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Abstract

This paper presents a lower and upper bound of the Pythagoras number
of sum of square magnitudes of Laurent polynomials (sosm-polynomials). To
prove these bounds, properties of the corresponding system of quadratic poly-
nomial equations are used. Applying this method, a new proof for the best
(known until now) upper bound of the Pythagoras number of real polynomials
is also presented.
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1 Introduction

Non-negative (complex Laurent or real) polynomials play a fundamental role in sev-
eral applications, see, e.g., [8, 7, 14]. Several optimization problems can be reformu-
lated over the cone of non-negative polynomials. Each real non-negative polynomial
(i.e., its coefficients are real and it is in real variables) can be approximated well by
a sum of squares polynomial under the 1-norm [12]. A polynomial which is a sum of
real squares (say, sos-polynomial) or which is a sum of square magnitudes of complex
polynomials (say, sosm-polynomial) might have several sos- or sosm-representations.
It is useful in practical computations when parametrizing the corresponding sets
of sos- or sosm-polynomials, to find a representation with the minimum number of
sos(m)-terms.

Let R[z],q be the set of all real-valued n-variable polynomials of degree at most
d. Let X(n,d) denote the set of sum of squares (sos) polynomials, i.e.,

N(n,d) = {f € Rlz]poa: flz) = Zvi(m)Q,Va: e R%v; € Rz, Vi=1,... ,r} :
i=1
The positive integer number

7(f) £ min {r € N: f is sum of r squares}

is called the Pythagoras number or the length of f [4, 6, 19]. It is well-known that a
polynomial f is an sos-polynomial if and only if there exists a positive semidefinite
real symmetric matrix F' such that f can be expressed as

f(z) = vy(x) Fvy(z), Vo € R"

where v4(z) is the column vector of all possible monomials 2 £ 2 ... 2% in R[z],.4.

To define sum of square magnitude (sosm) polynomials, we need the following
notations. Let C[z], 4 denote the set of all complex-valued n-variable polynomials of
degree at most d. In this case the polynomials are defined on the n—torus

T"2{zeC": |5 =1Vi=1,...,n}.

The set of sum of square magnitude (sosm) polynomials in n variables of degree d



¥3(n, d) is defined as
3 (n,d) & {g(a:) cg(x) = Zqi(x)2,Vx €T q € Clz)pa, Vi=1,... ,r} :
i=1

Analogously, for each g € £3(n, d), the Pythagoras number of g is defined as
7(g) £ min {r € N: g is sum of r square magnitudes of polynomials} .

A Laurent polynomial is a sum of square magnitudes of polynomials in ¥°(n,d) if
and only if there is a positive semidefinite Hermitian matrix G such that

9(2) = va(2)"Gva(2),¥z € T",

where v,4(z) denotes the column vector of monomials z* = 2{* ... z%" in C[z], 4.

The sets of possible exponents of polynomials in R[], 4, $(n,2d) and X3(n, d)
are defined, respectively, as follows:

Qn,d) = {ozEN”:|a| éZaj Sd},
j=1

L'(n,d) = Qn,d)+Q(n,d)

= {’YENHZMéZ%’SQd}a
j=1

¥(n,d) 2 Qn,d) —Qn,d).
Denote ( 2) ( 20)|
s (n+a)l a (N + !
eln.d) == lnd) = e

then the cardinalities of Q(n,d) and I'(n,d) are (see [6])
1Q(n,d)| = e(n,d) 2 ¢é, [I'(n,d)| =a(n,d) = a.

We note that there has not been a formula for the cardinality of I'¥(n, d) £ k in the
literature. To formulate the following theorems on lower and upper bounds for the



Pythagoras number of ¥(n,d) and ¥°(n, d), we need the following notation:
2¢ +1—+/[2¢ 4+ 1] — 8a

2 Y
vV1+8a—1

lI>

L(n,d)

[I>

U(n,d)

L3(n,d) & e—1\/é2—k,

V8k+1—1

US(nd) &

Lower and upper bounds for the Pythagoras number of either sos-polynomials or
sosm-polynomials are given by the following theorems.

Theorem 1. [6] For any f € ¥(n,d), we have
L(n,d) <w(f) <U(n,d) <é.
Theorem 2. For any g € ¥5(n,d), we have
L3(n,d) < w(9) < min {U%(n,d),é}.

The paper is organized as follows. Section 2 summarizes some important prop-
erties of the cones of positive semidefinite real symmetric and complex Hermitian
matrices which will be used in subsequent sections. The bounds in Theorem 1 were
given in [6] with the corresponding proof. Section 3 presents a new proof for the
upper bound U(n, d). The key result to give the proofs of the upper bound of either
sos- or sosm-polynomials, Proposition 3, is also shown in this section. Section 4 deals
with the proof of Theorem 2. In Section 5, a formula is derived for k £ 'S (n, d) with
n =2,3,...,6. Also, some examples for different values of n and d are presented
showing that U¥(n,d) can be less than é = e(n, d) for certain values of n and d and
vice versa. Section 6 gives the conclusions.

2 Cones of positive semidefinite matrices

This section summarizes some properties of the cones S and H/, of real symmetric
and complex Hermitian positive semidefinite u X p matrices, respectively. The results
in this section are well-know in the literature. They are listed here without proofs.

Proposition 1. [5, 10] The cones S, H, are
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e proper, i.e., they are closed, convez, have nonempty interior (solid) and contain
no line (pointed);

o self-dual.

The following proposition summarizes the fact that either the space S* of real
symmetric matrices or the space H* of complex Hermitian matrices can be identified
with an adapted real Hilbert space. Throughout this chapter, unless otherwise stated,
(.,.) denotes either the “trace” inner product (A, B) = Trace(A” B) of matrices or
the standard inner product in C". We use the notation (2;;)condition on indices iand j tO
denote a vector containing the elements x;; where the index j is varied faster than
the index 7.

Proposition 2. i) (See, e.g., [9]) Suppose S* is endowed with the “trace” inner
product {.,.) and R**1/2 s endowed with the inner product

(@, y)p = 2" Dy,Va = (zi;)1<i<i<u ¥ = (Yijhr<i<j<u € RFTD/2

where D = diag(di1, dra, ..., diy, ..., dy,) is a diagonal matriz with d; = 1 and
dij =2 for 1 <i < j < p. Then the space S* is isometrically isomorphic to RAk+1)/2
under the map

S* 2 X = [zijlijet,p > T = (Ti)1<i<j<u € RAm+1)/2.

i) (See, e.g., [10]) The space H" is isometrically isomorphic to R* | endowed with
the standard inner product, under the map that maps each matriz [a;;] € H* to the
following vector in R

(a11> \/ERG(GH), \/§Im(a12), -y 22, \/§Re(a23), \/§Im(a23), ce ,GW)T-

For any A = X +1Y,B = U +1V € H*, with X, U € S¥, Y,V € R+ YT =
—Y, VT = —V, the inner product on H* can be expressed as

<A7 B> = <X7 U> + <Y7 V> = <£7a>D + <g7®>D7

where the corresponding vector g, v of the skew-symmetric matrices Y,V is defined,
respectively, via the map

W = [wislij=1,..p = © = (Wijh<i<j<p-



3 Upper bounds on the Pythagoras number of
sos-polynomials

In this section, we give a new proof for the upper bound of the Pythagoras number of
sos-polynomials given in Theorem 1. Some lower and upper bounds of the Pythagoras
number of such polynomials were also presented in [19, 4]. The upper bound U (n, d)
in Theorem 1 is the sharpest (by now) and given in [6]. The authors proved such
bound by using the “method of cages”. This method is based on the Newton polytope
of the sets of exponents Q(n,d) and I'(n,d). A polynomial f € R[z], 24 can always
be represented as a linear combination of monomials. Moreover, if it is sos, f =
ST f2, fi € R[z],.4, then its coefficients can be represented as a quadratic polynomial
of the coefficients of the f;’s. Each of these quadratic polynomials is called a “vectorial
quadratic form” [3]. Given the coefficients of f, determining the coefficients of the
polynomials f; is equivalent to solving a system of quadratic equations.

Theorem 1 is a direct consequence of Theorems 4.4 and 6.1 in [6]. It says that
every sum of squares polynomial can be expressed as a sum of at most |U(n,d)]|
squares, where |.| denotes the integer part of a real number. We now prove the
upper bound using the theory of systems of “vectorial quadratic form” equations.

3.1 A new proof for the upper bound U(n,d) of Theorem 1

We first recall some facts of vectorial quadratic forms from [3]. One can view each
m X r real matrix H as an m—tuple of column vectors in R, i.e.,

H = [hy,... hy)" € R™

A (real) vectorial quadratic form corresponding to the real symmetric matrix ¢ =
[qi;] € S™ is a map ¢ : R™*" — R defined by

g(H) = > qislhihi) + Y ai(hi, hy)
i=1 i#j

— Zq“-(hi,hi)—i-Z Z Gij(hi, ).
i=1

1<i<j<m

Then it is easy to see that
g(H) = (Q,HHT).



Notice that the (i,j)—entry of HH” is (h;, h;) for all i,j = 1,...m. Before giving
our proof, we list the following result from [3].

Proposition 3. Suppose Q1, ..., Q; are symmetric matrices of ordern and aq, ..., q
are real numbers. If a positive semidefinite matriz X exists such that

<Q17X> = ai,‘v’i = 1,...,[,
then there exists a positive semidefinite matriz Xo satisfying the | equations above

and
V8l +1—1
rank(Xy) < {8+J :

Now, suppose f is a sos-polynomial in n real variables and of degree 2d, say
@) =S pi@), pile) € Rlela, ¢ €Y, Vi= 1.1
i=1

Suppose furthermore that f is expressed in the classical basis as

flz) = Z fa?, v 2ot (1)

~v€l(n,d)

Let V' be the matrix whose columns are the column vectors of coefficients of pis.
Then

(@) = va(@) (VVT)va(w). (2)

Identifying the coefficients of f in the two expressions (1) and (2), we have

Z <ipaip,3i) = fy, Vv € I'(n,d), (3)

B+a=y =1
a,BEQ(n,d)

where p; = [Pailaca(na) is the column vector of coefficients of the polynomial p;(x).
This gives us a system of a = |I'(n,d)| equations of quadratic polynomials in ér
variables (pai), i =1,...,7, a € Q(n,d).

To apply Proposition 3, we define a vectorial quadratic form as follows. For each



v € ['(n, d), denote by Q. = [Q,5]a.se0(n.d) the symmetric matrix defined by

1 if a+B8=va=p,
=43 if a+B=va#p, (4)
0 otherwise.

The corresponding vectorial quadratic form ¢, : R®" — R is defined by

¢(H)=(Q, HE") = ) (Z hm‘hﬁz), H = (he;) € RO, (5)
B+a=y i=1
a,B€Q(n,d)

From (3), (4) and (5), it follows that the associated matrix V'V of f satisfies Propo-
sition 3, and hence a positive semidefinite matrix X, exists such that

v8a+1—1

rank(X) < L 5

| = weay.
The conclusion is obtained from the fact that

7(f) = min {rank(A) : A € S, vq(z)" Avy(z) = f(z),Vz € R"}.

3.2 Remarks

Remark 1. Results on the facial structure of linear programs and semidefinite pro-
grams [17, 16, 18] also give an upper bound on the Pythagoras number of real poly-
nomials but it is not as sharp as U(n, d). Several nice properties of faces of the cone of
positive semidefinite matrices can be found in [20, 18, 17, 2, 10, 1, 16]. This unsharp
upper bound is derived by considering the following primal and dual semidefinite
programs, respectively,

miny (C, X)
subject to X €S9, (6)
<Q'an> = fwa\V/V € F(”ad)a

and
max, Z'yel‘(n,d) f’Y’Z’Y R
subject to 2 = (2y)yerm,a) € R, (7)

C— Z'yer(n,d) Z’)’Q’Y> = 0,
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where C' € S¢. Pataki [16, 17, 18] proved that for any feasible point X (with rank r)
of the primal semidefinite program (6), the following rank inequality holds

r(r+1)

5 <a+ dim F,

where F is the smallest face of the feasible set containing X. This certainly gives a
weaker upper bound than the one given in Theorem 1 because
Uln,d)[U(n,d) + 1]
2

<a.

Remark 2. In [3] it is shown that there always exists a positive definite matrix C' for
which the following inequality holds

rank | C' — Z r,Qy | > €— (8)

v€T(n,d)

e

for all {x,},ermqa C R. A consequence when such a matrix C' exists is that both
primal and dual semidefinite programs (6) and (7) have an optimal solution. The
key is that the matrices {Q}1er(n,a) are linearly independent.

Proposition 4. The matrices {Q~}yern,a) defined in (4) are linearly independent.

Proof. Notice that for v,7" € T'(n,d), if v # «/ then for any «, o/, 3,5 € Q(n,d)
such that o+ = v and o/ + 8’ = v/ we have (o, 5) # (¢/, 5'). This implies that any
nonzero entry of the matrix (), does not appear at the same position as the nonzero
ones of ). This gives us the conclusion of the proposition. ]

4 Bounds on the Pythagoras number of sosm-
polynomials

We start this section by stating the following proposition which allows us to con-
sider only the polynomials being sums of square magnitudes of linearly independent
polynomials. In a sosm-representation of a polynomial, if a sosm-term polynomial is
a linear combination of the polynomials of other terms then its square magnitude is
not necessarily a linear combination of the other square magnitudes.

Proposition 5. If g(z) is a sum of r square magnitudes of polynomials q;(z) €
Clzlna, i =1,...,r, and the column vectors of coefficients of the polynomials q;(2) are
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linearly dependent then it can be expressed as a sum of at most € square magnitudes
of linearly independent polynomials.

Proof. Suppose g(z) = Y1, 1¢i(2)|*,Vz € T" where ¢;i(z) € Clz],a,1 = 1,...,7.
Then it has a matrix representation (see, e.g., [13])

9(:) = 310 ) = va()" (Y- aval)val) = val2) (@ wal), ()

where q; denotes the column vector of coefficients of the polynomial ¢;(z), G =
[a1,---,q,], G is the element-wise conjugate of G. Since the sosm-term polynomials
¢i(z) are linearly dependent, rank(G) = s < r. Applying the Cholesky factorization
we have GGT = LLT where L € C®** is lower triangular of rank s. We obtain the
new representation of the polynomial

9(2) = va(2)" (LL")va(2).

This implies that the new polynomial is a sum of é square magnitudes of polynomials,
and the sosm-term polynomials are linearly independent. ]

Because of Proposition 5, one can assume in the rest of this chapter that the
sosm-term polynomials of a sosm-polynomial are linearly independent.
Now, suppose
g(z)= Y g2, deglg) =d, (10)

YErS (n,d)

is a sum of r square magnitudes of polynomials with a matrix representation as in (9).
Note that its sosm-term polynomials are linearly independent. For each ¢ =1,...,r,
by qa; denote the ath coefficient of the polynomial ¢;(z). Identifying the coefficients
of g(z) in the matrix and the canonical-basis representations as in (9) and (10),
respectively, we get

Z (i%i%i) =gy, VY€ I3(n,d). (11)

B—a=y i=1
a,B€Q(n,d)

So if the Laurent polynomial g(z) is sosm on the n—torus T", then g, = g_, for all

10



v €T%(n,d), v = 0 (componentwise). So, the equations in (11) are reduced to

Z <Z§m’q§i> =gy, Yy €T%(n,d),y = 0. (12)

B—a=y i=1
o,BEN(n,d)

One also notices from the matrix representation of sosm-polynomials that the
Pythagoras number of sosm-polynomials is bounded above by é, i.e., r < é. We now
give another upper bound for the Pythagoras number of such polynomials in the
next subsection.

4.1 The upper bound

In this subsection, we convert the system of complex quadratic equations (12) to one
of real quadratic equations. Then we apply Proposition 3 to obtain an upper bound
for sosm-polynomials.

Firstly, in (12), set

Qoi = Toit+ Wais TairYai €R, Yo € Q(n,d), Vi=1,...r
Gy = Uy+ 10y, uy, vy € R, Vy € ¥(n,d), ~2=0.

The system (12) is then equivalent to the system of k = |['¥(n,d)| real quadratic
equations

Z Z <$aixﬁi + yaiy6i> = U’WV’}/ S F%(nu d)ﬁ Z 07
B—a=y =1

a,B€Q(n,d)
Z Z (xaiyﬁi - yaixﬁz) = U'yavf}/ € F%(na d)a v i 0. (13)
f—a=y i=1
a,B€Q(n,d)

On the other hand, using the Cholesky factorization of Prop. 5, one can assume the
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matrix G to have the lower triangular form

%
G=1|x%x ... x| eC®™

where * denotes a possible nonzero entry, and each diagonal element on any of
its columns is real and nonzero. The matrix G can then be expressed as G =

X +1Y, X, Y € R®" where X contains ér — # possible nonzero entries and Y

contains ér — T(r—;l) possible nonzero entries. Let X = (24i)ai, Y = (Yai)ai € RO

From (13), consider k £ |T'S(n, d)| vectorial quadratic forms defined on R2*"

q'?(Xa Y) £ Z Z (xaimﬁi + yon'yﬂi) y g 07

B—a=y i=1
a,B€Q(n,d)

GXY) 2 > (Tailipi — Yaisi), 7 2 0. (14)
B—a= i=1
a,BGQ(n’Td)

Note that in (14), some of the parameters y,; and x,; are zero (corresponding to the
strictly upper triangular part of G). Set

XXT XyT .

It is clear that
sym(X,Y) = (ii) (X7 vT) =o.

Then there exist symmetric matrices QF, Q5 € S* such that
g7 (X;Y) = (@ sym(X,Y)), ¢7(X:Y) = (QF,sym(X,Y)).

Thus, for a given sosm-polynomial g(z) = Y7, |qi(2)]* = va(2)¥ (GGT)v4(z) with
G = X +1Y as above, there exist k symmetric matrices Q? , Qf € S? and a positive
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semidefinite matrix A = sym(X,Y’) such that

( f,A>:u7, Vv 2 0 and ( $,A>:vw, Vy 2 0.

By Proposition 3, there is a matrix Ay € S? satisfying the conditions above and

V8k+1—1

rank(Ag) < 5

Finally, let Ay = A; AT be the Cholesky decomposition of Ag. Then A; € R?*** with
rank(Ag) = rank(A;) = s. Let Xy and Yj be the matrices taken from the first and last
é rows of Ay, respectively. Then Ay = sym(Xy, Yp). The matrix Gy = X+1Yy € C&*
is also an associated matrix of the polynomial g(z), and if s < r then we have

7(g) < rank(Gy) < rank Xo) _ rank Xo) _ rank(Ag) < U%(n,d).
1Yo Yo

The second inequality can be found in [15].
Since 7(g) < é, we have the following.

Proposition 6. If the Laurent polynomial g(z) of degree d is sosm on the n—torus
T" then
m(g) < min{e,U>(n,d)}.

4.2 The lower bound

To give a proof for the lower bound we need a result from function theory and dimen-
sion theory. In particular, one concerns the dimension under polynomial mappings.
The “dimension” here stands for the dimension of topological spaces, see, e.g., [11, 6].
More precisely, we say that a subset of R* has dimension p if its interior is nonempty.

Proposition 7. [6] A polynomial mapping ® : R* — R”, i.e., with coordinate func-
tions that are polynomials, always satisfies the dimensional inequality

dim(Im(®)) < p.

Below we prove that the set of sosm-polynomials can be embedded in the range
space of a polynomial mapping. Indeed, consider the polynomial mapping

R PYSp) 5 T(r—=1) 5. T(r+1)
[0)) N (q??) q’j)’yio . RQer r? — Rér 5 % RET i Rk
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defined by (14). Since for any g(z) € X°(n, d) there exist two real matrices X,Y so
that (13) is satisfied, X% (n, d) is isomorphic to a subset of Im(®). We will prove that
int(X%(n,d)) # 0 then so is int(Im(®)). We then apply Proposition 7 to give the
lower bound in Theorem 2. For any ¢ € C and any «, 8 € Q(n, d), the polynomial

(e2% 4+ 2°)(ez2 + 2P) = |e)* + 1 + ez P+ &P~ 2 € T,

is sosm. Let f(z) = [I¥(n,d)| + 1,Vz € T". It is certain that f is sosm. We prove
that f € int(X%(n,d)). Indeed, for any

hz)= Y (527482 +e € L3(n,d), Y e, <1,
el (n,d) 720
720

then h belongs to the unit ball in R*, and the polynomial

frh=3 (0 +5 Hlal + 1) + (1= 2 |5

720 720
is sosm. This means that f is an interior point of ¥°(n, d). So
dim Im(®) = dim X%(n, d) = k.

Proposition 7 implies that
r? —2ér+k<O0.

Moreover, if g(z) is sosm then from g(z) = v4(2)7 Avy(2), A = (aag) we have
Gy = Z g, ¥y € T3(n, d).
B—a=y

There are é? entries aqg, and if v # 4/ then for « — 3 = 7,0’ — ' = 7/, we have

(a, B) # (¢, ). This implies
k< é?

and hence the inequality 72 — 2ér 4+ k < 0 is equivalent to
ée—Vez—k<r<é+ve?—k.

We thus have the following.
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Table 1: Values of p,(d) with respect to some pairs of (n,d).

0 [d]IT ()] = pald) | [0 [ ] T, d)] = puld)
311 13 511 31
2 55 2 271
3 147 3 1281
4 309 4 4251
5 11253
6 25493
411 21 6|1 43
2 131 2 505
3 471 3 3067
4 1251 4 12559
5 2751 5 39733
6 104959
7 242845

Proposition 8. For any sosm-polynomial g € ¥°(n,d), we have

m(g) > L%(n,d).

5 The cardinality of ['¥(n,d) and examples

In this section, we give some examples demonstrating why the upper bound in The-
orem 2 should be taken as min{U%(n,d),é}. First of all we derive a formula for
IS(n,d) forn=2,3,...,6.

For a fixed number of variables n, one can see that |T'¥(n, d)| is a polynomial p,,(d)
in d of degree n. So, if one knows n + 1 values of p,(d) with respect to n + 1 values
of d then by using Lagrange interpolation one obtains an explicit formula of p,(d).
Table 5 shows such values of p,,(d), which are numerically determined, with respect
to several values of n. Based on this interpolation data, we have the following.

Proposition 9. A formula for I3 (n,d)| forn =2,3,...,6 is given by
i) [T9(2,d)| = (2d + 1)® — d(d + 1).
i) [T%(3,d)| = (2d +1)* — Zd(d + 1)(2d + 1).
iif) [[%(4,d)| = (2d 4+ 1)* — 5d(d + 1)(157d* + 157d + 46).
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Table 2: Values of L(n,d), é = e(n,d) and US(n, d) with respect to values of (n, d).

n | d |[[L3n,d)] | é2e(nd) ||U%nd)]

4 1 3 5 6
2 6 15 15
3 8 35 30
4 10 70 49
5 12 126 73

5 1 4 6 7
2 8 21 22
3 13 56 50
4 19 126 91
5 24 252 149

iv) [T3(5,d)| = 135(252d° 4 630d* + 1120d® + 1050d> 4 548d 4 120).
v) T5(6,d)| = =55(924d° 4 2772d° + 6720d* + 8820d* 4 7AT6d* + 3528d + 720).

Based on the above proposition, we can give several examples showing that
US(n,d) is not always less than or equal to é.

By the Fejér-Riesz Theorem, the Pythagoras number of sosm-polynomials in one
variable is one. In case of two variables, one can prove that [U%(2,d)]| < e(2,d), Vd >
2. The same estimation for n = 3, one also obtains |[US(3,d)| < e(3,d), Vd > 2.
Table 5 shows some values of n and small d for which e(n,d) < [US(n,d)].

Note that the conjectured formula of the Pythagoras number of sosm-polynomials
given in [13] satisfies the bounds of Theorem 2. The upper bound turns out to be a
sharp one.

6 Conclusion

A lower and sharp upper bound for the Pythagoras number of sosm-polynomials
were presented. These bounds are new and could be useful in practice, leading to a
reduction in computational complexity when problems are considered over the cone
of such polynomials. A new proof for the known upper bound of the Pythagoras
number of sos-polynomials has also been presented.
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