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nanolithography to produce several (regular) patterns

at (micro or) nano scale
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both in arrangement and/or in form of the grains

How much does it deviate from the perfect structure ?
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Honeycomb examples

RDF of three honeycomb examples vs ideal RDF
I Smooth by fitting with sum of 8

Gaussians = ρ(x) and integrate:
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0.02
ρ(x)dx ≈ (trap rule)

T{ρ} = h
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r=1 ρ(kh), h = 0.02

I Take out narrow part of the
Gaussians at the ideal positions
P = {1,

√
3, 2, ..., 4}:

P = 3h
∑

r∈P ρ(r)

I compute the difference:
∆ = Tρ− P

I Use this to produce
OP3 = 1− ∆

Tρ ∈ [0, 1],

Kaatz,B,Egami, Naturwissenschaften, 2008
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Bee comb example

One of the examples



Pores and other arrays

What goes for hexagonal arrays goes for other arrays

hexagonal

1
√

3 2
√

7 3
√
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13 4 · · ·
6 6 6 12 6 6 12 6 · · ·

square
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5
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Functional Material

Kaatz,B,Egami, J. Materials Science, 2009



CoPolymers

Kaatz,B,Egami, J. Materials Science, 2009



Nanosphere Lithography

Kaatz,B,Egami, J. Materials Science, 2009
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I In practice resolution is much lower



Radial distribution alternative

However

I Alternative = remove the peaks in 2D and recompute new average
blue = with peaks, red = without peaks
peak = anything sticking above 3 × average in 2D disk

no noise noisy

I Take the ratio of the red integral (=sum) over the blue one

I Order Parameter OP = 1 - red/blue.

I In practice resolution is much lower



Radial distribution alternative

However

I Alternative = remove the peaks in 2D and recompute new average
blue = with peaks, red = without peaks
peak = anything sticking above 3 × average in 2D disk

no noise noisy

I Take the ratio of the red integral (=sum) over the blue one

I Order Parameter OP = 1 - red/blue.

I In practice resolution is much lower



Radial distribution alternative

However

I Alternative = remove the peaks in 2D and recompute new average
blue = with peaks, red = without peaks
peak = anything sticking above 3 × average in 2D disk

no noise noisy

I Take the ratio of the red integral (=sum) over the blue one

I Order Parameter OP = 1 - red/blue.

I In practice resolution is much lower



Radial distribution alternative

For different grain sizes and different perturbations
0% 10% 30%



Radial distribution alternative

Hexagonal

I Repeat for different grain sizes and different perturbations

I Depends somewhat on grain size

I More reliable for small perturbations



Radial distribution alternative

Hexagonal

I Repeat for different grain sizes and different perturbations

I Depends somewhat on grain size

I More reliable for small perturbations



Radial distribution alternative

Hexagonal

I Repeat for different grain sizes and different perturbations

I Depends somewhat on grain size

I More reliable for small perturbations



Radial distribution alternative

Square

Triangular



Radial distribution alternative

0% OP=0.5147 10% OP=0.2042 30% OP=0.0257
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Peaks do not represent 4 or 6 directional
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Example is chaotic, but distance between
centers is almost constant in all direc-
tions. Hence FFT looks like

hence much energy comes from the
peaks again.
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Example no structure

The selection of the disk is very important

OP = 0.08/0.01 OP = 0.58

If the disk is larger, then more small values enter.
Hence the average is smaller.

‘By definition’: peak = higher than 3 × average
Hence remove also many high values that are not isolated peaks.

Thus all energy comes from the ‘peaks’ = highly structured.



Two strategies

What is defined to be a peak?

Either take average over disk and define peak everything in the
disk that is higher than 3 × the average.

Or divide disk into concentric rings en compute per ring the
average and define peak within that ring as everything higher than

3 × the average over that ring

Then def peak, hence OP less depending on the size of the disk.

Two OP values: depending on disk avg or ring avg.



Practical examples

OP=0.23/0.18 OP=0.19/0.23 OP=0.15/0.06

OP=0.09/0.05 OP=0.14/0.12 OP=0.14/0.11



Practical examples

OP=0.49/0.36 OP=0.14/0.11 OP=0.02/0.00

OP=0.27/0.29 OP=0.03/0.02 OP=0.07/0.02



Not structured examples

OP=0.00/0.00 OP=0.05/0.01



Radial distribution alternative

Still problems: requires fine tuning

I Depends on form of the grains and grain size

I All grains assumed same size and all disks

I Very sensitive to selection of the relevant disk in FFT plane
. nearest peaks radius depends on distance between grain centers
. averages over disk/ring define what is a peak
. hence what is structure and what is not, hence the OP

I Unreliable when peaks drown in noise peaks

I Does not really detect 4 or 6-fold symmetry

I Small variation depending on resolution of radial distributions

I ...

There is some potential for
comparing a set of similar images

with small perturbations
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