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Abstract Thinning of pome and stone fruit involves the reduction of tree crop load in order to 14 

regulate fruit set and quality. As it is typically carried out through manual labor, thinning comprises a 15 

large part of a grower’s production costs. Mechanized thinning has been shown to be a cost-effective 16 

alternative but the performance of existing thinning devices needs to be further improved by taking 17 

the variation in bearing capacity of the individual trees into account. 18 

In this work, a multispectral camera system is developed to detect the floral buds of pear (cv. 19 

Conference) during the growth stages prior to bloom.  During a two-year field trial, the multispectral 20 

system was used to measure orchard scenes in six distinct optical wavebands under controlled 21 

illumination. These wavebands are situated in the visible and near infrared region of the spectrum 22 

and were selected based on hyperspectral laboratory measurements described in previous work.  23 

The recorded multispectral images were converted to a database containing the spatial-spectral 24 

signatures of the objects present in the orchard. Subsequently, canonical correlation analysis was 25 

applied to create a spectral discriminant model that detects pixels originating from floral buds. This 26 



model was then applied to the recorded data after which an image analysis algorithm was designed 27 

and optimized to predict the number of floral buds. In total, approximately 87% of the visible floral 28 

buds were detected correctly with a low false discovery rate (<16 %). Therefore, it is expected that 29 

the multispectral sensor can be used to improve the efficiency of existing thinning devices. 30 

Additionally, it could as well be used as a stand-alone sensor for early-season yield estimation. 31 
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1. Introduction 34 

 35 

Horticulture involves many tedious and labor-intensive tasks which require the employment of 36 

expensive, trained personnel. As it is becoming increasingly difficult for growers to hire a sufficiently 37 

large work force (Maas and van der Steeg, 2011), an increasing amount of research is targeted to 38 

automate or augment the operation of cultivation techniques. Many of these horticultural practices 39 

require some form of feedback to either assess the state of the canopy (e.g. disease detection) or 40 

determine the location of certain objects (e.g. harvesting). As humans typically rely on their sight to 41 

perform these tasks, robotic systems are often equipped with a vision system to match or even 42 

improve on the performance of their human counterparts. In this work, we focus on the 43 

development of a vision system in the context of automated thinning in fruit orchards. 44 

As fruit trees have a natural tendency to produce heavy crop loads, the sugars produced in the leaves 45 

(sources) need to be distributed over too many fruits (sinks). This often results in the production of 46 

many small fruits which are not suited for fresh market sale. Thinning decreases the competition for 47 

photosynthetic products by removing the excess buds, flowers or fruitlets. This not only allows the 48 

remaining fruits to reach commercially interesting sizes, but also increases fruit quality, tree vigor 49 

and yield regularity (Lopez, 2011; Theron, 2010 and Meland, 2009). Research has shown that early 50 

thinning – at or even prior to bloom – leads to stronger positive effects than the traditional late 51 

season thinning, because it minimizes the investment of the trees in fruits which will not be 52 



harvested (Theron, 2010; Meland, 2009; Link, 2000; Bertschinger et al., 1998). Together with pruning 53 

and harvesting, thinning is one of the most labor-intensive – and thus expensive – cultivation 54 

measures as these are still typically performed by hand. Consequently, a strong demand exists 55 

among growers for alternative thinning methods. 56 

Over the years, the potential of chemical thinning has been extensively studied. Though it can be 57 

considered a practical and cost-effective method, it cannot completely and reliably replace hand 58 

thinning (Miller and Tworkoski, 2010). Generally speaking, chemical thinning suffers from two main 59 

drawbacks. Firstly, the efficacy of the currently available thinning agents is strongly related to cultivar 60 

and environmental conditions (Kviklys and Robinson 2010; Peck and Merwin 2009). Secondly, 61 

chemical thinning often has detrimental effects on the environment, tree vigor and human health 62 

(e.g. laborers). It is for this reason that many chemical thinning agents have been withdrawn from 63 

the market (Hong, 2010). However, even under perfect conditions, growers still have to await the 64 

actual response of the trees as chemical thinning offers no direct feedback. 65 

Mechanical thinning machines developed in recent years have demonstrated that automated 66 

thinning can be a viable alternative for the traditional methods and can yield economic savings. 67 

String thinners realize apple and peach blossom thinning by means of fast rotating flexible strings 68 

(Hehnen et al., 2012; Martin-Gorriz et al., 2012; Martin-Gorriz et al., 2011; Baugher et al., 2010). 69 

Spiked drum-shakers were used for peach fruitlet thinning by using rotating drums to transfer 70 

shaking energy to the canopy branches (Miller et al., 2011; Schupp et al., 2008). Wouters et al. (2014) 71 

removed floral pear buds by pulses of compressed air. Finally, Yang (2012) and Nielsen et al. (2012) 72 

developed a prototype robotic manipulator and clamplike end effector for brushing off peach 73 

blossoms. Other techniques such as trunk shaking (Gloser and Hasey, 2006) or limb shaking (Martin-74 

Gorriz et al., 2010; Rosa et al., 2008) have been investigated as well, but were found less effective. 75 

Although positive results were realized by these automated techniques, their thinning speed and 76 

efficiency need to be further improved by taking into account the tree-to-tree variability. As the floral 77 

bud distribution is non-uniform throughout an orchard, certain trees – or regions on a tree – will 78 



benefit from less or more severe thinning. Since most of the existing techniques often cause injuries 79 

to shoots, leaves and bark, thinning in a way tailored to the needs of each individual tree would 80 

prevent unnecessary tree damage. This maintains tree vigor and reduces the risk of disease spread 81 

(Kon et al., 2013; Ngugi and Schupp, 2009; Schupp et al., 2008; Bertschinger et al., 1998). 82 

Furthermore, it would allow to prevent overthinning of high-value crops. 83 

In recent years, several researchers have investigated vision systems to detect and quantify fruit 84 

blossoms with the goal to provide this information as feedback to a thinning machine. Gebbers et al. 85 

(2013) introduced a shock absorbing stereo camera platform to map the flower density on apple 86 

trees. They used this information to control the rotation speed of a string thinner and thereby the 87 

thinning intensity. Nielsen et al. (2012) achieved good peach blossom detection by means of a 88 

trinocular stereo color camera. They were able to locate the three dimensional (3D) position of the 89 

blossoms with a spatial accuracy of less than 1 cm. Emery et al. (2010) developed a scanning laser 90 

range imaging system to measure the 3D shape of peach trees with a spatial accuracy of 1.2 cm. 91 

These detection techniques all rely on the sharp color contrast between the blossoms and their 92 

environment as quantified using standard RGB cameras. However, this approach is not suitable for 93 

detecting floral buds prior to bloom as the brightly colored petal leaves are still contained within the 94 

buds. To our knowledge, no attempt has been made to develop a sensor to detect floral buds prior to 95 

bloom.  96 

Previous work has shown that multispectral imaging can be successfully applied for object 97 

recognition in many agricultural applications (e.g. Bas et. al., 2013; Bulanon et al., 2010; Okamoto 98 

and Lee, 2009; Wallays et al., 2009). This technique produces images with a higher contrast between 99 

objects of interest by combining more and narrower wavebands than the red, green or blue regions 100 

of the spectrum.  101 

In previous work (Wouters et al., 2013), we determined the optimal wavebands for building a 102 

multispectral vision system which is able to detect floral pear buds in the phenological stages before 103 

bloom (Pyrus communis cv. Conference). Using these wavebands, a discrimination model was built 104 



that already showed good pixel classification under laboratory conditions (i.e. 95 % correct pixel 105 

classification). However, additional steps are required to make this technique suitable for floral bud 106 

detection under field conditions. In this we work, we deal with the following three challenges: (1) 107 

going from pixel to object recognition, (2) taking into account the presence of additional objects 108 

which are not included in the original discriminant model and (3) performing the detection at faster, 109 

more realistic speeds. First, a new multispectral setup is elaborated which was tested during a two-110 

year field trial. Hereafter, details are provided on the construction of a new pixel classification model 111 

and the image analysis used to realize object detection. Finally, conclusions are presented regarding 112 

the potential of the detection system and suggestions are made for future research. 113 

 114 

2. Materials and methods 115 

 116 

2.1. Image acquisition setup 117 

 118 

A low-cost custom movable camera platform was built to perform multispectral measurements in 119 

field conditions [Fig. 1(a)], similar to the setup used by Bulanon et al. (2010). The setup consists of a 120 

12 bit monochrome CCD camera (TXG14NIR, Baumer, Frauenfeld, Switzerland) with a resolution of 121 

1392 x 1040 pixels and a 16 mm monofocal manual iris lens (C1614A, Pentax, Tokyo, Japan). In front 122 

of the lens a fast rotating multispectral filterwheel (FW103H/M, Thorlabs Inc, Newton, NJ, USA) is 123 

placed which houses six optical bandpass filters in the range 400-1000 nm with a diameter of 25 mm. 124 

These filters are rotated sequentially in front of the lens with a change time of approximately 55 ms 125 

between adjacent filters. This operation enables to perform fast multispectral measurements (< 1 s) 126 

with no or very limited distortions between the different filter images, e.g. motion blurring caused by 127 

wind. The filters are commercially available bandpass filters which were selected to have bandpass 128 

regions that match as closely as possible to the desired optimal wavebands to discriminate between 129 



floral buds and their environment (Wouters et al., 2013). Both the actual and optimal transmission 130 

bands of the filters are displayed in Table 1. 131 

 132 

branch

Floral parts

bud scales

(b)

[A]

[B]

(a)
 133 

Fig. 1 (a) Camera platform used during the field measurements. Main components are: [A] a fast 134 

rotating filter wheel containing six optical bandpass filters and [B] a monochrome camera. (b) 135 

Appearance of the floral buds during the examined phenological stages. The three main constituents 136 

are indicated. Stages are displayed chronologically, from left to right: “Green cluster”, “Green bud” 137 

and “White bud”. The buds are displayed in front of graph paper to give a measure of scale (1 square 138 

= 1 mm²). 139 

 140 

Table 1 Comparison between the optimal wavebands found by Wouters et al. (2013) and the actual 141 

wavebands of the filters used during the field experiments. 142 

Order of importancex 1 2 3 4 5 6 

Optimal waveband [nm] 595 – 610 925 – 975 440 – 490 685 – 700 755 – 805 535 – 565 

Actual wavebandy [nm] 589 – 625 925 – 975 430 – 490 672 – 712 752 – 798 532 – 554 

Filter name NT84-102a NT86-072a MF460-60b NT67-038a NT84-106a NT67-032a 

a: manufactured by Edmund Optics, Barrington, NJ, USA 143 

b: manufactured by Thorlabs Inc, Newton, NJ, USA 144 

x: as determined by Wouters et al. (2013) 145 

y: the bandwidth of the actual wavebands is determined by their “full-width at half maximum”, i.e. the width between the points of the 146 

passband wavelengths where the transmittance is 50% of that of the central wavelength of the filter. 147 



To check the effect of the difference between the optimal and actual wavebands, the methodology 148 

and dataset used to select the optimal wavebands (Wouters et al., 2013) were again used to predict 149 

the pixel classification performance of the actual filters. It was found that difference between the 150 

actual and optimal wavebands reduced the predicted correct pixel classification by less than 1 %. This 151 

is attributed to the typical high correlation between information gathered from (partly) overlapping 152 

wavelengths (Table 1). Therefore, the effect of choosing the commercially available filters instead of 153 

the optimal wavebands can be considered negligible. 154 

Data acquisition and control of the setup was realized by means of a laptop running a custom 155 

software written in Labview 2009 (National Instruments, Austin, Texas, USA). 156 

 157 

2.2. Orchard description and phenology 158 

 159 

During the growing seasons of 2012 and 2013, field measurements were conducted in a commercial 160 

pear orchard situated in Bierbeek, Belgium (50°49′36.35″N, 4°47′40.35″E). Trees of the pear cultivar 161 

Conference were trained in an intensive V-hedge system with four main fruiting branches on one 162 

central stem (Quince C rootstock, planted in 1992). The trees possessed an average height of 2.5 m 163 

and were spaced at 3.5 m x 1.3 m (1978 trees.ha-1).  164 

Multispectral images were acquired during three early phenological stages occurring before bloom 165 

[Fig. 1(b)], i.e. “Green cluster”, “Green Bud” and “White bud”. In these stadia, the main constituents 166 

of the trees are branches, bud scales and developing floral parts. Most of the canopy leaves are still 167 

contained inside the leaf buds. In Fig 2. the appearance of the orchard at the time of the field trials is 168 

illustrated. Note from this figure that the branches of the trees are typically covered by green-169 

colored algae. 170 

171 



2.3. Experimental procedure 172 

 173 

Measurements were conducted at nighttime with use of artificial illumination. This approach had two 174 

advantages: firstly, it allowed to control the quality of the illumination of each scene and reduced the 175 

variability between measurements which result from variations in the illumination due to clouds and 176 

solar movements at daytime. Secondly, measuring at night simplified the observed scenes as the 177 

visibility of background objects was greatly reduced. This simplified image analysis as less 178 

background objects needed to be filtered out. 179 

Multispectral images were recorded at random locations throughout the orchard. Before each 180 

measurement, the setup was placed at a distance of approximately 1 m from the canopy which 181 

resulted in a field of view of roughly 410 by 550 mm. The height at which the setup was placed was 182 

chosen randomly as well. Illumination of a scene was provided by a 500 W halogen lamp which was 183 

of the same type as the light source used during the hyperspectral measurements in the laboratory 184 

(Wouters et al., 2013). The power of this light source was sufficient to illuminate the line of trees in 185 

front of the camera, but not high enough that trees in the background are visible. In the first season, 186 

the lamp was held stationary by hand at a fixed position relative to the camera setup (Fig. 2). As this 187 

method can give rise to less even illumination, the lamp was but was mounted on a fixed support in 188 

the second season in order to provide a more stable illumination.  189 

190 
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 191 

Fig. 2 Picture of the setup, taken during the field trials. Numbers refer to: [1] optical reference made 192 

out of PTFE, [2] bamboo support, [3] camera platform and [4] handheld illumination. 193 

 194 

Since the multispectral camera applied optical filters from both the visible and near infrared region of 195 

the spectrum, undesirable chromatic aberration effects might occur. In order to minimize this effect, 196 

a small aperture of the lens was chosen (f/8). This increased depth of field (DOF) at the expense of an 197 

increase in the required exposure time. From each scene, multiple multispectral images were 198 

recorded at various exposure times. In this way, the highest quality images (maximum dynamic range 199 

with little to none saturated pixels) could be selected for each scene for further analysis. All relevant 200 

information related to each experiment (exposure times, duration of a measurement, file names, 201 

etc.) was automatically recorded in a log-file. Finally, a classical RGB picture of every scene was taken 202 

with a standard RGB camera (SP-55OUZ, Olympus Corporation, Tokyo, Japan). The number of floral 203 

buds in each scene was counted by hand. 204 

For the purpose of data normalization – discussed in section 2.4 – an optical reference was placed in 205 

the field of view of the camera (Fig. 2). This reference was placed at the same location in each scene. 206 

In the first season this was a small white polytetrafluoroethylene (PTFE) plate. Since the  luminosity 207 

of this reference was relatively high in comparison to the other objects in a scene, the full dynamic 208 

range of the camera could not be used to measure these objects as this resulted in a saturation of 209 



the pixels of the reference. For this reason, the white reference was replaced in the second season by 210 

a grey-colored reference made from polyvinylchloride (PVC) which possessed a luminosity similar to 211 

that of the trees in a scene, resolving the higher mentioned issue. Both PTFE and PVC display stable 212 

optical behavior in the 400-1000 nm range without clear absorption peaks. 213 

 214 

Field trials season 1. Experiments took place from March 26th until March 30th. Respectively 13, 15 215 

and 15 scenes were recorded during the stadia “Green Bud”, “green Cluster” and “White bud”. In 216 

total, 48 fruiting branches carrying 353 floral buds were imaged. The observed number of floral buds 217 

was distributed approximately equal over all three phenological stadia. 218 

 219 

Field trials season 2. Field tests were conducted starting on April 16th and lasting until April 24th. 220 

Respectively 15, 15 and 14 scenes were recorded during the stadia “Green Bud”, “green Cluster” and 221 

“White bud”. The total number of observed floral buds was 315, spread over 44 fruiting branches. 222 

The majority of these floral buds (47%) were observed during the “White bud” stadium. The images 223 

of the stadia “Green cluster” and “Green bud” contained, respectively 14% and 39% of the floral 224 

buds. 225 

 226 

2.4. Pre-processing 227 

 228 

For each scene, only the image for each optical filter i with the highest dynamic range was retained 229 

for further analysis. To be able to compare images taken at varying exposure times t, the raw images 230 

S(i,tj) were converted to reflectance images r(i) by normalizing them with respect to the average 231 

intensity of the optical reference I(i,ti) which was recorded in the same image:  232 

 233 
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 234 

Both the raw image S(i,tj) and the reference signal I(i,tj) were corrected for the dark current image 235 

D(i,tj). The latter is related to the noise caused by the electronics and was measured by capturing 236 

images with the sensor shielded from incident light by means of the lens cap.  237 

As discussed in section 2.3, a different optical reference was used during each growing season. Since 238 

both references possessed a different relative luminosity this had an effect on the attained 239 

reflectance values r(i), as can be seen from formula (1). To be able to compare reflectance values 240 

across the two measuring seasons, a correction of the reflectances r(i) obtained during the second 241 

season was carried out to estimate the corresponding reflectance value of the PTFE reference used 242 

during the first season. To this end, both references were measured simultaneously with the 243 

multispectral setup at various exposure times. This resulted in a linear calibration curve which 244 

related the observed intensities I(i ,tj) for the PVC reference to those for the PTFE reference (r²=99.9 245 

%). A separate calibration curve was fitted for each filter. 246 

 247 

The resulting reflectance images acquired for each filter were concatenated to create a multispectral 248 

image cube of each measured scene. Hereafter, a spatial-spectral object database was constructed 249 

by manually indicating in each multispectral image to which type of object the foreground pixels 250 

belonged. The four most common types (or classes) of objects occurring in the multispectral images 251 

are termed as the “main components”. These were bud scales, developing flower parts, branches 252 

and bamboo supports (Fig. 2). The latter are a part of a scaffolding that is required to support the 253 

weight of the branches. Besides these main components, other types of objects were marked in the 254 

images as well. Most of these objects were a part of the supporting scaffolding for the trees. 255 

Examples include plastic and metal wires and wooden and concrete posts. 256 

 257 



2.5. Image analysis 258 

 259 

In this section the methodology to translate the information contained in the multispectral images to 260 

the recognition of floral buds is described. The operation of the detection algorithm can be divided 261 

into three main parts (Fig. 3). First, a statistical model creates a probability image P of each scene. 262 

The latter is an image in which each pixel is assigned a likelihood that it belongs to a floral bud. In the 263 

two subsequent steps, morphological image processing is applied to the probability images in order 264 

to identify the floral buds as objects (segmentation) and remove noise. Finally, the performance of 265 

the detection algorithm presented here was optimized by means of a desirability index. The 266 

parameters of the detection algorithm subjected to this optimization are denoted as “χi”, with i  267 

representing a number assigned to each parameter. All analyses were performed in Matlab, version 268 

7.5.0 (MathWorks Inc., MA, USA) on an Intel® Core™ i7 CPU Q720 @1.60 GHz with 8GB RAM. 269 

 270 

2.5.1. Pixel classification model 271 

 272 

Object detection in images can be greatly facilitated if the majority of the pixels in an image can be 273 

correctly attributed to a certain class. For this reason, a pixel discriminant model was built by means 274 

of canonical correlation analysis (CCA), as described by Sharma (1995) and applied in previous work 275 

(Wouters et al., 2013) [Fig. 3 – step 1A]. CCA is a multivariate analysis technique which produces 276 

orthogonal discriminant functions that have maximum separation between groups. Three 277 

discriminant functions are required to discriminate between the four main components. In the 278 

discriminant space spanned by these functions, pixels are classified based on their Bayesian posterior 279 

probability. A Box’s M test showed that the covariance matrices of the different groups were unequal 280 

(p < 0.001). Therefore, Quadratic discriminant analysis (QDA) was used. Finally, a 1392 x 1040 pixels 281 

probability image P was made for each scene by assigning to each pixel the posterior probability of it 282 

belonging to the group “flower parts” [Fig. 3 – step 1B]. 283 
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Fig. 3 (a) Schematic overview of the floral bud detection algorithm. Parameters subjected to 285 

optimization are denoted as χi next to the relevant step.  (b) Step-by-step illustration of the workings 286 

of the detection algorithm. Numbers in the lower right corner of each sub-image refer to the 287 

corresponding step in (a). In the lower right sub-image, detected buds are displayed in a green 288 

overlay. The red arrows point indicate undetected buds, whereas the blue squares mark false 289 

detections. 290 



 291 

Compared to the hyperspectral laboratory measurements (Wouters et al., 2013), a new discriminant 292 

model was required in order to account for the difference between the optimal wavebands and the 293 

passbands of the actual optical filters used during the field trials (Table 1). Furthermore, next to bud 294 

scales, floral parts and branches, an additional component (i.e. the bamboo supports) needed to be 295 

included in the new model since it was a prevalent feature in the captured scenes.  296 

To quantify the effect of the difference between the optimal and actual wavebands, the analysis 297 

described by Wouters et al. (2013) was repeated using the properties of the actual wavebands as 298 

input. 299 

 300 

Since the CCA procedure was only applied on the four main components, pixels belonging to other 301 

types of objects are necessarily assigned to one of these groups as well. This decreased the quality of 302 

P. As a remedy, pixel observations are filtered based on the confidence intervals of each group in the 303 

discriminant space spanned by the first two discriminant functions (Fig. 4). The confidence intervals 304 

are calculated based on the covariance matrix of each group. The level of the confidence intervals χ1 305 

was considered as tuning parameter in the optimization (see section 2.5.3). All observations that do 306 

not belong exclusively to the “flower parts” confidence interval (green ellipse in Fig. 4) are rejected 307 

from P, i.e. their pixel value is set to zero. [Fig. 3 – step 1C].  Those pixels are colored black in Fig. 4, 308 

whereas the pixels considered to be floral parts are indicated in blue. The confidence intervals of the 309 

other main components shown in Fig. 4 (red ellipses) overlap heavily, because they were separated 310 

by the third discriminant function which is not shown.  311 



 312 

Fig. 4 Illustration of filtering by confidence interval. The graph shows the projection of all 313 

multispectral pixels of one scene into the discriminant space spanned by the first two discriminant 314 

functions. Illustrative confidence intervals for each main component are plotted on top as ellipses. 315 

Only data points exclusively inside the “Flower parts”-ellipse are retained for further analysis.  316 

 317 

2.5.2. Morphological Image processing and segmentation 318 

 319 

Subsequently, morphological image processing techniques are applied to P in order to interpret the 320 

information contained in the separate pixels and identify the floral buds as objects. As a reminder: 321 

pixel values close to 1 indicate a high likelihood of belonging to a flower part, whereas pixel values 322 

close to zero are considered not of interest. The algorithm carries out the following steps: 323 

 324 

First, P is divided into equal-sized blocks Qi of size χ2 x χ3 pixels [Fig. 3 – step 2A & Fig. 4] which are 325 

then processed individually. The goal of step 2A is to retain only the blocks Qi with a high chance of 326 

containing (a part) of a floral bud. This yields two possible outcomes: 327 



1.  Qi that are not considered of interest are not retained for further analysis and the value of 328 

all their pixels is set to zero.  329 

2. Qi of interest are retained. Furthermore, pixel values in these blocks that are set to zero in 330 

step 1C (filtering by confidence interval, i.e. removal of pixels outside of the green ellipse in 331 

Fig. 4) are restored to their original (non-zero) value. This is done because it improves the 332 

performance of the next steps of the algorithm by restoring some of the pixel information 333 

which was mistakenly removed in that filtering step 1C. 334 

 335 

To determine which Qi should be retained, the following procedure is carried out: For each block Qi 336 

is checked whether the percentage of non-zero pixels is greater than the tunable value χ4. If this is 337 

the case, Qi is considered a region of interest (ROI). Otherwise Qi is rejected from further analysis.  338 

In a next step, all retained Qi are subjected to Otsu’s adaptive thresholding (Otsu, 1975) to determine 339 

their local foreground. If the median value of the foreground pixels in Qi is greater than χ5, the block 340 

Qi is retained for further analysis and its pixel values are restored as described above. 341 

 342 
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Fig. 4 Relation between the parameters Qi., Ri and Ti. (a) Division of the probability image P into 344 

equal-sized blocks Qi. (b) Adjacent Qi which are considered ROI are grouped into a region Ri. (c) 345 

Inside Ri, an object Ti is located. 346 



Summarizing, the procedure described above reduces the image P to a number of discrete non-zero 347 

regions Qi,. Groups of adjacent Qi that are retained are termed as regions Ri (Fig. 5). For the purpose 348 

of illustration, the edges of these Ri. have been marked in white in sub-image 2A of Fig. 3(b). 349 

In a next step [Fig. 3 – step 2B], Otsu’s thresholding is repeated separately in each Ri,. Since the Ri 350 

contain the information from a larger part of the recorded scene, a better separation between 351 

foreground and background can be realized than for each of the Qi separately. After this operation, P 352 

is converted to a binary image, representing the foreground of each region Ri. 353 

 354 

Finally, the geometric properties of the non-zero pixels/regions in P are analyzed. To merge (small) 355 

adjacent foreground regions, a closing operation is performed by means of a square χ6 x χ6 pixels 356 

structuring element [Fig. 3 – step 3A]. Regions of connected pixels are labeled as Ti (segmentation) 357 

[Fig. 3 – step 3B].  358 

The equivalent diameter and the aspect ratio of each region Ti are calculated [Fig. 3 – step 3C]. The 359 

former is the diameter (in pixels) of a circle containing the same number of non-zero pixels and gives 360 

a measure of a region’s size. The latter is the ratio of the minor axis over the major axis of the ellipse 361 

that encloses each region. All Ti with an equivalent diameter smaller than χ7 are considered noise 362 

and consequently removed from P. Likewise, Ti with an aspect ratio smaller than χ8 are deemed too 363 

long and narrow to be a floral bud and thus are removed from P as well. All remaining Ti are 364 

considered a floral bud. 365 

 366 

2.5.3. Parameter optimization 367 

 368 

In order to obtain a well performing detection algorithm, the parameters χi were tuned by an 369 

optimization procedure. Each unique combination of χi-values was called a set {k}, in which k 370 

represented a unique index assigned to that set.  371 



For any set {k}, the performance of the algorithm was described by means of quality assessment 372 

scores originating from information retrieval statistics (Manning et al., 2008). This was done because 373 

no true negatives could be defined, as is the case for many object detection problems. The recall ρ 374 

(or true positive rate) was defined as the fraction of floral buds which were correctly detected 375 

(completeness of detection). The precision π (or positive predictive value) represented the fraction of 376 

detections that were in fact real floral buds (purity of detection). Both ratios are given by the 377 

following equations: 378 

 379 

TP represents the number of correctly detected buds (true positives), while FP represents the 380 

number of false detections (false positives). FN is the number of undetected buds (false negatives). A 381 

high recall indicates that most of the floral buds were detected, while a high precision indicates a low 382 

false discovery rate. In order to have an efficient algorithm, it is clear that both ρ and π should have a 383 

value close to 1. However, this was not straightforward as maximizing one ratio typically tends to 384 

reduce the other. For this reason, a desirability index  D{k} was introduced as a measure that 385 

combines the scores from both recall and precision (Derringer and Suich, 1980): 386 

D{k} was defined as the product between recall and precision and ranged between 0 (no detection) 387 

and 1 (perfect detection). The weight w (ϵ [0,1]) modifies the relative importance of either ratio. 388 

 389 

Since it was not feasible to test the performance of the detection algorithm for all possible sets {k}, a 390 

multi-parameter optimization was conducted by means of an iterative procedure using a subset of 391 

TP

TP FN
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 


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w w
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the multispectral images as training set (see section 2.6). Each optimization step simultaneously 392 

targeted all the χi-parameters belonging to one of the three parts of the image analysis algorithm as 393 

shown in Fig. 3(b), being “pixel discriminant model”, “foreground detection” and “geometric 394 

analysis”. A range of possible values was chosen for each of the χi-parameters of the part under 395 

consideration, e.g. χ2 to χ5 for the part “foreground detection”. The algorithm was then run for all 396 

combinations of these parameter values, while keeping the values of the parameters of the other 397 

two parts constant. The combination of parameter values which yielded the largest D{k} was assigned 398 

to the relevant parameters. Then, the procedure was repeated for the parameters of the next part of 399 

the detection algorithm. This process continued cyclically until no further improvement of D{k} could 400 

be realized, resulting in the optimal set {k}.  401 

 402 

Initial estimates and admissible ranges of the χi-parameters were chosen within reasonable bounds 403 

that were assessed based on the properties of the objects contained in the spatial-spectral database 404 

described in section 2.4. At the start of the optimization procedure, the range of the parameters was 405 

chosen quite broad as to encompass a large range of possible settings. As the procedure converged 406 

closer to the largest D{k}, the range was chosen incrementally finer. The weight w in formula (4) was 407 

assigned a value of 0.5, as both recall and precision were considered equally important. 408 

 409 

2.6. Training and validation 410 

 411 

The performance of the detection algorithm was validated in two ways. First, the multispectral 412 

images captured during the first growing season were subjected to a three-fold holdout cross-413 

validation (type A). In this analysis, the multispectral images recorded in the first season were divided 414 

by phenological stadium into three groups of approximately 15 images each. For each of the three 415 

iterations of the cross-validation, two of the groups were used (together) as the training set for the 416 

optimization of the detection algorithm, whereas the remaining group was used for validation.  417 



The second way of validation (type B) was conducted in a similar fashion, but now all data of the first 418 

and second growing season were used as training and validation set, respectively. 419 

 420 

For each training set, the CCA procedure [Fig. 3 – step 1A] was based on a subset of the spatial-421 

spectral database. This subset was created by sampling 200 random (multispectral) pixels per object 422 

of the main components included in the training set. This resulted in datasets which included about 7 423 

times more pixels of floral buds than of each of the other three main components. This ratio is 424 

representative for the relative occurrence of each main component in the recorded scenes. Finally, 425 

the bud recognition performance of the algorithm was further investigated to find out the cause for 426 

false detections and undetected floral buds. 427 

 428 

3. Results 429 

 430 

3.1.  Pixel classification model 431 

 432 

Comparison between the actual and optimal wavebands showed that the use of the ‘non-optimal’ 433 

wavebands only reduces the pixel classification accuracy by approximately 0.5 %. So, the effect of 434 

choosing the commercially available filters instead of the optimal wavebands can be considered 435 

negligible. 436 

437 



3.2. Parameter optimization 438 

 439 

For all training sets, the optimization procedure gave very similar optimal parameter sets (values not 440 

shown). Only the selected values of the parameters χ2 and χ3 [see Fig. 3(a)] varied slightly between 441 

training sets, i.e. with relative differences of less than 10%. 442 

As an illustration, the results of the optimization procedure conducted on the training set of the type 443 

B (inter-season) validation are shown in Fig. 6. The obtained precision π and recall ρ were plotted for 444 

each unique parameter set {k} investigated during optimization. The point {ρ =84.14% , π= 85.34%} is 445 

shown as a purple cross in Fig. 6 and was found to have the largest desirability index according to 446 

formula (4), i.e. its position was closest to the optimum {ρ =100% , π= 100%}. For the type A 447 

validation, similar graphs were obtained.  448 

 449 
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Fig. 6 Outcome of the optimization procedure for the type B validation. Each point on the graph 451 

represents the classification results for a unique combination of χi-values. In total, 3935 points are 452 

plotted. The arrow and purple cross mark the location of the point with the highest desirability index. 453 

454 



3.3. Floral bud detection 455 

 456 

The results obtained for the two types of validation are summarized in Table 2. The results are 457 

grouped per phenological stadium. For clarity, the false discovery rate (FDR) is listed as well. This 458 

number represents the number of false detections relative to the number of actual floral buds.  459 

 460 

Table 2 Overview of the classification performance of the detection algorithm. 461 

  
Training 

 
Validation 

 
phenological # floral buds recall ρ precision π FDRx 

 
# floral buds recall ρ precision π FDRx 

validation Stadium 
 

[%] [%] [%] 
  

[%] [%] [%] 

Type Aa 

green cluster 250 80.00 86.21 12.80 
 

125 82.40 78.63 22.40 

green bud 196 82.65 72.00 32.14 
 

98 81.63 76.92 24.49 

white bud 260 84.62 78.57 23.08 
 

130 84.62 82.71 17.69 

 
Total 706 82.58 79.14 21.77 

 
353 83.00 79.62 21.25 

Type Bb 

green cluster 125 84.00 88.24 11.20 
 

44 68.18 100.00 0.00 

green bud 98 83.67 80.39 20.41 
 

122 71.31 94.57 4.10 

white bud 130 84.62 86.61 13.08 
 

149 85.91 76.65 26.17 

 Total 353 84.14 85.34 14.45 
 

315 77.78 84.78 13.97 

a: three-fold cross-validation: for each row, the stadium shown in the 2nd column was used for validation 462 

b: training was performed on all stadia of season 1 combined, validation was done on all stadia of season 2  463 

x: false discovery rate is defined as the ratio of false detections to the total number of real buds, i.e. FP.(TP+FN)-1 464 

 465 

For the type A validation, similar results were obtained for both training and validation. The 466 

detection algorithm was able to correctly recognize approximately 83% of the floral buds. The 467 

average FDR was 22%. For the type B validation, all the data of the first season were included in the 468 

training set improving the classification results – for the training set – slightly, i.e. a recall of 84% and 469 

an FDR of 14%. For the validation set, the recall value was somewhat lower at 78%, but still a low FDR 470 

of 14% was realized. Most of these false detections originated from the scenes recorded during the 471 



“White bud” stadium due to the occurrence of opening leaf buds. In all, similar classification results 472 

were obtained for all corresponding training and validation sets. This indicates that no overfitting 473 

was present. 474 

 475 

In Fig. 7 and Fig. 8 the performance of the detection algorithm is illustrated for both growing seasons. 476 

These figures show a fake color image of each scene which was obtained by combining the 477 

multispectral images of the wavebands 925-975 nm, 685-700 nm and 755-805 nm. For reference 478 

purposes, the classical RGB image is shown as well. Next to this, the (posterior) probability images P 479 

resulting from the CCA procedure are displayed. Finally, the floral buds detected by the algorithm are 480 

shown as a green overlay on a grayscale image of each scene. In these figures, false detections (red 481 

arrows) and undetected buds (blue squares) are marked as well. It should be noted that these figures 482 

do not show the ‘best’ results (i.e. perfect detection), but were chosen to illustrate the different 483 

types of detection errors (see section 3.3). 484 

In the scene shown in Fig. 7, 8 out of 13 buds were correctly detected next to 2 false detections. In 485 

the scene depicted in Fig. 8, 7 out of 10 buds were found with no false detections. The time required 486 

by the algorithm for processing one multispectral image was 5 to 6 seconds.  487 

 488 

3.4. Detection errors 489 

 490 

Since the algorithm was not able to provide perfect classification, the causes for both false detections 491 

and undetected buds were further investigated. The main reason for not detecting buds was because 492 

they were completely or partially hidden from the camera behind other tree components or were 493 

located at the edge of the recorded images (partial occlusion, arrow 1 in Fig. 7 and Fig. 8). 494 

Consequently, these buds were not or badly visible in the multispectral images. Some buds were 495 

badly illuminated (shadowed) and therefore produced reflectance values which could not be 496 
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Fig. 7 Bud recognition in a scene captured on March 26th, 2012 during the “Green cluster” stadium. 498 

(a) Ground truth RGB image, (b) Fake color image created from the multispectral data, (c) Posterior 499 

probability image, (d) Floral bud detection: recognized buds are shown as a green overlay. The red 500 

arrows mark undetected buds. The blue squares mark false detections.  501 

 502 

classified by means of the CCA procedure (arrow 2 in Fig 7. and Fig. 8). Buds that were too small 503 

(arrow 3 in Fig. 7) or were situated in a too noisy region of the probability image P were filtered out 504 

by the detection algorithm. Undetected buds which could not be classified into any of these 505 

categories were termed as an “artifact” (arrow 4 in Fig. 7). 506 

Most of the false detections could be attributed to the occurrence of (large) leaf buds (square B in 507 

Fig. 7), especially during the “White bud” stadium when these buds started to open. Other false 508 

detections were caused by noise in the probability image P. Finally, in a few cases, parts of the white 509 

PTFE reference, plastic wires (square A in Fig 6.) or floral buds located in the background were falsely 510 
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Fig. 8 Bud recognition in a scene captured on April 18th, 2013 during the “Green bud” stadium. (a) 512 

Ground truth RGB image, (b) Fake color image created from the multispectral data, (c) Posterior 513 

probability image, (d) Floral bud detection: recognized buds are shown as a green overlay. The red 514 

arrows mark undetected buds. 515 

 516 

classified as foreground buds.  517 

 518 

The small changes made to the detection setup (discussed in section 2.1) had a positive effect on the 519 

data recorded during the second season. For this reason, the performance of the detection algorithm 520 

was reevaluated by no longer taking into account those false detections observed during the first 521 

season which were caused by effects easily avoided in the second season, e.g. false detections 522 

because of the PTFE reference. Additionally, the buds which were obscured from view (occluded) 523 

were omitted from the algorithm’s performance reassessment as well. In this way, the recalculated 524 



results reflect the detection algorithm’s capability to identify unobscured buds. In Table 3, it is 525 

illustrated that under the aforementioned assumptions, a recall value around 87% was achieved for 526 

both training and validation. 527 

 528 

Table 3 Reevaluation of the classification results displayed in Table 2. The results displayed here do 529 

no longer take into account occluded buds and false detections related to causes which could be 530 

easily avoided, as was done in the second season. 531 

 
Training  Validation 

 
recall ρ precision π FDRx  recall ρ precision π FDRx 

 
[%] [%] [%]  [%] [%] [%] 

Season 1a 86.72 83.29 17.40  87.20 85.42 14.88 

Season 2b 88.39 90.83 8.92  86.88 84.78 15.60 

a: type A validation: results were averaged over the three training-validations 532 

b: type B validation 533 

x: false discovery rate is defined as the ratio of false detections to the total number of real buds, i.e. FP.(TP+FN)-1 534 

 535 

4. Discussion 536 

 537 

The detection algorithm was able to detect a high percentage of the floral buds visible to the camera 538 

with a low number of false detections. The results displayed in Table 2 and Table 3 attest to the 539 

robustness of the detection since good results were obtained for both type A (inter stadium) and 540 

type B (inter season) validation. 541 

 542 

Although work on the development of other camera systems for flower detection has been reported, 543 

a performance comparison was not possible as no clear performance results have been reported for 544 



these systems. Moreover, these systems all target blossoms which look very different from floral 545 

buds prior to bloom. 546 

As can be observed in the RGB images (Fig. 7 and Fig. 8) floral bud detection from these images is 547 

absolutely not obvious. This is due to the presence of a large amount of green in the canopy (algae) 548 

and the irregular shape of the trees. In this context, the superiority of multispectral imaging can 549 

already be seen in the fake color RGB images (Fig. 7 and Fig. 8) where the green algae on the 550 

branches are no longer visible. 551 

A disadvantage of the technique described in this work is the need for an optical reference for image 552 

normalization. This might be resolved by means of an optical power meter that measures the 553 

average light intensity coming from a scene. The signals obtained can then be used for image 554 

normalization. 555 

 556 

4.1. Image analysis 557 

 558 

The algorithm was designed to first process (multispectral) color information, only then followed by 559 

shape analysis. This was done because typically color based segmentation is easier than shape based 560 

segmentation (Nielsen et al., 2012). As expected, measuring at nighttime was beneficial for the 561 

image quality as the visibility of background objects reduced rapidly with increasing distance. 562 

However, due to the characteristic shape of the trees, it was difficult to provide a good illumination 563 

of all floral buds without shadows with a single lamp. Pixels that are positioned in a shadowed region 564 

typically were assigned a lower posterior probability than well-lit pixels. Applying stronger 565 

illumination may partially resolve this issue. However, this might unfavorably increase the rate of 566 

floral buds detected in the background. A better approach would be to design a dedicated 567 

illumination unit which provides a more uniform illumination of the tree. Nevertheless, most of the 568 

shadowed floral buds still contrasted clearly with the background in the probability image P. For this 569 

reason – as explained in section 2.5.2 – the detection algorithm included Otsu’s thresholding to 570 



separate the local foreground and background by means of block processing [Fig. 3 – Step 2A]. This 571 

technique is particularly well suited for dealing with local variations in illumination quality. 572 

In an earlier version of the detection algorithm, the shape analysis was conducted directly after step 573 

2A. However, it was found that implementing a second step (2B) of local floral bud/environment 574 

separation drastically improved bud recognition. This second step takes into account larger regions 575 

of connected blocks of the image instead of separate, independent blocks [Fig. 3(b) – step 2A]. 576 

Therefore, a more accurate threshold could be calculated, retaining a higher number of floral bud 577 

pixels. 578 

 579 

Currently, the time required to process a single multispectral image is too long for a real-time 580 

implementation of the algorithm. This was expected, as no efforts have been made with respect to 581 

the computational efficiency of the algorithm. Therefore, it is expected that the processing speed can 582 

be significantly increased by applying a more speed-efficient code combined with imaging at a lower 583 

resolution. It is expected that the number of pixels can be safely reduced by a factor of 4 without 584 

losing performance. 585 

 586 

4.2. Detection errors 587 

 588 

The general quality of the recorded images was lower in the first season which resulted in noisier 589 

probability images. This was mainly due to the handheld illumination which caused slight variations 590 

in illumination between measurements at different exposure times. In addition, exposure times were 591 

set manually in the first season. This made the recorded images more susceptible to motion blur 592 

because of wind. These issues were avoided in the second season by fixing the position of the light 593 

source and implementing an auto exposure function in the software. This improved image quality 594 

and compatibility between measurements recorded at different exposure times. 595 



Notwithstanding, the lower image quality of the first season had an effect on the type B validation. 596 

Because the detection algorithm was trained on the noisier dataset of season 1, a set of χi-597 

parameters was selected which best dealt with this noise. More specifically, the parameter χ2 relates 598 

to the noise level allowed in the probability images. Since the images of the second season contained 599 

less noise, using a less strict threshold value for χ2 allowed to increase the recall rate shown in 600 

Table 2 up to 82% with only a small reduction in precision (less than 4%). 601 

 602 

4.2.1. Undetected buds 603 

 604 

The main reason for not detecting floral buds was occlusion, especially during the second season. In 605 

total, about 6% of the captured buds were occluded. The algorithm developed by Nielsen et al. 606 

(2012) filtered out approximately 18% of blossoms due to occlusion. Presumably, this higher 607 

percentage might be caused by the larger spatial volume occupied by blossoms compared to floral 608 

buds. This makes it more likely for a part of the blossoms to be obscured from view by others. 609 

Irrespective of the detection system used or better control of the tree shapes by pruning methods 610 

(Schupp and Baugher, 2011), a part of the floral buds is expected to be occluded at any rate due to 611 

their semi-random location on the trees. These buds should be thinned by additional manual follow 612 

up thinning, which is recommended even after mechanical thinning (Schupp et al., 2008). 613 

 614 

4.2.2. False detections 615 

 616 

The predominant reason for false detections originated from the presence of leaf buds in the 617 

orchards. When leaf buds start to open they look similar to floral buds. Most of these false 618 

detections occurred during the “White bud” stadium when the leaf buds were largest. This effect was 619 

strongest during the second season, because measurements were conducted until very late in the 620 

“White bud” stadium, close to bloom. Besides, it should be noted that the detection algorithm still 621 



filtered out most of the leaf buds by either applying the confidence interval in the discriminant space 622 

[Fig. 3 – step 1C] or the shape analysis [step 3C]. Further reduction of leaf bud detection might be 623 

obtained by including these as a separate group in the CCA procedure. 624 

 625 

4.3. Potential of the detection system 626 

 627 

It is expected that this detection system will provide a valuable tool to improve the performance and 628 

selectivity of mechanical thinners. For instance, measuring the floral bud distribution before and 629 

after thinning immediately provides feedback to the growers about the efficacy of the thinning 630 

procedure and tells them where and to which degree manual follow up thinning might be required. 631 

Some additional improvements are still required to transform the research setup described in this 632 

work to a stand-alone sensor platform. The two most prominent issues are the implementation of a 633 

faster, real-time version of the algorithm and a faster camera system. The latter could be achieved by 634 

implementing a multi-CCD camera or a camera chip equipped with a Bayer-like filter in which the 635 

pixels are sensitive to the specific wavebands used in this research. In this context, it would also be 636 

interesting to investigate the performance of the sensor when less wavebands are applied. Reducing 637 

the number of wavebands not only reduces the complexity, but also the cost price and required 638 

computing power. 639 

It is expected that the detection algorithm can also be used during the stadium “Mouse Ear” which 640 

takes place prior to the stadia investigated in this research. In this phenological stadium the green 641 

floral parts become visible for the first time and have a similar outlook as during the “Green cluster” 642 

stadium. In total, this would give the multispectral floral bud detection a usable time period of 643 

approximately two weeks. 644 

Finally, the potential of the multispectral sensor is not limited to automated thinning alone. It could 645 

also be used for other applications such as variable rate spraying or early yield detection. The latter is 646 

typically done by manually counting the number of floral buds on a few sample trees and 647 



extrapolating this result over the entire orchard. As this often gives a false sense of the crop load, 648 

more correct information would aid growers in deciding which horticultural measures are required. 649 

However, more research is required to study the actual relation between the number of floral buds 650 

and the final yield, because this relation depends strongly on seasonal conditions. Carbon balance 651 

models that link environmental conditions to tree status and final yield may be a useful tool in this 652 

context (Robinson and Lakso, 2011).  653 

 654 

5. Conclusions 655 

 656 

In this work we demonstrated the feasibility of detecting floral pear buds during the early 657 

phenological stadia by means of a multispectral camera system. A custom image analysis algorithm 658 

was developed which was able to detect approximately 87 % of the (unoccluded) floral buds with a 659 

low false detection rate (< 16 %). It is expected that the detection algorithm’s performance can still 660 

be further increased by tuning its parameters specifically for each phenological stadium. This 661 

especially applies to the “White bud” stadium where the development of the leaf buds resulted in an 662 

increased rate of false detections. Furthermore, it should be investigated whether good floral bud 663 

detection can also be achieved with the multispectral sensor during daytime conditions. This floral 664 

bud counting sensor could be used for automated thinning, variable rate spraying and yield 665 

estimation.  666 
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