with soraphen (100 nmol/L) or vehicle (control) for 24 h. During the last 4 h, 2-[14C]acetate was added. 14C incorporation in
olipids (PL), triglycerides (TG), and cholesterol (C) was analyzed by TLC. Columns, mean (n = 4); bars, SE. *, P < 0.05, significantly different
ntrol. B, effect of soraphen on cellular lipid content of LNCaP cells 72 h after addition of soraphen (100 nmol/L) or vehicle (control; n = 3).
t of soraphen treatment on cellular lipid acyl chain composition of LNCaP cells. Lipid extracts as in B were hydrolyzed and analyzed by gas
tography (n = 3). The scheme represents the contribution of the fatty acyl chains listed relative to their sum (in nmol/μg DNA) in both control and
en-treated cells. D, effect of soraphen treatment on intact PC species in different cancer cell lines. Lipid extracts as in B were analyzed by ESI-MS/
cursor 184) in the MRM mode. Lipid profiling was performed in three pairs of samples (1–3). The heat maps show the soraphen/control ratio
sed as log2) for different PC species. E, effect of RNAi targeting lipogenic genes on intact PC species. LNCaP and HCT116 cells were transfected
ur findings with the lipogenesis inhibitor soraphen and
he siRNA-mediated knockdown of lipogenic enzymes
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holipids in human tumors.

lation of de novo fatty acid synthesis in cancer
ffects the susceptibility of cellular membranes to
peroxidation
rated, mono-unsaturated, and polyunsaturated acyl
dramatically differ in terms of their structural and
ochemical properties. One of the key differences is
usceptibility to peroxidation. In this process, free radi-

h
g
a
o

2

d by ESI-MS/MS in the MRM mode. The heat map shows the tumor/norm
xtract electrons from lipids in cellular membranes,
leads to the formation of oxidized lipid spec

increa

sed as log2) for different PC species.
pecies have important biological functions and may ul-
ly degrade into smaller reactive products including
dialdehydes and 4-hydroxyalkenals, which can cause
amage when expressed at high levels (37–39). As the
gens in between double bonds in methylene (CH2)
s are particularly reactive, polyunsaturated acyl chains
uch more susceptible to peroxidation. Consistent with
servation that modulation of de novo fatty acid synthe-
cancer cells affects the balance between (mono-un)
ted and polyunsaturated acyl chains in the phospholi-
f cellular membranes, soraphen treatment significantly

o (expressed as log2) for different PC species.
2. Changes in phospholipid composition in lipogenic and nonlipogenic prostate tumor tissue specimens versus matched normal tissue. Expression
N in matched pairs of malignant versus normal prostate tissue specimens was measured by Western blotting analysis, and the expression was
sed the levels of lipid peroxidation products (Fig. 3A).

ies. These Treatment with exogenous H2O2, which produces higher levels
3. Modulation of lipogenesis affects the
tibility of cellular membranes to lipid
ation. A, effects of soraphen, H2O2, and
acid on lipid peroxidation products.
cells were treated with soraphen
ol/L) or vehicle (control) and with
acid (75 μmol/L) for 72 h. During the
, the cells were exposed to 200 μmol/L
qual amounts of cells were analyzed for
roxidation products using a lipid
ation assay kit. Columns, mean (n = 4);
E. *, P < 0.05, significantly different from
without H2O2 exposure; #, P < 0.05,
antly different from both treatment with
nd soraphen alone. B, effect of palmitic
the PC profile. PC species were
d by ESI-MS/MS in the MRM mode.
t map shows the soraphen/control ratio
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radicals, induced a further increase in peroxidation
cts. Interestingly, partial replenishment of saturated
hains by supplementation of the medium with exoge-
almitic acid (Fig. 3B) largely reversed these changes,
rting the idea that enhanced lipogenesis renders can-
lls less susceptible to lipid peroxidation by limiting
gree of phospholipid polyunsaturation.

vo lipogenesis determines the sensitivity of cancer
o oxidative stress–induced cell death
re is growing evidence that oxidized phospholipids and
egradation products play a key role in the induction
ediation of cellular apoptosis (40–43). Therefore, we in-
ted whether modulation of de novo lipogenesis affect-
sensitivity of cancer cells to oxidative stress–induced
ath. The native LNCaP cells were fairly resistant to
induced cell death, but pretreatment with soraphen
dly increased their death in response to H2O2, as shown

an blue staining (Fig. 4A). These effects were counter-
by exogenous palmitic acid. Interestingly, when the me-

In a
ofmem

ility. Columns, mean (n = 3); bars, SE. *, P < 0.05, significantly different from contro
nd soraphen/siRNA alone.
was supplemented with a mixture of saturated and
saturated fatty acids, the rescue effect was much less
unced. These data indicate that the increased sensitiv-
oxidative stress observed after soraphen treatment is
e to the general decrease in the amount of lipids but
to the change in lipid (un)saturation. Concordant re-
were obtained in 22Rv1 cells (Fig. 4A) and in PC-3,
, and HCT116 cells (Supplementary Fig. S3). Similarly,
-mediated knockdown of the lipogenic pathway in-
d the sensitivity to oxidative stress–induced cell death,
strated for LNCaP and HCT116 cells (Fig. 4B). Overall,
data support the idea that increased lipogenesis pro-
cancer cells from oxidative stress–induced cell death
nging the extent of saturation of cellular membranes.

r-associated fatty acid synthesis alters membrane
ics and affects the uptake and response to
on chemotherapeutics

ddition to its effect on lipid peroxidation, modulation
brane lipid composition is known to have amajor effect
4. De novo lipogenesis in cancer cells determines their sensitivity to oxidative stress–induced cell death. A, LNCaP and 22Rv1 cells were treated with
en (100 nmol/L) or vehicle (control) and with palmitic acid (75 μmol/L) or with a mixture of 10% palmitic, 45% linoleic, and 45% linolenic acid
75 μmol/L total) for 72 h. During the last 24 h, cells were exposed to 300 μmol/L H2O2. B, LNCaP and HCT116 cells were transfected with 50 nmol/L
argeting FASN or ACC (siRNA), respectively, or with control siRNA (siCtrl). Cells were treated with palmitic acid (75 μmol/L) or PUFA (75 μmol/L total)
. During the last 24 h, cells were exposed to 300 or 400 μmol/L H2O2, respectively. Cells were collected and stained with trypan blue to assess

#
l/siCtrl; , P < 0.05, significantly different from both treatment with
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time = 4 s); bars, SE. Data are expressed as the % fluorescence intensity compared with the fluorescence intensity in the region of photoactivation at time 0.
*, P < 0
mobility of membrane components (38, 44). To exam-
ether modulation of de novo fatty acid synthesis in
cells exerts similar effects, we investigated the effect

aphen on both the lateral and transversal mobility of
rane components in LNCaP cells. Lateral mobility re-
the movement of membrane components within the
of one membrane leaflet, whereas transversal mobility
to movement from one leaflet to the other. To analyze
l membrane mobility, we followed the movement of
rane-targeted GFP using two complementary techni-
FRAP and fluorescence diffusion after photoactivation.
rform FRAP, we transiently transfected LNCaP cells
he plasmid pAcGFP1-F that encodes GFP with a farne-
n tag. We bleached the fluorescence in a small area
easured the recovery of fluorescence in this area, which
iated by neighboring GFP molecules moving into the
ed area. As shown in Fig. 5A, soraphen-treated cells
faster fluorescence recovery rate compared with
l cells. Similar results were obtained with BT474 cells

.05, significantly different from control.
lementary Fig. S4). In the complementary experiment,
P cells were transfected with a plasmid encoding a

by mo
fluore
ylated photoactivatable form of GFP (PA-GFP-F). At a
ime point after photoactivation of GFP in a small spot
plasma membrane, the fluorescence intensity was mea-
as a function of the distance from the spot of photoac-
n. The slope of the curve for the soraphen-treated cells
ss steep than that for the control cells, reflecting a high-
usion rate (Fig. 5B). Together with the FRAP data, these
s indicate that inhibition of fatty acid synthesis in-
s the lateral mobility of membrane components.
nsversal mobility of membrane components, also re-
to as flip-flop, occurs at a low rate unless it is facilitated
cific transporters. However, for certain exogenous com-
s including commonly used chemotherapeutics, such
orubicin, passive flip-flop is a major mechanism of en-
o the cells (34). Because treatment of cells with exoge-
polyunsaturated fatty acids is known to promote the
e of doxorubicin (45), we determined whether inhibition
y acid synthesis would promote membrane flip-flop and
ubicin uptake. The flip-flop of doxorubicin was assessed
5. Modulation of lipogenesis alters membrane dynamics. A, FRAP analysis of the effect of soraphen on the lateral dynamics of farnesylated
uorescent protein (GFP). LNCaP cells were transfected with a farnesylated GFP construct and treated with soraphen (100 nmol/L) or vehicle (control).
h, the fluorescence was bleached in a specific region (white squares). The fluorescence recovery was analyzed at the indicated time points.
mean (n = 41–44); bars, SE. Values from soraphen-treated cells were significantly different from control (P < 0.05) from 1 to 43 s after bleaching.
sis of lateral dynamics of photoactivatable GFP. LNCaP cells were transfected with a photoactivatable farnesylated GFP construct and treated with
en (100 nmol/L) or vehicle (control). After 72 h, the diffusion of fluorescence along the plasma membrane was analyzed after photoactivation of
lated GFP in a specific region (white squares). The fluorescence was measured as a function of the distance from this region. Points, mean (n = 4; at
nitoring doxorubicin-mediated quenching of NBD-PE, a
scently labeled phospholipid that incorporates into
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