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a b s t r a c t

30Since many years food engineers have attempted to describe physical phenomena such as heat and mass
31transfer that occur in food during unit operations by means of mathematical models. Foods are hierarchi-
32cally structured and have features that extend from the molecular scale to the food plant scale. In order to
33reduce computational complexity, food features at the fine scale are usually not modeled explicitly but
34incorporated through averaging procedures into models that operate at the coarse scale. As a conse-
35quence, detailed insight into the processes at the microscale is lost, and the coarse scale model parame-
36ters are apparent rather than physical parameters. As it is impractical to measure these parameters for
37the large number of foods that exist, the use of advanced mathematical models in the food industry is
38still limited. A new modeling paradigm – multiscale modeling – has appeared that may alleviate these
39problems. Multiscale models are essentially a hierarchy of sub-models which describe the material
40behavior at different spatial scales in such a way that the sub-models are interconnected. In this article
41we will introduce the underlying physical and computational concepts. We will give an overview of
42applications of multiscale modeling in food engineering, and discuss future prospects.
43Ó 2012 Published by Elsevier Ltd.
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80 1. Introduction

81 Since the early work of Ball (1923) to model heat transfer dur-
82 ing sterilization, food engineers have attempted to develop math-
83 ematical models of food processes, either for improving their
84 understanding of the physical phenomena that occur during food
85 processing, or for designing new or optimizing existing food pro-
86 cesses (Datta, 2008; Perrot et al., 2011; Sablani et al., 2007).
87 Depending on the complexity, different modeling approaches are
88 used that can range from being completely observation-based to
89 completely physics-based: simple relationships between variables
90 such as sweetness as perceived by a human expert and the sugar
91 content of the food are typically described using polynomial mod-
92 els; variables that vary as a function of time, such as the inactiva-
93 tion of micro-organisms during pasteurization, are modeled using
94 ordinary differential equations; and variables that depend on both
95 time and space, such as the temperature andmoisture field inside a
96 potato chip during frying are described by means of partial differ-
97 ential equations of mathematical physics (for a more extensive re-
98 view of these and other modeling concepts, see Datta, 2008; Perrot
99 et al., 2011; Sablani et al., 2007). The latter are difficult to solve: ex-

100 cept for trivial geometries and boundary conditions usually no
101 closed form analytical solution is known, and numerical tech-
102 niques are required to compute an approximate solution of the
103 governing equations. Finite element and finite volume methods
104 are amongst the most popular numerical methods for solving par-
105 tial differential equations, and several computer codes are com-
106 mercially available for solving problems such as conduction and
107 convective heat transfer, (visco)elastic deformation, fluid flow
108 and moisture diffusion (e.g., ANSYS (www.ansys.com), Comsol
109 Multiphysics (www.comsol.com), Abaqus (www.simulia.com)).
110 All commercial codes have preprocessing facilities that allow
111 defining complicated geometries, and most of them can be adapted
112 to the needs of the process engineer through user routines. As of-
113 ten physical processes are inherently coupled, e.g., heat and mass
114 transfer, hygro- or thermoelastic deformation, many of these codes
115 also provide so-called multiphysics capabilities.
116 Amathematicalmodel is only completewhen the boundary con-
117 ditions are specified and thematerial properties are known. Bound-
118 ary conditions are either imposed or are design variables to be
119 optimized; material properties need to be known in advance. As
120 engineers in other disciplines often work with a limited number of
121 materials, commercial codes typically include libraries of material
122 properties that are sufficient for many engineering applications.
123 However, this is not the case for food engineering: not only is the
124 number of different foods vast, recipes vary and new foods are cre-
125 ated every day. While engineering properties have been measured
126 carefully for a variety of common foods (see, e.g., Rao et al., 2005;
127 Sahin and Sumnu, 2006), for themajority of foods this is not the case.
128 Many food engineers have, therefore, attempted to predict proper-

129ties based on chemical composition and microstructure. Especially
130the latter typically has a large effect on the physical behavior of
131the food. Themany correlations that express the thermal conductiv-
132ity as a function of the food composition and microstructure are a
133good example (Becker and Fricke, 1999; Fikiin and Fikiin, 1999;
134van der Sman, 2008b). The correlations often rely on assumptions
135that are non-trivial. For example, the direction of heat flow com-
136pared to the microstructural organization of the food (parallel, per-
137pendicular, or amixture of both) has a large effect on the estimation
138of the thermal conductivity; while for some products such as meat
139this is often obvious, for other products this is far less clear. Other
140authorshave used averaging procedures: theyfirst derived governing
141equations that took into account often simplified microstructural
142features, and then averaged them spatially to obtain equations that
143contained effective or apparent material properties that embodied
144microstructural features (e.g., Datta, 2007a,b; Ho et al., 2008; Whi-
145taker, 1977). The process design is then entirely based on the latter
146equations without further reference to the microstructure. Another
147approach is to solve the governing model at the resolution of the
148underlying microstructure. However, in order to predict variables
149at the food process scale thiswould require computer resources that
150are far beyond the current capabilities. Also,materials are hierarchi-
151cally structured: beyond the microscale there are probably further
152relevant layers of complexity with an ever increasing resolution,
153making the problem even more difficult to solve.
154A new modeling paradigm, called multiscale modeling, has
155emerged in other branches of science and engineering to cope with
156this. Multiscale models are basically a hierarchy of sub-models
157which describe the material behavior at different spatial scales in
158such a way that the sub-models are interconnected. The advantage
159is that they predict macroscale behavior that is consistent with the
160underlying structure of matter at different scales while not requir-
161ing excessive computer resources. Also, while incorporating smal-
162ler scales into the model, less assumptions are required for the
163material properties, which tend towards physical constants that
164are well known, or constitutive equations at the expense of
165increasing the geometrical complexity. Finally, the effect of macro-
166scale behavior on microscale phenomena can be evaluated as well.
167In this article we will discuss the potential of multiscale model-
168ing in food process engineering. The focus will be on multiscale
169behavior in the spatial domain rather than in the time domain,
170although both are coupled: events at very small scales (e.g., molec-
171ular collisions) typically occur in very short time intervals, whereas
172time constants for macroscopic events at the process scale (e.g.,
173heat transfer in a can) are much larger. Multiscale phenomena in
174the time domain are usually dealt with by uncoupling equations
175based on time constant considerations, adaptive time stepping
176schemes or stiff systems solvers.
177The article is organized as follows. We will first discuss some
178experimental techniques that can be used to obtain geometrical
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179 models of the food at different spatial scales, with an emphasis on
180 X-ray computed tomography at different resolutions. We will then
181 shortly discuss some physical processes in food engineering that
182 are well suited for multiscale modeling. We will show that multi-
183 scale problems may include different physics: at very small scales
184 the continuum hypothesis breaks down and discrete simulation
185 methods are required. We will pay particular attention to connect-
186 ing the different scales, especially when different types of physics
187 are involved. Finally we will discuss some examples of multiscale
188 modeling in food process engineering and give some guidelines
189 for future research.

190 2. Multiscale structure of foods

191 2.1. Definitions

192 According to the Merriam-Webster online dictionary (Anony-
193 mous, 2012), structure is ‘something arranged in a definite pattern

194of organization’, or ‘the arrangement of particles or parts in a sub-
195stance or body’. In most materials including foods, structure spans
196many scales. For example, an apple consists of different tissues
197(epidermis, inner and outer cortex, vascular tissue) that are the
198constituent elements of its structure (Fig. 1). If we observe a tissue
199with a light microscope, its cellular nature reveals itself. Further,
200cells have features such as cell walls, plastids that are at least an
201order of magnitude smaller. These features can further be decom-
202posed into their constituent biopolymers at dimensions of the or-
203der of 1 nm. At the other side of the scale, apples can be put in
204boxes, and boxes in cool stores with a typical characteristic length
205of 10 m. Physical phenomena such as moisture loss – an important
206variable of concern in the design of cool stores – occur at all scales
207mentioned, thereby spanning 10 orders of magnitude. Foods are
208thus truly multiscale materials.
209Changes in the structure of the food at the microscale or beyond
210during storage and processing can be significant and affect the
211macroscopic appearance, quality and perception of food (Aguilera,

Fig. 1. Multiscale aspects of moisture loss during apple storage.

Fig. 2. (a) Imaginary food consisting of a stack of identical particles; (b) plane intersecting the stack mimicking an optical slice; (c) 2-D image of the cross section of this plane

with the stack. Although the diameter of all particles is equal, that of the circles obtained where the plane intersects the spheres is not.
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212 2005). Due to the complexity of this multiscale structure of foods,
213 straightforward methodologies that link its macroscale properties
214 to changes of the microscale features do not exist today, as op-
215 posed to many engineering materials with a well-ordered micro-
216 structure, for which the relationship with macroscopic properties
217 can be easily understood based on fundamental physics. Multiscale
218 models can serve this purpose.
219 For further use in this article we will now define the following
220 (to some extent arbitrary) scales:

221 � Food plant scale (1–103 m): the scale of food plant equipment,
222 including retorts, cool stores, extruders, UHT units etc.
223 � Macroscale (10ÿ3–100 m): discrete foods or food ingredients
224 that can be observed and measured by the naked eye, from a
225 single wheat grain to a baguette

226 � Microscale (10ÿ6–10ÿ3 m): food features such as air pores,
227 micro capillaries, cells, fibers that need light microscopy to be
228 visualized
229 � Mesoscale (10ÿ7–10ÿ6 m): food structures such as cell walls and
230 emulsions
231 � Nanoscale (10ÿ9–10ÿ7 m): food biopolymers
232

233 Obviously this terminology is somewhat arbitrary and scales
234 may overlap in practice. Some authors use the term microscale
235 for everything that is smaller than the macroscale. In this article,
236 we will also use the terms coarse and fine scale when only relative
237 dimensions are important.

238 2.2. Imaging methods

239 A first step in multiscale modeling is often to visualize the struc-
240 ture of foods at multiple scales and to construct a geometric model
241 that can be used for further analyses. Several techniques are avail-
242 able, including CCD cameras, optical microscopy in the visual and
243 (near)-infrared wavelength range of the electromagnetic spectrum,
244 transmission and scanning electron microscopy, atomic force
245 microscopy. These techniques are well known and the reader is re-
246 ferred to the literature formore details (Aguilera, 2005; Russ, 2004).
247 However, the majority of these techniques produce geometrical
248 information that is essentially 2-D. In many cases this is not suffi-
249 cient. Consider, for example, an imaginary food consisting of a stack
250 of identical particles (Fig. 2a). If we take a cross section with ran-
251 dom orientation through the stack simulating what we would do
252 in preparing a slice for lightmicroscopy (Fig. 2b), we obtain a collec-
253 tion of circles with various unequal radii (Fig. 2c). This would,
254 wrongly, suggest that the food is composed of differently sized par-
255 ticles. Further, the porosity would also depend on the orientation of
256 the cross section. The most important artifact, however, would be
257 that there are 2-D cross sections inwhich all pores are unconnected,
258 while in 3-D there is a full connectivity. This would have, for exam-
259 ple, major consequences on our understanding of mass transport
260 phenomena through the pore space.Wewill, therefore, discuss only
261 methods that provide 3-D images of foods that can be converted to
262 solid models appropriate for numerical discretization of multiphys-
263 ics models. More specifically, we will focus on X-ray computed
264 tomography, optical methods and magnetic resonance imaging.

265 2.2.1. X-ray computed tomography and related methods

266 X-ray computed tomography (CT) was developed in the late
267 1970s to visualize the internal structure of objects non-destruc-
268 tively. These first, mainly medical, CT scanners had a pixel resolu-
269 tion in the order of 1 mm. In the 1980s, after some technological
270 advances towards micro-focus X-ray sources and high-tech detec-
271 tion systems, it was possible to develop a micro-CT (or lCT) system
272 with nowadays a pixel resolution 1000 times better than the
273 medical CT scanners. The technique of X-ray (micro)-CT is based

274on the interaction of X-rays with matter. When X-rays pass
275through an object they will be attenuated in a way depending on
276the density and atomic number of the object under investigation
277and of the used X-ray energies. By using projection images ob-
278tained from different angles a reconstruction can be made of a vir-
279tual slice through the object. When different consecutive slices are
280reconstructed, a 3-D virtual representation of the object can be ob-
281tained, which provides qualitative and quantitative information
282about its internal structure. Such information is useful for numer-
283ical analysis of these porous structures: it can be used to generate
284geometric CAD models for numerical analysis based on a paramet-
285ric description of the geometry of the material (e.g., porosity, pore
286distribution), or by directly using the 3-D images for generation of
287suchmodels (Mebatsion et al., 2008; Moreno-Atanasio et al., 2010).
288The reconstructed 3-D volume is typically a data stack of 2-D
289images with sizes up to several Gigabytes for one CT scan. X-ray
290CT is the only technology to date that covers a large range of scales
291– currently from about 200 nm up to 20 cm and more.
292Several examples of X-ray CT for food are discussed by Falcone
293et al. (2006). X-ray micro-CT has been successfully used to visual-
294ize, amongst others, foams (Lim and Barigou, 2004), bread (Falcone
295et al., 2004), apple (Mendoza et al., 2007), processed meat (Frisullo
296et al., 2009), chicken nuggets (Adedeji and Ngadi, 2011), biscuits
297(Frisullo et al., 2010) and coffee (Frisullo et al., 2012).
298Rather recently, lab-based nano CT systems have been intro-
299duced opening up a new era in X-ray imaging with a spatial reso-
300lution below 1 micrometer (Hirakimoto, 2001), even down to some
301hundreds of nanometers. Realizing submicron pixel sizes requires
302increased performance of the X-ray source, rotation stage and X-
303ray detector. Before, submicron resolutions could only be obtained
304at synchrotron X-ray facilities, which are not that readily accessible
305for researchers. Synchrotron radiation micro-CT with submicron
306resolution has been applied successfully to foods such as apple
307and pear (Verboven et al., 2008). In Fig. 3 an image of a foam
308obtained with a bench top nano CT machine is shown at 500 nm
309resolution.
310Even higher resolutions of up to 15 nm are possible with soft

311X-ray tomography. Soft X-rays are typically produced by synchro-
312trons or laser-produced plasma’s. Soft X-ray tomography has been
313used for visualizing cellular architecture (Larabell and Nugent,

Fig. 3. 3-D micro CT image of a sugar foams consisting of sugar, agar and water

obtained on a SkyScan 2011 benchtop X-ray nano CT with a pixel resolution of

500 nm (E. Herremans, KU Leuven, unpublished).
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314 2010) but has limited penetration depth (typically < 10 lm). Simi-
315 lar to X-ray tomography and microscopy, electron tomography uses
316 a tilted stage in combination with a transmission electron micro-
317 scope to acquire transmission images at various angles that are
318 then reconstructed to a 3-D model with a resolution down to 5–
319 20 nm. As far as the authors are aware of there are no applications
320 in food science yet.

321 2.2.2. Optical methods

322 In confocal laser scanning microscopy, points are illuminated one
323 by one by a laser, and the fluorescence is measured through a pin-
324 hole to eliminate out of focus light. The object is scanned point by
325 point, and 3-D images may be constructed by moving the focal
326 plane inside the object. However, the penetration depth is limited
327 to a few hundred micrometers or less, depending on the optical
328 properties of the specimen and the actual optical setup (Centonze
329 and Pawley, 2006). Optical Coherence Tomography (OCT) is a rela-
330 tively recent contactless high-resolution imaging technique, which
331 has been introduced for biomedical diagnostics applications such as
332 the detection of retinal diseases. In OCT, the sample is typically illu-
333 minated with light in the near infrared. The backscattered and – re-
334 flected photons from the sample are collected and brought to
335 interfere with a reference beam. From the interference pattern
336 the location of the scattering sites within the sample can be deter-
337 mined. The penetration depth is several times higher than that ob-
338 tained with, e.g., confocal microscopy. Since OCT detects
339 inhomogeneities in the refractive index of materials, the images it
340 produces are complementary to those obtained with, e.g., X-ray
341 CT where the contrast is related to the density distribution. Meglin-
342 ski et al. (2010) used OCT to monitor defects and rots in onion.

343 2.2.3. Magnetic resonance imaging

344 In magnetic resonance imaging (MRI), magnetic nuclei such as
345 protons are aligned with an externally applied magnetic field. This
346 alignment is subsequently perturbed using an alternating mag-
347 netic field and this causes the nuclei to produce a rotating mag-
348 netic field detectable by the scanner. The signal is spatially
349 encoded using magnetic field gradients and is afterwards recon-
350 structed into a 3-D image (Hills, 1995). MRI is particularly suitable
351 for high water content foods. Typical spatial resolutions are 10–
352 50 lm (slice thickness 100–1000 mm) and thus considerably less
353 than X-ray micro and nano CT, but the contrast is usually much
354 better in biological tissues and different substances (water, oil, su-
355 gar) can be distinguished (Clark et al., 1997). MRI has been used to
356 visualize internal quality defects of fruit such as voids, worm dam-
357 age or bruising and their variation over time (Chen et al., 1989;
358 McCarthy et al., 1995; Lammertyn et al., 2003), meat structure
359 (Collewet et al., 2005), bread microstructure (Ishida et al., 2001)
360 and a plethora of other applications, but its main power is in 3-D
361 mapping of transport of heat and mass in foods (e.g., Verstreken
362 et al., 1998; Rakesh et al., 2010).

363 3. Food process modeling

364 Food process modeling is an essential tool to understand, design
365 and control food processes (Datta, 2008; Perrot et al., 2011; Sablani
366 et al., 2007). We will focus here on transport phenomena as they
367 are arguably the most important processes in food unit operations.
368 We will show how difficulties with modeling these phenomena
369 lead to the need for a multiscale approach.

370 3.1. Multiphase transport phenomena in porous media

371 Modeling of transport phenomena applied to food processes at
372 the macroscale can be broadly divided into those for single phase

373and those for multiphase. Since multiphase models, particularly
374when the solid phase is included, can cover the vast number of
375food processes, discussion in this section will be restricted to mul-
376tiphase porous media-based transport models. The multiphase
377porous media-based approach at the macroscale incorporating
378averaged material properties appears to be the most popular
379among the detailed mechanistic approaches to model food pro-
380cesses. It has been used to model a number of food processes,
381including drying (Lamnatou et al., 2010), rehydration (Weerts
382et al., 2003), baking (Ni and Datta, 1999; Zhang et al., 2005), frying
383(Halder et al., 2007; Yamsaengsung and Moreira, 2002), meat cook-
384ing (Dhall and Datta, 2011), microwave heating (Ni et al., 1999),
385gas transport (Ho et al., 2008) and microwave puffing (Rakesh
386and Datta, accepted for publication). While these examples use dis-
387tributed evaporation, evaporation at a sharp front combined with
388the same macroscale formulation has also been applied to a num-
389ber of food processes (Farid, 2002).
390The multiphase models of food processes, however, cover a
391wide range as to howmechanistic the approaches are. For example,
392frying has been modeled as completely empirical (lumped param-
393eter) all the way to multiphase, multicomponent and multimode
394transport in the porous media model (the topic of this section).
395Such detailed models, although around for some years in food
396(e.g., Ni et al., 1999), have not become commonplace primarily
397due to the complexity of the computations and the unavailability
398of detailed transport properties for food materials that are needed
399for such models.

4003.2. Basis for the averaged porous media model

401Description of fluid flow and transport in a porous medium by
402considering it in an exact manner (i.e., solving Navier–Stokes equa-
403tions for fluids in the real pore structure) is generally intractable at
404least at themacroscale (Bear, 1972) due to the geometry of the intri-
405cate internal solid surfaces that bound the flow domain, although
406this is precisely what is pursued for small dimensions at the micro-
407scale (Keehm et al., 2004), as described later. For porous media-
408based modeling of food processing problems, most of the studies
409have been at themacroscale. Amacroscale continuum-basedporous
410media transport model (as described in the following section) con-
411sists of transport equationswith the variables and parameters aver-
412agedover a representative elementary volume (REV). The size of this
413REV is large compared to the dimension of the pores or solid particle
414structure but small compared to the dimensions of the physical do-
415main of interest (e.g., an apple fruit). The size of the REV can vary
416spatially and depends on the quantity of interest (i.e., permeability).
417Using Lattice-Boltzmann simulation, Zhang et al. (2000) showed
418that the quantity of interest fluctuates rapidly as the scale gets smal-
419ler but approaches a constant valuewith increasing scale. Thus, they
420defined a statistical REV as the volume beyondwhich the parameter
421of interest becomes approximately constant and the coefficient of
422variation (standard deviation divided by the mean) is below a cer-
423tain desired value. Through such averaging, the actual multiphase
424porous medium is replaced by a fictitious continuum; a structure-
425less substance (Bear, 1972), also called a smeared model or a
426homogeneous mixture model, where neither the geometric repre-
427sentation of the pore structure nor the exact locations of the phases
428are available. Details of porousmediamodels can be found in several
429textbooks (e.g., Bear, 1972; Schrefler, 2004; Vafai, 2000).

4303.3. Typical formulation

431Food process models that are based on multiphase transport in
432a porous medium have typically used the common volume
433averaged equations (Whitaker, 1977), although the linkage to the
434averaging process may not always be made explicit. The food ma-
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435 trix is mostly considered rigid although deformable porous media
436 have been considered – the relevant equations are provided in de-
437 tail in Datta (2007a,b) and Dhall and Datta (2011). The phases con-
438 sidered for a solid food are the solid, liquid (e.g., water, oil), and gas
439 (e.g., water vapor, carbon dioxide, nitrogen, ethylene). Evaporation
440 is considered either distributed throughout the domain or at an
441 evaporating interface and is dictated by the local equilibrium be-
442 tween the liquid and vapor phase. Transport mechanisms consid-
443 ered are capillarity and gas pressure (due to evaporation) for
444 liquid transport, and molecular diffusion and gas pressure for va-
445 por and air transport. Pressure driven flow is modeled using
446 Darcy’s law when the permeability is small (pores are small,
447 including possible Knudsen effects; Tanikawa and Shimamoto,
448 2009) or its more general Navier–Stokes analog when the matrix
449 is very permeable (Hoang et al., 2003; Nahor et al., 2005). Local
450 thermal equilibrium, where all phases share the same temperature
451 at a location, is often assumed, leading to one energy equation. The
452 final governing equations for a rigid matrix consist of one energy
453 equation, one mass balance equation and either the Darcy’s law
454 or the Navier–Stokes for the momentum equation for each of the
455 fluid phases. In addition, there will be transport equations for each
456 solute component such as flavor components.
457 Variations of the continuum porous media formulation are
458 available, the most notable one being a frontal approach to evapo-
459 ration or a sharp interface phase change formulation (also called
460 moving boundary formulation; Farid, 2002). The liquid water and
461 water vapor transport equations can also be combined, leading to
462 the simple diffusion equation with an effective diffusivity - per-
463 haps the most widely used model in food process engineering.
464 There are also phenomenological approaches (Luikov, 1975) to
465 multiphase transport in porous media whose origin in terms of
466 averaging have not been demonstrated and many of the transport
467 coefficients in this model cannot be traced to standard properties.
468 Food structures can also include two different ranges of porosities
469 (such as inter-particle and intra-particle) and can be modeled
470 using dual porosity models, as described by Zygalakis et al.
471 (2011) for transport of nutrients in root hair or by Wallach et al.
472 (2011) for flow of water during rehydration of foods.
473 A deforming (shrinking/swelling) porous medium is essentially
474 handled by treating all fluxes, discussed earlier for a rigid porous
475 medium, to be those relative to the solidmatrix, and combining this
476 with a velocity of the solid matrix that comes from deformation ob-
477 tained from solid mechanical stress–strain analysis (also assuming
478 macroscale continuum). Since the solid has a finite velocity, the
479 mass flux of a species with respect to a stationary observer can be
480 written as a sum of the flux with respect to solid and the flux due
481 to movement of the solid with respect to a stationary observer (Ra-
482 kesh and Datta, accepted for publication). Pressure gradients that
483 cause deformation can originate from a number of possible mecha-
484 nisms: gas pressure due to evaporation of water or gas release (as
485 for carbon dioxide in baking); capillary pressure; or swelling pres-
486 sure that are functions of the temperature and moisture content of
487 the food material. Kelvin’s law can be used to estimate capillary
488 pressure from water activity. Flory–Rehner theory has also been
489 used to estimate this pressure (van der Sman, 2007a). Furthermore,
490 swelling pressure has been estimated from water holding capacity
491 in case of meat (e.g., Dhall and Datta, 2011). The solid matrix can be
492 treated as elastic, viscoelastic or following other material models
493 and the corresponding strain energy function can be used with
494 the linear momentum balance equation for the deforming solid.

495 3.4. Limitations of the macroscale formulation and the need for

496 multiscale formulation

497 In the aforementioned macroscale formulations, the food is re-
498 placed by a structureless continuum. This means that its properties

499would not change when subdivided. Of course a food can still con-
500sist of different materials, but they all should be continuum mate-
501rials and have dimensions of the same order of magnitude as the
502processes that are studied. The continuum hypothesis has a very
503important advantage: the equations of mathematical physics that
504describe phenomena such as heat conduction, fluid flow, water
505transport, diffusion of species apply, and commercial finite ele-
506ment or finite volume codes can be used to solve them. However,
507the material properties that are required are apparent properties
508rather than real physical constants: they implicitly depend on
509the fine structure of the material and need to be measured exper-
510imentally. Given the ever growing variety of foods this is simply
511not possible for all foods. Also, their measurement is not trivial
512(various ways of estimating them are summarized in Gulati and
513Datta, submitted for publication). This problem, however, can be
514alleviated using multiscale simulation.
515Material properties can also be predicted using the effective
516medium theory of Maxwell–Garnett and its extensions (e.g., van
517der Sman, 2008) where the material is considered as a two-phase
518medium (a matrix with inclusions). Such predictions, however,
519have been limited in the past, perhaps since the specific micro-
520structure of the material is generally not included. Thermodynam-
521ics-based approaches, such as the one used for predicting water
522activity (van der Sman and Boer, 2005), are also unlikely to be uni-
523versally applicable to all types of physical properties unless such
524approaches can include microstructural information.
525Another limitation of continuum modeling is the fact that the
526actual details of microscale heterogeneity, as is important in some
527food applications (Halder et al., 2011; Ho et al., 2011), will not be
528picked up by macroscale models by their very design, and micro-
529scale models would be needed.
530Theoretically, a comprehensive model could be conceived that
531incorporates geometrical features from the macroscale to the
532smallest relevant scale. The size of the corresponding computa-
533tional model (thus finite element mesh) would, however, surpass
534both the memory and computational power of current high perfor-
535mance computers by many orders of magnitude. Also, the contin-
536uum hypothesis breaks down at smaller scales; the particle
537nature of materials becomes dominant. The numerical methods
538to solve such problems scale even worse with size. Multiscale
539modeling provides an alternative paradigm for modeling processes
540at spatially and temporally relevant scales for food, while still
541accounting for microstructural features.

5424. Multiscale modeling paradigm

543Multiscale models are basically a hierarchy of sub-models
544which describe the material behavior at different spatial scales in
545such a way that the sub-models are interconnected. The principle
546of multiscale modeling is shown in Fig. 4. Typically, equations for
547the fine scale are solved to calculate apparent material properties
548for models that operate at a coarser scale. The up-scaling of fine
549scale solutions to a coarse solution is known as upscaling, homog-
550enization or coarse-graining (Brewster and Beylkin, 1995; Mehra-
551een and Chen, 2006). The algorithm proceeds from scale to scale
552until the scale of interest is reached. The reverse method is called
553downscaling, localization or fine-graining and is used when local
554phenomena that depend on macroscale variables are required.
555Consider, for example, failure of fruit tissue due to compressive
556loading. In the homogenization step, apparent mechanical proper-
557ties of the macroscopic model are derived through homogenization
558from numerical experiments at smaller scales. Using these appar-
559ent properties, the stress distribution inside the fruit is calculated
560at the macroscale. Failure is likely to occur in zones of maximal
561stress. Thus, in the localization step, mesoscale models will then
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562 be used to calculate stresses on individual cells in these affected
563 zones. Using microscale models stresses in the cell wall of these
564 cells will be evaluated. Cell failure will occur when an appropriate
565 failure criterion is violated, e.g., when the cell wall tensile stress
566 exceeds the tensile strength of the cell wall.

567 5. Numerical techniques for multiscale analysis

568 In this section we will give an overview of the most used
569 numerical methods for solving physics problems at different scales.
570 A particular challenge of multiscale modeling is that at the meso-
571 scale and beyond the physics gradually changes: fluids behave like
572 a collection of particles, the spatial and temporal variation of mac-
573 roscopic variables becomes huge, and Brownian motion may be-
574 come important. For example, water transport at the microscale
575 and up is governed by the Navier–Stokes equations that predict a
576 parabolic velocity profile in cylindrical channels. If the diameter
577 of the channel is of the same size as the size of the water molecule,
578 there is too little space to fully develop a velocity profile, and the
579 individual molecules will line up and move in an orderly pattern
580 through the nanochannel (Mashl et al., 2003). Continuum physics
581 based simulation methods such as the finite element and finite vol-
582 ume methods are no longer applicable, and meshless particle
583 methods, Lattice Boltzmann or molecular dynamics are required.

584 5.1. Finite element and finite volume method

585 The finite element method is a very flexible and accurate method
586 for solving partial differential equations (Zienkiewicz and Taylor,
587 2005). In this method, the continuum is subdivided in elements
588 of variable size and shape that are interconnected in a finite num-
589 ber of nodal points. In every element the unknown solution is ex-
590 pressed as a linear combination of so-called shape functions. In a
591 next step the equations are spatially discretized over the finite ele-
592 ment mesh using a suitable technique such as the Galerkin
593 weighted residual method. Hereto the residual that is obtained
594 by substituting the approximate solution in the governing partial
595 differential equation is orthogonalized with respect to the shape
596 functions. Depending on whether time is an independent variable,

597the end result is a system of algebraic equations or ordinary differ-
598ential equations; the latter is then usually discretized using a finite
599difference approximation. The finer the mesh, the better the
600approximation but also the more computational time that is re-
601quired to solve the resulting equations.
602The finite volume method is very popular for solving fluid trans-
603port problems and is at the basis of many commercial computa-
604tional fluid dynamics codes (Hirsh, 2007). As in the finite element
605method, the computational domain is discretized in finite volumes.
606The conservation laws underlying the governing equations are im-
607posed at the level of every finite volume, and applying Green’s the-
608orem then naturally leads to a relationship between fluxes at the
609finite volume boundaries. These fluxes are approximated by finite
610differences, and the end result is again a system of algebraic or dif-
611ferential equations in the unknowns at the discretization points.

6125.2. Meshless particle methods

613In many mechanical systems, grid based methods such as the fi-
614nite element method are very efficient and robust for simulating
615continuum materials undergoing small or moderate deformations.
616Yet, these methods are usually less suited or may even run into
617trouble when problems with excessive deformations, fracturing,
618or free surfaces are encountered. The discrete nature of somemate-
619rials requires an alternative way of calculating dynamics. The key
620idea in so-called meshless particle methods is that the material is
621mass-discretized into material points. These points are not related
622by a mesh. Similar to molecular dynamics simulations, they only
623interact through pairwise interaction potentials when their rela-
624tive distance is smaller than the cutoff distance (Tijskens et al.,
6252003). In the discrete element method (DEM), the interaction forces
626are usually computed from linear spring-dashpot elements, or
627Hertz theory. An instructive example is the collision of apples in
628harvesting or transport, where the exerted forces are calculated
629to predict bruising volume (Van Zeebroeck et al., 2006a,b).
630Yet, simulating a microscopic multi-body system of macro-
631scopic dimensions would confront us with an unrealizable compu-
632tational effort. In such cases, the discrete particles in the system
633need to be coarse grained and the stiff interactions are modified

Fig. 4. Schematic of the multiscale paradigm. Homogenization (A) involves calculating apparent material properties at the model of some scale i from experiments with the

model that operates at the lower scale i-1. In localization (B), special regions of interest (ROI) are identified at some scale of interest i; more detailed simulations are then

carried out in this ROI using the model that operates at scale i-1. (Adapted from Ho et al., 2011).
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634 to softer potentials to reduce the number of particles. In the last
635 20 years, there has been an increasing interest of smooth particle

636 applied mechanics (SPAM). In SPAM, the particle interactions are
637 basically derived from a continuum law by smearing out variables
638 associated with a particle to neighboring particles (within cutoff
639 distance). This is done by a ‘‘kernel’’ interpolant. Any set of PDEs
640 can be transformed into a set of ODEs without the need for a mesh
641 or remeshing. This method thus combines the discrete nature of
642 materials with its continuum properties and is thus well suited
643 for systems undergoing large deformations with cracking. Notori-
644 ous examples of this method are abundant in fluid dynamics,
645 known as Smoothed Particle Hydrodynamics (SPH) (Monaghan,
646 2011). More recent applications can be found in soil mechanics
647 (Bui et al., 2007) and soft tissue (Hieber and Komoutsakos, 2008).
648 Other meshless methods include Brownian dynamics. Guidelines
649 about which method should be used at a particular spatial scale
650 were given by van der Sman (2010).

651 5.3. The Lattice Boltzmann method

652 The Lattice Boltzmannmethod is most suitable for microscale and
653 mesoscale simulations, and has found significantly more applica-
654 tions in food science than any other mesoscale method (van der
655 Sman, 2007b). In the Lattice Boltzmann method, materials and flu-
656 ids are represented as quasi-particles populating a regular lattice.
657 They interact via collisions, which adhere the basic conservation
658 laws of mass, momentum and energy. The collision rules follow a
659 discretized version of the Boltzmann equation, which also governs
660 the collisions of particles on the molecular level. In Lattice Boltz-
661 mann the particles do not represent individual molecules, but par-
662 cels of fluid. The grid spacing can be of similar order as in traditional
663 macroscale methods as the finite element or finite volume method.
664 It is the discretization of space, time and momentum what makes
665 Lattice Boltzmann different from the traditional method. Themeth-
666 od can handle complex bounding geometries with simple bounce-
667 back rules of the particles, which can easily be generalized to mov-
668 ing boundaries – as is required for modeling particle suspension
669 flow (Ladd and Verberg, 2001). Its connection to kinetic theory
670 via the Boltzmann equation makes it straightforward to link it to
671 thermodynamic theories, describing the driving force of transport
672 processes (Swift et al., 1996; van der Sman, 2006). These last two
673 properties make the Lattice Boltzmann a versatile vehicle for doing
674 mesoscale simulations of dispersions. In a multiscale simulation
675 framework for food processing the Lattice Boltzmann can be used
676 as a solver at the mesoscale, or at the macroscale for flow problems
677 through complicated geometries like porous media. To give an
678 impression of the versatility, references to several applications that
679 are relevant from the food perspective are summarized in Table 1.

680 5.4. Molecular dynamics

681 Molecular dynamics is used to study the behavior of materials
682 at the molecular scale (Haile, 1997). In molecular dynamics the

683movement of molecules is computed by solving Newton’s equation
684of motion using time steps of the order of 1 femtosecond (10ÿ15 s).
685The forces between the molecules are computed from the potential
686field that is caused by covalent bonds and long range van der
687Waals and electrostatic interactions. The van der Waals term is of-
688ten modeled with a Lennard–Jones potential, the electrostatic term
689with Coulomb’s law. The evaluation of these potentials is computa-
690tionally the most intensive step of a molecular dynamics simula-
691tion. Molecular dynamics can be considered as a discrete element
692method. In food science, molecular dynamics is hardly applied
693(Limbach and Kremer, 2006), with the exception of the studies
694by Limbach and Ubbink (2008) and by Brady and coworkers (Le-
695long et al., 2009).

6966. Homogenization and localization

697Coupling of models at fine and coarse scales is an essential fea-
698ture of multiscale methods. We will focus here on problems where
699there is spatial scale separation – the length scale of the heteroge-
700neities of the microscale is small compared to the dimensions of
701the macroscale; in this case the multiscale paradigm is most effec-
702tive in terms of reducing computational time compared to a mac-
703roscopic model that is numerically resolved to the microscale. We
704will not discuss the classical volume averaging approach such as
705used by Bear (1972) and Whitaker (1977) in which the homogeni-
706zation is an essential part of the construction of the continuum
707equations and that has been propagated for years for food engi-
708neering applications by Datta’s group (e.g., Ni and Datta, 1999;
709Ni et al., 1999).
710The original mathematical homogenization procedure involves
711applying a second order perturbation to the governing equation.
712When applied to a diffusion equation the result is a homogenized
713diffusion equation incorporating an apparent diffusivity that can
714be calculated by solving yet another diffusion equation called the
715cell equation (Pavliotis and Stuart, 2008). Usually a more pragmatic
716approach is taken, and the apparent diffusivity is calculated by
717solving the microscale model with appropriate boundary condi-
718tions on a microscopic computational domain. When the micro-
719scale model is a partial differential equation, often periodic
720boundary conditions are applied. The selection of boundary condi-
721tions is much more complicated when the microscale model is a
722discrete model (E et al., 2007). This method is also known as
723sequential (serial) coupling (Ingram et al., 2004), as the computation
724of the apparent material properties can be considered as a prepro-
725cessing step that can be done independent from the solution of the
726macroscale model.
727Sequential coupling requires that some assumptions need to be
728made about the constitutive equations, such as for a diffusion pro-
729cess the relationship between flux and concentration (or potential)
730gradients. This approach is valid as long as the constitutive equa-
731tion depends only on a limited number of variables. When the con-
732stitutive relation depends on many variables, sequential coupling

Table 1

Application areas for micro-mesoscale simulation of foods using Lattice Boltzmann.

Application area Key publications

Emulsion flow/breakup/microfluidics Biferale et al. (2011), Kondaraju et al. (2011), Van der Graaf et al. (2006)

Pickering emulsion Jansen and Harting (2011)

Surfactant + Droplet Farhat et al. (2011), Liu and Zhang (2010); Van der Sman and Van der Graaf (2006)

Particle suspensions flow Kromkamp et al. (2005); Ladd and Verberg (2001); Vollebregt et al. (2010)

Single phase porous media flow Sholokhova et al. (2009)

Two-phase porous media flow Porter et al. (2009)

Foaming Körner (2008)

Digestion Connington et al. (2009), Wang et al. (2010)

Extruder flow Buick (2009)

Biofouling (membranes) von der Schulenburg et al. (2009)
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733 is difficult and the heterogeneous multiscale method (HMM) is
734 more appropriate. This method is particularly suited for linking
735 submodels of different nature – e.g., a continuum model at the
736 macroscale and a discrete element model at the microscale (E
737 et al., 2007). The starting point is usually a finite element or finite
738 volume discretization of the macroscale equation. The element
739 wise construction of the finite element matrices involves the
740 numerical integration of an expression incorporating local fluxes
741 or other variables that are a function of the microstructure. The
742 HMM exploits the fact that these variables are only required in
743 the (few) numerical integration points. The microscale model is,
744 therefore, solved numerically in a small domain surrounding these
745 integration points. The HMM thus does not explicitly compute a
746 homogenized value of the material properties. The HMM is a
747 top-downmethod: it starts at the macroscale and calculates the lo-
748 cal information it needs using the microscale model (localization
749 or downscaling), where initial and boundary conditions are set
750 by the macroscale model. It is an example of concurrent (or parallel)
751 coupling, as the microscale and the macroscale model are simulta-
752 neously solved, and it is equation-free – no assumptions regarding
753 the constitutive equations need to be made. An alternative method
754 involves the computation of shape functions for use at the macro-
755 scale, based on the solution of a microscale problem in every ele-
756 ment (Nassehi and Parvazinia, 2011). For the latter, a different
757 set of shape functions called ‘bubble’ functions are used. This
758 method is a bottom-up method as it starts from the microscale.
759 For further details the reader is referred to the literature.
760 Localization is the inverse of homogenization and has received
761 far less attention in the food literature. The approach outlined in
762 Fig. 4b can be applied once the macroscale solution is known.
763 One simply zooms in on the area of interest, e.g., often where the
764 smallest or largest values of the variable of interest or its gradient
765 are expected, and uses the microscale model to investigate what
766 happens at the microscale.

767 7. Applications

768 Multiscale modeling is a relatively new area in food engineer-
769 ing, and the literature is relatively scarce. We will discuss a few
770 representative publications, mostly from the authors of this article.
771 Multiscale modeling using serial coupling has been applied to
772 postharvest storage of fruit and vegetables by Nicolaï and cowork-
773 ers. An early application was presented by Veraverbeke et al.
774 (2003a,b) who used microscale models for water transport through
775 different microscopic surface structures in apple skin, such as
776 cracks in the epicuticular wax layer and closed and open lenticels,
777 to compute an apparent water diffusion coefficient for the entire
778 cuticle. The latter was incorporated in a macroscopic water trans-
779 port model that was used to evaluate the effect of storage condi-
780 tions on water loss. Ho et al. (2009, 2010a, 2011) developed a
781 multiscale model to describe metabolic gas exchange in pear fruit
782 during controlled atmosphere storage. The microscale gas ex-
783 change model included equations for the transport of respiratory
784 gasses in the intercellular space and through the cell wall and plas-
785 malemma into the cytoplasm, and incorporated the actual tissue
786 microstructure as obtained from synchrotron radiation tomogra-
787 phy images (Verboven et al., 2008). Cellular respiration was mod-
788 eled as well. The macroscale gas transport model included
789 diffusion, permeation and respiration. The model was validated
790 (Ho et al., 2010b) and used to study hypoxia in fruit during storage.
791 An example of multiscale modeling at larger spatial scales in post-
792 harvest applications was given by Delele et al. (2008, 2009). They
793 investigated high pressure fogging systems to humidify controlled
794 atmosphere storage rooms using a CFD based multiscale model. At
795 the fine scale, the flow through stacked products in boxes was

796predicted using a combination of discrete element and CFD model-
797ing. At the coarse scale, a CFD model for a loaded cool room was
798developed to predict the storage room air velocity, temperature
799and humidity distributions and fate of the water droplets. The
800loaded product was modeled as a porous medium, and the corre-
801sponding anisotropic loss coefficients were determined from the
802fine scale model. A Lagrangian particle tracking multiphase flow
803model was used for simulating droplet trajectories. Recently, a
804new computational multiscale paradigm based on SPH-DEM parti-
805cle simulations, computational homogenization, and a finite ele-
806ment formulation has been developed and applied for calculating
807mechanical properties such as the intracellular viscosity and the
808cell wall stiffness, and the dynamic tissue behavior, including
809bruising, of fruit parenchyma tissue (Ghysels et al., 2009; Van Lied-
810ekerke et al., 2011).
811For particle suspensions, representing beverages like milk and
812beer, van der Sman and coworkers have developed a multiscale-
813simulation approach, using Lattice Boltzmann at the meso, micro
814and macroscale (van der Sman, 2009). The levels differ in the res-
815olution of the particle size with respect to the computational grid.
816The three levels are serially coupled, and fine-scale simulations
817render closure relations for the coarser scale, such as the particle
818friction coefficient and particle stress (osmotic pressure). These
819closures are used in a mixture model (Vollebregt et al., 2010)
820describing shear-induced migration of food suspensions in frac-
821tionation applications such as beer microfiltration (van der Sman
822et al., 2012). Similar closure relations are derived for particle sus-
823pensions confined in microfluidic devices (van der Sman, 2010,
8242012), i.e. deterministic ratchets designed for fractionation of food
825suspensions (Kulrattanarak et al., 2011).
826Furthermore, the van der Sman group recently implemented a
827serially coupled multiscale model (Esveld et al., 2012a,b), which
828predicts the dynamics of moisture diffusion into cellular solid
829foods, following their earlier proposal for the multiscale frame-
830work for food structuring (van der Sman and Van der Goot,
8312008). They determined the characteristics of the air pores and
832their connectivity through 3-D image analysis of X-ray micro CT
833images and used this information to construct a discrete micro-
834scale network model. The model accounted for local diffusive va-
835por transport through the pores and moisture sorption in the
836lamellae. The characteristics of the network were volume averaged
837to a steady state vapor conductivity and a quasi-steady-state sorp-
838tion time constant. These parameters were incorporated into a
839macroscale model consisting of two coupled differential equations.
840The authors successfully predicted experimental dynamical mois-
841ture profiles of crackers with a fine and coarse morphology mea-
842sured by means of MRI.
843Guessasma et al. (2008, 2011) presented a multiscale model for
844mechanical properties of bakery products. They considered both an
845artificial foam generated by means of the random sequential addi-
846tion algorithm as well as X-ray micotomography images. The over-
847all elastic modulus was computed by assuming linear elastic
848properties of the solid phase, and a fair agreement with measured
849values was found.

8508. Future prospects

851Multiscale modeling of food processes is still at its infancy, and
852there are many problems to be solved yet.

8538.1. Scale separation

854Classical multiscale simulation methods, based on homogeniza-
855tion and/or localization, implicitly assume separations of time and
856length scales. If the size of the representative elementary volume
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857 at the fine scale is of the same order of magnitude as the character-
858 istic length of the coarse scale then the scales are not separated and
859 serial coupling is not possible. Whether this is relevant in food
860 materials and, if so, the numerical consequences it causes remain
861 to be investigated.

862 8.2. Homogenization methods

863 Coupling the different scales is not trivial. In most applications
864 so far homogenization has been done through numerical experi-
865 ments using serial coupling. Typically, boundary conditions that
866 mimic the conditions of the actual experiment are applied – often
867 a Dirichlet boundary condition in one direction and a zero flux
868 Neumann boundary condition in the other direction; however,
869 these boundary conditions are artificial and are only there because
870 the computational domain needs to be truncated and localized.
871 Yue and E (2007) found that the best results for elliptic problems
872 are obtained with periodic boundary conditions. To date it is also
873 still not possible to couple directly the nanoscale to the macroscale
874 of the food product. In foods the micro/mesoscale level is very
875 important, because this is the length scale of the dispersed phases
876 which determine the food structure/texture. At this length scale
877 the physics of foods is very rich, but quite unexplored (Donald,
878 1994; Mezzenga et al., 2005; Ubbink et al., 2008; van der Sman
879 and Van der Goot, 2008). Only since two decades, computational
880 physicists have been able to simulate this intermediate level
881 thanks to the development of mesoscale simulation techniques
882 (Chen and Doolen, 1998; Groot and Warren, 1997). For food appli-
883 cations it has been rarely used, except for the Lattice Boltzmann
884 method, which has been used by van der Sman and coworkers
885 (Kromkamp et al., 2005; van der Graaf et al., 2006; van der Sman,
886 1999, 2007b, 2009; van der Sman and Ernst, 2000), and the Dissi-
887 pative Particle Dynamics method, which has been used by Dickin-
888 son and coworkers (Whittle and Dickinson, 2001) and by Groot and
889 coworkers (Groot, 2003, 2004; Groot and Stoyanov, 2010). The
890 main hurdle for the development of mesoscale simulation methods
891 is to bridge the continuum (Eulerian) description of the fluid
892 dynamics with the particulate (Lagrangian) description of the dis-
893 persed phases. The Lattice Boltzmannmethod has shown to be par-
894 ticular successful in this respect, viewing the thousands of citations
895 of the method in the ISI database.
896 Parallel multiscale methods are also thought to be very useful
897 for food science, albeit that full blown parallel micro–macro multi-
898 scale simulations like the HMM method (E et al., 2007) are compu-
899 tationally challenging to implement. We believe that such
900 simulations are particular useful for applications involving the
901 structuring of foods via phase transitions as occurs during inten-
902 sive heating (frying, baking, puffing) or freezing. Such a multiscale
903 model has been developed already quite early (Alavi et al., 2003),
904 to describe bubble formation in extruded starchy foods.

905 8.3. Statistical considerations

906 The selection of the computational domain in the serial method
907 is very important. As outlined before, statistical techniques can be
908 used to calculate the size of the representative elementary volume
909 that can be used as the computational domain. However, the struc-
910 tural heterogeneity is not necessarily stationary and may vary
911 within the computational domain of the coarse model. It is impor-
912 tant to repeat calculations of apparent material properties on sev-
913 eral geometrical models of the fine scale and analyze them
914 statistically (see Ho et al., 2011, for an example).
915 In many applications the structure of the fine scale is in fact ran-
916 dom; for example, apple parenchyma cells have random shapes
917 and dimensions. In view of serial upscaling methods, this implies
918 that the corresponding apparent material property is a random

919field – a quantity that fluctuates randomly in space. In this case
920stochastic finite element methods can be used to compute the
921propagation of these random fluctuations through the governing
922equation. Perturbation methods have been used as a cheap alterna-
923tive to Monte Carlo simulations; they can be considered as a sto-
924chastic equivalent of formal mathematical averaging and
925homogenization methods (Pavliotis and Stuart, 2008). Applications
926in food engineering have been described by Nicolaï et al. (1997,
9271998, 2000 and Scheerlinck et al. (2000). The relationship between
928random structure at the fine scale and random apparent properties
929has not been investigated yet, and more research is required.

9308.4. Required resolution

931A fundamental question about multiscale modeling is how deep
932we have to dive into the multiscale structure of the food material.
933This depends on the answers we seek. If we use multiscale model-
934ing to predict food parameters, the finest level we need to resolve
935is that where the material properties become physical properties
936that are sufficiently generic, available in the literature, or easily
937measureable. However, as our understanding of the fine structure
938of food materials is ever increasing, the required resolution of
939the multiscale model is also likely to increase. For example, a mod-
940el for water transport in apple would incorporate at the nanoscale
941the permeability of the phosopholipid bilayer membrane of the
942cell. However, membranes contain specialized proteins, called aqu-
943aporins, to facilitate water transport; not only are there different
944types of aquaporins, their density in the membrane is also variable.
945So, either we need to measure the permeability of the particular
946membranes we are interested in, or we need to compute water
947transport during the aquaporins using molecular dynamics tech-
948niques. Unfortunately, measurements of physical properties and
949geometrical features become increasingly more difficult at smaller
950scales. Also, the smaller the scale, the more features will likely af-
951fect the processes that are investigated. Clearly, the finest scale
952that one chooses to model will always be a compromise between
953accuracy and complexity; understanding food processes will re-
954quire a finer resolution than the computation of material
955properties.

9568.5. Food structuring processes

957The emphasis of this review has been on predicting food mate-
958rial properties. But an equally important potential application of
959multiscale simulation is for the prediction of food structuring or
960texturing processes (van der Sman and Van der Goot, 2008). Dur-
961ing these processes one manipulates or creates dispersed phases,
962frequently via phase transitions like boiling or freezing as in bak-
963ing. This process requires a description of the evolution of the dis-
964persed phase at the meso/microscale. The structuring process is
965driven by applied external fields, like temperature and moisture
966gradients, or shearing flows. Hence, this requires a parallel/concur-
967rent coupling between the macroscale and micro/mesoscale. Note
968that this coupling is two-way, the dispersed phases evolve to the
969local value of the macroscopic fields, but they can change material
970properties like porosity and thus thermal conductivity – which
971changes the penetration of the applied external fields into the
972food. One example of such a multiscale model is by Alavi et al.
973(2003), describing the expansion of a food snack, where the evolu-
974tion of a bubble is described by a cell model. A similar model was
975applied recently (van der Sman and Broeze, 2011) to indirectly ex-
976panded snacks – where a proper thermodynamic description of the
977phase transitions of starch was used (van der Sman and Meinders,
9782010).
979Advancement in this field can be quite hindered by the lack of
980knowledge of the physics at the mesoscale, which requires proper
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981 coupling of thermodynamics to transport processes like flow, heat
982 and mass transfer at the mesoscale. An example of such a coupling
983 is shown by van der Sman and van der Graaf (2006) for a surfactant
984 stabilized emulsion droplet. In real foods the stabilization of dis-
985 persed phases is done by a mixture of components from a large col-
986 lection of phospholipids, particulates, fat crystals, proteins and
987 surfactants. One can imagine the challenge we face in the physics
988 at the mesoscale.

989 8.6. Food process design and control

990 Multiscale models by their very nature can potentially provide a
991 more accurate description of how foods change during processing
992 operations. It is, therefore, reasonable to expect that they will be
993 used increasingly for food process design purposes to manipulate
994 food quality attributes at a much better spatial resolution than cur-
995 rently possible. The much higher computational burden, though,
996 has limited the use of multiscale models for food process design
997 so far. This is even more so in process control applications where
998 typically models of limited complexity are required. In this case
999 formal model reduction techniques such as Galerkin projection

1000 methods (Balsa-Canto et al., 2004) could be applied to obtain a
1001 model of reduced complexity suitable for controller design. Exam-
1002 ples yet have to appear in the literature.

1003 9. Conclusions

1004 Multiscale modeling is a new paradigm for analyzing and
1005 designing food processes. Its main advantage is that it can be used
1006 for calculating material properties of foods – one of the major hur-
1007 dles that prevent widespread use of modeling in food process de-
1008 sign and engineering, but also to establish constitutive equations.
1009 It also provides means to understand how food properties at the
1010 macroscale are affected through processing by properties and geo-
1011 metrical features at the microscale and beyond, but also enables to
1012 translate macroscale behavior into changes happening at the
1013 microscale. Once such relationships are known, they can be used
1014 for food structural engineering – designing the food at the micro-
1015 scale so that it has desirable functional and quality attributes at
1016 the macroscale (Aguilera, 2005; Guessasma et al., 2011). In other
1017 fields of research such as materials engineering, multiscale model-
1018 ing is becoming a mainstream methodology for tailoring or cus-
1019 tomizing the microstructure of materials to obtain specific
1020 properties (e.g., Ghosh and Dimiduk, 2010; Kenney and Karan,
1021 2007). Perspectives for foods applications are given by Aguilera
1022 (2005) and include aerating foams, both solid (e.g., bread) and li-
1023 quid (e.g., whipped cream); entrapment of water droplets in food
1024 products, e.g. for mayonnaises or processed cheese (Heertje et al.,
1025 1999); and molecular gastronomy. The main hurdle seems to be
1026 our lack of understanding of the physics of foods at the microscale
1027 and beyond, and more research is definitely required in this area.
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