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Immunological metagene signatures derived from immunogenic cancer cell death
associate with improved survival of patients with lung, breast or ovarian
malignancies: A large-scale meta-analysisQ1
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ABSTRACT
The emerging role of the cancer cell-immune cell interface in shaping tumorigenesis/anticancer
immunotherapy has increased the need to identify prognostic biomarkers. Henceforth, our primary aim
was to identify the immunogenic cell death (ICD)-derived metagene signatures in breast, lung and ovarian
cancer that associate with improved patient survival. To this end, we analyzed the prognostic impact of
differential gene-expression of 33 pre-clinically-validated ICD-parameters through a large-scale meta-
analysis involving 3,983 patients (‘discovery’ dataset) across lung (1,432), breast (1,115) and ovarian (1,436)
malignancies. The main results were also substantiated in ‘validation’ datasets consisting of 818 patients
of same cancer-types (i.e. 285 breast/274 lung/259 ovarian). The ICD-associated parameters exhibited a
highly-clustered and largely cancer type-specific prognostic impact. Interestingly, we delineated ICD-
derived consensus-metagene signatures that exhibited a positive prognostic impact that was either
cancer type-independent or specific. Importantly, most of these ICD-derived consensus-metagenes (acted
as attractor-metagenes and thereby) ‘attracted’ highly co-expressing sets of genes or convergent-
metagenes. These convergent-metagenes also exhibited positive prognostic impact in respective cancer
types. Remarkably, we found that the cancer type-independent consensus-metagene acted as an
‘attractor’ for cancer-specific convergent-metagenes. This reaffirms that the immunological prognostic
landscape of cancer tends to segregate between cancer-independent and cancer-type specific gene
signatures. Moreover, this prognostic landscape was largely dominated by the classical T cell activity/
infiltration/function-related biomarkers. Interestingly, each cancer type tended to associate with
biomarkers representing a specific T cell activity or function rather than pan-T cell biomarkers. Thus, our
analysis confirms that ICD can serve as a platform for discovery of novel prognostic metagenes.

Abbreviations: ATP, Adenosine triphosphate; CD, Cluster of differentiation; CRT, Calreticulin; EGA, European
genome-phenome archive; GEO, Gene expression omnibus; HMGB1, High mobility group box 1; HSP, Heat shock
protein; ICD, Immunogenic cell death; IFN, Interferon; IL, Interleukin; OS, Overall survival; PERK, Protein kinase RNA-
like endoplasmic reticulum kinase; TCGA, The cancer genome atlas; TLR, Toll-like receptor; TNF, Tumor necrosis
factor
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Introduction

Cancer is a complex disease where tumor progression is also
20 determined by a dynamic interaction between cancer cells and

non-cancer cells, such as immune cells.1-4 However, this com-
plexity renders the process of patient prognosis based on
defined biomarkers extremely difficult. Ideally, biomarkers
should reflect the complexity of a tumor mass across various

25 cancer-types.5 Several clinical and pathological indicators have
been introduced for estimating patient prognosis6,7 however,
while such systems are valuable, they mostly rely on clinical
parameters or cancer cell-related factors.6 The recently emerg-
ing role of the cancer cell-immune cell interface in shaping

30 tumorigenesis2-4 and the appearance of anticancer immuno-
therapy8,9 has increased the need to identify new integrated as

well as broad sets of prognostic biomarkers based on the cancer
cell-immune cell interface.

The availability of high-throughput microarray technologies
35has enabled the investigation of global gene expression profiles

or ‘transcriptome’ of the tumor, which has revolutionized the
search for prognostic markers.5 Furthermore, transcriptomic
analysis is capable of revealing ‘multi-gene expression patterns’
or ‘metagenes’ (i.e., aggregate patterns of gene expressions like

40a cluster of genes, exhibiting or stratified to exhibit collective
high expression) as prognostic biomarkers.10-13 Interestingly,
recent progress in the fields of prognostic metagene biology in
cancer has suggested that initial consensus-metagenes identi-
fied through biomarker discovery approaches may subse-

45quently exhibit the ability to act as ‘attractor’-metagenes for a
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further set of ‘convergent’-metagenes.11 More specifically cer-
tain consensus-metagenes (acting as attractor-metagenes), may
have the ability to associate with, or, be ‘converged’ upon by, a
further sets of co-expressed genes, with close but not necessar-

50 ily identical relationship (which can be termed as convergent-
metagenes).11 Thus, this data-mining process has the ability to
not only characterize defined biological process-specific meta-
genes but also help in discovery of new sets of co-expressing
genes with putative prognostic impact. Owing to such develop-

55 ments, it has been proposed that apart from a single high-pow-
ered, prospective, randomized controlled trial, retrospective
meta-analysis of publicly available microarray datasets from
multiple clinical studies is a powerful (if not exhaustive) data-
mining methodology for discovery as well as assessment of

60 novel prognostic biomarkers.7

An emerging immunological process that has not yet been
comprehensively exploited for a bottom-up approach of prog-
nostic biomarker discovery, especially with respect to prognostic
metagene biology, is ICD. Comprehensive preclinical studies

65 have established ICD as an important predictor of potent anti-
tumor immunity.1-3,14,15 ICD is associated with danger signaling
pathways mediating the extracellular emission of danger signals
like surface calreticulin/heat-shock proteins, secreted ATP and
secreted HMGB1.14,16-24 These danger signals help in activating

70 the innate immune system14,22 which further boosts the adaptive
immunity leading to anti-tumor immunity.14,25-27 A significant
advantage of using ICD for biomarker discovery is that it,
uniquely, simultaneously integrates several immune-related
pathways such as danger signaling, effector T cell infiltration/

75 activity and others into a single paradigm.1-3 Thus the probability
that ICD, as a primary endpoint, may identify immune bio-
markers and respective metagenes is high. A limited number of
retrospective studies carried out in human cancer patients to
ascertain whether ICD-associated parameters can be used as

80 prognostic biomarkers, have yielded contradictory results.28-35

Possible reasons for this could be restriction to a few ICD-
derived biomarkers (mainly calreticulin, HMGB1 or CD73), the
limited number of patients and variations related to cancer-types.

We therefore hypothesized that the known catalogs of ICD-
85 associated parameters, characterized through extensive preclini-

cal research and validated through a large-scale meta-analysis,
could be prognostic for the overall survival (OS) of cancer
patients. Through this in silico meta-analysis we further wanted
to identify ICD-derived consensus-metagene signatures with a

90 prognostic significance either across different cancer types
(breast, ovarian and lung cancer) or for specific cancer-types. We
also wanted to test whether these consensus-metagenes may
have the ability to act as attractor-metagenes for convergent-
metagenes, with similar prognostic impact and specific or broad

95 immunological indications.

Results

Immunogenic cell death is a diverse source of 33 putative
prognostic factors dealing with various levels of immune-
complexity

100 An extensive literature survey was done for identifying
pre-clinically validated ICD-parameters (searching PubMed,

Scopus and Web of Knowledge, for relevant studies conducted
in mice in vivo and/or with primary human immune cells ex
vivo, until October 2014). Studies/specific results within them

105were considered eligible if they met all of the following criteria:
(1) explored the association between ICD and danger signaling
mechanisms/immunological processes, (2) carried out prophy-
lactic/curative rodent vaccination experiments and/or experi-
ments involving cancer cells-immune cells co-culture, (3)

110carried out experimental interventions (e.g. siRNA/shRNA),
antibody-based depletion/blockade or whole-body/tissue/line-
age-specific knock-out rodent models and (4) associated pro-
cesses/molecular entities with ICD on the basis of proper
untreated/negative/positive controls. Studies/specific results

115were excluded based on any of the following reasons: (1) not
sufficient data reported, (2) letters/reviews/commentary/per-
spectives/case reports/conference abstracts/editorials or expert
opinion, (3) studies/results where the experimental interven-
tions/knock-down/knockout phenotypes did not affect ICD-

120based anticancer vaccination effect, and (5) association of a
process/entity with ICD was not established due to lack of
proper negative/positive controls.

This literature survey identified 22 papers that fulfilled the
above eligibility criteria, from which we extracted 33 pre-clini-

125cally relevant parameters of ICD in cancer (Table 1, Fig. 1). It is
noteworthy that majority of these ICD-parameters were estab-
lished using rodent models.2 Overall, 26 ICD-parameters were
found to positively-regulate ICD (i.e. whose ablation abrogated
ICD; or whose high expression associated with ICD; thus they

130can be putatively predicted to have ‘good prognostic’ implica-
tion) (Table 1, Fig. 1). Others were found to either negatively-
regulate ICD (i.e., Four parameters, whose ablation enhanced
ICD; or whose low/null expression associated with ICD; thus
they can be putatively predicted to have “poor prognostic”

135implication) or exert context-dependent activity (4 parameters,
for which context-dependent contradictory experimental data
exists) (Table 1, Fig. 1).1-3

These 33 ICD-parameters were largely evenly distributed
across various levels of ICD and represented various newly-

140emerging as well as classical immunological processes (Table 1,
Fig. 1). For instance, ICD is associated with instigation of dan-
ger signaling2 (here represented by ATG5, BAX, CASP8,
PDIA3, EIF2AK3, PIK3CA) that mediates emission of certain
danger signals36 (CALR, HMGB1, HSP90AA1). At this step,

145some molecules may act as danger signal-degraders, thereby
counteracting ICD (ENTPD1, NT5E).14 ICD-associated danger
signaling and other factors then go onto activate various levels
of innate immune system1,14 e.g., by positively regulating vari-
ous innate immune effectors (IL6, IFNA1, IFNB1, TNF,

150CXCR3), the ‘purinergic receptor-inflammasome-interleukin-1’
axis (P2RX7, CASP1, NLRP3, IL1B, IL1R1) and toll-like recep-
tor signaling (TLR4, MYD88, LY96). This productive ‘priming’
of the innate immune system paves way for effective activation
of various adaptive immune mechanisms1,14 e.g. T cell infiltra-

155tion (CD4, CD8A/B) and T cell effector activity (IFNG,
IFNGR1, IL17A, IL17RA and PRF1). Last but not least, ICD is
expected to negatively regulate or blunt the immunosuppres-
sive effects of various antiinflammatory innate (IL10) or adap-
tive (FOXP3) immune factors (Table 1, Fig. 1).2,3 As evident,

160many of these ICD-derived parameters are actually also part of
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Table 1. The main parameters of immunogenic cell death (ICD) characterized in human and murine experimental systems.

Molecule Human Gene
Effect on ICD-associated
anticancer immunity Experimental System

Putative Prediction (based on
experimental data) for Clinical
Survival/ prognosis if molecules

show high expression#

Molecules that can act as ICD-associated
danger signals or danger signal-
degraders

CD39 ENTPD1 Overexpression compromised ICD63 Mice Poor
CD73 NT5E Overexpression compromised ICD64 Mice Poor
CRT CALR Ablation compromised ICD17-19,65 Mice Good
HMGB1 HMGB1 Ablation compromised ICD22 Mice Good
HSP90 HSP90AA1 Inhibition compromised ICD66 Human Good
Molecules participating in ICD execution as

danger signaling components
ATG5 ATG5 Ablation compromised

Chemotherapy-induced ICD;21,27

Ablation enhanced Hyp-PDT
induced ICD;16

Mice Human Context-dependent

BAX BAX Ablation compromised
Chemotherapy-induced ICD and
partially but not completely Hyp-
PDT induced ICD17,18

Mice Context-dependent

Caspase-8 CASP8 Ablation compromised
Chemotherapy-induced ICD but
not Hyp-PDT induced ICD17,18

Mice Context-dependent

ERp57 PDIA3 Ablation compromised
Chemotherapy-induced ICD but
not Hyp-PDT induced ICD67,68

Mice Context-dependent

PERK EIF2AK3 Ablation compromised
Chemotherapy-induced ICD and
Hyp-PDT induced ICD; Considered
a “core” component;17,18,69

Mice Good

PI3K p110a PIK3CA Ablation compromised
Chemotherapy-induced ICD and
Hyp-PDT induced ICD; Considered
a ‘core’ component;17

Mice Good

Innate Immune Effectors associated with ICD
CXCR3 CXCR3 Ablation compromised ICD1 Mice Good
IFNa/b IFNA1, IFNB1 Increased amount enhanced ICD1,70 Mice Good
IL-10 IL10 Low IL10 associated with enhanced

ICD16,17,71-73
Mice/Human Poor

IL-6 IL6 High IL6 associated with enhanced
ICD16, 17,72,73

Mice/Human Good

TNF TNF High TNF associated with enhanced
ICD73

Mice/Human Good

‘Purinergic Receptor-Inflammasome-
interleukin1b axis’ associated with ICD

Caspase 1 CASP1 Ablation compromised ICD74 Mice Good
IL1 Receptor IL1R1 Ablation compromised ICD74 Mice Good
IL1b IL1B Ablation compromised ICD74 Mice Good
Nlrp3 NLRP3 Ablation compromised ICD74 Mice Good
P2X7 Receptor P2RX7 Ablation compromised ICD74 Mice Good
Toll-like Receptor Signaling associated ICD
Ly96 LY96 Ablation compromised ICD22 Mice Good
Myd88 MYD88 Ablation compromised ICD22 Mice Good
TLR4 TLR4 Ablation compromised ICD22 Mice Good
T cell infiltration pattern associated with ICD
CD4C T cells CD4C Depletion of these cells

compromised ICD1, 22,25-27,71
Mice Good

CD8C T cells CD8CA, CD8CB Depletion of these cells
compromised ICD1, 22,25-27,71,75

Mice Good

Foxp3C Treg cells FOXP3 Decreased amount associated with
enhanced ICD72,73

Mice Poor

T cell effectors associated with ICD
IFNg IFNG Ablation compromised ICD22 Mice Good
IFNg Receptor IFNGR1 Ablation compromised ICD22 Mice Good
IL-17A IL17A Ablation compromised ICD25 Mice Good
IL-17A Receptor IL17RA Ablation compromised ICD25 Mice Good
Prf1 PRF1 Ablation compromised ICD74 Mice Good

Abbreviations: CD – Cluster of differentiation; CRT – Calreticulin; ERp57 – Endoplasmic reticulum protein 57; HMGB1 – High mobility group box 1; HSP – Heat shock pro-
tein; Hyp-PDT – Hypericin-based Photodynamic Therapy; ICD – Immunogenic cell death; IFN – Interferon; IL – Interleukin; PERK – Protein kinase RNA-like endoplasmic
reticulum kinase; PI3K – Phosphoinositide 3-kinase;

PRF – Perforin; TLR – Toll-like receptor; TNF – Tumor necrosis factor;
#‘Good’ means the high expression of a given molecule can be predicted to be associated with better survival/better prognosis and ‘Poor’ means vice-versa. In case of
conflicting experimental data, the prognosis can be predicted to be context-dependent rather than conclusively good or poor.
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well-established classical immunological processes known to
have prognostic impact e.g., innate immune effectors, T cell
infiltrates and T cell effectors.9,37

Transcript levels of ICD-associated parameters exhibit a
165 highly-clustered and largely cancer type-specific

association with overall survival

Next, we evaluated whether the overall transcript-expression
levels of various ICD-associated parameters 1-3 (Table 1) associ-
ate with OS of patients in ‘discovery datasets’ of non-small cell

170 lung cancer (hereafter referred to as lung cancer; n D 1,432),38

breast cancer (n D 1,115)39 and ovarian cancer (n D 1,436)
(Table S1) (Table 1, Fig. 1).40

To this end, the patients were first stratified into two groups
on the basis of high or low expression of respective ICD-associ-

175 ated parameters (Fig. 1). The gene expression profiles of the
respective ICD-parameters, and their median-based stratifica-
tion into high or low expression, is depicted through the agency
of bee-swarm scatter-plots for each gene per cancer-type in
Figs. S1–S4. As visible, the overall gene expression profiles were

180 rather stable thereby allowing appreciable sensitivity and pro-
viding a dynamic range for stratification. Thereafter, the OS of
the two patient groups for respective ICD-parameters and

cancer-types was estimated and is represented by various
Kaplan–Meier (KM) plots in Figs. S5–S11. The KM plots data

185(Figs. S5–S11) was further summarized as a heatmap-based
clustered representation of the respective Hazard Ratios (HRs)
(Fig. 2A). As evident, the HRs patterns were very similar for
various ICD-parameters between breast and ovarian cancers
while lung cancer had a much more distinct HRs profile

190(Fig. 2A). Incidentally, certain ICD-parameters exhibited the
highest (e.g., CALR, IL6, PDIA3, HMGB1, BAX) and lowest
(IL1R1, ENTPD1, NLRP3, IFNGR1, ATG5) HRs exclusively in
lung cancer patients.

Next, we decided to perform heatmap based-clustering of
195the prognostic impacts of various ICD-parameters for respec-

tive cancer-types based on 3 profiles (Fig. 1) i.e. positive (statis-
tically significant association between high gene expression and
prolonged OS), negative (statistically significant association
between high gene expression and shorter OS) and null (statis-

200tically non-significant association between differential gene
expression and OS). These analyses revealed that the prognostic
impact of ICD-associated parameters, similar to the HRs pro-
files (Fig. 2A), exhibited a highly-clustered pattern (at statistical
thresholds of both p < 0.05 and p < 0.01), which was strongly

205cancer type-specific (Fig. 2B-C). As many as 14 different prog-
nostic clusters were formed by ICD-associated parameters

Figure 1. Schematic representation of the meta-analysis ‘pipeline’ for characterization and discovery of ICD-derived metagene signatures with prognostic relevance in
cancer patients.
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relative to their impact on OS in breast/ovarian/lung cancer
patients (Fig. 2B-C), a rather unexpected finding considering
that, on the basis of available experimental data (Table 1), ICD-

210 associated parameters were chiefly expected to cluster into
three groups (i.e., positive/negative/context-dependent) irre-
spective of cancer type-differences.

Compared to other two cancer-types, lung cancer patients pre-
sented the highest propensity for a negative prognostic impact of

215 high transcript-levels of ICD-associated parameters (at p < 0.05;
Fig. 2B). Clusters 11-to-14 consisting of 15 ICD-associated parame-
ters showed association with shorter OS when highly expressed in

lung cancer patients (Fig. 2B). In contrast, in breast/ovarian cancer,
no more than five ICD-associated parameters showed an associa-

220tion with shorter OS when highly expressed (Fig. 2B). On the flip-
side, all three cancer-types presented nearly similar number of
associations between prolonged OS and high transcript-levels of
ICD-associated parameters (at p< 0.05, Fig. 2B; 18 for ovarian, 16
for lung and 15 for breast cancer). It is noteworthy though that

225only for lung cancer, the association of respective ICD-associated
parameters withOSwas largely insensitive to stricter levels of statis-
tical significance thresholds from p < 0.05 (Fig. 2B) to p < 0.01
(Fig. 2C). In case of breast cancer and especially ovarian cancer,

Figure 2. ICD-associated parameters show a cancer type-dependent, highly-clustered prognostic impact with variable overlap between different cancer types. (A) HRs
obtained from KM Plot profiles of each ICD-associated parameter for each cancer type (see Figs. S5–S11) were pooled followed by hierarchical clustering represented
through a heatmap. The legend within the graph explains the relationship between HR values and prognostic impact of each ICD-associated parameter. Subsequently,
individual ICD-associated parameters were observed to show three types of prognostic profiles which were color coded i.e. high expression showing positive prognostic
impact (red), high expression showing negative prognostic impact (green) and differential expression showing no conclusive prognostic impact (black). These profiles
were then ‘pooled’ followed by either hierarchical clustering represented through a heatmap. Heatmaps for these respective prognostic profiles at shown for two differ-
ent statistical significance thresholds i.e., p < 0.05 (B) and p < 0.01 (C). Alternate clusters in the heatmap are demarcated through yellow-lined boxes to improve
interpretation.
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making the statistical significance threshold stricter to p < 0.01
230 (Fig. 2C), largely ablated the significant associations (observed at

p < 0.05) between ICD-parameters expressions and OS (Fig. 2B).
Thus, ICD-parameters’ ability to associate with prolonged or
shorter OS in lung cancer might be more stable (than breast/ovar-
ian cancers) with respect to statistical significance thresholds.

235 Across the three cancer-types, very few ICD-parameters (e.g.,
CASP1, CXCR3, PRF1) exhibited an association with prolonged
OS when highly expressed, in a cancer type-independent manner
(at statistical significance threshold of p< 0.05 but not at p< 0.01)
and in amanner consistent with putative predictions-based on pre-

240 clinical evidence (Fig. 2B–C; Table 1). Not a single ICD-parameter
exhibited association with shorter OS across all three cancer-types
when highly expressed (Fig. 2B–C). However, in order to allow
higher coverage across all three cancer-types, we decided to con-
tinue with the statistical significance threshold of p< 0.05.

245 Cancer type-specific and -independent, ICD-derived
consensus-metagene signatures are associated with
prolonged survival in breast, ovarian and lung cancer
patients

The above results raised an important question i.e. do the ICD-
250 derived clusters of genes with individual cancer type-specific or

independent prognostic impacts may act as a co-expressed

entity i.e., consensus-metagenes? And if so, then do they pre-
serve their positive prognostic impact when treated as a meta-
gene signature? To address this question, cancer type-specific/-

255independent ICD-derived clusters of genes were defined by con-
sidering the genes showing both association with prolonged OS
(Fig. 2B) and consistency with experimental evidence-based
putative predictions (Table 1). Thus, following ICD-derived
clusters of genes were delineated: breast-cancer specific (TNF/

260CXCR3/P2RX7/CASP1/NLRP3/ IL1B/LY96/CD4C/CD8CA/
CD8CB/PRF1/IFNG/IL17A/IL17RA); lung cancer-specific
(HSP90AA1/ EIF2AK3/PIK3CA/CASP8/ATG5/CXCR3/CASP1/
NLRP3/IL1R1/LY96/MYD88/PRF1/IFNGR1); ovarian cancer-spe-
cific (CALR/PIK3CA/TNF/IFNA/IFNB1/CXCR3/P2RX7/CASP1/

265IL1B/TLR4/CD4C/PRF1/ IFNG/IL17A/IL17RA); and cancer
type-independent (CXCR3/CASP1/PRF1). Next we determined,
through hierarchical clustering, whether the genes within these
respective clusters had the tendency to exhibit aggregate pat-
terns of co-ordinated expression. Hence, Pearson’s correlations

270were calculated between the expression levels of all the clusters
of genes in the respective cancer-types. As evident in Fig. 3A-F,
all the genes in the respective clusters exhibited, largely, the ten-
dencies to positively correlate with various other’s expression
levels and thus act as metagene signatures. Genes within the

275cancer type-independent metagene exhibited very similar co-
expression patterns across breast (Fig. 3A), lung (Fig. 3B) and

Figure 3. ICD-derived ‘clusters-of-genes’ with individual positive prognostic impacts largely behave like co-expressed metagene entities. Generation of gene co-expres-
sion profiles for establishing metagene profiles was accomplished by correlating the expression profiles of individual genes for respective cancer types with other genes
as applicable and Pearson’s correlation coefficient (r) was used for indicating tendency to co-express. Presented here are correlation/co-expression profiles for cancer
type-independent metagene in breast (A), lung (B) and ovarian (C) cancer patients. Also presented are profiles for breast cancer-specific metagene in breast cancer
patients (D), lung cancer-specific metagene in lung cancer patients (E) and ovarian cancer-specific metagene in ovarian cancer patients (F). The color code is represented
as legend.
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ovarian (Fig. 3C) cancers. Genes within breast cancer-specific
(Fig. 3D) and ovarian cancer-specific (Fig. 3F) metagenes
showed very high positive correlations/co-expression patterns

280 (and relatively lower negative correlations), thereby indicating
that in these two cancer-types, the immune or inflammatory
reactions might operate in a much more unified manner.41 On
the other hand, the genes within lung cancer type-specific meta-
gene (Fig. 3E), while showing considerable positive co-expres-

285 sion patterns also showed a certain degree of negative
correlations (higher than breast/ovarian cancers) for very spe-
cific genes thereby further exposing the heterogeneity of inflam-
matory/immune reactions in this cancer-type. Overall, these
analyses revealed the presence of various cancer type-specific

290 and independent ICD-derived consensus-metagene signatures
with considerable tendency to show co-expression.

Subsequent to the above metagene characterizations, we
decided to estimate the prognostic impact of these individual
metagene signatures across the ‘discovery’ datasets of all three

295 cancer-types. High expression of breast cancer-specific ICD-
derived metagene signature associated with prolonged OS in
breast (Fig. 4A) and ovarian cancer patients (Fig. 4C), without
having any significant prognostic impact in lung cancer
(Fig. 4B). High expression of lung cancer-specific ICD-derived

300 metagene signature associated with prolonged OS only in lung
cancer patients (Fig. 4E) but not in breast (Fig. 4D) or ovarian
(Fig. 4F), cancer patients. Furthermore, high expression of
ovarian cancer-specific ICD-derived metagene signature associ-
ated with prolonged OS in ovarian cancer patients (Fig. 4I) and

305 to a certain extent with prolonged OS in breast cancer patients
(close but not significant; Fig. 4G). Remarkably, the cancer
type-independent ICD-derived metagene signature showed a
highly reliable association with prolonged OS when highly
expressed in breast (Fig. 4J), lung (Fig. 4K) and ovarian

310 (Fig. 4L) cancer patients.
Based on above trends, in histological terms, it is worth con-

sidering that, breast cancer and ovarian cancers are mostly of
adenocarcinoma (ADC) histological-type39,40,42 whereas lung
cancer can be relatively more strongly subdivided into ADC

315 and squamous cell carcinoma (SCC) across patients.38,42 Thus,
we analyzed whether the respective metagene signatures show
association with prolonged OS in both patients with lung-ADC
or lung-SCC. As apparent in Fig. 5, the stratification of patients
based on histological sub-type of lung cancer did not largely

320 affect the association between prolonged OS and higher expres-
sion of cancer type-independent/lung cancer-specific ICD-
derived metagene signatures. This means that at least in this
set-up, histological sub-type is not a very strong regulator of
prognostic impact of ICD-derived metagene signatures.

325 Lastly, we also validated/cross-confirmed the prognostic
impact of above ICD-derived metagene signatures in indepen-
dent ‘validation’ datasets of all three cancer-types (Table S2).
Our analysis showed that, the cancer type-independent ICD-
derived metagene signature, when highly expressed, signifi-

330 cantly associated with prolonged relapse-free survival (RFS) in
breast (Fig. 6A) and prolonged OS in ovarian (Fig. 6C) cancer
patients. Similarly, an association between high expression of
this metagene signature and prolonged OS, was also visible in
lung cancer patients (Fig. 6B) (as evident from the HR D 0.81,

335 95% CI D 0.65–1.00 and higher median survival of high

expression ‘cohort’ over low expression cohort i.e. 2,444 vs.
1,662 d) and was nearly significant (p D 0.053). Of note, a
dataset with RFS was used for breast cancer since datasets with
OS data for >250 breast cancer patients independent of those

340used as ‘discovery dataset’ were not publicly available. Further-
more, high expression of breast cancer-specific, lung cancer-
specific and ovarian cancer-specific ICD-derived metagene sig-
natures considerably associated with prolonged RFS or OS in
breast cancer patients (Fig. 6D), lung cancer patients (Fig. 6E)

345(as evident from the HR D 0.71, 95% CI D 0.50–1.00 and
higher median survival of high expression ‘cohort’ over low
expression ‘cohort’ i.e., 2,444 vs. 1,486 d) and ovarian cancer
patients (Fig. 6F), respectively.

In conclusion, ICD is a promising source of cancer type-inde-
350pendent and —specific consensus-metagene signatures with high

positive prognostic impact.

ICD-derived consensus-metagenes act as ‘attractors’ for
highly co-expressed convergent-metagenes that are
completely cancer type-specific in composition

355Having established the presence of consensus-metagenes deriv-
able from ICD, we wondered whether these can act as
attractor-metagenes for novel sets of strongly correlating (ICD
non-related) genes11 with promising prognostic impact.11 In
order to address this probability, we first analyzed the sets of

360genes showing highly correlated expression with the genes
composing the cancer type-independent ICD-derived metagene
(i.e. CXCR3, PRF1, CASP1) across all three cancer-types
(Fig. 1). Interestingly, hierarchical clustering showed that
CXCR3-PRF1-CASP1 collectively show highly correlated

365expression with CD53, APOBEC3G (apolipoprotein B mRNA
editing enzyme), CCR5 (chemokine C-C motif receptor 5),
LCP2 (lymphocyte cytosolic protein 2) in breast cancer patients
(Fig. 7A), PSTPIP1 (proline-serine-threonine phosphatase
interacting protein 1), CD2, CD247, SAMD3 (sterile alpha motif

370domain containing 3), PTPN7 (protein tyrosine phosphatase,
non-receptor type 7), CCR5, ARHGAP9 (Rho GTPase activat-
ing protein 9), IL12RB1 (interleukin 12 receptor, beta 1) in
lung cancer (Fig. 7B) and IL2RB (interleukin 2 receptor, beta),
IL2RG (interleukin 2 receptor, gamma), CD2, GZMA (gran-

375zyme A), CCL5 (chemokine C-C motif ligand 5) in ovarian can-
cer (Fig. 7C). This additional and novel approach further
reaffirms the observations above that for each cancer type,
immunological signatures can be rather neatly differentiated
between a broad cancer type-independent and a precise cancer

380type-specific clusters of genes.
The presence of these interesting sets of ICD non-related

‘convergent’ genes made us curious about their functional sig-
nificance. To this end, we did a Gene Ontology (GO) Biological
Process enumeration analysis for molecular networks for each

385of the ‘convergent’ sets of genes or metagenes. Interestingly,
each convergent-metagene associated with different GO Bio-
logical Processes, in a cancer type-dependent fashion. For
instance, in case of breast cancer, the convergent-metagene
enumerated processes that were reminiscent of broad immuno-

390logical/inflammatory reactions (Fig. 7D). On the other hand,
other convergent-metagenes enumerated more specific pro-
cesses such that lung cancer-specific convergent-metagene was
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associated with very specific T cell activation/motility-related
processes (Fig. 7E) while the one specific for ovarian cancer

395 was associated with IL-2 lymphocytic signaling (Fig. 7F).

We extended similar analysis to cancer type-specific consen-
sus-metagenes and observed in general that they were relatively
weaker than cancer type-independent consensus-metagene in

Figure 4. Cancer type-specific and -independent, ICD-derived metagene signatures show highly robust prognostic impact in ‘discovery’ datasets. KM plots of OS probabil-
ity (plotted on Y-axis) of breast cancer patients (A, D, G, J), lung cancer patients (B, E, H, K) and ovarian cancer patients (C, F, I, L) are shown. The respective patients have
been stratified into high (red lines) or low (black lines) expression-based ‘risk-groups’ by considering the mean of median transcript-expressions of TNF, CXCR3, P2RX7,
CASP1, NLRP3, IL1B, LY96, CD4C, CD8CA/B, PRF1, IFNG, IL17A and IL17RA (i.e. breast cancer-specific ICD-derived metagene signature; A-C); HSP90AA1, EIF2AK3, PIK3CA,
CASP8, ATG5, CXCR3, CASP1, NLRP3, IL1R1, LY96, MYD88, PRF1 and IFNGR1 (i.e., lung cancer-specific ICD-derived metagene signature; D-F); CALR, PIK3CA, TNF, IFNA1, IFNB1,
CXCR3, P2RX7, CASP1, IL1B, TLR4, CD4, PRF1, IFNG, IL17A and IL17RA (i.e. ovarian cancer-specific ICD-derived metagene signature; G-I); and CXCR3, CASP1 and PRF1 (i.e.,
pan-cancer ICD-derived metagene signature; J-L). The patient follow-up duration is indicated in terms of months on the X-axis. Respective Log-rank test p-values and HR
(with its 95% confidence interval in parenthesis) are displayed. Statistical significance (i.e. p < 0.05) is indicated through an asterisk (�). The numbers of patients at each
point of follow-up are indicated below the respective KM plots.
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‘attracting’ highly co-expressed genes with 100% coverage (across
400 all genes in the metagene). In fact, with a coverage cut-off of 65%,

convergent-metagenes could only be derived for breast and ovar-
ian cancer-specific consensus-metagenes (Fig. 7G-J). Neverthe-
less, breast cancer-specific consensus-metagene ‘attracted’
LILRB1 (leukocyte immunoglobulin-like receptor, subfamily B),

405 LCP2 (lymphocyte cytosolic protein 2), SLAMF8 (SLAM family
member 8) (Fig. 7G); which again together enumerated broad
GO Biological Processes related to immunological/inflammatory
reactions (Fig. 7H). Similarly, ovarian cancer-specific consensus-
metagene attracted FERMT3 (fermitin family member 3),

410 TAGAP (T-cell activation RhoGTPase activating protein), NCF1
(neutrophil cytosolic factor 1), PTPRC (protein tyrosine phospha-
tase, receptor type, C) (Fig. 7I); which together enumerated for
GO Biological Processes related to immune cell differentiation/
morphogenesis (Fig. 7J).

415 The observation that ICD-derived consensus-metagenes
could act as ‘attractors’ for immunologically impactful conver-
gent-metagenes, prompted us to see whether like their

attractor-metagene counterparts, the respective convergent-
metagenes could also be associated with positive patient

420prognosis. To address this question, we decided to test the
prognostic impact of the respective convergent-metagenes
derived above, in our ‘discovery’ and ‘validation’ datasets
(Fig. 1). Interestingly, high expression of respective cancer
type-specific convergent-metagenes derived either from cancer

425type-independent or -specific attractor-metagene, strongly
associated with prolonged OS in breast (Fig. 8A, D), and ovar-
ian (Fig. 8C, E) cancer patients. For lung cancer, the high levels
of convergent-metagene derived from cancer type-independent
attractor metagene also associated with prolonged OS (Fig. 8B,

430G). We further successfully validated these results in ‘valida-
tion’ datasets both for cancer type-independent attractor-meta-
gene associated convergent-metagenes [for breast (Fig. 8F),
lung (Fig. 8G) and ovarian (Fig. 8H) cancer patients] as well as
to a larger extent for cancer type-specific attractor-metagene

435associated convergent-metagenes [for breast (Fig. 8I) and ovar-
ian (Fig. 8J) cancer patients].

Figure 5. Lung cancer-specific and cancer type-independent, ICD-derived metagene signatures show robust prognostic impact in both Adenocarcinoma and SCC ‘histo-
types’ of Lung Cancer. KM plots of OS probability (plotted on Y-axis) of patients having lung adenocarcinoma (A, C) or lung SCC (B, D) are shown. The respective patients
have been stratified into high (red lines) or low (black lines) expression-based ‘risk-groups’ by considering the mean of median transcript-expressions of cancer type-inde-
pendent ICD-derived metagene signature for lung adenocarcinoma (A) or SCC (B) and lung cancer-specific ICD-derived metagene signature for lung adenocarcinoma (C)
or SCC (D). The patient follow-up duration is indicated in terms of months on the X-axis. Respective Log-rank test p-values and HR (with its 95% confidence interval in
parenthesis) are displayed. Statistical significance (i.e., p < 0.05) is indicated through an asterisk (�). The numbers of patients at each point of follow-up are indicated
below the respective KM plots.
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In conclusion, ICD-derived consensus-metagenes are capa-
ble of acting as attractor-metagenes for completely cancer
type-specific convergent-metagenes with largely stable positive

440 prognostic impact.

Discussion

The present study confirms that experimentally well-estab-
lished process of ICD can serve as a platform for characteriza-
tion of novel prognostic metagenes-based biomarkers (based

445 on mRNA expression of largely immunologically-relevant
genes). We believe that this study represents a comprehensive

retrospective meta-analysis assessing the ability of ICD-associ-
ated parameters to act as prognostic biomarkers. Although ICD
had coverage large enough to allow discovery of both cancer

450type-specific/-independent biomarker metagenes (at p < 0.05)
yet not all individual ICD-parameters showed prognostic
impact that was consistent with their experimental positioning.
This shows that in a bottom-up approach of biomarker analysis
based on a broad biological process, there is higher probability

455of uncovering specific metagenes as prognostic biomarkers
rather than all the genes associated with that process.43 This
point is further validated by the observation that previously
published studies, utilizing largely the same publicly available

Figure 6. Cancer type-specific and -independent, ICD-derived metagene signatures show highly robust prognostic impact in ‘validation’ dataset. KM plots of OS probabil-
ity (plotted on Y-axis) of breast cancer patients (A, D), lung cancer patients (B, E) and ovarian cancer patients (C, F) are shown. The respective patients have been stratified
into high (red lines) or low (black lines) expression-based ‘risk-groups’ by considering the mean of median transcript-expressions of cancer type-independent ICD-derived
metagene signature (CXCR3, CASP1 and PRF1) for breast cancer (A), lung cancer (B) and ovarian cancer (C); breast cancer-specific ICD-derived metagene signature (TNF,
CXCR3, P2RX7, CASP1, NLRP3, IL1B, LY96, CD4C, CD8CA/B, PRF1, IFNG, IL17A and IL17RA) in breast cancer (D); lung cancer-specific ICD-derived metagene signature
(HSP90AA1, EIF2AK3, PIK3CA, CASP8, ATG5, CXCR3, CASP1, NLRP3, IL1R1, LY96, MYD88, PRF1 and IFNGR1) in lung cancer (E); and ovarian cancer-specific ICD-derived meta-
gene signature (CALR, PIK3CA, TNF, IFNA2, IFNB1, CXCR3, P2RX7, CASP1, IL1B, TLR4, CD4, PRF1, IFNG, IL17A and IL17RA) in ovarian cancer (F). The patient follow-up duration
is indicated in terms of days on the X-axis. Respective Log-rank test p-values and HR (with its 95% confidence interval in parenthesis) are displayed. Statistical significance
(i.e. p < 0.05) is indicated through an asterisk (�).
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Figure 7. ICD-derived consensus-metagenes act as attractor-metagenes for highly co-expressed convergent-metagenes that exhibit strong cancer type-specific composi-
tional profile. Convergent-metagene profiles were characterized by identifying the genes that were most highly correlating/co-expressing with genes composing the
respective ICD-derived consensus-metagenes. Subsequently, Protein-protein networks and GO Biological Process enumeration were derived through the STRING data-
base. Only the top three GO Biological Processes are shown (p-value <0.05). Presented here are correlation/co-expression profiles for cancer type-independent consen-
sus/attractor-metagene in breast (A), lung (B) and ovarian (C) cancer patients; and respective protein-protein networks and GO Biological Process enumerations in breast
(D), lung (E) and ovarian (F) cancer patients. Also presented are respective co-expression/network/GO Biological Process profiles for breast cancer-specific consensus/
attractor-metagene in breast cancer patients (G-H) and ovarian cancer-specific consensus/attractor-metagene in breast cancer patients (I-J).
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datasets as we utilized, for a top-down approach of biomarker
460 discovery, were able to delineate very few immune-pathway

related genes with prognostic impact (namely CD24 for lung
cancer and IFNG for ovarian cancer).38-40

Moreover, this is the first study delineating ICD-parameters
based attractor- and convergent-metagenes. Overall, while both

465 ICD-derived cancer type-specific as well as -independent

consensus-metagenes were associated with significantly pro-
longed survival of cancer patients when highly expressed; yet it
was the cancer type-independent consensus-metagene that had
the best ability to act as attractor-metagene for stable convergent-

470metagenes with absolute coverage. However, very interestingly,
the resultant convergent-metagenes were found to be largely can-
cer type-specific. This clearly shows that every cancer type might

Figure 8. ICD-derived convergent-metagene signatures show highly robust prognostic impact in ‘discovery’ and ‘validation’ datasets. KM plots of OS probability (plotted
on Y-axis) of breast cancer patients (A, D, F, I), lung cancer patients (B, G) and ovarian cancer patients (C, E, H, J) are shown. The respective patients have been stratified
into high (red lines) or low (black lines) expression-based ‘risk-groups’ by considering the mean of median transcript-expressions of CCR5, CD53, LCP2 and APOBEC3G (A,
F); PSTPIP1, CD2, CD247, SAMD3, PTPN7, CCR5, ARHGAP9, IL12RB1 and APOBEC3G (B, G); IL2RB, IL2RG, CD2, GZMA and CCL5 (C, H); LILRB1, LCP2 and SLAMF8 (D, I); and
FERMT3, TAGAP, NCF1 and PTPRC (E, J); The patient follow-up duration is indicated in terms of months or days (as applicable) on the X-axis. Respective Log-rank test p-val-
ues and HR (with its 95% confidence interval in parenthesis) are displayed. Statistical significance (i.e., p < 0.05) is indicated through an asterisk (�).
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have a highly ‘bifurcated’ immunotranscriptome profile that is
partly unique to that cancer and partly overlapping with a ‘ pan-

475 cancer’ immunoprofile — a conjecture that makes sense in light
of the high intra-tumor heterogeneity.41,44

Despite these bifurcations and heterogeneity, there was a
distinct presence of fingerprints of T cell activity/infiltration/
effector functions within respective metagenes derived from

480 ICD e.g. the presence of PRF1, CD8CA, CD8CB, IL17RA,
CD4C, IL17A, IFNGR1 or IFNG across various consensus or
attractor-metagenes and the presence of CD247, CD2, PTPN7,
PSTPIP1, IL2RG, GZMA, IL2RB across various convergent-
metagenes. This reaffirms the standing notion in the field of

485 immune-prognostics that T cell activity/function-related bio-
markers have a great probability of having a ‘pan-cancer’ posi-
tive prognostic impact in cancer patients.5,6,37,41 However, what
was peculiar was, that it was not always the same aspect of T
cell activity/function that had a prognostic impact across all

490 cancer types. For instance, T cell infiltration (CD8CB, CD8CA,
CD4C) and Th17 polarization (IL17A, IL17RA) markers associ-
ated with prolonged survival in breast cancer patients; on the
other hand, T cell motility (CD2, PSTPIP1) and T-cell receptor
(TCR)-associated signaling (IFNGR1, CD247, PTPN7) based

495 markers showed positive prognostic impact in lung cancer
patients while Th1/Th17 polarization (CD4C, IFNG, IL17A,
IL17RA), T cell-based cytotoxicity (PRF1, GZMA) and T cell
proliferation (IL2RG, IL2RB) related biomarkers showed posi-
tive prognostic impact in ovarian cancer patients. This clearly

500 shows that, at least on the mRNA-level, detecting only bio-
markers of T cell infiltration may not be enough and other
markers related to T cell polarization, motility, cytotoxicity and
proliferation might need to be integrated in a cancer type-
dependent fashion — a point partly reflected upon in the

505 recently delineated tumor-associated/infiltrating immune cell-
specific metagenes.45 Nevertheless, it is interesting that despite
starting with a broad immunological process like ICD for bio-
marker discovery, the end result was largely dominated by the
classical T cell activity/function-related markers.

510 Importantly, this study also brings forth some conflicting/
paradoxical observations on the prognostic impact of ICD-
associated danger signals (e.g., higher levels of danger signal-
degraders like CD39/CD73 associating with positive patients
prognosis rather than negative as suggested by experimental

515 models: discussed in Box S1) or prognostic consistency across
immuno-receptor and respective ligands/receptors’ associated
signaling module(s) (e.g. IL1B and IL1R1 or IFNG and IFNGR1
showing contrasting prognostic impacts in the same datasets
despite being bona fide ligand-receptor pairs; discussed in Box

520 S2). Furthermore, we also observed the contradictory scenario
where putative immunostimulatory factors (e.g., IFNG in lung
cancer) are associated with negative prognosis while putative
immunosuppressive factors (e.g. FOXP3/IL10 in ovarian can-
cer) associate with positive prognosis (discussed in Box S3).

525 Our study, despite being very comprehensive on the level of ret-
rospective meta-analysis of transcript-expression, has certain limi-
tations. The meta-analysis was performed on publicly available
datasets that have not explicitly taken into consideration tumor
heterogeneity. While the number of cancer patients included in

530 this study (>1,000 per cancer-type) may partly compensate for
patient-to-patient tumor heterogeneity yet emerging evidence

suggests that immunological tumor heterogeneity (e.g., tumor core
vs. invasivemargins) needs to be taken into consideration for prog-
nostic analysis.6 In this sense, it would be also important to differ-

535entiate between expression profiles of cancer cells versus immune
cells — a point that could not be achieved in the current study.
Even more importantly, differential expression of certain immune-
genes may not be representative of their signaling context. For
instance, various epigenetic, post-transcriptional or post-transla-

540tional modifications play an important role in governing the
immunological signaling outcome.46 Moreover, differential gene
expression-levels may not always reflect the differential enzymatic-
activity, mutational status or compartmentalization (e.g. surface-
exposure/secretion).3,14 Similarly, differential gene expression anal-

545ysis cannot give a comprehensive idea of signaling ‘fluxes’ (e.g.,
autophagy/ER stress). Thus, in near future, it is necessary to
account for the prognostic impact of actual signaling context of a
given molecule possibly by analyzing in the patient tumor biopsy
samples, the concerned molecule’s post-translationally modified/

550processed/mutated form or its delocalized activities.47 These con-
cerns can be addressed by carrying out well-strategized/well-super-
vised analysis in immunohistochemistry-based tissue microarray/
proteomics settings, by using the cancer type-specific/-independent
ICD-derived metagene signatures characterized in the current

555study. If validated successfully, the ICD-derived metagene signa-
tures can be used to produce assays (e.g. qRT-PCR) crucial for
patient risk assessment during clinical decision making as done in
the case of other multigene classifiers e.g., Oncotype Dx (21-gene
assay)/Mammaprint (70-gene assay).48

560In reality, the currently delineated ICD-derived attractor/
convergent-metagene signatures have to still clear a number of
practical hurdles before they can be regarded as clinically-appli-
cable bona fide prognostic biomarkers.43 Most importantly,
these signatures have to be rigorously validated in a prospective

565clinical trial.43 It is also very important to consider that the
metagene signatures derived in this study may not be used in a
standalone manner. It would be greatly desirable to strengthen
such emerging signatures by combining them with other tradi-
tional clinico-pathological parameters7 thereby paving way for

570development of integrative models; which will increase our
understanding of the complex cancer type-specific genotype-
phenotype interplays.7

Nevertheless, our observations show that ICD can be useful as
a platform for discovery of novel prognostic attractor- and con-

575vergent-metagenes. Moreover, the observations that immunolog-
ical prognostic biomarkers may also largely function as predictive
biomarkers37 gives a future precedence to test whether the ICD-
derived attractor- and convergent-metagenes characterized in
this study could also be predictive of positive patient responses to

580clinically-applied ICD-inducing therapies. Besides, considering
that ICD is currently an evolving concept, there is an interesting
possibility that in future discovery of newmolecular/immunolog-
ical ICD determinants can open up opportunities for discovery of
new prognostic/predictive biomarkers. In near future, as more

585large-scale data for other cancer-types beyond breast/lung/ovar-
ian cancer becomes available, it would be crucial to characterize
both other cancer type-specific ICD-derived metagene signatures
as well as validate whether the cancer type-independent ICD-
derived metagene signatures characterized here are applicable for

590other cancer-types.
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Methods

Meta-analysis ‘Pipeline’ description

The current study consisted of a multistep sequential ‘pipeline’
(Fig. 1): (1) Extensive literature-search analysis to objectively

595 delineate the most important ICD-associated parameters to be
used for prognosis-estimation analysis (Table 1); (2) Analysis
concerning the individual impacts of differential transcript-
expression levels of various ICD-associated parameters on OS of
breast, lung and ovarian cancer patients, in large ‘discovery data-

600 sets’ (Table S1); (3) Heatmap-based hierarchical clustering to
delineate possible cancer type-specific and -independent ICD-
derived consensus metagene signatures; (4) Estimation of the
prognostic impact of high expression of these ICD-derived con-
sensus metagene signatures on OS of respective patients in ‘dis-

605 covery datasets’ (Table S1); (5) Cross-confirmation of the
prognostic impact of these ICD-derived metagene signatures on
OS/ RFS of respective patients in ‘validation datasets’ (Table S2);
(6) In parallel, subsequent to step 3, testing the ability of ICD-
derived consensus metagenes to act as attractor-metagenes for

610 highly co-expressed convergent-metagenes; and (7) Estimating
the prognostic impact of newly characterized convergent-meta-
genes in respective ‘discovery’ and ‘validation’ datasets (Fig. 1).

In silico prognostic biomarker assessment in ‘discovery
and validation datasets’

615 The data used in this manuscript originated from various pub-
licly accessible databases like The Cancer Genome Atlas
(TCGA)49 or Gene Expression Omnibus (GEO).50 The respec-
tive (Affymetrix) microarray gene expression data and clinical
survival information from TCGA/caArray/GEO databases were

620 analyzed through the KMPlotter platform38,40,51 for breast can-
cer (n D 1115, derived from the following datasets: GSE1456,
GSE16446, GSE20271, GSE20685, GSE20711, GSE3494 and
GSE7390), ovarian cancer (n D 1436, derived from the follow-
ing datasets: GSE14764, GSE15622, GSE18520, GSE19829,

625 GSE23554, GSE26712, GSE30161, GSE3149, GSE9891, TCGA)
and non-small cell lung cancer (n D 1432, derived from the fol-
lowing datasetdatasets: caArray, GSE14814, GSE19188,
GSE29013, GSE31210, GSE3141, GSE37745, GSE4573, TCGA).
These large datasets were considered as ‘discovery datasets’.

630 The available clinicopathological characteristics of the patients
in these respective ‘discovery’ cohorts are described in
Table S1. In case of prognostic analysis for individual tran-
script/genes, the respective patients were stratified into two
risk-groups i.e., patient group showing high gene expression

635 and patient group showing low gene expression by considering
the median expression over the entire dataset (additionally, all
percentiles between lower and upper quartile were computed
and best performing threshold was used as final cut-off in a
univariate Cox regression analysis). For each gene, the optimal

640 probe set was utilized by scoring through the Jetset method
that filters probe sets for specificity, coverage and degradation
resistance.52 Biased arrays were excluded. The effect of differen-
tial gene expression was estimated on the OS of the patients by
using KM method. Hazard ratio (and its 95% confidence inter-

645 vals) and logrank P values were calculated (P values less than
0.05 were considered to be statistically significant). Patients

surviving over the follow-up threshold were censored. In case
of metagene signatures mean of combined expression of respec-
tive gene-probe sets were utilized. Of note, the KMPlotter

650avoids batch effects through a double normalization of micro-
array chip-derived data i.e. first a MAS5 algorithm-based nor-
malization on individual-chip level and a second scaling
normalization to set the average expression on each chip to
1,000.39 For the ‘validation dataset’ analysis, the cohorts con-

655sisting of >250 patients each for breast cancer (n D 285;
GSE2034),53 non-small cell lung cancer (n D 274;
GSE41271)54,55 and ovarian cancer (n D 259; GSE32062)56

were analyzed as described above, using the PROGgeneV2 plat-
form.57 The available clinicopathological characteristics of the

660patients in these respective ‘validation’ cohorts are described in
Table S2. Of note, all of the datasets used in this study were
based on mRNA isolated from frozen tumor tissue/biopsy
material or to a lesser extent, formalin-fixed paraffin-embedded
samples.

665Heatmap-based hierarchal clustering and metagene
analysis

For generating gene co-expression profiles formetagene signatures,
the expression profiles of individual genes for respective cancer
types were correlated with other genes as applicable and Pearson’s

670correlation coefficient (r) was used for indicating tendency to co-
express. On the level of prognostic analysis-related clustering, three
types of prognostic impacts for each gene were ‘color-coded’
through arbitrary relative integer values i.e., high expression show-
ing statistically significant positive prognostic impact was red (C1),

675high expression showing statistically significant negative prognostic
impact was green (¡1) and differential expression showing no sta-
tistically significant prognostic impact was black (0). For character-
ization of convergent-metagene profiles, highly correlating/
co-expressing genes were delineated on the basis of genome-wide

680Pearson’s correlation coefficient analysis derived from cBioPortal58

for respective cancer-types. Two stiff cut-off thresholds were set to
delineate co-expressing genes — (1) an overall coverage cut-off of
at least 65% of the genes in an attractor-metagene and (2) an overall
Pearson’s correlation coefficient cut-off of 0.6 for at least 40% of the

685genes within the attractor-metagene. Hierarchical clustering of
these respective prognostic impacts, respective HRs and Pearson
correlation-based gene co-expression profiles was implemented as
described elsewhere59 through Cluster 3.060 and visualized as a
heatmap through TreeView61 with Euclidean Distance as the simi-

690larity metric and a centroid linkage clustering criteria. Last but not
least, for GO Biological Process enumeration, the network of
respective genes were created using the STRING database62 (confi-
dence view protein-protein networks) and the top 3 GO Biological
Processes were enumerated with a p-value cut-off of 0.05.
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