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SUMMARY

This paper discusses the coupling of finite element and fast boundary element methods for the solution
of dynamic soil–structure interaction problems in the frequency domain. The application of hierarchical
matrices in the boundary element formulation allows considering much larger problems compared to
classical methods. Three coupling methodologies are presented and their computational performance is
assessed through numerical examples. It is demonstrated that the use of hierarchical matrices renders a
direct coupling approach the least efficient, as it requires the assembly of a dynamic soil stiffness matrix.
Iterative solution procedures are presented as well, and it is shown that the application of such schemes
to dynamic soil–structure interaction problems in the frequency domain is not trivial, as convergence can

hardly be achieved if no relaxation procedure is incorporated. Aitken’s ∆2-method is therefore employed
in sequential iterative schemes for the calculation of an optimized interface relaxation parameter, while a
novel relaxation technique is proposed for parallel iterative algorithms. It is demonstrated that the efficiency
of these algorithms strongly depends on the boundary conditions applied to each subdomain; the fastest
convergence is observed if Neumann boundary conditions are imposed on the stiffest subdomain. The use
of a dedicated solver for each subdomain hence results in a reduced computational effort. A monolithic
coupling strategy, often used for the solution of fluid–structure interaction problems, is also introduced.
The governing equations are simultaneously solved in this approach, while the assembly of a dynamic soil
stiffness matrix is avoided.
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1. INTRODUCTION

The numerical solution of three–dimensional (3D) dynamic soil–structure interaction (SSI)

problems is a challenging task [1]. A domain decomposition approach is often introduced in

numerical models, allowing for the application of different numerical techniques for the soil and

the structure. The coupled finite element – boundary element (FE–BE) method is a well–known

approach, in which the FE method allows to model structures with complex geometries while the

BE method enables accounting for the radiation of waves in domains of (semi–)infinite extent.

The complementarity of both methods can either be exploited in the time [2] or in the frequency

domain [3].

In the past decades, a lot of attention has been paid to the development of efficient algorithms

for the coupling of FE and BE models [4, 5, 6]. Direct and iterative coupling methodologies

are generally distinguished. Furthermore, a distinction between conforming or non–conforming

interface discretizations is made, where the coupling conditions are either imposed in a strong or
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weak sense. The latter allow for independent mesh sizes for each subdomain. FE–BE coupling

algorithms for elastostatics are discussed, among others, by Elleithy et al. [7] and Margonari et

al. [8], while Rüberg et al. [9] present an algorithm for time domain elastodynamics using non-

conforming interfaces where the coupling conditions are incorporated in a weak sense by means of

Lagrange multipliers.

The applicability of classical BE formulations to large scale problems is hindered by stringent

memory and CPU requirements resulting from dense, fully populated unsymmetric matrices. This

has led to the development of fast BE methods to improve the computational efficiency, including the

fast multipole method (FMM) [10] and methods based on hierarchical matrices (H –matrices) [11],

which allow increasing the problem size compared to classical BE formulations. Recently, a H -BE

method for visco–elastodynamics in the frequency domain incorporating Green’s functions for a

horizontally layered halfspace has been presented [12]. These Green’s functions are computed by

means of the direct stiffness method [13, 14], as no closed form analytical expressions are available;

their application avoids meshing of the free surface and layer interfaces to model wave propagation

in a stratified medium.

The application of H –matrices in BE formulations affects the efficiency of FE–BE coupling

algorithms. This paper therefore aims to present suitable FE–H -BE coupling procedures for the

solution of dynamic SSI problems and to compare their computational performance. Throughout

this paper, non–overlapping domains with conforming interface meshes are considered and

all methods are formulated in the frequency domain. Three different FE–H -BE coupling

methodologies are discussed. First, a classical direct coupling strategy is introduced, which

requires the assembly of a dynamic soil stiffness matrix to obtain a global set of coupled

equations. Next, iterative algorithms are presented; the governing equations are solved separately

for each subdomain, while the boundary conditions at the soil–structure interface are updated until

convergence is achieved. Sequential (Neumann–Dirichlet, Dirichlet–Neumann) as well as parallel

(Neumann–Neumann, Dirichlet–Dirichlet) algorithms are considered. The application of iterative

schemes to dynamic SSI problems in the frequency domain has only received limited attention

in the literature so far [15], as it is not easy to achieve convergence with these algorithms [16].

Special attention is therefore paid to optimized interface relaxation techniques in order to ensure

and/or speed up the convergence. For the sequential algorithms, Aitken’s ∆2–method [17] is

employed, while a novel relaxation technique is presented for the parallel iterative schemes. Finally,

a monolithic coupling approach is proposed, in which the governing equations of both subdomains

are solved simultaneously, while the assembly of a dynamic soil stiffness matrix is avoided.

Monolithic coupling schemes are often used to solve fluid–structure interaction problems [18, 19],

but their application to dynamic SSI problems is not common.

The text is organized as follows. Section 2 briefly summarizes the governing equations of the

FE and H -BE method. Three FE–H -BE coupling procedures are subsequently introduced in

section 3. Numerical examples are investigated in section 4 in order to verify these coupling

strategies and to assess their computational performance. This allows for the formulation of

guidelines concerning the choice of an appropriate coupling strategy for a specific dynamic SSI

problem. The applicability of coupled FE–H -BE methods to large scale problems is finally

demonstrated in section 5, where the wave impeding effect of a block of stiffened soil of finite

length embedded in a halfspace is investigated.

2. FINITE ELEMENT AND BOUNDARY ELEMENT METHODS

The governing equations of the FE and H -BE method are summarized in this section. It is assumed

that finite elements are used to model the structural domain Ωb, while boundary elements are

employed to model wave propagation in the surrounding soil domain Ωs. The domain Ωb represents

a generalized structure, comprising the actual structure and part of the soil domain, as depicted in

figure 1. The soil–structure interface is denoted as Σ.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



COUPLED FINITE ELEMENT – HIERARCHICAL BOUNDARY ELEMENT METHODS 3

Ωs

Σ

Ωb

Γbσ

t̂b(ω) ρbb̂(ω)
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Figure 1. Geometry of the subdomains: structural domain Ωb and soil domain Ωs.

2.1. Finite element formulation

Finite element equations of the domain Ωb are obtained by introducing a FE discretization in

the weak variational formulation of the equilibrium equations of Ωb (based on the principle of

virtual work) and subsequently applying a Galerkin procedure. This provides the following set of

equations [20]: [
Kb + iωCb − ω2Mb

]
ûb(ω) = f̂b(ω) + f̂

s

b(ω) (1)

where a hat above a variable denotes its representation in the frequency domain. ûb(ω) collects the

nodal degrees of freedom, while Kb, Cb, and Mb are the stiffness, damping, and mass matrices,

respectively. The bracketed term on the left hand side of equation (1) is identified as the dynamic

stiffness matrix K̂b(ω) = Kb + iωCb − ω2Mb of the structure. The force vector f̂b(ω) results from

the body forces ρbb̂(ω) on Ωb and the tractions t̂b(ω) on the boundary Γbσ, while f̂
s

b(ω) is due to

the incident wavefield ûi(ω) on Σ (figure 1). Adequate solvers which account for the sparsity and

symmetry of the system can be employed to solve equation (1).

2.2. Hierarchical boundary element formulation

The BE method is based on the discretization of the boundary Σ of a domain Ωs with an appropriate

number of boundary elements in order to numerically solve a boundary integral equation [21].

Throughout this paper, a regularized boundary integral equation is employed, in which the

evaluation of Cauchy principal value (CPV) integrals is avoided [21, 22, 23]. The regularization

procedure is based on the fact that the singularity of the static and dynamic Green’s functions at the

source point is similar. For an unbounded domain Ωs, the displacements û(ω) and tractions t̂(ω) at

the collocation points of the boundary Σ are related as follows:

[
T̂(ω) + I

]
û(ω) = Û(ω)t̂(ω) (2)

where T̂(ω) and Û(ω) are BE collocation matrices, while I represents a unit matrix, corresponding

to the integral free term in the boundary integral equation. The latter vanishes for a bounded domain.

The computation of T̂(ω) and Û(ω) requires integration of the Green’s tractions and displacements

over the boundary Σ, respectively. The integral representation theorem allows for the computation
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of the radiated wavefield in the soil ûs(ω) from the displacements and tractions on Σ. In order to

mitigate the occurrence of fictitious eigenfrequencies in the application of the BE method to external

wave propagation problems, the Combined Helmholtz Integral Equation Formulation (CHIEF)

proposed by Schenk [24] is employed.

The BE method leads to a reduction of the spatial problem dimension (i.e. surface instead of

volume discretization), but the storage of the fully populated matrices T̂(ω) and Û(ω) requires

a quadratic amount of memory with respect to the number of degrees of freedom NDOF, while

a cubic amount of numerical operations is needed to solve the corresponding equation (2) by

means of direct numerical solvers. The use of H –matrices provides an elegant way to treat fully

populated matrices with almost linear complexity [25], as they approximate the original matrices

(with an arbitrary prescribed accuracy) by means of memory efficient representations. The reader

is referred to the literature [11, 25, 26] for a comprehensive overview of fast BE methods based

on H –matrices. The construction of H –matrices is based on the identification of admissible

and inadmissible hierarchical cluster pairs in the BE mesh; the partially pivoted adaptive cross

approximation (ACA) algorithm [27, 28] is employed to compute low rank approximations of matrix

blocks corresponding to admissible cluster pairs. A major advantage of ACA is its purely algebraic

character, avoiding the need for (semi–)analytical expressions of the Green’s functions employed

in the BE formulation, which enables its application to problems involving elastodynamic wave

propagation in anisotropic [29] or layered [12] media. All BE calculations in the remainder of this

paper involve the application of H –matrices.

Assembling hierarchical approximations T̂H (ω) and ÛH (ω) of the BE collocation matrices

T̂(ω) and Û(ω), respectively, allows replacing the BE equation (2) by:

[
T̂H (ω) + I

]
û(ω) = ÛH (ω)t̂(ω) (3)

Equation (3) can be rewritten as:

ÂH (ω)x̂(ω) = b̂(ω) (4)

where the vector of unknowns x̂(ω) contains displacements, tractions or both, depending on

whether a Neumann, Dirichlet or mixed Neumann–Dirichlet problem is considered. In order to

solve equation (4), iterative Krylov subspace methods such as the generalized minimal residual

method (GMRES) [30] are well suited. The matrix–vector multiplication forms the core of iterative

solvers, and the complexity of this operation is only O(NDOF logNDOF) for H –matrices [26].

A tolerance of 10−6 is adopted in the iterative solver for the relative residual norm ||b̂(ω)−

ÂH (ω)x̂(ω)||/||b̂(ω)|| in all numerical examples presented in this paper.

As will be clarified in section 3, equation (4) has to be solved for multiple right hand sides b̂(ω)
in FE–H -BE coupling algorithms; the implementation of a suitable preconditioner is therefore

desirable to reduce the computation time. A right preconditioner M̂(ω) is used throughout this

paper in order to lower the condition number of the coefficient matrix ÂH (ω):

ÂH (ω)M̂−1(ω)ŷ(ω) = b̂(ω) (5)

with M̂(ω)x̂(ω) = ŷ(ω). An example of an efficient preconditioner is the approximate H –LU

decomposition [31]; its computation requires, however, additional arithmetic operations. A much

simpler strategy is applied in the present paper, following the approach recently adopted by Chaillat

et al. [32] for the acceleration of the fast multipole method for elastodynamics. A block diagonal

preconditioner M̂(ω) = blkdiag
(
ÂH (ω)

)
is employed, where the size of the diagonal blocks

is determined by the lowest hierarchical cluster level. An inner GMRES solver with a moderate

tolerance of 10−2 is applied to solve the preconditioning linear systems, resulting in a nested inner–

outer iteration scheme. Furthermore, the flexible GMRES (FGMRES) algorithm [33] is employed

for the outer iteration in order to avoid the explicit multiplication of M̂−1(ω) with the Krylov

vectors. As M̂(ω) is already computed and stored, the proposed approach is very cheap in terms

of computational resources.
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COUPLED FINITE ELEMENT – HIERARCHICAL BOUNDARY ELEMENT METHODS 5

3. FE–H -BE COUPLING PROCEDURES

Three procedures for the coupling of FE and H -BE models are outlined in this section. The

numerical verification and the assessment of the computational efficiency of these methods are

subsequently addressed in section 4.

3.1. Direct FE–H -BE coupling

In a classical direct coupling strategy [34], the governing equations of the FE and BE subdomain are

straightforwardly combined, accounting for continuity of displacements and equilibrium of tractions

at the soil–structure interface Σ. This results in a global coupled system of equations:

([
K̂b1b1

(ω) K̂b1b2
(ω)

K̂b2b1
(ω) K̂b2b2

(ω)

]
+

[
0 0

0 K̂s
b2b2

(ω)

]){
ûb1

(ω)
ûb2

(ω)

}
=

{
f̂b1

(ω)

f̂b2
(ω)

}
+

{
0

f̂
s

b2
(ω)

}
(6)

where a subdivision into block matrices according to internal degrees of freedom ûb1
(ω) in the

structural domain Ωb and degrees of freedom ûb2
(ω) on the soil–structure interface Σ is introduced

(figure 1). The corresponding number of degrees of freedom are indicated as ndof1 and ndof2 ,

respectively. K̂s
b2b2

(ω) represents the dynamic soil stiffness matrix and is defined as:

K̂s
b2b2

(ω) =

∫

Σ

NT
b2
(x)Nb2

(x)t̂(Nb2
(x))(ω) dS = Tq t̂(Nb2

(x))(ω) (7)

where Nb2
(x) indicates the FE shape functions on the soil–structure interface Σ, conforming with

the BE interpolation functions. The frequency independent matrix Tq =
∫
Σ
NT

b2
(x)Nb2

(x) dS links

the FE and BE discretizations. Both K̂s
b2b2

(ω) and Tq have dimensions (ndof2 × ndof2).
Although equation (6) provides a straightforward solution to the dynamic SSI problem, it suffers

some major drawbacks. Equation (7) requires the evaluation of tractions t̂(Nb2
(x))(ω) by means

of the H -BE method, which requires the solution of equation (5) for all shape functions Nb2
(x)

on Σ; the implemented FGMRES algorithm is only able to handle one right hand side at a time.

Furthermore, addition of the dense unsymmetric dynamic soil stiffness matrix K̂s
b2b2

(ω) to the

dynamic stiffness matrix of the structure strongly affects the sparsity of the system, reducing the

efficiency of sparse FE solvers. The numerical examples in section 4 will demonstrate that this

conventional approach, in which the dynamic soil stiffness matrix K̂s
b2b2

(ω) is explicitly evaluated,

does not provide an efficient solution procedure, especially for large problems.

The computational effort can be limited by considering a reduced kinematic basis for the

displacement vector ûb2
(ω) on the interface Σ through the introduction of a modal decomposition

ûb2
(ω) ≃ Ψb2

α̂(ω), where Ψb2
and α̂(ω) collect the mode shapes and the modal coordinates,

respectively [35]. This allows rewriting equation (6) in terms of modal coordinates α̂(ω), and only

a modal soil stiffness matrix ΨT
b2
K̂s

b2b2
(ω)Ψb2

with dimensions (nm2
× nm2

) has to be computed:

ΨT
b2
K̂s

b2b2
(ω)Ψb2

=

∫

Σ

(Nb2
(x)Ψb2

)
T
Nb2

(x)t̂(Nb2
(x)Ψb2

)(ω) dS (8)

As a result, equation (5) is only solved nm2
times for tractions t̂(Nb2

(x)Ψb2
)(ω); the number of

modes nm2
is generally much lower than the number of degrees of freedom ndof2 on the interface

Σ. Although a substantial reduction in computation time can be achieved compared to the use of

a full kinematic basis, the resulting modal soil stiffness matrix ΨT
b2
K̂s

b2b2
(ω)Ψb2

remains dense

and unsymmetric, consequently affecting the efficiency of sparse FE solvers. Furthermore, an

appropriate choice of the modes Ψb2
is required to obtain accurate results.

3.2. Iterative FE–H -BE coupling

Iterative coupling procedures provide a valuable alternative to the conventional direct strategy

outlined in the previous subsection. The governing equations are solved separately for each
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6 P. COULIER ET AL.

subdomain, while the boundary conditions at the soil–structure interface are updated until

convergence is achieved. This methodology avoids the assembly and solution of a global system

of coupled equations; it hence allows for the independent use of dedicated FE and H -BE solvers in

both subdomains. Iterative schemes are often used for dynamic SSI problems in the time domain to

allow for the use of different time discretization schemes in the FE and BE subdomains [2, 36, 37].

Their application in the frequency domain remains rather limited, however, especially due to

convergence difficulties [16]. Frequency domain iterative algorithms described in the literature

mainly involve acoustic–acoustic [38] and acoustic–elastodynamic [16] coupling; the iterative

coupling of FE and fast multipole BE models for visco–elastodynamics in the frequency domain

is discussed by Grasso [15].

Four different iterative algorithms for the coupling of FE and H -BE models are outlined in

the following subsections. These methodologies are denoted as sequential Neumann–Dirichlet or

Dirichlet–Neumann algorithms, and parallel Neumann–Neumann or Dirichlet–Dirichlet algorithms,

indicating which kind of boundary conditions are imposed on the FE and BE subdomain,

respectively.

3.2.1. Sequential Neumann–Dirichlet algorithm

At iteration step k of the sequential Neumann–Dirichlet procedure, the finite element subdomain

is analyzed with Neumann boundary conditions q̂k(ω) at the soil–structure interface Σ:

[
K̂b1b1

(ω) K̂b1b2
(ω)

K̂b2b1
(ω) K̂b2b2

(ω)

]{
û
k
b1
(ω)

û
k
b2
(ω)

}
=

{
f̂b1

(ω)

f̂b2
(ω)

}
+

{
0

f̂
s

b2
(ω)

}
+

{
0

q̂
k(ω)

}
(9)

where q̂
k(ω) denotes the soil–structure interaction forces. Solving equation (9) by means of a

standard finite element solver provides the internal and interface displacements ûk
b1
(ω) and û

k
b2
(ω).

The latter are subsequently imposed as Dirichlet boundary conditions on the boundary element

subdomain, allowing to solve the preconditioned equation (5) for the interface tractions t̂
k
(ω) using

the FGMRES solver. These tractions are used to calculate equivalent nodal forces ˜̂q
k+1

(ω):

˜̂q
k+1

(ω) = −

∫

Σ

NT
b2
(x)Nb2

(x)t̂
k
(ω) dS = −Tq t̂

k
(ω) (10)

where a tilde above a variable indicates an unrelaxed quantity. The interaction forces are finally

relaxed using an iteration dependent relaxation parameter λk:

q̂
k+1(ω) = λk ˜̂q

k+1
(ω) + (1− λk)q̂k(ω) (11)

Once the relaxed interaction forces q̂
k+1(ω) are computed, a subsequent step in the iterative

procedure is performed until convergence is obtained; an accuracy of 10−4 is prescribed for the

relative residual norms ||ûk+1
b2

(ω)− û
k
b2
(ω)||/||ûk+1

b2
(ω)|| and ||q̂k+1(ω)− q̂

k(ω)||/||q̂k+1(ω)|| of

the interface displacements and interaction forces, respectively.

The choice of a suitable relaxation parameter λk in equation (11) is of great importance in order

to ensure and/or speed up the convergence of the iterative algorithm. Constant relaxation parameters

are considered, among others, by Elleithy et al. [7, 39] for linear elastostatics, von Estorff et al. [2]

for transient elastodynamics, Hagen [40] for fluid–soil–structure interaction, and Grasso [15] for

visco–elastodynamics in the frequency domain. Convergence conditions have been established

[7, 39] and parametric studies have been performed to identify the optimal choice of a constant

relaxation parameter [2, 40]. Soares et al. [16] present an iterative procedure for the solution of fluid–

structure interaction problems in the frequency domain, in which an optimized relaxation parameter

is calculated in each iterative step by minimizing the square error functional of the interface fluxes.

In this paper, Aitken’s ∆2–method [17] is employed for the determination of an iteration

dependent relaxation parameter λk. This method provides a simple but efficient procedure to

determine λk, based on the results of two subsequent iterations. It is often applied in the iterative

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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COUPLED FINITE ELEMENT – HIERARCHICAL BOUNDARY ELEMENT METHODS 7

solution of fluid–structure interaction problems [41, 42] and has already been adopted for transient

elastodynamic problems [37]; its application to elastodynamic problems formulated in the frequency

domain is not common, however. The methodology is illustrated in figure 2b for a general iteration

process involving a variable x and a function f(x); the aim is to determine the solution x = f(x)
through subsequent evaluations of f(x). An unrelaxed estimation x̃k+1 = f(xk) is computed in

step k of the iterative procedure; if no relaxation is applied (i.e. λk ≡ 1), the new approximation

of x yields xk+1 = x̃k+1 (cfr. equation (11)). This is illustrated in figure 2a. Application of this

procedure would result in a staircase iteration path to the solution. In Aitken’s ∆2–method, however,

the estimation x̃k+1 = f(xk) is combined with the result of the previous iteration step k − 1, which

allows for the determination of the new approximation xk+1 as the intersection of the linearized

function f̃k(x) through the points
{
xk−1, x̃k = f(xk−1)

}T
and

{
xk, x̃k+1 = f(xk)

}T
, and the

function y = x, respectively. This corresponds to a single step of the secant method [42]. The

relaxation parameter λk can hence be written in function of xk−1, x̃k , xk and x̃k+1:

λk =
xk − xk−1

xk − x̃k+1 − xk−1 + x̃k
(12)

while the new approximation yields xk+1 = λkx̃k+1 + (1 − λk)xk . Introducing the relation xk −
xk−1 = λk−1

(
x̃k − xk−1

)
in equation (12) provides a recursive relation for the relaxation parameter

λk:

λk = λk−1 x̃k − xk−1

xk − x̃k+1 − xk−1 + x̃k
(13)

= −λk−1 rk−1

rk − rk−1
(14)

with the residual rk defined as rk = xk − x̃k+1.

For the vectorized interaction forces q̂(ω) considered in this subsection, however, the division in

equation (14) is impossible. Following the approach presented by Irons and Tuck [43], the vectors

are projected in the direction r̂
k(ω)− r̂

k−1(ω) = q̂
k(ω)− ˜̂q

k+1
(ω)− q̂

k−1(ω) + ˜̂q
k
(ω):

λk = −λk−1

(
r̂
k(ω)− r̂

k−1(ω)
)T

r̂
k−1(ω)

||r̂k(ω)− r̂
k−1(ω)||2

(15)

with λ0 = 1. Equation (15) can be evaluated at low computational cost, providing a simple and

robust way to calculate an iteration dependent relaxation parameter, hence avoiding the need for an

empirical trial–and–error process [2]. As all calculations are performed in the frequency domain,

the relaxation parameter λk is a complex number. Although the modulus of this number could be

limited (e.g. ||λk|| ≤ 1), this is not done in the present paper, as Soares et al. [16] have observed that

faster convergence can be achieved with a non–restricted relaxation parameter for coupled acoustic–

elastodynamic problems in the frequency domain.

An additional reduction of the computation time is achieved by providing an initial guess to the

FGMRES solver that is employed to solve equation (5); the relaxed tractions −T−1
q q̂

k(ω) obtained

in iteration k − 1 are used as an initial guess for the determination of tractions t̂
k
(ω) in iteration k.

Using a start vector in the first Neumann–Dirichlet iteration corresponding to the converged solution

of the previous frequency step is also advantageous, provided that the frequency bin is sufficiently

small.

3.2.2. Sequential Dirichlet–Neumann algorithm

The second iterative algorithm considered in this paper consist of a sequential Dirichlet–Neumann

scheme; the type of boundary conditions applied to each subdomain is reversed compared to the

procedure outlined in subsection 3.2.1. At iteration step k, Dirichlet boundary conditions û
k
b2
(ω)

are imposed on the interface Σ of the FE subdomain, providing the interaction forces q̂k(ω) through

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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(a)

x

y

y = f(x)

y = x

xk xk+1 x

x̃k+1 = f(xk)

(b)

x

y

y = f(x)

y = f̃k(x)

y = x

xk−1 xk xk+1x

x̃k = f(xk−1)

x̃k+1 = f(xk)

Figure 2. Interface relaxation technique employed in sequential iterative algorithms, involving the functions

y = x (thin solid line), y = f(x) (thick solid line) and y = f̃k(x) (dashed line). The target solution x = f(x)

is indicated with a star. The procedure (a) without relaxation is compared to (b) Aitken’s ∆2–method.

the solution of equation (9) (and condensation of the internal degrees of freedom û
k
b1
(ω)). The

corresponding interface tractions t̂
k
(ω) = −T−1

q q̂
k(ω) are applied to the BE subdomain, and

unrelaxed interface displacements ˜̂uk+1
b2

(ω) are obtained by solving the preconditioned system

of equations (5) using the FGMRES solver. Aitken’s ∆2–method is finally employed for the

determination of an optimized relaxation parameter λk (with equation (15) now based on interface

displacements instead of interaction forces), allowing for the computation of relaxed interface

displacements û
k+1
b2

(ω). This iterative procedure is repeated until convergence is achieved.

3.2.3. Parallel Neumann–Neumann algorithm

A parallel Neumann–Neumann iterative scheme is obtained if the interaction forces q̂
k(ω) and

corresponding interface tractions t̂
k
(ω) = −T−1

q q̂
k(ω) are simultaneously imposed as Neumann

boundary conditions on the interface Σ of the FE and BE subdomain, respectively. Solving equations

(9) and (5) provides (incompatible) interface displacements ûk
b2,FE(ω) and û

k
b2,BE(ω), respectively.

The discrepancy of interface displacements ∆û
k
2(ω) = û

k
b2,BE(ω)− û

k
b2,FE

(ω) is subsequently
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employed to calculate an increment of interaction forces ∆q̂
k(ω). The displacement discrepancy

∆û
k
b2
(ω) can either be imposed on the FE or the BE subdomain to compute this increment; this

either yields unrelaxed interaction forces ˜̂q
k+1

FE
(ω) = q̂

k(ω) + ∆q̂
k

FE
(ω) or ˜̂q

k+1

BE
(ω) = q̂

k(ω) +

∆q̂
k

BE
(ω). Application of Aitken relaxation finally provides relaxed interaction forces q̂

k+1

FE
(ω) or

q̂
k+1

BE
(ω), which are used in a subsequent step of the iterative scheme.

One can expect that the fastest convergence will be achieved if the force increment ∆q̂
k(ω) is

calculated by imposing the displacement discrepancy ∆û
k
b2
(ω) on the most flexible subdomain, as

this will yield the smallest increment ∆q̂
k(ω). It is difficult, however, to quantify the flexibility of

each subdomain a priori, especially as the latter is frequency dependent. Choosing either the FE or

the BE subdomain for the calculation of ∆q̂
k(ω) hence requires an understanding of the dynamic

behaviour of each subdomain; a wrong choice can significantly deteriorate the convergence of the

iterative procedure.

A novel and more robust variant of the algorithm is therefore presented in this paper, where

˜̂q
k+1

FE
(ω) and ˜̂q

k+1

BE
(ω) are simultaneously accounted for in the determination of the relaxed

interaction forces q̂
k+1(ω). The concept is illustrated in figure 3 for a general iteration process

in terms of a variable x and two functions f(x) and g(x), with solution x = f(x) = g(x). The

proposed approach is based on a simultaneous application of Aitken relaxation to f(x) and g(x). At

iteration step k, two estimations x̃k+1
f = f(xk) and x̃k+1

g = g(xk) are calculated. These estimations

are combined with the data points {xk−1, x̃k
f = f(xk−1)}T and {xk−1, x̃k

g = g(xk−1)}T obtained in

the previous iteration step k − 1 to define linear approximations f̃k(x) and g̃k(x) of the functions

f(x) and g(x), respectively. The ordinate of the intersection of these linearized functions f̃k(x) and

g̃k(x) provides a new approximation xk+1 of the solution x:

xk+1 =
rkg

rkg − rkf
x̃k+1
f −

rkf

rkg − rkf
x̃k+1
g (16)

with rkf = x̃k+1
f − x̃k

f and rkg = x̃k+1
g − x̃k

g . These residual vectors are defined differently compared

to equation (14).

x

y

y = f(x)

y = f̃k(x)
y = x

xk−1 xk xk+1x

y = g(x)

y = g̃k(x)

x̃k
f = f(xk−1)

x̃k
g = g(xk−1)

x̃k+1
f = f(xk)

x̃k+1
g = g(xk)

Figure 3. Interface relaxation technique employed in parallel iterative algorithms, involving the functions

y = f(x) (black solid line), y = g(x) (grey solid line), y = f̃k(x) (black dashed line), y = g̃k(x) (grey
dashed line), and y = x (thin solid line). The target solution x = f(x) = g(x) is indicated with a star.
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10 P. COULIER ET AL.

For the vectorized interaction forces q̂(ω), a projection in the direction r̂
k
BE(ω)− r̂

k
FE(ω) =

˜̂q
k+1

BE
(ω)− ˜̂q

k

BE
(ω)− ˜̂q

k+1

FE
(ω) + ˜̂q

k

FE
(ω) is introduced in equation (16):

q̂
k+1(ω) =

(
r̂
k
BE(ω)− r̂

k
FE(ω)

)T

r̂
k
BE(ω)

||r̂kBE(ω)− r̂
k
FE(ω)||

2

˜̂q
k+1

FE
(ω)−

(
r̂
k
BE(ω)− r̂

k
FE(ω)

)T

r̂
k
FE(ω)

||r̂kBE(ω)− r̂
k
FE(ω)||

2

˜̂q
k+1

BE
(ω)

(17)

Equation (17) clearly indicates that ˜̂q
k+1

FE
(ω) and ˜̂q

k+1

BE
(ω) are simultaneously accounted for in the

determination of a new estimate q̂
k+1(ω), with iteration dependent weighting factors based on data

of two subsequent iterations; these weighting factors can be calculated at low computational cost.

This approach hence avoids the need for a priori information concerning the flexibility of the FE

and BE subdomain.

3.2.4. Parallel Dirichlet–Dirichlet algorithm

The final iterative algorithm discussed in this paper is a parallel Dirichlet–Dirichlet strategy, which

is very similar to the procedure outlined in subsection 3.2.3. Imposing Dirichlet boundary conditions

û
k
b2
(ω) on Σ allows for the computation of interaction forces q̂k

FE
(ω) and q̂

k

BE
(ω) through equations

(9) and (5), respectively. The resulting force discrepancy ∆q̂
k(ω) = q̂

k

BE
(ω)− q̂

k

FE
(ω) is employed

to calculate interface displacement increments ∆û
k
b2,FE(ω) and ∆û

k
b2,BE(ω), and unrelaxed

displacements ˜̂uk+1
b2,FE

(ω) = û
k
b2,FE

(ω) + ∆û
k
b2,FE

(ω) and ˜̂uk+1
b2,BE(ω) = û

k
b2,BE(ω) + ∆û

k
b2,BE(ω)

can subsequently be obtained. The relaxed interface displacements û
k+1
b2

(ω) are finally computed

by means of the relaxation procedure introduced in subsection 3.2.3; equation (17) in that case

is based on interface displacements instead of interaction forces. The procedure is repeated until

convergence is achieved.

3.3. Monolithic FE–H -BE coupling

The coupling of FE and H -BE models can also performed by means of a monolithic approach,

in which the governing equations of both subdomains are solved simultaneously, while the

assembly of a dynamic soil stiffness matrix is avoided. This approach fundamentally differs from

the conventional direct coupling approach outlined in subsection 3.1 (equation (6)). Combining

equations (1) and (3) and accounting for continuity of displacements and equilibrium of tractions at

the soil–structure interface Σ yields:



K̂b1b1

(ω) K̂b1b2
(ω) 0

K̂b2b1
(ω) K̂b2b2

(ω) Tq

0 T̂H (ω) + I −ÛH (ω)






ûb1

(ω)
ûb2

(ω)

t̂(ω)



 =




f̂b1

(ω)

f̂b2
(ω)
0



+





0

f̂
s

b2
(ω)
0



 (18)

where the coupling matrix Tq is defined in equation (7). The system size in this monolithic approach

is ((ndof1 + 2ndof2)× (ndof1 + 2ndof2)), which is significantly larger than in the classical direct

coupling strategy of subsection 3.1. The coefficient matrix is never assembled explicitly, however, as

equation (18) is solved by means of an iterative GMRES solver. This requires an efficient evaluation

of the matrix–vector product, indicating that the monolithic formulation (18) is only advantageous if

a fast BE method (in casu a formulation based on H –matrices) is employed. A monolithic approach

is rarely used in elastodynamics [15]; the monolithic coupling of FE and fast multipole BE models

presented by Margonari et al. [8] remains restricted to elastostatics. This strategy is more often

applied for solving strongly coupled fluid–structure interaction problems [18, 19], as discretization

methods commonly used for the fluid and the structure lead to sparse matrices.

The coefficient matrix in equation (18) is likely to be ill–conditioned, as the matrix entries

arising from the FE and BE discretizations differ by several orders of magnitude. Convergence

of the iterative solver will therefore be slow, and the incorporation of a suitable preconditioner is

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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indispensable. The following simple right preconditioner M̂(ω) is employed:

M̂(ω) =




diag
(
K̂b1b1

(ω)
)

0 0

0 diag
(
K̂b2b2

(ω)
)

Tq

0 blkdiag
(
T̂H (ω)

)
+ I blkdiag

(
−ÛH (ω)

)


 (19)

where the size of the diagonal blocks of T̂H (ω) and ÛH (ω) is determined by the lowest

hierarchical BE cluster level. The nested FGMRES solution procedure discussed in subsection 2.2

is employed here as well, avoiding the explicit assembly of M̂−1(ω).

4. VERIFICATION EXAMPLES

In the following subsections, two examples are considered to verify the numerical implementation

of the proposed FE–H -BE coupling algorithms and to assess their computational performance.

While the first example is related to a full space geometry, the second example involves Green’s

functions for a layered halfspace. All calculations have been performed on Intel R© Xeon R© E5520

(2.26 GHz) CPUs.

4.1. 3D spherical cavity embedded in a layered space

Consider a 3D spherical cavity with inner radius ri = 1m embedded in a layered space, consisting

of a spherical layer with outer radius ro = 2m and a homogeneous full space (figure 4a). The cavity

is loaded by an internal pressure p̂(ω) = 1Pa/Hz. The full space is characterized by a dilatational

wave velocity Cp = 300m/s, a density ρ = 1800 kg/m3, and a material damping ratio βp = 0.025
in volumetric deformation. The dilatational wave velocity in the spherical layer is defined as αCp,

where the following values are considered for the ratio α: (i) α = 1/2, (ii) α = 1 and (iii) α = 2.

The same material damping ratio and density as in the full space are used.

(a)

ri

ro

p̂(ω)

(b)

Figure 4. (a) 3D spherical cavity with inner radius ri embedded in a layered space, consisting of spherical
layer with outer radius ro = 2m and a homogeneous full space, and subjected to an internal pressure p̂(ω).

Half of the FE discretization of the spherical layer is shown in (b).

The spherical layer is discretized by means of 6000 eight–node solid finite elements, which are

coupled to a conforming BE mesh consisting of 600 four–node quadrilateral elements on the soil–

structure interface (figure 4b). A nodal collocation scheme is used for the latter to facilitate the FE–

BE coupling, resulting in 19866 FE and 1806 BE degrees of freedom. This results in 6.67 elements

per dilatational wavelength λp = αCp/f at a frequency of 100Hz for α = 1/2. Analytical full space

fundamental solutions [14] are employed in the H -BE formulation.

Each of the FE–H -BE coupling strategies outlined in the section 3 is employed to calculate

the response in the frequency range between 0Hz and 100Hz, with a frequency step of 1Hz.
A maximum of 200 iterations is prescribed for the iterative coupling algorithms. The sequential

Neumann–Dirichlet algorithm presented in subsection 3.2.1 is unable to determine the static

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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12 P. COULIER ET AL.

solution, as application of Neumann boundary conditions to the unconstrained structural domain Ωb

results in singular FE equations. The convergence behaviour at low frequencies is hence expected to

be poor; the frequency sweep is therefore performed from high to low frequencies. The sequential

Dirichlet–Neumann algorithm of subsection 3.2.2, on the other hand, succeeds in solving the

coupled problem for static excitation, as displacements are imposed on the boundary of the FE

subdomain.

Figure 5 shows the real and imaginary part of the radial displacement at r = ro, for the three

values of the wave velocity ratio α. All methods yield accurate results in very good agreement with

the analytical solution [44] for all values of the ratio α, with exception of the sequential Neumann–

Dirichlet algorithm, which is unable to retrieve the correct solution within the prescribed number

of iterations at [12,31–38,41–42,46,49–62,64–80,82–100] Hz for a wave velocity ratio α = 1/2. At

these particular frequencies, the relative residual norm of the interface displacements and interaction

forces still exceeds the specified accuracy of 10−4.
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Figure 5. Real (left) and imaginary (right) part of the radial displacement at r = ro due to a unit harmonic
pressure applied to a spherical cavity embedded in a layered space, for (a) α = 1/2, (b) α = 1 and (c) α = 2.
The solutions of the classical direct coupling approach (dashed black line), the iterative Neumann–Dirichlet
(grey squares), Dirichlet–Neumann (black plus signs), Neumann–Neumann (grey circles) and Dirichlet–
Dirichlet (black crosses) algorithms, and the monolithic coupling procedure (black rhombuses) are compared
to the analytical solution (solid grey line) [44]. The markers are only drawn at a limited number of data

points.
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The integral representation theorem subsequently allows for the computation of the radiated

wavefield in the full space from the displacements and tractions on the FE–H -BE interface. Figure 6

shows the real and imaginary part of the radial displacement at r = 10m. The solutions of the

various coupling procedures are clearly in good correspondence with each other and agree with the

analytical solution, except for the Neumann–Dirichlet algorithm at the aforementioned frequencies

for the case α = 1/2.
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Figure 6. Real (left) and imaginary (right) part of the radial displacement at r = 10m due to a unit harmonic
pressure applied to a spherical cavity embedded in a layered space, for (a) α = 1/2, (b) α = 1 and (c) α = 2.
The solutions of the classical direct coupling approach (dashed black line), the iterative Neumann–Dirichlet
(grey squares), Dirichlet–Neumann (black plus signs), Neumann–Neumann (grey circles) and Dirichlet–
Dirichlet (black crosses) algorithms, and the monolithic coupling procedure (black rhombuses) are compared
to the analytical solution (solid grey line) [44]. The markers are only drawn at a limited number of data

points.

Figures 5 and 6 validate the numerical implementation of the FE–H -BE coupling strategies

presented in this paper. The computational performance of each method strongly differs, however.

Figure 7 shows the CPU time required in each algorithm as a function of the frequency, for the

three wave velocity ratios considered. It is observed that the computation time in the direct coupling

approach significantly exceeds the computational effort of the alternative procedures due to the

drawbacks summarized in subsection 3.1, rendering the conventional method the least efficient.
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The computation time remains quasi independent of the wave velocity ratio, but increases with

frequency. This is caused by an increase of the time required for the assembly and solution of the

H -BE equations at higher frequencies [12]; a similar trend is also observed for the other coupling

methodologies. The computational efficiency of the iterative coupling schemes, on the other hand,

shows a much stronger correlation with the wave velocity ratio α. This is in particular the case for

the sequential variants: the CPU time in the Neumann–Dirichlet algorithm strongly decreases for

increasing values of α, while the reverse is observed for the Dirichlet–Neumann approach. This

indicates that Neumann boundary conditions should be applied to the most stiff subdomain in

order to achieve the fastest convergence. The efficiency of the parallel iterative algorithms depends

less strongly on α due to the novel relaxation procedure introduced in subsection 3.2.3, as the

contribution of each subdomain to the relaxed interaction forces or displacements is balanced in

every step of the iterative procedure. Finally, figure 7 illustrates that the monolithic coupling scheme

is also relatively insensitive to the value of α, but the overall computational performance of this

methodology remains relatively poor compared to the iterative algorithms. The implementation

of a more rigorous preconditioner than the one applied in this paper might result in an improved

convergence behaviour. Algebraic multigrid preconditioning strategies adapted for hierarchical

matrices [45] or approaches based on the sparse approximate inverse (SPAI) of the BE matrices [8]

are worthwhile to be considered in future research.

Some important conclusions can be drawn from the results presented in figure 7. It is clear that

the classical direct approach is not well suited to provide an efficient coupling of FE and H -BE

models. In particular, if there exists a strong stiffness contrast between the subdomains, a sequential

iterative algorithm is preferred. It is recommended to impose Neumann boundary conditions on the

most stiff subdomain; the reverse choice can significantly deteriorate the convergence behaviour. If

such a contrast is not apparent, however, the parallel iterative algorithms as well as the monolithic

approach provide a reliable and robust coupling of FE and H -BE models.

The efficiency of the sequential iterative procedures is now investigated in more detail. In each

global iterative step k, an iterative FGMRES solver is used to solve equation (5) for tractions t̂
k
(ω)

or interface displacements ˜̂uk+1
b2

(ω) in the Neumann–Dirichlet or Dirichlet–Neumann algorithm,

respectively. Figures 8 and 9 show the number of FGMRES–iterations for the solution of

equation (5) as a function of the frequency and the iteration step k. The number of FGMRES–

iterations generally decreases in subsequent iteration steps, as the relaxed solution obtained in

iteration k − 1 is used as an initial guess in the FGMRES solver in iteration k. The number of global

iterations strongly decreases for increasing values of the wave velocity ratio α in the Neumann–

Dirichlet algorithm (figure 8), while the reverse is observed in the Dirichlet–Neumann approach

(figure 9).

Numerical attempts have furthermore demonstrated that application of Aitken’s ∆2–method for the

interface relaxation is crucial in order to ensure convergence in the sequential iterative algorithms.

No convergence could be obtained with these algorithms in any of the examples in case a fixed

value was attributed to the relaxation parameter λk (several constant values between 0 and 1 have

been considered), in the entire frequency range of interest. Figure 10 shows the fluctuation of λk in

the sequential Neumann–Dirichlet algorithm at a frequency of 100Hz for α = 1, clearly illustrating

how the relaxation parameter changes throughout the iteration steps.

Finally, the effectiveness of the novel relaxation procedure for the parallel iterative algorithms

introduced in subsection 3.2.3 is demonstrated. Figure 11 compares the CPU time in the iterative

Neumann–Neumann algorithm using equation (17) for the determination of relaxed interaction

forces q̂
k+1(ω) to the cases where either q̂

k+1

FE
(ω) or q̂

k+1

BE
(ω) is employed, respectively. As

indicated in subsection 3.2.3, the fastest convergence is achieved if the displacement discrepancy

∆û
k
b2
(ω) is imposed on the most flexible subdomain, i.e. on the FE subdomain for α = 1/2 and on

the BE subdomain for α = 2. The reverse choice strongly affects the convergence behaviour and

the algorithm does even not convergence at some frequencies if q̂k+1

BE
(ω) is employed for α = 1/2.

The relaxation procedure corresponding to equation (17) proves to be a reliable alternative, as the

associated CPU times only moderately depend on α and are often bounded by the computation times

of the two other approaches.
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Figure 7. CPU time required in the classical direct coupling approach (dashed black line), the iterative
Neumann–Dirichlet (solid grey line), Dirichlet–Neumann (black plus signs), Neumann–Neumann (grey
circles) and Dirichlet–Dirichlet (black crosses) algorithms, and the monolithic coupling procedure (black
rhombuses), for a spherical cavity embedded in a layered space with (a) α = 1/2, (b) α = 1 and (c) α = 2.

The lines are only drawn if convergence is achieved.

4.2. Flexible surface foundation on a horizontally layered halfspace

A flexible square surface foundation on a horizontally layered halfspace is considered in this

subsection. The concrete foundation has dimensions 5m× 5m× 0.25m and a Young’s modulus

E = 33GPa, a Poisson’s ratio ν = 0.20, and a density ρ = 2500 kg/m3. Rayleigh damping with a

modal damping ratio ξ = 0.03 in the first two flexible modes is used. A unit harmonic vertical point

excitation is applied at the center of the foundation, within a frequency range between 0Hz and

100Hz.
The soil consists of two layers on a halfspace, each with a thickness of 2m. The shear wave

velocity Cs is equal to 150m/s in the top layer, 250m/s in the second layer, and 300m/s in

the underlying halfspace. The Poisson’s ratio ν is 1/3 everywhere, resulting in dilatational wave

velocities Cp of 300m/s, 500m/s, and 600m/s, respectively. Material damping ratios βs = βp =
0.025 in both deviatoric and volumetric deformation are attributed to the layers and the halfspace,

while a uniform density ρ = 1800 kg/m3 is considered throughout the medium.
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Figure 8. Number of FGMRES–iterations (colour code) to solve the H -BE equation (5) for tractions in the
iterative Neumann–Dirichlet algorithm as a function of the frequency and the iteration step k, for a spherical
cavity embedded in a layered space with (a) α = 1/2, (b) α = 1 and (c) α = 2. The bars are only drawn if

convergence is achieved.

The foundation is discretized by means of 30× 30 square Kirchhoff plate elements, which are

coupled to a conforming BE mesh for the soil using a nodal collocation scheme. Up to nine elements

per shear wavelength λs = Cs/f are provided at the maximum frequency of 100Hz (determined by

the shear wave velocity of the top layer). Green’s functions for a layered halfspace are incorporated

in the H -BE formulation [12, 13, 46], avoiding the necessity to discretize the free surface and

the layer interfaces. It is expected that the foundation will behave much stiffer than the soil in the

frequency range of interest. In accordance with the findings of subsection 4.1, an iterative Neumann–

Dirichlet coupling scheme is therefore employed. No analytical reference solution is available for

this problem, however, and the monolithic coupling approach is therefore considered as well to

provide verification.
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Figure 9. Number of FGMRES–iterations (colour code) to solve the H -BE equation (5) for interface
displacements in the iterative Dirichlet–Neumann algorithm as a function of the frequency and the iteration

step k, for a spherical cavity embedded in a layered space with (a) α = 1/2, (b) α = 1 and (c) α = 2.

Figure 12 shows the real and imaginary part of the vertical displacement ûz(x, ω) at the center

of the foundation, calculated with both coupling procedures; a perfect agreement between the

results is observed. The peak at 20Hz is caused by resonance of the foundation on the layered

halfspace. The iterative Neumann–Dirichlet is unable, however, to determine the static solution, and

the frequency sweep is therefore performed from high to low frequencies. The vertical displacement

of the foundation and the surrounding soil is shown in figures 13a and 13b at 25Hz and 100Hz,
respectively. While the wave fronts at the surface of the soil remain almost perfectly cylindrical at

25Hz, this is no longer the case at 100Hz due to the dynamic interaction between the foundation

and the soil.

Figure 14a shows the number of FGMRES–iterations as a function of the frequency and the

iteration step k for the sequential Neumann–Dirichlet algorithm, in case no initial guess is provided

to the FGMRES solver. The number of FGMRES–iterations remains almost independent of the

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



18 P. COULIER ET AL.

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

k [−]

λ
k

[-
]

Figure 10. Real (solid line) and imaginary (dashed line) part of the Aitken relaxation parameter λk at 100Hz
in the sequential Neumann–Dirichlet iterative algorithm, for a spherical cavity embedded in a layered space

with α = 1.
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Figure 11. CPU time required in the parallel Neumann–Neumann algorithm in case the displacement
discrepancy is imposed on the BE subdomain (solid black line), on the FE subdomain (solid grey line),
and in case the relaxation procedure corresponding to equation (17) is employed (crosses), for a spherical
cavity embedded in a layered space with (a) α = 1/2, (b) α = 1 and (c) α = 2. The lines are only drawn if

convergence is achieved.
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Figure 12. (a) Real and (b) imaginary part of the vertical displacement ûz(x, ω) at the center of a flexible
surface foundation on a layered halfspace excited by a unit harmonic vertical point load at its center.
The solution of the iterative Neumann–Dirichlet algorithm (solid line) is compared to the solution of the

monolithic coupling procedure (crosses).

(a) −1

−0.5

0

0.5

1
x 10

−9

(b) −1

−0.5

0

0.5

1
x 10

−10

Figure 13. Real part of the vertical displacement ûz(x, ω) of the foundation and the soil for a flexible surface
foundation on a layered halfspace excited by a unit harmonic vertical point load at its center at (a) 25Hz and

(b) 100Hz.

iteration step k if this strategy is applied. It is illustrated in figure 14b that imposing the relaxed

interaction forces obtained in step k − 1 as initial guess in the FGMRES solver of step k is clearly

beneficial, as the number of FGMRES–iterations in subsequent steps is strongly reduced. Using a

start vector in the first Neumann–Dirichlet iteration corresponding to the converged solution of the

previous frequency step is also advantageous; this results in a lower numbers of iteration steps per

frequency. The peaks at 40Hz and 62Hz in figure 14 correspond to natural frequencies of the free

foundation. Applying Neumann boundary conditions to the FE subdomain near a natural frequency

results in large displacements, and additional iterations are hence required to balance the resulting

mismatch of displacements and tractions on the interface. It should be emphasized that these natural

frequencies differ from the resonance of the foundation on the soil at 20Hz (apparent in figure 12),

which is due to the dynamic SSI.

5. APPLICATION: SUBGRADE STIFFENING AS A MITIGATION MEASURE FOR

RAILWAY INDUCED VIBRATIONS

The numerical examples considered in section 4 demonstrate the validity and efficiency of the

presented coupling algorithms. These methodologies enable the fast evaluation of large coupled

FE–H -BE models, providing the possibility to analyze complex problems of dynamic SSI. The

verification examples discussed in section 4 involve only a limited amount of degrees of freedom.

An engineering application is therefore considered in this section to illustrate the applicability of

coupled FE–H -BE models to large scale problems.
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Figure 14. Number of FGMRES–iterations (colour code) to solve the H -BE equation (5) for tractions in the
iterative Neumann–Dirichlet algorithm as a function of the frequency and the iteration step k, for a flexible
surface foundation on a layered halfspace. The numbers are shown (a) in case no initial guess is provided
to the FGMRES solver, or (b) in case the relaxed tractions in iteration k − 1 are used as an initial guess
in iteration k, while the converged solution at a particular frequency is used as an initial guess for the first

iteration at the subsequent frequency.

The application is related to the mitigation of railway induced vibrations, which can lead to

annoyance in the built environment. An important category of vibration reduction measures are

interventions in the propagation path between source (railway track) and receiver (building), such as

vibration isolation screens [47], buried wall barriers [48], and wave impeding blocks [49]. Recently,

the vibration reduction efficiency of subgrade stiffening has been investigated [50], where a block

of stiffened soil is included in the transmission path, e.g. by means of jet grouting (figure 15a). In

order reduce the computational effort, the geometry of these mitigation measures is often assumed

to be invariant in the longitudinal direction, allowing for the application of an efficient two–and–a–

half–dimensional (2.5D) approach, where a Fourier transform of the longitudinal coordinate allows

representing the 3D response on a 2D mesh [51]. In practice, the construction of a jet grouting wall is

limited to finite dimensions, however, and the assumption of longitudinal invariance of the geometry

is therefore not fulfilled (figure 15b). Accounting for the finite length requires the solution of a full

3D dynamic SSI problem, which is computationally very demanding if a classical BE formulation

is used; the FE–H -BE methods proposed in this paper are much more appropriate to solve this

problem.

The vibration reduction efficiency of a block of stiffened soil of finite length embedded in a

halfspace is investigated in this section. A case study involving a block with a width b = 2m, a depth

h = 2m, a length Ly, and situated at a distance d = 4m from the y–axis is considered (figure 15).

In order to facilitate physical interpretation, the soil is assumed to be homogeneous, and an incident

wavefield is generated by the application of a unit vertical harmonic point load at the origin of the

coordinate system, rather than considering the passage of a train. The halfspace is characterized

by a shear wave velocity Cs = 200m/s, a dilatational wave velocity Cp = 400m/s, a density
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Figure 15. A block of stiffened soil Ωb incorporated in the soil domain Ωs, (a) assuming longitudinal
invariance of the geometry or (b) accounting for the finite length Ly .

ρ = 2000 kg/m3, and material damping ratios βs = βp = 0.025 in both deviatoric and volumetric

deformation. The Rayleigh wave velocity CR = 186.7m/s is frequency independent due to its non–

dispersive behaviour in a homogeneous halfspace [52]. The block of stiffened soil has a shear wave

velocity Cs = 550m/s, a dilatational wave velocity Cp = 950m/s, a density ρ = 2000 kg/m3, and

material damping ratios βs = βp = 0.050.

The block of stiffened soil is discretized by means of eight–node solid elements, which are

coupled to a conforming mesh of four–node quadrilateral boundary elements for the surrounding

soil domain. Halfspace Green’s functions are employed in the H -BE formulation. The numerical

analysis is performed for a block of stiffened soil with a length of 15m, 30m, and 60m; the

properties of the resulting FE and BE discretizations are listed in table I. As there exists a strong

stiffness contrast between the FE and H -BE subdomain, an iterative Neumann–Dirichlet algorithm

is employed for the solution of the 3D coupled FE–H -BE problem.

Ly # FE elements # FE nodes # FE DOFs # BE elements # BE nodes # BE DOFs

[m] [−] [−] [−] [−] [−] [−]

15 3840 4941 14823 1568 1637 4911

30 7680 9801 29403 3008 3137 9411

60 15360 19521 58563 5888 6137 18411

Table I. Properties of the FE and BE discretizations of a block of stiffened soil with a length of 15m, 30m,
and 60m.
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Figures 16–18a show the real part of the vertical displacement ûz(x, ω) in the reference case

(i.e. without subgrade stiffening) at a frequency of 15Hz, 30Hz, and 60Hz, respectively. The

wavefield in the soil is characterized by cylindrical wave fronts with a Rayleigh wavelength

λR(ω) = 2πCR/ω equal to 12.45m, 6.22m, and 3.11m, respectively. The real part of the vertical

displacement ûz(x, ω) in case an infinitely long block of stiffened soil is embedded in the halfspace

is shown in figures 16–18e. These results are obtained by means of a 2.5D coupled FE–BE

calculation based on the assumption of longitudinal invariance of the geometry. At 15Hz, the

wavefield in the soil is only slightly affected by the presence of the block of stiffened soil

(figure 16e), while a larger influence is observed at higher frequencies (figures 17–18e). The

vibration reduction efficiency in each of these cases is characterized through the corresponding

vertical insertion loss ÎLz(x, ω):

ÎLz(x, ω) = 20 log10
|ûref

z (x, ω)|

|ûz(x, ω)|
(20)

Positive values of the insertion loss indicate a reduction of the vertical free field vibrations. It

has been demonstrated in [50] that the wave impeding effect depends on the relation between the

Rayleigh wavelength in the soil and the free bending wavelength in the block of stiffened soil,

as the transmission of plane waves in the soil with a longitudinal wavelength smaller than the

bending wavelength is hindered. The mitigation measure is only effective above a critical frequency

depending on the stiffness contrast between the soil and the block of stiffened soil. The guideline

formulated in [50] states that the critical frequency can be estimated as
C2

R

2πh

√
12ρ
E = 12Hz, where

CR is the Rayleigh wave velocity of the halfspace and h, ρ, and E are characteristics of the

block of stiffened soil. The frequencies under concern are all above this critical frequency, and

a wave impeding effect is hence observed in figures 16–18e. The area where vibration levels are

significantly reduced clearly depends on the frequency, however, and a critical angle delimiting this

area can be distinguished. An analytical expression for the latter is also given in [50].

Figures 16–18b–d show the real part of the vertical displacement ûz(x, ω) and the insertion loss

ÎLz(x, ω) in case a block of stiffened soil is included over a finite length of 15m, 30m, and 60m
at a frequency of 15Hz, 30Hz, and 60Hz, respectively, computed by means of the 3D coupled FE–

H -BE iterative Neumann–Dirichlet method. At 15Hz, neither a length of 15m or 30m is sufficient

to create a wave impeding effect similar to the case where the block is assumed to be of infinite

length; a block length of 60m, however, does result in a comparable insertion loss. The wavefield in

the soil and the insertion loss at 30Hz resembles the result of the 2.5D calculation for a block with

a length of 30m or larger, while a good correspondence with the latter is achieved for all lengths at

a frequency of 60Hz.
The observations in figures 16–18 can be interpreted by comparing the length Ly of the block

to the free bending wavelength λb(ω) of an infinitely long beam. The latter yields λb(ω) =

2π
(

Eh2

12ρω2

)1/4

for an Euler–Bernoulli beam and is equal to 14.50m, 10.25m, and 7.25m at 15Hz,

30Hz, and 60Hz, respectively. This indicates that the block should be approximately twice as

long as the free bending wavelength λb(ω) in order to create an efficient wave impeding barrier;

a vibration reduction efficiency comparable to that of a block of infinite length is then achieved.

The finite block is only able, however, to impede the transmission of that part of the wavefield

that actually impinges on the block, which is clearly visible for a block of 15m (figures 16–18b).

Furthermore, diffraction occurs at the extremities of the finite block.

6. CONCLUSIONS

In this paper, the coupling of FE and H -BE methods has been discussed, illustrating that a

subdomain approach is well suited to efficiently solve dynamic SSI problems in the frequency

domain. The application of H –matrices enables the fast evaluation of large BE models, and the

incorporation of Green’s functions for a layered halfspace avoids the need to discretize the free
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Figure 16. Real part of the vertical displacement ûz(x, ω) due to harmonic excitation at 15Hz (a) in the
reference case and in case a block of stiffened soil is included with a length (b) Ly = 15m, (c) Ly = 30m,

(d) Ly = 60m, and (e) Ly = ∞ (left hand side). The corresponding insertion loss ÎLz(x, ω) is shown at the
right hand side.

surface and the layer interfaces in the modelling of visco–elastodynamic wave propagation in a

stratified medium, as illustrated in subsection 4.2.

Direct, iterative and monolithic coupling strategies have been considered in this paper and

the numerical verification of each algorithm is presented. An assessment of the computational

performance reveals that the direct coupling approach is the least efficient, as the assembly of a

dynamic soil stiffness matrix requires the solution of a large amount of H –BE equations. Iterative

coupling procedures are more efficient, provided that suitable boundary conditions are applied to

each subdomain. It is demonstrated that sequential iterative algorithms should be preferred if there

exists a strong stiffness contrast between the FE and H -BE subdomain, with Neumann boundary

conditions to be imposed on the most stiff subdomain. The application of Aitken’s ∆2–method for

the determination of a proper interface relaxation parameter ensures and speeds up the convergence

of these sequential algorithms. Parallel iterative algorithms provide a valuable alternative for cases

where an a priori estimation of the flexibility of each subdomain is not evident and an appropriate

novel relaxation procedure has been proposed for these algorithms. An efficient combination of FE

and H –BE models can also be achieved by means of a monolithic coupling scheme, although the

convergence in the examples considered turns out to be relatively slow. This might be improved by

the incorporation of an enhanced preconditioner, which is a subject for further research.

Finally, an engineering application related to the mitigation of railway induced vibrations has

been presented to illustrate the applicability of coupled FE–H -BE methods to large scale problems.
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Figure 17. Real part of the vertical displacement ûz(x, ω) due to harmonic excitation at 30Hz (a) in the
reference case and in case a block of stiffened soil is included with a length (b) Ly = 15m, (c) Ly = 30m,

(d) Ly = 60m, and (e) Ly = ∞ (left hand side). The corresponding insertion loss ÎLz(x, ω) is shown at the
right hand side.

The vibration reduction efficiency of a block of stiffened soil in a homogeneous halfspace has been

assessed through 3D calculations, indicating that the length of the block should be approximately

twice the free bending wavelength of an infinitely long beam in order to create an efficient wave

impeding barrier.
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Figure 18. Real part of the vertical displacement ûz(x, ω) due to harmonic excitation at 60Hz (a) in the
reference case and in case a block of stiffened soil is included with a length (b) Ly = 15m, (c) Ly = 30m,

(d) Ly = 60m, and (e) Ly = ∞ (left hand side). The corresponding insertion loss ÎLz(x, ω) is shown at the
right hand side.
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