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1. INTRODUCTION

Rational approximation remains an active field of research. Over the years, several
numerical integration routines based on rational functions have been proposed in the
literature, see e.g. [Van Assche and Vanherwegen 1993; Gautschi 2000; Van Deun
and Bultheel 2003] for general theoretical considerations and [Weideman and Laurie
2000; Van Deun et al. 2006; Van Deun and Bultheel 2006; Deckers et al. 2006; 2007]
for some explicit cases.

Recently, focus seems to have shifted a little towards the solution of differential
equations using rational spectral methods, an idea which looks very promising for
functions that have singularities close to the interval. Some different strategies
are discussed in [Weideman 1999; Berrut and Baltensperger 2001; Berrut and Mit-
telmann 2001; Baltensperger et al. 2003; Berrut and Mittelmann 2005; Tee and
Trefethen 2006].

The rational interpolant that forms the basis for both the quadrature formulas
and the spectral methods can be represented in several ways. A popular approach
that has gained much interest uses barycentric formulas. Methods with both fixed
and free poles have been studied, see e.g. [Baltensperger et al. 1999; Schneider and
Werner 1991; Berrut and Mittelmann 1997; Berrut 1997; Berrut and Mittelmann
2004; Tee and Trefethen 2006; Polezzi and Sri Ranga 2007].

In the present article, however, we take a similar approach as in [Weideman
1999], where the poles are fixed and the interpolation points (the nodes in the
quadrature formulas) are somehow determined by these poles. Specifically, for ar-
bitrary complex poles outside [−1, 1], the interpolation points are the zeros of a
Chebyshev (quasi-orthogonal) rational function and they are the nodes in ratio-
nal Gauss-Chebyshev quadrature formulas, as described in [Deckers et al. 2007].
Furthermore, for the case of real or complex conjugate poles (which means the
denominator of the rational function is real), the corresponding rational function
is of minimal Chebyshev norm (among all rational functions with the same poles
and the same degree in the numerator). This extremal property of the Chebyshev
rational functions was made explicit in [Van Deun 2007], which discusses an alter-
native method to compute the interpolation points. These points are near best for
rational interpolation with prescribed poles in the same sense that the zeros of the
Chebyshev polynomial of the first kind are near best for polynomial interpolation;
the equi-oscillation property (a consequence of Chebyshev extremality) gives rise
to a very uniform error. This is discussed in more detail in the case study of the
next section.

2. APPLICATION IN SPECTRAL METHODS

Before we start the theoretical exposition about near best interpolation points, we
first present a practical application in spectral methods as an extra motivation.
Relevant definitions (specifically for the functions F (θ), Tn(x) and the points xk)
are given in the next section. Instead of giving a complete theoretical exposition
about the use of rational functions in spectral collocation methods, we prefer to
illustrate this by means of an example. The necessary background can be found
in the references mentioned in the introduction. More general information about
spectral methods is given in [Gottlieb and Orszag 1977; Fornberg 1996; Trefethen
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Fig. 1. The solution of (1) for ε = 0.0001.

2000].
We take an example from [Bush 1992, p. 161]. Assume we are given the differ-

ential equation

ε
d2f

dx2
+ x

df

dx
+ xf = 0, −1 < x < 1 (1)

with boundary conditions f(−1) = e and f(1) = 2e−1. It can be verified that the
exact solution to this equation is given by

f(x) = ex− x2

2ε

[

c1(x − 2ε)M

(

1 − ε

2
,
3

2
;
(x − 2ε)2

2ε

)

+ c2M

(

1 − ε

2
,
1

2
;
(x − 2ε)2

2ε

)]

,

where M(a, b; x) is Kummer’s confluent hypergeometric function [Abramowitz and
Stegun 1964, p. 504] and the constants c1 and c2 are easily solved from the boundary
conditions. We mention that this explicit formula for f(x) is not given in [Bush
1992]. When ε is very small, there is an interior boundary layer close to x = 0 (for
ε = 0 the equation changes from second to first order). Figure 1 shows the solution
for ε = 0.0001.

The classical spectral method is based on polynomial interpolation in Chebyshev
points. However, the presence of the interior boundary layer makes a numerical
solution using this standard method inadvisable, since a polynomial of very high
degree is needed to cope with the abrupt transition. A rational spectral method
with poles close to the boundary layer is expected to work much better. The
problem is of course: how do we choose the poles? The approach we take is the
same as in Section 2.2 of [Weideman 1999]. Without having to solve equation (1),
boundary layer analysis [Bush 1992, p. 163] shows that an inner solution, valid for
x in the boundary layer and ε → 0, is given by

fin(x) = 0.5 erf(x/
√

2ε) + 1.5, x = O(
√

ε).

It is obviously the error function that causes the abrupt transition in the boundary
layer. We can model this behaviour with a rational function if we construct a Padé
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Fig. 2. The functions F (θ) and Tn(x) (scaled) for the poles (2) and (3) with n = 20.

approximation to the error function and compute its poles. A series expansion for
erf(x) is explicitly known [Abramowitz and Stegun 1964, p. 297] and given by

erf(x) =
2√
π

∞
∑

k=0

(−1)kx2k+1

k! (2k + 1)
.

From this expansion the coefficients of the denominator polynomial of an (m, m)
Padé approximant are readily obtained by solving a Toeplitz system, see e.g. [Cuyt
and Wuytack 1987, p. 63]. The poles we need are then of course just the zeros of
this polynomial, scaled by

√
2ε. For m = 10 and ε = 0.0001 this gives the set of

poles

α1,2 ≈ ±0.0403i, α3,4,5,6 ≈ ±0.0094 ± 0.0398i, α7,8,9,10 ≈ ±0.0200 ± 0.0384i. (2)

If we want n interpolation points, where n > m = 10, then we need to add the
additional poles

α11 = α12 = . . . = αn = ∞. (3)

The left side of Figure 2 shows the function F (θ) for these poles when n = 20. Note
the steep slope near θ = π/2, which corresponds to x = 0.

Next, we compare three spectral methods to solve the differential equation (1).
The number of interpolation points for each method is n = 20.

The first one (CHEB) is the classical (polynomial) method, where the interpo-
lation points are the extrema of the Chebyshev polynomial of the first kind and
degree n (they include the endpoints x = −1 and x = 1).

The second one (NCOP) is the rational method proposed in [Weideman 1999],
where the poles are given by (2) and (3). The interpolation points are the zeros
of a nonclassical orthogonal polynomial with respect to a rational weight function
with these poles. The points x = −1 and x = 1 have to be included as additional
nodes to facilitate the incorporation of boundary conditions.
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Fig. 3. Pointwise errors in the numerical solution of (1). ‘CHEB’ refers to the classical (poly-
nomial) case, ‘NCOP’ is the rational method based on nonclassical orthogonal polynomials and
‘RCHEB’ is the new method proposed here. In this example, n = 20 and m = 10.

The third method (RCHEB), finally, is the new one we propose in this paper. It
is very similar to the second, but now the interpolation points are our xk, together
with the endpoints x = −1 and x = 1. The function Tn(x) discussed in Theorem 3.2
is shown on the right of Figure 2, scaled such that its range is [−1, 1]. Note the equi-
oscillatory behaviour and the zeros close to the middle of the interval (attracted by
the poles). This is indeed the rational analogue of a Chebyshev polynomial. It is
expected that the interpolation error will be rather uniform on the interval [−1, 1].
This statement can be made more exact using the formula for the interpolation
error, but we will not do this here.

The pointwise errors in the numerical solution of (1) for each of the three methods
is shown in Figure 3. Note that the polynomial method gives a uniform error but is
not accurate at all. The second method gives very good results for points far from
the boundary layer, but fails to approximate the function in the boundary layer.
Our method is more accurate than the polynomial one and at the same time gives
a rather uniform error, as was expected.

Our method becomes especially interesting if we increase the number of poles, as
is shown in Figure 4. Here we take n = 50 and compare the solution for m = 10 to
the one for m = 24. The difference between the two rational methods is striking (of
course the results for the polynomial method are the same for both values of m since
it does not use any information about the poles). It was pointed out in [Weideman
1999] by the author that the accuracy of his method improves with an increasing
number of poles, but that the condition number of the differentiation matrices also
grows, eventually leading to a complete loss of signifant digits. It appears that this
is what occurred in the right side of Figure 4. Our method, on the contrary, does
not suffer from this instability; the condition numbers of the matrices involved do
not grow with increasing number of poles. We think this is another consequence of
the equi-oscillation property. Extremely large values simply do not occur.
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Fig. 4. Same as Figure 3, but with n = 50 and m = 10 (left) or m = 24 (right).

Of course there is much more to rational spectral methods than the example we
have given and the methods we have discussed. The only purpose of this section,
however, is to illustrate that the interpolation points returned by our algorithm are
certainly worth considering for practical applications.

Remark 2.1. Several authors working on rational spectral methods have dis-
cussed a mapping function g(x) from the interval [−1, 1] onto itself to transform
the polynomial Chebyshev points to a new set of interpolation points and thus obtain
better results, see e.g. [Berrut and Mittelmann 2005; Tee and Trefethen 2006]. The
method we propose can be interpreted in this sense and then our mapping function
is given by

g(x) = cos(F−1(n cos−1 x)).

With all poles at infinity, this indeed becomes g(x) = x.

3. PRELIMINARIES

Let there be fixed a finite sequence of complex numbers (poles) A = {α1, α2, . . . , αn}
that are outside the interval [−1, 1]. Some or all of them may be at infinity. The
rational functions we deal with in this article are of the form

fi(x) =
cix

i + ci−1x
i−1 + · · · + c0

(1 − x/α1)(1 − x/α2) . . . (1 − x/αi)
. (4)

Thus the poles at infinity are automatically accounted for.
The Joukowski transformation, which maps the complex unit circle to the interval

[−1, 1] and the unit disc to the exterior of the interval, is denoted by

x = J(z) =
1

2

(

z +
1

z

)

, |z| ≤ 1

and in everything that follows, x and z will always be related by this transformation.
The inverse transformation is denoted by z = J−1(x). We define the complex
numbers βk by

βk = J−1(αk), k = 1, 2, . . . , n.

They are, by definition, inside the unit disc. Note that βk = 0 if αk = ∞.
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Near best fixed pole rational interpolation and spectral methods · 7

Given the poles αk (and thus also the numbers βk), the near best interpolation
points for rational interpolation with these prescribed poles are defined as follows.

Definition 3.1. For k = 1, . . . , n let θk denote the (unique) solution to the
equation

F (θk) = π

(

k − 1

2

)

, (5)

where the function F (θ) is given by

F (θ) =
n−1
∑

j=1

[arg(z − βj) + arg(z − βj)] + arg(z −<(βn)) − (n − 1)θ

for θ ∈ [0, π], where <(·) refers to the real part, z = eiθ and arg(·) is the complex
argument, taken in the interval [−π/2, 3π/2). Then the interpolation points xk are
defined as

xk = cos θk

for k = 1, . . . , n.

Note that in the case where all poles are at infinity (which corresponds to all β’s
equal to zero), we have

x∞
k = cos θ∞k , where θ∞k =

π

n

(

k − 1

2

)

, (6)

which are exactly the zeros of the Chebyshev polynomial of the first kind and degree
n.

The following theorem gives some properties of the interpolation points xk. It
provides the connection with Gauss quadrature and minimax approximations. For
the proof we refer to [Deckers et al. 2007] and [Van Deun 2007].

Theorem 3.2. Let the points xk be as in Definition 3.1. Define the weights λk

as

λk = 2π



1 +

n−1
∑

j=1

(

1 − |βj |2
|zk − βj |2

+
1 − |βj |2
|zk − βj |2

)

+
1 −<(βn)2

|zk −<(βn)|2





−1

,

where zk = J−1(xk). Then the quadrature formula
∫ 1

−1

f(x)
dx√

1 − x2
≈

n
∑

k=1

λkf(xk)

is exact for any f(x) = fn−1(x)gn−1(x) where fn−1 and gn−1 are of the form (4).
If αn is real, then the formula is exact for any f(x) = fn(x)gn−1(x).

Furthermore, if the poles are real or appear in complex conjugate pairs and if
αn = ∞, let Tn(x) denote the rational function of the form (4) of degree n whose
zeros are the points xk and for which cn = 1 (i.e. the numerator is monic). Then
it holds that

max
x∈[−1,1]

|Tn(x)| ≤ max
x∈[−1,1]

|fn(x)|

for any fn of the form (4) with cn = 1.
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If all poles are at infinity, this is a classical theorem about polynomial Gauss-
Chebyshev quadrature and the extremal property of Chebyshev polynomials. In
the more general (rational) case, it is precisely this extremal property which makes
the points xk so interesting, as was shown in Section 2.

Remark 3.3. Although we only present the quadrature formula for the weight
function 1/

√
1 − x2, the above exposition could be made more general to include

other Chebyshev weight functions, see [Deckers et al. 2007]. The extremal property,
however, no longer holds for the other weight functions.

For reasons of notational simplicity and clarity, we restrict our exposition to the
first Chebyshev weight function. The software that comes with this article also deals
with the other weight functions. This is briefly discussed in Section 5.

4. NUMERICAL SOLUTION

In order to compute the interpolation points xk, we need to solve equation (5) for
k = 1, . . . , n. Since an analytical solution is in general impossible, we have to use
numerical methods. In essence, the procedure we propose here is the following:

Approximate the inverse function F−1(θ) using a piecewise cubic Her-
mite interpolating polynomial (PCHIP), evaluate this approximation in
the points π(k− 1/2) and refine the results using Newton-Raphson iter-
ation.

This procedure is similar to what we described in [Deckers et al. 2006], which is
also based on Newton iteration, but which uses a variety of techniques to obtain
the initial values. These techniques include linear extrapolation from two previous
zeros to the next, estimating the internal inflection points of F (θ), and using the
asymptotic distribution of the xk. The current procedure is more efficient (requiring
less iterations in general). It should be mentioned that the methods described in
[Van Deun 2007] are completely different. They are based on eigenvalue problems
and do not use the function F (θ). Although that implementation is much shorter
and more straightforward than the current one, it is less efficient, especially for
large values of n. Solving the eigenvalue problem is too expensive if no use is made
of the special matrix structure, which is something we have not attempted yet.

4.1 The function F (θ)

Before going into details, let us recall some properties of the function F (θ). For the
proof (and some additional properties) we refer to [Deckers et al. 2006].

Theorem 4.1. The function F (θ) as given in Definition 3.1 is continuous and
strictly increasing on [0, π]. It takes the values F (0) = 0 and F (π) = nπ.

Furthermore, define

fβ(θ) = arg(z − β) + arg(z − β), z = eiθ

(with the same convention for the argument as in Definition 3.1, this way the func-
tion is continuous and positive), so that

F (θ) =

n−1
∑

j=1

fβj
(θ) +

1

2
f<(βn)(θ) − (n − 1)θ.

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2007.
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If β 6= 0 then f ′
β(θ) has a local maximum in

θ∗ = cos−1

[

1 + |β|2
2<(β)

− |=(β)|
√

(1 + |β|2)2 − 4<(β)2

2<(β)|β|

]

, (7)

where =(·) is the imaginary part and cos−1(·) is the arccosine. If the argument
of the arccosine is greater than 1 (less than −1), the local maximum occurs in 0
(respectively π). In the limit case where m poles coalesce in the point α ∈ [−1, 1],
the function F (θ) is discontinuous in θ∗ = cos−1(α) with a jump equal to

F (θ∗+) − F (θ∗−) = mπ.

The last two statements indicate that poles very close to the interval lead to steep
gradients (discontinuities in the limit case) in F (θ), whose location can be estimated
by (7)1. If α ∈ [−1, 1] then |β| = 1 and the expression between the square brackets
in (7) is equal to <(β) = α. Figure 5 illustrates the previous theorem for n = 6
and the sequence of poles

α1 = 2, α2 = α3 = α4 = 0.3 + 0.03i, α5 = −0.6 + 0.05i, α6 = −2. (8)

Note the steep gradient close to θ = 1.25, caused by the triple pole at α = 0.3+0.03i.
The size of the jump is approximately 3π and estimating its location through (7)
gives θ∗ ≈ 1.266. The smaller jump caused by α5 can be estimated in the same
way.

1If <(β) = 0 then this equation should be interpreted in a limiting sense. In Section 5 we give an
equivalent formula which is numerically stable for all β.
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4.2 PCHIP

Since F (θ) is strictly increasing, so is its inverse, and we would like to approximate
it by a function with the same property, hence the idea of using a PCHIP. This is
essentially an interpolating spline that preserves monotonicity. An ordinary spline
is not appropriate, since steep gradients in F tend to produce overshoot and ‘wig-
gles’ in the approximant. For details about properties and the construction of the
PCHIP we refer to [Fritsch and Carlson 1980]. Compared to the (ordinary) cubic
interpolating spline, the PCHIP is less expensive to set up, but its second derivative
is not necessarily continuous in the interpolation points. The algorithm is available
as the standard Matlab function pchip.

As interpolation points for the PCHIP we take (F (θ∞k ), θ∞k ), together with the
endpoints (0, 0) and (nπ, π). Here θ∞k refers to the solutions for the polynomial
case as defined in (6). Specifically, this means that we do not take into account
the position of the poles when constructing the PCHIP. If the approximation is
not good enough and the Newton iterations diverge for certain θk, this is quickly
detected and new initial values are obtained as described in Sections 4.3 and 4.4.

So let P (θ) denote the PCHIP approximation to F−1(θ) such that

P (0) = F−1(0) = 0,

P (F (θ∞k )) = F−1(F (θ∞k )) = θ∞k , k = 1, . . . , n, (9)

P (nπ) = F−1(nπ) = π.

Then the approximations θ
(0)
k to the true zeros θk defined by (5) are given by

θ
(0)
k = P (π(k − 1/2)), k = 1, . . . , n. (10)

The superscript (0) indicates that these numbers are used as initial values for the
Newton iterations to obtain a better approximation to θk. Regarding the accuracy
of these initial values, we prove the following theorem.

Theorem 4.2. Let θk and θ
(0)
k be as defined above. Then it holds that

|θk − θ
(0)
k | ≤ π

n
, k = 1, . . . , n.

Proof. This is a simple consequence of the interpolation and monotonicity prop-
erties of P (θ). Fix k and determine j so that

F (θ∞j ) ≤ π

(

k − 1

2

)

≤ F (θ∞j+1)

assuming that this can be done. Since both P (θ) and F−1(θ) are strictly increas-
ing, applying P on both sides it follows from these inequalities, the interpolation
property (9) and equation (10) that

θ∞j ≤ θ
(0)
k ≤ θ∞j+1,

θ∞j ≤ θk ≤ θ∞j+1,

which leads to

|θk − θ
(0)
k | ≤ θ∞j+1 − θ∞j =

π

n
.

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2007.
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In the case where no such j can be found, we either have 0 ≤ π(k − 1/2) ≤ F (θ∞
1 )

or F (θ∞n ) ≤ π(k − 1/2) ≤ nπ, which both lead to

|θk − θ
(0)
k | ≤ π

2n
.

This completes the proof.

As a consequence of this theorem, the initial values θ
(0)
k will be better if n is large.

Also, because of the choice of the interpolation points for P (θ), the approximation
will deteriorate if the distribution of the poles deviates much from the polynomial
case (which corresponds to all poles at infinity). As explained above, the presence
of poles very close to the interval causes abrupt transitions in F (θ) that are difficult
to follow for P (θ). In that case, the initial values may be too far from the exact
solutions for the Newton iterations to converge. We then need additional starting
values, which can be obtained with the aid of formula (7). However, first we need
to find out which poles are close to the interval and cause difficulties.

4.3 Poles close to the interval

Poles attract zeros. If there are many poles close to a point of the interval, then
the xk will also gather around this point. This vague statement can be made exact
in several ways.

One way is to study the asymptotic distribution of the xk’s as a function of the
asymptotic distribution of the poles. This was done using logarithmic potential
theory for the case of real poles in [Van Assche and Vanherwegen 1993] and ex-
tended to the case of arbitrary complex poles in [Deckers et al. 2007]. It is also
possible to give an interpretation for a finite number of poles in terms of electro-
static equilibrium, where negatively charged poles attract positively charged zeros,
but that is outside the scope of this article.

Here we look at this statement in terms of the function F (θ). It follows from
Theorem 4.1 that in the limit case where m poles coalesce in x ∈ [−1, 1], there
will also be m (or at most m + 1) of the xk equal to x. We can also be more
quantitative if the poles are not on but close to the interval, but first we need some
simple lemmas.

Lemma 4.3. Let f(z) be a function analytic in a small annulus containing the
complex unit circle and put z = eiθ. Then

d

dθ
arg f(z) = <

(

z
f ′(z)

f(z)

)

,

regardless of which branch of the argument is taken. If z is on a branch cut of
arg f(z), the derivative on the left should be interpreted in a limiting sense.

Proof. First note that, with z = eiθ, we have

df

dθ
=

df

dz
· dz

dθ
= izf ′(z), (11)

and also, since f(z) is an analytic function of z,

df

dθ
=

df

dz
· dz

dθ
= −izf ′(z). (12)
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Next write

arg f(z) = tan−1 =(f(z))

<(f(z))
, (13)

where tan−1 refers to the arctangent with the same branch structure as the argu-
ment.

Then write <(f(z)) = (f(z) + f(z))/2 and =(f(z)) = −i(f(z)− f(z))/2 and use
formulas (11) and (12) to differentiate (13). If z is on a branch cut of arg f(z), then
strictly speaking the derivative does not exist because of the discontinuity, but the
slopes on both sides of the jump are the same. The derivative should be interpreted
in this sense (to be more exact: the value of the derivative at points where it is
undefined should be replaced by its limiting value).

Some computations now yield

d

dθ
arg f(z) =

zf ′(z)f(z) + zf ′(z)f(z)

2f(z)f(z)
,

which completes the proof.

We use this lemma to prove the following result.

Lemma 4.4. Let fβ(θ) be as defined in Theorem 4.1. Then

2

1 + |β| ≤ f ′
β(θ) ≤ 2

1 − |β| .

Proof. Use the previous lemma to obtain

f ′
β(θ) = <

(

z

z − β

)

+ <
(

z

z − β

)

,

then use <(·) ≤ | · | and the fact that |z| = 1 and |z − β| ≥ 1− |β| to find the upper
bound.

For the lower bound we have

<
(

z

z − β

)

= 1 + <
(

β

z − β

)

= 1 +
<(βz) − |β|2

|z − β|2 .

Now use <(·) ≥ −| · | and the fact that |z| = 1 and |z − β|2 ≤ (1 + |β|)2 to get

<
(

z

z − β

)

≥ 1

1 + |β| .

The same applies of course for the term with β.

With the aid of this lemma we obtain information about the minimum and maxi-
mum distance between the θk, as shown in the next theorem.

Theorem 4.5. Define

r = max
1≤k≤n

|βk|

and

∆ =
1 + r

1 − r
.
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Then it holds that

min
1≤k≤n−1

|θk − θk+1| ≥
1

∆

π

n
,

max
1≤k≤n−1

|θk − θk+1| ≤ ∆
π

n
.

This means that there can be no more than ∆ of the xj between any two consecutive
Chebyshev points x∞

k and x∞
k+1 and vice versa. Note that 0 ≤ r < 1. This number

gives an indication of how close the poles are to the interval: the closer r is to 1,
the closer some poles are to the interval.

Proof. From the definition of F (θ) and the previous lemma it follows that

F ′(θ) ≤ (n − 1)
2

1 − r
+

1

1 − r
− (n − 1) =

n(1 + r) − r

1 − r
≤ n

1 + r

1 − r

and similarly

F ′(θ) ≥ n
1 − r

1 + r
.

Hence we have

1

∆

1

n
≤ (F−1)′(θ) ≤ ∆

1

n
, (14)

where we use the symbol (F−1)′(θ) to denote the derivative of F−1(θ). Now apply
the mean value theorem to the function F−1(θ) on the interval [π(k − 1/2), π(k +
1/2)] to find that

θk+1 − θk

π
= (F−1)′(ξ)

for some ξ inside this interval. Inserting the preceding result in formula (14) and
taking the minimum (respectively maximum) over all k proves the first part of the
theorem.

The distance between two consecutive θ∞k and θ∞k+1 is exactly π/n so there can
be no more than ∆ of the θj between them and vice versa. Since the cosine is
monotonous on [0, π], this also holds for the xj and x∞

k .

In particular, if r = 1/3 then ∆ = 2 so there can be at most two rational interpo-
lation points between any pair of successive Chebyshev points and there can be at
most two Chebyshev points between any pair of successive rational interpolation
points. Thus, the distribution of the xk will not differ much from the polynomial
case. Consequently, we consider a pole to be close to the interval when it satisfies
|β| > 1/3. Through the Joukowski transformation this translates to

(<(α)

5/3

)2

+

(=(α)

4/3

)2

< 1, (15)

which means the pole is inside an ellipse with semimajor axis 5/3 and semiminor
axis 4/3, centered around the interval. Taking ∆ = 2 may seem rather arbitrary,
but the main reason we use it, is that it seems to work very well in practice. In
all our experiments, the Newton iterations discussed in the previous section have
never diverged when all poles were outside this ellipse.
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So when the Newton iterations for one or more of the θk diverge, we need only
consider formula (7) for poles close to the interval (i.e. satisfying the above criterion)
to find out where F (θ) is steep. However, it may happen that a pole αk is close
to the interval and nevertheless F (θ) is not particularly steep near the point θ∗
obtained from (7) with β = βk, e.g. when n is large and all other poles are far
away. Therefore, we need an additional criterion to decide which points θ∗ to use
to obtain new starting values.

Suppose that θ∗ ∈ [θ∞k , θ∞k+1], then we compare the slope of F at θ∗ to the slope
of the straight line connecting the points (θ∞k , F (θ∞k )) and (θ∞k+1, F (θ∞k+1)). In
particular, if

F ′(θ∗) > 2
F (θ∞k+1) − F (θ∞k )

θ∞k+1 − θ∞k
, (16)

then we retain the point θ∗ to obtain new initial values for the Newton iterations.
Again, this criterion is mostly heuristic and gives satisfactory results in all the
experiments we have done.

4.4 Obtaining new initial values

When the Newton iterations for a certain θk diverge, proceed as follows. First
determine the poles that satisfy (15). From these poles, compute the corresponding
θ∗ values by (7) and only retain those for which (16) holds. Denote this set by Θ.

If Θ has only one element, then take this as initial value for θk.
If Θ has more elements, we need to determine the position of θk with respect

to every value in Θ. Since F (θ) is monotonic, it suffices to evaluate F in every
element of Θ. If θk is greater (less) than the largest (smallest) element of Θ, then
take this element as initial value. Else, there exist θ∗,1 ∈ Θ and θ∗,2 ∈ Θ so that
θ∗,1 ≤ θk ≤ θ∗,2 (assume that [θ∗,1, θ∗,2] is the smallest such interval). Now define

θ̃ =
θ∗,1 + θ∗,2

2
+

π

4

(

n1

F ′(θ∗,1)
− n2

F ′(θ∗,2)

)

,

where ni is the ‘multiplicity’ of θ∗,i, i.e. the number of (not necessarily distinct)

poles that lead to θ∗,i. Then if θk ≥ θ̃, take θ∗,2 as initial value, else take θ∗,1. Note

that θ̃ is the point halfway between θ∗,1 and θ∗,2 plus some small ‘correction’. This
formula is arrived at as follows: since θ∗,1 attracts approximately n1 points θk, and
since the values F (θk) are all at a distance π from each other, we may estimate
that the largest θk which is attracted by θ∗,1, is given by

θk ≈ θ∗,1 +
n1π/2

F ′(θ∗,1)
,

assuming that half of the θk attracted by θ∗,1 are to the left of θ∗,1 and the other
half are to the right. Similarly we estimate the smallest θk attracted by θ∗,2. The

point θ̃ is then simply the point halfway between these two estimates. This works
remarkably well in practice.

However, if the Newton iterations still diverge with these new initial values,
we finally resort to the method of bisection to obtain the exact values θk. This
only happens if there are several distinct poles very close to the interval (e.g. at a
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distance of 100 times machine epsilon) and is not likely to occur much in practical
applications. An example is given in Section 6.

5. IMPLEMENTATION ISSUES

The algorithm is implemented as the Matlab function rcheb, which consists of
several subfunctions. The function rcheb itself takes two arguments. The first
is a vector of poles, the second is optional and indicates the weight function for
the corresponding quadrature formula. It defaults to the first Chebyshev weight,
which is the one used in this article. For the other two Chebyshev weight func-
tions, everything that has been said before about the algorithm remains valid, but
the definition of F (θ) and equation (5) are slightly different. The general formula-
tion (covering all weight functions) requires the introduction of two constants, as
discussed in [Deckers et al. 2007].

The function psort is used to sort the sequence of poles and the sequence Θ
mentioned in Section 4.4, and to compute the multiplicity of each pole α or each
θ∗-value. It uses the Matlab function sort, which sorts complex numbers first by
absolute value and then by angle.

To evaluate the function F (θ) and its derivative, we use ceval, ftheta and
fdtheta. If F (θ) is to be evaluated in several points at the same time, we can
either loop over all evaluation points, or over the different poles, or even avoid
a loop altogether by using matrix arguments. Which method is faster depends
on the number of evaluation points and the number of distinct poles, and the
decision is based on a test that was determined heuristically (by evaluating F (θ) in
a substantial part of its parameter space, using each of the three methods, and for
each set of arguments checking which method is faster). This test is done at the
beginning of ceval.

Care has to be taken when computing arg(z−β) when z is very close to β. Recall
that

arg(z − β) = tan−1 sin θ − r sin φ

cos θ − r cos φ
,

where z = eiθ and β = reiφ, and digits are lost when computing the differences in
numerator and denominator when z and β are very close to each other. To avoid
this, we use Simpson’s formulas to obtain the equivalent expression

sin θ − r sin φ

cos θ − r cos φ
=

2 sin θ−φ
2 cos θ+φ

2 + (1 − r) sinφ

2 sin θ+φ

2 sin φ−θ

2 + (1 − r) cosφ

which yields much more accurate results.
The Newton-Raphson iterations are done for several nodes at the same time in

newton. As soon as a node has converged, it is omitted from subsequent computa-
tions to speed up performance. Since F (θ) is monotonic, it is also easy to determine
when an iteration starts diverging. If this is the case, the node is also omitted from
subsequent computations and marked as diverging. An interval containing the ex-
act solution is returned in case it is needed later for the method of bisection. We
point out that the maximum number of iterations is set to 10. Once convergence
sets in, it follows from the quadratic convergence that it will take at most 5 it-
erations to reach machine precision (working in double precision). If convergence
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does not start after 5 iterations, the initial value is considered not good enough.
The accuracy tolerance is set to 50 times machine precision in the variable xtol

in the main programme. This is also used for bisection and can be changed if less
accuracy is needed.

For the nodes that have not converged, new initial values are determined using
the approach discussed in Section 4.4. This is done in newinit. The programme
does not use formula (7), but instead uses the equivalent formula

θ∗ = cos−1

[

<(β)((1 + |β|2)2 + 4=(β)2)

2|β|(|β|(1 + |β|2) + |=(β)|
√

(1 + |β|2)2 − 4<(β)2)

]

,

which is numerically stable for all values of β. When choosing between θ∗,1 and

θ∗,2 based on the estimate for θ̃, we do not throw away the other possibility, but
keep it as a third initial value just in case the Newton iterations still diverge.

If all possible initial values have been tried and there are still nodes that have not
been found, the programme uses bisection as a last means of obtaining the exact
solution. This is done in the function bisect. The maximum number of iterations
is set to 52. This way, convergence to machine precision (double precision) is always
guaranteed. The iterations are started from an enclosing interval that is returned
by newton and improved upon in bound. This improvement is based on the fact
that F (θ) is monotonic. We know that θi < θj < θk if i < j < k, so we can use
the nodes that have already been found to obtain bounds for the remaining ones.
Under normal circumstances, bisection will never be necessary, but if F (θ) is almost
discontinuous in several points (which means there are several distinct poles very
close to the interval), then bisection is inevitable for at least a few nodes. Examples
are given in the next section.

If a second output argument is present, it is used to return the quadrature weights,
which are computed in the function weight. The same remark regarding the com-
putational efficiency applies as in the case of ceval. However, the function does
not use the formula from Theorem 3.2, but an equivalent formula based on the
equality

|z − β|2 = (1 − r)2 + 4r sin2 θ − φ

2
where θ, r and φ are as above. This formula is more accurate, but when z and
β are very close to each other, digits are inevitably lost. This is illustrated in the
next section.

Finally, a third output argument may be used to obtain an accuracy estimate for
each of the computed nodes. This is a vector that contains the values F (θ̂k)/F ′(θ̂k),

where θ̂k is our computed approximation to the exact zero θk. Again, only in
exceptional cases where there are poles extremely close to the interval, some of the
estimates can be greater than xtol. Examples are given in the next section. This
output parameter is only useful for verification purposes.

6. EXPERIMENTS

To test the code and to give the users some examples to work with, we have included
a file experiments.m that illustrates the use of this software. For several sets
of poles and each of the three weight functions, we compute the nodes xk and
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the quadrature weights λk and look at the accuracy estimates mentioned above.
Furthermore, we use the nodes and weights to compute the integral of a function
that should be integrated exactly by this formula. This is based on the following
theorem, which is an immediate consequence of Theorem 3.2 in [Deckers et al. 2007].
For the proof, we refer to that article.

Theorem 6.1. Define the factors Bk(z) as

B0 ≡ 1, Bk(z) =
z − βk

1 − βkz
· Bk−1(z), k = 1, 2, . . .

and for each weight function w(x) and each k define

ϕk(x) =
zBk−1(z)

1 − βkz
+

1

(z − βk)Bk−1(z)
, w(x) =

1√
1 − x2

,

ϕk(x) =

√
2

z − 1

(

z2Bk−1(z)

1 − βkz
− 1

(z − βk)Bk−1(z)

)

, w(x) =

√

1 − x

1 + x
,

ϕk(x) =
2

z2 − 1

(

z3Bk−1(z)

1 − βkz
− 1

(z − βk)Bk−1(z)

)

, w(x) =
√

1 − x2 ,

then it follows that
∫ 1

−1

|ϕk(x)|2w(x)dx =
2π

1 − |βk|2
.

The functions ϕk(x) are in fact orthogonal rational functions with respect to the
weight function w(x). It can be verified that they are of the form (4) and thus the
integral can be computed exactly with an n-point quadrature formula as long as
k < n.

We only discuss some special cases in this text, plenty of ‘normal’ examples are
given in the file experiments.m. For comparison purposes, we also include a file
experiments.out, which contains the output of experiments.m, executed on a
computer with a 2.4 GHz AMD Opteron processor.

First let us take 7 distinct poles, each of multiplicity 10 and just above the interval
(at a distance of 100 times machine epsilon). The Matlab code for this example
is reproduced below and shows the exact location of the poles.

>> a = [-0.6:0.2:0.6] + 1e2*eps*i;

>> a = repmat(a,1,10);

>> [x,lambda,err] = rcheb(a);

>> 71 - find(abs(err) > 50*eps)

ans =

10

>> err(61)

ans =

2.841055762200743e-14

>> abs(1 - sum(lambda)/pi)

ans =
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2.157035816630071e-08

This code fragment requires some explanation, as it illustrates a kind of worst case
scenario that we analyse in some more detail. The test on the fourth line shows
that the node x10 cannot be computed to full accuracy, but only to approximately
14 digits (nodes are stored in reverse order since xk < xl if k > l). It also turns
out that for this node (and for x1) bisection is necessary (this can, of course, not
be deduced from this code fragment). It is surprising that the method of bisection
does not yield accurate results. In fact, the only reasonable explanation is that
the function F (θ) itself cannot be computed accurately, and that is exactly what
happened. In spite of the more accurate formulas from the previous section (based
on Simpson’s formulas), one digit is still lost when computing arg(z−β) for z close
to β. Without these more accurate formulas however, up to 6 or 7 digits would
be lost in this example. The last test in this code fragment shows that additional
digits are also lost when computing the quadrature weights, which should sum
up to π. Again, since the zeros are so close to the poles, this is inevitable. The
quadrature test based on the above theorem is not shown here, but is included in
the file experiments.m and exhibits the same loss of digits.

For the next example, we take poles at the integer multiples of iω where ω =
0.001. If all poles are at the imaginary axis, it can be shown that the nodes xk

are symmetric with respect to the origin, which provides us with an extra test for
accuracy, as shown in the next code fragment.

>> a = [1:10]*i*0.001;

>> a = [a, -a];

>> [x,lambda,err] = rcheb(a);

>> find(abs(err) > 50*eps)

ans =

Empty matrix: 1-by-0

>> max(abs(x(1:10) + x(20:-1:11)))

ans =

4.996003610813204e-16

>> abs(1 - sum(lambda)/pi)

ans =

1.110223024625157e-15

Bisection was not necessary to compute the nodes.
For the last example, we look at the case of a very large n. We take three distinct

poles (one on either side of the interval and one just above the interval), repeated
ten thousand times. The results are shown below.

>> a = [-1.1 0.1*i 1.1];

>> a = repmat(a,1,10000);

>> [x,lambda,err] = rcheb(a);

>> find(abs(err) > 50*eps)

ans =

Empty matrix: 1-by-0

>> abs(1-sum(lambda)/pi)

ans =
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6.106226635438361e-15

It takes approximately 6.1 seconds to execute this piece of code. Computing only
the nodes, without the weights and accuracy estimates, takes 4.3 seconds. We are
fairly confident that it is impossible to obtain the same efficiency using eigenvalue
based methods. No bisection was used in this case either.
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