Order parameter for images of structured arrays

Adhemar Bultheel

Department of Computer Science K.U.Leuven

Forrest Kaatz

Mesalands Community College, Tucumcari, NM

Sparse modelling and multi-exponential analysis, Schloss Dagstuhl (DE), 14-19 June 2015

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

Why is it not as simple as it seems?

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

- ► hexagonal wax cells
- ▶ 'perfect' = only few % deviation
- ► artificial comb
- irregular in transition worker-drone brood

- ▶ hexagonal wax cells
- ► 'perfect' = only few % deviation
- ► artificial comb
- ▶ irregular in transition worker-drone brood

- ► hexagonal wax cells
- ► 'perfect' = only few % deviation
- ▶ artificial comb
- ▶ irregular in transition worker-drone brood

- ► hexagonal wax cells
- ► 'perfect' = only few % deviation
- ▶ artificial comb
- ▶ irregular in transition worker-drone brood

- mimic nature (insects and plants)
- ▶ to create hydrophobic surfaces
- cylinders or cones catch air repelling water

- mimic nature (insects and plants)
- ► to create hydrophobic surfaces
 - cylinders or cones catch air repelling water

- mimic nature (insects and plants)
- ► to create hydrophobic surfaces
- cylinders or cones catch air repelling water

structured or not

Nanowires and pyramids in solar cells

- ► catch more solar energy
- can be structured or not

Nanowires and pyramids in solar cells

- ► catch more solar energy
- ► can be structured or not

- ▶ like a membrane with holes
- can analyse DNA, detect biomarkers
- cylinders but cones are better
- structured or not

- ▶ like a membrane with holes
- ► can analyse DNA, detect biomarkers
- cylinders but cones are better
- structured or not

- ▶ like a membrane with holes
- ► can analyse DNA, detect biomarkers
- cylinders but cones are better
- structured or not

- ▶ like a membrane with holes
- can analyse DNA, detect biomarkers
- cylinders but cones are better
- structured or not

Several techniques for nanolithography

colloidal, plasmonic, nanosphere,... technologies used in nanolithography to produce several (regular) patterns at (micro or) nano scale

both in arrangement and/or in form of the grains

How much does it deviate from the perfect structure

Several techniques for nanolithography

colloidal, plasmonic, nanosphere,... technologies used in nanolithography to produce several (regular) patterns at (micro or) nano scale

both in arrangement and/or in form of the grains

How much does it deviate from the perfect structure

Several techniques for nanolithography

colloidal, plasmonic, nanosphere,... technologies used in nanolithography to produce several (regular) patterns at (micro or) nano scale

both in arrangement and/or in form of the grains

How much does it deviate from the perfect structure?

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

Software (and companies) exist to do image analysis of pore images to compute e.g.

- ▶ diameter, max & min axis, centroid of pores
- statistics about the above and pore density
- **...**

Software (and companies) exist to do image analysis of pore images to compute e.g.

- ▶ diameter, max & min axis, centroid of pores
- statistics about the above and pore density

...

Software (and companies) exist to do image analysis of pore images to compute e.g.

- ▶ diameter, max & min axis, centroid of pores
- statistics about the above and pore density
- ▶ ..

Software (and companies) exist to do image analysis of pore images to compute e.g.

- ▶ diameter, max & min axis, centroid of pores
- statistics about the above and pore density
- **.**..

but that does not say much about the structure

- ▶ nearest neighbor @ 1
- next nearest neighbor $\sqrt{3}$
- next nearest neighbor @ 2
- ► next nearest neighbor @ √
- ► next nearest neighbor @ 3

- (6 pores)
- (6 pores
 - 6 pores
- (12 pores)
 - (6 pores)

...

- ▶ nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $@\sqrt{3}$ (6 pores)
- ▶ next nearest neighbor @ 2
- ▶ next nearest neighbor @ 3 (6 po
- ▶ ...

- ▶ nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $0\sqrt{3}$ (6 pores)
- ▶ next nearest neighbor @ 2 (6 pores)
- next nearest neighbor $\sqrt{7}$
- ▶ next nearest neighbor @ 3 (6 pores

- ▶ nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $@\sqrt{3}$ (6 pores)
- ► next nearest neighbor @ 2 (6 pores)
- next nearest neighbor $@\sqrt{7}$ (12 pores)
- ► next nearest neighbor @ 3 (6 pores
- **...**

- ▶ nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $@\sqrt{3}$ (6 pores)
- ► next nearest neighbor @ 2 (6 pores)
- next nearest neighbor $@\sqrt{7}$ (12 pores)
- ► next nearest neighbor @ 3 (6 pores)

- ▶ nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $@\sqrt{3}$ (6 pores)
- ► next nearest neighbor @ 2 (6 pores)
- next nearest neighbor $@\sqrt{7}$ (12 pores)
- ► next nearest neighbor @ 3 (6 pores)
- ▶ ..

- ▶ nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $0\sqrt{3}$ (6 pores)
- ► next nearest neighbor @ 2 (6 pores)
- next nearest neighbor $@\sqrt{7}$ (12 pores)
- ► next nearest neighbor @ 3 (6 pores)

...

Repeat for every pore and average \Rightarrow

1	$\sqrt{3}$	2	$\sqrt{7}$	3	
6	6	6	12	6	

- nearest neighbor @ 1 (6 pores)
- ▶ next nearest neighbor $@\sqrt{3}$ (6 pores)
- ▶ next nearest neighbor @ 2 (6 pores)
- next nearest neighbor $0\sqrt{7}$ (12 pores)
- ▶ next nearest neighbor @ 3 (6 pores)

..

Repeat for every pore and average \Rightarrow

1	$\sqrt{3}$	2	$\sqrt{7}$	3	
6	6	6	12	6	

Non-perfect lattice: distributions with peaks at $1, \sqrt{3}, 2, \sqrt{7}, 3, \dots$

- Smooth by fitting with sum of 8 Gaussians = $\rho(x)$ and integrate: $I\{\rho\} = \int_{0.02}^{4.1} \rho(x) dx \approx \text{(trap rule)}$ $T\{\rho\} = h \sum_{r=1}^{205} \rho(kh), h = 0.02$
- Take out narrow part of the Gaussians at the ideal positions $\mathcal{P} = \{1, \sqrt{3}, 2, ..., 4\}$: $P = 3h \sum_{r \in \mathcal{P}} \rho(r)$
- compute the difference: $\Delta = T\rho P$
- ▶ Use this to produce $OP_3 = 1 \frac{\Delta}{T_o} \in [0, 1].$

- Smooth by fitting with sum of 8 Gaussians = $\rho(x)$ and integrate: $I\{\rho\} = \int_{0.02}^{4.1} \rho(x) dx \approx \text{(trap rule)}$ $T\{\rho\} = h \sum_{r=1}^{205} \rho(kh), h = 0.02$
- ► Take out narrow part of the Gaussians at the ideal positions $\mathcal{P} = \{1, \sqrt{3}, 2, ..., 4\}$: $P = 3h \sum_{r \in \mathcal{P}} \rho(r)$
- compute the difference: $\Delta = T \rho P$
- ► Use this to produce $OP_3 = 1 \frac{\Delta}{T_0} \in [0, 1],$

- Smooth by fitting with sum of 8 Gaussians = $\rho(x)$ and integrate: $I\{\rho\} = \int_{0.02}^{4.1} \rho(x) dx \approx \text{(trap rule)}$ $T\{\rho\} = h \sum_{r=1}^{205} \rho(kh), h = 0.02$
- ► Take out narrow part of the Gaussians at the ideal positions $\mathcal{P} = \{1, \sqrt{3}, 2, ..., 4\}$: $P = 3h \sum_{r \in \mathcal{P}} \rho(r)$
- compute the difference:
 - $\Delta = T\rho P$
 - Use this to produce $OP_3 = 1 \frac{\Delta}{T_\rho} \in [0, 1]$

- Smooth by fitting with sum of 8 Gaussians = $\rho(x)$ and integrate: $I\{\rho\} = \int_{0.02}^{4.1} \rho(x) dx \approx \text{(trap rule)}$ $T\{\rho\} = h \sum_{r=1}^{205} \rho(kh), h = 0.02$
- ► Take out narrow part of the Gaussians at the ideal positions $\mathcal{P} = \{1, \sqrt{3}, 2, ..., 4\}$: $P = 3h \sum_{r \in \mathcal{P}} \rho(r)$
- compute the difference:
 - $\Delta = T\rho P$
- Use this to produce $OP_3 = 1 \frac{\Delta}{T_o} \in [0, 1],$

Bee comb example

One of the examples

Pores and other arrays

What goes for hexagonal arrays goes for other arrays

hexagonal								
1	$\sqrt{3}$	2	$\sqrt{7}$	3	$\sqrt{12}$	$\sqrt{13}$	4	
6	6	6	12	6	6	12	6	
square								
1	$\sqrt{2}$	2	$\sqrt{5}$	$\sqrt{8}$	3	$\sqrt{10}$	$\sqrt{13}$	
4	4	4	8	4	4	8	8	
triangular								
1	$\sqrt{3}$	2	$\sqrt{7}$	3	$\sqrt{12}$	$\sqrt{13}$	4	
3	6	3	6	6	6	6	3	

Functional Material

Sun 2004

PDF $OP_3 = 0.598$

CoPolymers

Kim 2004

PDF $OP_3 = 0.242$

Nanosphere Lithography

Summary

- Motivation honeycombs, nano arrays
- ► Image processing approach
- ► FFT approach & Problems

Take 2D FFT of the image

- ▶ Now get about the same info in 2D form for whole pic
- ▶ Don't need to repeat this for each pore
- Can we use the same technique?
- Here is what happens if the pores deviate from perfection

- ▶ Now get about the same info in 2D form for whole pic
- ► Don't need to repeat this for each pore
- Can we use the same technique?
- ▶ Here is what happens if the pores deviate from perfection

- ▶ Now get about the same info in 2D form for whole pic
- ► Don't need to repeat this for each pore
- ► Can we use the same technique?
- ► Here is what happens if the pores deviate from perfection

- ▶ Now get about the same info in 2D form for whole pic
- ► Don't need to repeat this for each pore
- Can we use the same technique?
- ▶ Here is what happens if the pores deviate from perfection

- Consider only the central disk.
- ▶ Divide disk in concentric rings and compute average height/ring
- Surprise ...
- ► The x and y directions do not have the same scale for hexagona
- ► After correction

- Consider only the central disk.
- ▶ Divide disk in concentric rings and compute average height/ring
- ► Surprise ...
- ► The x and y directions do not have the same scale for hexagonal
- ► After correction

- Consider only the central disk.
- ▶ Divide disk in concentric rings and compute average height/ring
- ► Surprise ...
- ► The x and y directions do not have the same scale for hexagonal
- ► After correction

- Consider only the central disk.
- ▶ Divide disk in concentric rings and compute average height/ring
- ► Surprise ...
- ► The x and y directions do not have the same scale for hexagonal
- After correction

- Consider only the central disk.
- ▶ Divide disk in concentric rings and compute average height/ring
- ► Surprise ...
- ► The x and y directions do not have the same scale for hexagonal
- ► After correction

noiseless:

and after adding noise:

- ▶ Fitting a sum of Gaussians is tricky
- The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- Look for an alternative
- Idea is: Peaks represent structure; the rest is noise
- ► How to identify peaks?

- ► Fitting a sum of Gaussians is tricky
- ▶ The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- Look for an alternative
- Idea is: Peaks represent structure; the rest is noise
- ► How to identify peaks?

- ► Fitting a sum of Gaussians is tricky
- The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- Look for an alternative
- Idea is: Peaks represent structure; the rest is noise
- ► How to identify peaks?

- ► Fitting a sum of Gaussians is tricky
- The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- Look for an alternative
- ▶ Idea is: Peaks represent structure; the rest is noise
- ► How to identify peaks?

Radial distribution

However

- ► Fitting a sum of Gaussians is tricky
- The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- Look for an alternative
- ▶ Idea is: Peaks represent structure; the rest is noise
- How to identify peaks?

Radial distribution

However

- ► Fitting a sum of Gaussians is tricky
- The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- Look for an alternative
- ▶ Idea is: Peaks represent structure; the rest is noise
- How to identify peaks?

Radial distribution

However

- ► Fitting a sum of Gaussians is tricky
- The first peak is clear, the others are not so clear
- Consider only the peaks nearest to the center
- ► The 'perfect' images gives 'more' than peaks
- ▶ Look for an alternative
- ▶ Idea is: Peaks represent structure; the rest is noise
- ► How to identify peaks?

However

- ► Take the ratio of the red integral (=sum) over the blue one
- ightharpoonup Order Parameter OP = 1 red/blue.
- ▶ In practice resolution is much lower

However

- ► Take the ratio of the red integral (=sum) over the blue one
- ► Order Parameter OP = 1 red/blue.
- ▶ In practice resolution is much lower

However

- ► Take the ratio of the red integral (=sum) over the blue one
- ▶ Order Parameter $OP = 1 \frac{\text{red}}{\text{blue}}$.
- ► In practice resolution is much lower

However

- ► Take the ratio of the red integral (=sum) over the blue one
- ▶ Order Parameter $OP = 1 \frac{\text{red}}{\text{blue}}$.
- ▶ In practice resolution is much lower

Hexagonal

► Repeat for different grain sizes and different perturbations

- ▶ Depends somewhat on grain size
- ► More reliable for small perturbations

Hexagonal

▶ Repeat for different grain sizes and different perturbations

- ► Depends somewhat on grain size
- ► More reliable for small perturbations

Hexagonal

► Repeat for different grain sizes and different perturbations

- ► Depends somewhat on grain size
- ► More reliable for small perturbations

Square

Triangular

990

Example no structure

Peaks do not represent 4 or 6 directional structure.

Example is chaotic, but distance between centers is almost constant in all directions. Hence FFT looks like

Example no structure

Peaks do not represent 4 or 6 directional structure.

Example is chaotic, but distance between centers is almost constant in all directions. Hence FFT looks like

hence much energy comes from the peaks again.

Example no structure

The selection of the disk is very important

If the disk is larger, then more small values enter. Hence the average is smaller.

'By definition': peak = higher than $3 \times \text{average}$ Hence remove also many high values that are not isolated peaks. Thus all energy comes from the 'peaks' = highly structured.

Two strategies

What is defined to be a peak?

Either take average over disk and define peak everything in the disk that is higher than $3 \times$ the average.

Or divide disk into concentric rings en compute per ring the average and define peak within that ring as everything higher than $3\,\times$ the average over that ring

Then def peak, hence OP less depending on the size of the disk.

Two OP values: depending on disk avg or ring avg.

Practical examples

Practical examples

Not structured examples

Still problems: requires fine tuning

- ► Depends on form of the grains and grain size
- All grains assumed same size and all disks
- ▶ Very sensitive to selection of the relevant disk in FFT plane
 - ▷ nearest peaks radius depends on distance between grain centers
 - □ averages over disk/ring define what is a peak
 - ▶ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- Does not really detect 4 or 6-fold symmetry
- Small variation depending on resolution of radial distributions

Still problems: requires fine tuning

- ▶ Depends on form of the grains and grain size
- ► All grains assumed same size and all disks
- Very sensitive to selection of the relevant disk in FFT plane
 - nearest peaks radius depends on distance between grain centers
 - ▷ averages over disk/ring define what is a peak
 - ▶ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- Does not really detect 4 or 6-fold symmetry
- Small variation depending on resolution of radial distributions
- ...

Still problems: requires fine tuning

- ► Depends on form of the grains and grain size
- All grains assumed same size and all disks
- Very sensitive to selection of the relevant disk in FFT plane
 ▷ nearest peaks radius depends on distance between grain centers
 ▷ averages over disk/ring define what is a peak
 ▷ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- ▶ Does not really detect 4 or 6-fold symmetry
- Small variation depending on resolution of radial distributions
- · ...

Still problems: requires fine tuning

- ► Depends on form of the grains and grain size
- ► All grains assumed same size and all disks
- Very sensitive to selection of the relevant disk in FFT plane
 ▷ nearest peaks radius depends on distance between grain centers
 ▷ averages over disk/ring define what is a peak
 ▷ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- Does not really detect 4 or 6-fold symmetry
- ► Small variation depending on resolution of radial distributions
- **...**

Still problems: requires fine tuning

- ► Depends on form of the grains and grain size
- All grains assumed same size and all disks
- Very sensitive to selection of the relevant disk in FFT plane
 ▷ nearest peaks radius depends on distance between grain centers
 ▷ averages over disk/ring define what is a peak
 ▷ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- ➤ Does not really detect 4 or 6-fold symmetry
- Small variation depending on resolution of radial distributions

Still problems: requires fine tuning

- ► Depends on form of the grains and grain size
- All grains assumed same size and all disks
- Very sensitive to selection of the relevant disk in FFT plane
 ▷ nearest peaks radius depends on distance between grain centers
 ▷ averages over disk/ring define what is a peak
 ▷ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- ▶ Does not really detect 4 or 6-fold symmetry
- Small variation depending on resolution of radial distributions

Still problems: requires fine tuning

- ► Depends on form of the grains and grain size
- All grains assumed same size and all disks
- Very sensitive to selection of the relevant disk in FFT plane
 ▷ nearest peaks radius depends on distance between grain centers
 ▷ averages over disk/ring define what is a peak
 ▷ hence what is structure and what is not, hence the OP
- Unreliable when peaks drown in noise peaks
- ▶ Does not really detect 4 or 6-fold symmetry
- Small variation depending on resolution of radial distributions
- **...**