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Abstract. Applying local search algorithms to combinatorial optimiza-
tion problems is not an easy feat. Typically, human intervention is re-
quired to compile the constraints to input data for some metaheuristic
algorithm. In this paper, we establish a link between symmetry proper-
ties of constraint optimization problems and local search neighborhoods,
and we use this link to automatically generate neighborhoods from a
constraint specification in the context of the IDP system. We evaluate
the obtained neighborhoods for six classical optimization problems. The
resulting observations support the viability of this technique.

1 Introduction

Combinatorial optimization problems are studied across many branches of sci-
ence, and are abundant in industrial applications and real-life scenarios. One
way to solve combinatorial optimization problems is to generate an initial, sub-
optimal solution, and to iteratively refine the solution until a stop-criterion is
met and a hopefully optimal solution is achieved. This is roughly the process
studied by the Metaheuristics community, which investigates techniques such as
genetic algorithms, local search, hyperheuristics, swarm-based optimization etc.
These techniques have proven very effective for many problems, especially for
large problems with many (suboptimal) solutions.

The field of Constraint Programming (CP) also aims to solve combinato-
rial optimization problems effectively, but most CP systems perform a complete
traversal of the search space by use of search trees with propagation, satisfiabil-
ity solving, and/or mixed integer programming. These complete approaches are
often effective, but potentially limit the size of the optimization problems that
can efficiently be tackled.

In this paper, we investigate how we can bring both fields of research closer
together by providing an automated way of transforming a constraint optimiza-
tion problem specification into input for local search algorithms. The method is
based on symmetry properties of optimization problems that allow to transform
suboptimal solutions into hopefully better solutions.

This paper is organized in the following way. In Section 2, we give an ab-
stract description of what a constraint optimization problem is, how it relates
to certain forms of local search, and how symmetry can be used to derive input



neighborhoods for local search algorithms from a constraint optimization specifi-
cation. The next section describes in more detail how this is done for a constraint
optimization specification for the IDP. Section 4 reports on the nature of local
search neighborhoods derived by the IDP system on multiple constraint opti-
mization specifications. After subsequently sketching related work, the paper
concludes.

2 Constraint Programming and Local Search

2.1 Constraint Satisfaction Optimization Problems

A COP can be characterized as a quadruple (V,D,C,O) where V denotes a set of
variables, D a domain of possible values for these variables, C a set of constraints
and O an objective function. An assignment to a CSP Π = (V,D,C,O) is a
function α : V → D. We refer to the set of all assignments to a COP Π as its
assignment space AsΠ .

We abstract a constraint c ∈ C as the subset of AsΠ for which c is satisfied.
So, α ∈ c means α satisfies c, and α 6∈ c means α violates c. A satisfying
assignment to a COP is an assignment which satisfies all constraints in C. We
refer to the set of all satisfying assignments of a COP Π as the solution space
SolΠ . Note that the solution space is the intersection of all constraints – SolΠ =
∩ici with ci ∈ C – and that a COP is unsatisfiable if the solution space is empty.

An objective function O : (V → D) → N maps assignments to natural
numbers. Without loss of generality, we take an optimal solution to a COP to be
a satisfying assignment that is minimal with respect to the objective function.
More formally, a satisfying assignment α ∈ SolΠ is an optimal solution if ∀α′ ∈
SolΠ : O(α) ≤ O(α′).

Example 1. A classical COP is the Traveling Salesman Problem (TSP). We can
model this problem as a set of cities that need to be visited in a certain order,
in such a way that the total distance of the visited tour is minimal. Given n
cities, we can use V = {v0, . . . , vn−1} as a set of variables, the set of cities as
domain D, and C containing the singular constraint that all variables must be
assigned a different city. Given a distance matrix between cities Dist : D×D →
N, the objective function O : α 7→

∑
iDist(α(vi), α(v(i+1) mod n)) maps each

assignment to the sum of the distances between two subsequent cities.

2.2 Local search algorithm

Local search algorithms use the concept of a neighborhood to perform a heuristic
walk through the solution space of a COP.

Definition 1. A neighborhood N for a COP Π is a mapping of each satisfying
assignment to a set of satisfying assignments N : SolΠ → P(SolΠ). N(α) is
referred to as the set of neighbors of a satisfying assignment α under N .



Local search approaches such as those based on simulated annealing or tabu
search require as input a neighborhood N and some initial satisfying assignment
α. Given these, a typical local search algorithm explores the solution space by
enumerating the neighbors of α under N . When some neighbor α′ ∈ N(α) sat-
isfies an acceptance criterion (typically based on the objective value of α′), it is
accepted and becomes the new focus of attention. In a sense, the local search
algorithm moves from α to α′, which is also expressed as executing a move.

Search continues by exploring the neighbors of α′, until a new neighbor is
accepted, leading to a new move, repeating the loop. This loop ends when some
stop criterion is met, and the satisfying assignment with the lowest objective
value encountered during the search is returned.

The above notion of local search is in a way restrictive, since it does not
capture optimization approaches such as evolutionary programming or swarm-
based optimization. Nonetheless, metaheuristic methods such as tabu search,
simulated annealing, variable neighborhood search or greedy optimization can
be characterized by moving from satisfying assignment to satisfying assignment
using neighborhoods.

Example 2. For the TSP problem, a typical neighborhood is the so-called 2-opt
neighborhood. This neighborhood maps each TSP-tour α to a set of new tours
by removing a pair of edges, say between cities c1, c2 and c3, c4, and reconnecting
the resulting two TSP-subpaths by introducing an edge between c1, c4 and an
edge between c2, c3.

2.3 Symmetry

Given the above definition of a neighborhood, it is interesting to investigate its
relationship with the notion of symmetry. We follow [1] and define a symmetry
of a COP as a permutation on the assignment space which preserves satisfaction
to the constraints:

Definition 2. A symmetry S for a COP Π = (V,D,C,O) is a permutation on
the assignment space S : (V → D) → (V → D) such that α ∈ SolΠ ⇔ S(α) ∈
SolΠ .

By Definition 2, every permutation on the assignment space of an unsatisfi-
able COP is a symmetry. This makes Definition 2 a very general notion of sym-
metry, and in practice, only particular types of symmetry are considered. Some
examples are value symmetry, variable symmetry, row symmetry and column
symmetry [2]. More often than not, symmetries are induced by permutations on
the set of variables or the set of values of a COP:

Definition 3. A variable symmetry for a COP (V,D,C,O) is a symmetry Sπ :
α 7→ α◦π induced by a permutation π : V → V . A value symmetry is a symmetry
Sρ : α 7→ ρ ◦ α induced by a permutation ρ : D → D.

Note that Definition 2 does not require a symmetry to be invariant with
respect to the objective function; a symmetry S is invariant for objective func-
tion O iff ∀α : O(α) = O(S(α)). When symmetry is used to reduce search time



by eliminating symmetric parts of the search space through symmetry breaking,
the broken symmetry S must preserve the implicit minimization constraint of
a COP. However, in a local search context, we will also investigate symmetries
who are variant (as in not invariant) with respect to the objective function.

Example 3. The Chromatic Number Problem (CNP) consists of identifying the
minimum number of colors with which a graph can be colored such that each
two adjacent nodes have a different color. We can model this problem as a COP
(V,D,C,O) where each node is a variable in V , each possible color a value in D,
the constraints C state that two adjacent nodes in an input graph can not have
the same color, and the objective function counts the number of colors used.

Any permutation ρ of the domain D induces a value symmetry Sρ for the
CNP. Each such Sρ is invariant for the objective function.

Example 4. Using the TSP model from Example 1, each permutation of the
domain induces a value symmetry and each permutation of the variables induces
a variable symmetry. Both of these symmetry classes are variant for the objective
function.

2.4 Symmetries induce a neighborhood

Note that the 2-opt neighborhood of Example 2 is based on a particular set
of permutations of the set of cities in the TSP-tour. It is striking that these
permutations also induce symmetries for the TSP-problem. We formalize this
connection between symmetry and neighborhood:

Definition 4. Given a set of symmetries S for some COP, the symmetry-
induced neighborhood NS maps each satisfying assignment α to its image under
S. More formally, NS : α 7→ {S(α) | S ∈ S}.

By Definition 2, any satisfying assignment has only satisfying assignments
as symmetry-induced neighbors, which ensures Definition 4 is a sound neighbor-
hood definition.

Note however that Definition 4 requires some set of symmetries as input.
Since a set of symmetries S forms a group ΓS under functional composition, the
number of possible symmetry sets to form neighborhoods with often is astro-
nomical. In general, we have no definitive answer on what sets of symmetries
one should use, but it seems plausible to use some small set S that generates the
detected symmetry group ΓS . This way, each move possible under the induced
neighborhood NΓS can be simulated by a series of moves under NS , while NS
maps a satisfying assignment to a relatively small set of neighbors.

Using this notion of a symmetry-induced neighborhood, we can automatically
compile a COP specification to input for a local search algorithm solving the
COP. Recall that the only input required for many local search algorithms is
some initial satisfying assignment α and a neighborhood N . The following steps
generates these from only the problem specification:

1. Generate an initial satisfying assignment α using existing constraint pro-
gramming technoloby.



2. Detect a symmetry group Γ of the constraint optimization problem.
3. Use some set of symmetries S ⊆ Γ to construct a symmetry-induced neigh-

borhood NS .

3 Automating Local Search in IDP

We implemented the automatic detection of symmetry-induced neighborhoods
in the COP-solving IDP system. In this section, we will sketch relevant details of
the IDP system, as well as the type of symmetry and neighborhoods it detects.
We also illustrate the detection by means of the TSP and CNP examples.

3.1 IDP as a constraint solving system

The IDP system is an experiment in constructing a knowledge base system. The
aim of a knowledge base system is to solve problems in a radically declarative
way, where domain knowledge is specified once as a knowledge base, allowing
the user to solve multiple domain problems without further modifications to the
knowledge base. The specification language of IDP is FO(·)– an extension of
typed classical first-order logic with aggregates, arithmetic and inductive defini-
tions.

One of the problems the IDP system is capable of solving is a logical model
optimization problem (MOP). A MOP is the logical equivalent of a COP, which
we will show after the brief introduction of some logical concepts.

In FO(·), logical formulas are constructed using a vocabulary Σ, which con-
tains type symbols, predicate symbols and function symbols. The type symbols
specify sets of domain elements present in the problem, while the predicate and
function symbols specify respectively typed relations and typed functions. A
structure I over a vocabulary Σ is an association of actual sets, relations and
functions to the symbols in Σ. More formally, we say a structure I interpretes
the symbols in Σ, while for a symbol P ∈ Σ, P I is called its interpretation.
Structures can be partial, in which case some predicate or function symbols have
no interpretation. Given the symbols in a vocabulary, formula’s and terms can
be constructed using logical connectives, quantifiers and other logical symbols.
If a structure I ranges over the same vocabulary as a formula φ or a term t, then
φI and tI are evaluations of φ and t: φI is either true or false, while tI maps
to some domain element d from I.1 A theory T over a vocabulary Σ is a set of
formulas over Σ, and a structure I over Σ satisfies T if for all φ ∈ T , φI is true.
In this case, we say that I is a model of T , or I |= T .

A MOP can be characterized as a quadruple (Σ, J, T , t), where Σ is the
vocabulary, J a partial structure over Σ, T a theory over Σ and t a term over Σ
mapping to a numeric domain such as the natural numbers. A MOP (Σ, I, T , t)
then represents the task of finding

1 To be exact, φ and t should also not contain any unquantified logical variables to
have a proper evaluation in I.



– a model I |= T ,
– such that I has the same interpretation as J for all types and interpreted

symbols in J ,
– and I is minimal for t.2

When relating this to a COP (V,D,C,O), T represents the constraints C, t
represents the objective function O, the uninterpreted function and predicate
symbols in J represent the variables V , and the domain of values D corresponds
to the set of possible relations and functions that can be associated to the unin-
terpreted symbols, given the interpretation of the types of Σ in J . A structure
corresponds to an assignment, a model to a satisfying assignment, and a minimal
model to an optimal solution.

Instead of diving into the technical details of FO(·), we improve a reader’s
intuition by the following two examples:

Example 5. The COP specification for TSP given in Example 1 can be realized
as a MOP with the following vocabulary:

– type City
– type Index ⊆ N
– function symbol Distance : City × City → N
– function symbol Next : Index→ Index
– function symbol Map : Index→ City

For the TSP, every symbol but Map will be interpreted by the partial structure,
so Map will function as our search variable.

The TSP constraints are specified by a theory with one formula:

∀x : ∀y : (Index(x) ∧ Index(y) ∧ x 6= y)⇒Map(x) 6= Map(y).

Which effectively posts an all-different constraint over the Map function sym-
bol, stating that two different index elements need to be mapped to two different
cities. Each model satisfying this theory will thus have a TSP tour as interpre-
tation for Map.

Next we need a minimization term:∑
z

{Distance(Map(z),Map(Next(z))) | z ∈ Index}

Which denotes the sum of all distances between cities mapped by subsequent
indices, and as such denotes the total distance of a tour represented by the Map
function symbol.

Finally, the partial structure provides the necessary parameters to solve a
TSP instance. For this, it contains

– a set of indices {0, . . . , n−1} and a set of cities {c1, . . . , cn} as interpretation
for the types,

– a function adhering to the signature of the Distance symbol specified in the
vocabulary,

2 Again we assume the objective function is to be minimized.



– a function adhering to the signature of the Next symbol specified in the
vocabulary, which for sensible TSP instances maps some index x to (x+ 1)
mod n.

Given the above vocabulary, theory, minimization term and partial structure,
IDP’s MOP routine then searches for an interpretation to Map that satisfies the
constraints in the theory, and minimizes the objective function. This solves the
TSP COP described in Example 1, as the inferred interpretation of Map leads
to an optimal TSP tour.

Example 6. The CNP from Example 3 can be modelled in FO(·) using the
following vocabulary:

– type Node
– type Color
– predicate symbol Edge ⊆ Node×Node
– function symbol Coloring : Node→ Color

The constraint that two neighboring nodes must have a different color is
stated in the following theory:

∀x : ∀y : Edge(x, y)⇒ Coloring(x) 6= Coloring(y).

And the objective function simply counts the number of colors used:

#{z | ∃x : Coloring(x) = z}

Finally, a partial structure contains an input graph by interpreting Edge,
and leaves the Color symbol uninterpreted. Solving the MOP will lead to an
interpretation for Color, representing a minimal graph coloring.

Algorithmically, IDP solves model optimization by a ground-and-solve ap-
proach, where the theory, structure and minimization term are grounded to a set
of low-level constraints in the extended conjunctive normal form (ECNF) lan-
guage. These ECNF constraints can be solved by IDP’s custom-made lazy clause
generation constraint solver MiniSAT(ID) [3]. This grounding step is analogous
to the flattening of high-level MiniZinc specifications to FlatZinc constraints, to
the point that MiniSAT(ID) can also solve FlatZinc specifications.3

3.2 Symmetry in FO(·)

Given that we defined a symmetry as a permutation of the assignment space
preserving satisfaction to the constraints, a symmetry of a MOP (Σ, J, T , t)
corresponds to a permutation of the set of extensions of J such that for each
extension I of J holds I |= T ⇔ S(I) |= T .

The symmetry type detected by IDP is domain element swap (DES) sym-
metry, which is a variant of the type of symmetry detected by the relational

3 MiniSAT(ID) also participated in 2014’s and 2015’s FlatZinc competition.



model finder Kodkod [4]. Kodkod uses untyped first-order logic, and hence pro-
vides only one set of domain elements Dom in its partial structure J . Kodkod’s
symmetry detection routine then partitions Dom into subsets Domi such that
for any Domi all swaps of domain elements d1, d2 ∈ Domi induce a symmetry.
IDP’s DES symmetry similarly exploits the given types as partition of the set
of all domain elements, but it does not require all symbols ranging over the type
to take part in the symmetry.

Let’s provide a formal definition for clarification:

Definition 5. A domain element swap (DES) symmetry S of a MOP (Σ, J, T , t)
is a symmetry characterized by a triple (a, b, σ) such that a, b are two domain
elements from the same type interpretation in J , and σ is a subset of predicate
and function symbols from Σ that are uninterpreted in J . If we take πab to be the
permutation of domain elements that swaps a with b and leaves all other domain
elements invariant, then S maps each extension I of J to S(I) in such a way
that for predicate symbols P ∈ σ:

(d1, . . . , dn) ∈ P I ⇔ (πab(d1), . . . , πab(dn)) ∈ PS(I)

and for function symbols f ∈ σ:

d0 = f I(d1, . . . , dn)⇔ πab(d0) = f I(πab(d1), . . . , πab(dn))

while the interpretation of predicate symbols Q 6∈ σ and function symbols g 6∈ σ
is left untouched:

QI = QS(I) and gI = gS(I)

The following two examples illustrate DES symmetry:

Example 7. The TSP MOP from Example 5 exhibits two classes of DES sym-
metry:

– DES symmetries characterized by (i, j, {Map}) for i, j ∈ [0 . . . n− 1]. These
symmetries swap two indices i and j in the interpretation of Map, and as
such are equivalent to the TSP variable symmetry of Example 4.

– DES symmetries characterized by (ci, cj , {Map}) for i, j ∈ [1 . . . n]. These
symmetries swap two cities ci and cj in the interpretation of Map, and as
such are equivalent to the TSP value symmetry of Example 4.

Example 8. The chromatic number MOP from Example 6 exhibits the following
class of DES symmetry:

– DES symmetries characterized by (c, c′, {Coloring}) for two domain ele-
ments c, c′ in Color’s interpretation. These symmetries swap two colors c
and c′ in the interpretation of Coloring, and as such are equivalent to the
chromatic number value symmetry of Example 6.



3.3 Symmetry-induced neighborhood detection in IDP

As mentioned at the end of Section 2, we can convert a COP specification to
input for a local search algorithm by use of a symmetry-induced neighborhood.
The previous section explained the type of symmetry the IDP system can detect
for a MOP, so all that is left to do is figure out which of these symmetries induce
good neighborhoods.

We put forward that symmetries that are invariant for the objective function
are bad candidates for neighborhood generation. Often such symmetries consti-
tute a simple renaming of variables, values or domain elements, and as such can
not transform a satisfying assignment into a reasonably different one. Of course,
sometimes a move in a local search algorithm transforms the current satisfying
assignment into one with the same objective value, but having a neighborhood
that only leads to such moves seems like a waste of resources. We shortly inves-
tigate some properties of DES symmetry present in a MOP problem with regard
to the invariance of the objective function.

Firstly, a sufficient condition for a DES symmetry (a, b, σ) to leave the min-
imization term t invariant is that σ does not contain any predicate or function
symbols occurring in t. As such, we can instruct IDP’s neighborhood detection
algorithm to only investigate symmetries ranging over some uninterpreted sym-
bol in t. For the TSP problem specification from Example 5 the optimization
term contains the uninterpreted symbol Map, which occurs in both symbol lists
of the TSP DES symmetries given in Example 7. As a result, it is possible that
both symmetry classes are not invariant for the minimization term, which upon
further inspection is the case.

However, ranging over an uninterpreted symbol in the minimization term
is not a necessary condition for a DES symmetry to be invariant for the mini-
mization term, as shown by the CNP. The CNP MOP minimization term (see
Example 6) contains the function symbol Coloring, which also occurs in the
list of symbols of the DES symmetry given in Example 8. However, swapping
two colors in a graph coloring is invariant for the number of colors used. IDP’s
symmetry detection scheme utilizes more refined mechanisms to detect whether
terms and formula’s are invariant under a certain DES symmetry, which we will
use in the experiments, but which will not be explained in further detail here.

With the above points in mind, we can devise a simple symmetry-induced
neighborhood detection scheme for a MOP (Σ, J, T , t) in IDP:

1. Identify the predicate and function symbols occurring in t but uninterpreted
in J .

2. Detect DES symmetry over these symbols.

3. Ignore any DES symmetry invariant for t.

4. Convert the remaining DES symmetries to neighborhoods by Definition 4.

The performance critical part of this algorithm is the symmetry detection
step, whose efficiency in turn depends on the granularity of the symmetry de-
tected. For IDP, symmetry detection takes at most O(n2) time, with n the total



number of domain elements in J , since worst-case it generates all pairs of do-
main elements a, b to check for DES symmetries (a, b, σ). The list of symbols σ
is derivable in linear time from T . So for DES symmetries, the neighborhood
detection mechanism is tractable.

The only question that remains is what (small) set of symmetries should
be used to induce neighborhoods, as was mentioned at the end of Section 2.4.
Note that DES symmetries represent swaps of domain elements, which can be
composed to form other symmetries based on other permutations of domain ele-
ments. Moreover, any permutation over a set of domain elements can be obtained
by a composition of swaps of domain elements. As a result, detecting a set S
of DES symmetries entails detecting a group of symmetries ΓS that represents
the interchangeability of subsets of domain elements (those that can be pairwise
swapped).

The size of ΓS is factorial in the size of S, so using all symmetries in ΓS
as neighborhood inducing symmetries seems an infeasible option. Instead, we
restrict the set of neighborhood inducing symmetries to the set of all possible
swaps of domain elements, in casu S. This has two advantages: firstly it limits
the amount of neighborhood inducing symmetries to O(n2) with n the number of
swappable domain elements. Secondly, S generates ΓS , meaning that any model
S(I) that can be reached by S ∈ ΓS from model I can also be reached by a
composition of some series of S′ ∈ S.

On the other hand, it is possible to construct a set of symmetries S ′ that
generates ΓS but which is O(n) in size. S ′ then consists of swaps of subsequent
domain elements di, di+1 according to some chosen total order on the domain
elements. Even though it would lead to smaller neighborhoods, it also skews any
local search algorithm according to the chosen order, putting a possibly unwar-
ranted bias on the direction of the search over the solution space. For this reason,
we stick with the quadratic set of symmetries S to induce a neighborhood.

4 Experiments

We implemented the neighborhood detection scheme described in the previous
section in IDP, and in this section we experimentally investigate which neigh-
borhoods were detected for a series of well-known constraint optimization prob-
lems. The FO(·) specifications for each of these problems are available online at
adams.cs.kuleuven.be/idp/localsearch.html4, where an interested reader
can run IDP with one click and see the neighborhood detection mechanism in
action.

4.1 Traveling Salesman Problem: on robustness

Let us first investigate the TSP problem, since this was our running example. As
mentioned in Section 3, both the city-swapping and index-swapping symmetries

4 Click “File”, then ”Local Search in IDP”



are variant for the minimization term, resulting in a neighborhood swapping
cities and indices.

However, there exist other reasonable FO(·) specifications of TSP other than
the one in Example 5. For instance, a user could use the following vocabulary,
theory and minimization term specifying the TSP:

Vocabulary:

– type City
– function symbol Distance : City × City → N
– predicate symbol Following ⊆ City × City
– predicate symbol Reachable ⊆ City
– constant Start : → City

Theory:

∀x : ∃1y : Following(x, y).

∀y : ∃1x : Following(x, y).

∀x : Reachable(x).

{∀x : Reachable(x)← x = Start ∨ (∃y : Reachable(y) ∧ Following(y, x)).}

The constraint between curly brackets is an inductive definition [5], constraining
the Reachable predicate to only be true for cities reachable from a Start city
using the Following relation. By next stating that all cities must be reachable,
we effectively posted a subtour elimination constraint.

Minimization term:∑
x,y

{Distance(x, y)|Following(x, y)}

When executing the described neighborhood detection algorithm, we estab-
lish that Following is an uninterpreted predicate symbol occurring in the objec-
tive function, and that DES symmetries swapping cities over this symbol exist.
Also, these symmetries are variant for the objective function, so they lead to a
city-swapping neighborhood.

This alternative specification experiment shows that the proposed neighbor-
hood detection method exhibits robustness: different specifications of the same
problem still lead to comparable neighborhoods. This of course only holds as
long as symmetry properties of different specifications are similar.

4.2 Shortest Path Problem: a succesful problem

This problem consists of finding the shortest path between a start and end node
in a weighted graph. Its specification in FO(·) is very similar to the TSP speci-
fication of the previous subsection, and centers on finding a minimal interpreta-
tion to some Following/2 predicate. IDP’s neighborhood detection mechanism



indeed detected that all two cities except the start and end city were interchange-
able. The resulting symmetries were variant for the objective function, leading
to a large set of induced neighborhoods. Therefor, we judge IDP’s neighborhood
detection algorithm to be succesful on the shortest path problem.

4.3 Max Clique: relaxing constraints?

The task of a max clique problem is to identify the largest clique in a graph. We
modelled this problem in such a way that each satisfying assignment represented
a set of nodes forming a clique in the input graph. The only domain elements
in this problem are the nodes of the graph, and for typical graphs nodes are not
swappable. Hence, IDP could not detect any symmetry, and no induced local
search neighborhoods were detected by our algorithm. This makes sense, since
there is no obvious way of transforming cliques of a graph in one move to some
other clique in the graph.

However, we can imagine a local search algorithm for this problem that it-
eratively removes nodes from and to a node set representing a potential clique.
This effectively relaxes the clique constraint, making any set of nodes a satisfy-
ing assignment, regardless of whether it forms a clique in the input graph. The
lesson we take from this problem is that our neighborhood detection scheme
is not yet able to detect constraints that can be relaxed to allow for a larger
potential neighborhood.

4.4 Chromatic Number Problem: avoiding a useless neighborhood

As mentioned in Example 3, the CNP consists of finding the lowest amount
of colors with which a graph can be colored so that no two adjacent nodes
have the same color. This problem does exhibit symmetry in the sense that all
colors to color the nodes with are swappable. However, as mentioned in Section
3.3, this symmetry is invariant for the objective function, and as a result, no
symmetry-induced neighborhood was detected. This is a positive result, since
globally swapping colors does not lead to an effective local search neighborhood.

However, swapping colors for each node separately might lead to a reasonable
neighborhood, which would again relax the constraint that two adjacent nodes
must have a different color. This observation is similar to the one made in the
Max Clique section.

4.5 Knapsack Problem: unexpected symmetry leads to unexpected
neighborhood

The knapsack problem consists of filling up some abstract knapsack with objects,
such that the volume of the objects fits the knapsack, but the value of the objects
is maximal. Since swapping any two objects in and out of the knapsack might
violate the volume constraint, we expected the neighborhood detection algorithm
to not detect any symmetry, and thus no neighborhood.



However, IDP’s symmetry detection was sufficiently fine-grained to identify
that for some instances, some objects had the same volume but a different value.
These objects could safely be swapped in and out of the knapsack, leading to an
unexpected neighborhood where for a given knapsack, small variations on the
filling of the knapsack could be explored.

4.6 Assignment Problem: human neighborhoods

The last problem we investigate is the assignment problem, where a bijection
between a set of agents and a set of tasks must be found that minimizes the
cost of assigning a certain task to a certain agent. As expected, IDP detected
that swaps of agents and tasks were not a priori invariant for the objective
function. As a result, these symmetries induced a local search neighborhood,
which arguably would be the same neighborhood a human algorithmician would
devise. This is an optimal neighborhood detection result!

4.7 Experimental conclusions

Testing the symmetry-based automated neighborhood detection algorithm of
IDP on the above problems yielded interesting insights. Firstly, the approach is
robust in changes to the specification as long as the symmetry properties are not
disturbed. Secondly, taking invariantness of the minimization term into account
allows to avoid detecting useless neighborhoods. Thirdly, for some problems, the
symmetry-induced neighborhood is the same as the one a human would devise.
Fourthly, to detect more neighborhoods, it might be needed to relax constraints.
And finally, sometimes the automated neighborhood detection algorithm might
find neighborhoods where a human did not expect them.

On the whole, we evaluate the experiment to have returned positive results,
supporting the viability of symmetry-induced neighborhood detection.

5 Related Work

In the previous sections we described how any constraint programming system
and how IDP in particular can exploit symmetry properties of problems to derive
local search neighborhoods for those problems. Of course, we are not the first to
try to link local search to constraint programming. A well-known example is the
Comet system, which allows a user to easily specify neighborhood based local
search algorithms in a constraint-centered way [6, 7]. However, Comet did not
provide any automatic neighborhood detection algorithm.

Stochastic SAT solvers such as WalkSAT [8] also allow a constraint program-
ming problem to be solved by local search. In WalkSAT, every assignment to
the boolean variables is a satisfying assignment, and neighborhoods are defined
in terms of “flips” on the truth value of a boolean variable. In our view, this is
an extreme approach, since all original constraints can be violated by any move.
Note that in a context where all constraints are relaxed, any permutation on the



solution space is a symmetry which can be used for symmetry-induced neigh-
borhoods. However, these neighborhoods are not the kind a human programmer
would devise for most combinatorial optimization problems.

To our knowledge, the only system that allows automatic derivation of local
search neighborhoods from an input specification is LocalSolver [9]. LocalSolver
allows a user to write down constraints in a mathematical modeling language
centered on boolean variables, and uses flips on those variables as well as fea-
sibility preserving moves based on “ejection chains applied to the hypergraph
induced by boolean variables and constraints”. We conjecture that these feasi-
bility preserving moves can be seen as symmetries of the problem, but we need
further investigation to confirm this. One weakness of LocalSolver is that the ini-
tial solution is found by a basic randomized greedy algorithm, and that it is not
designed for solving hardly-constrainted optimization problems. This is opposed
to the constraint-based local search approach described in this paper, which
can always fall back on the solving capabilities of a state-of-the-art constraint
programming engine.

To put our work in a broader perspective, it is worth mentioning that much
research has been done on the relationship between symmetry breaking and local
search (e.g. [10]). An important result is that adding symmetry breaking con-
straints has a negative impact on the efficiency of local search algorithms. In
our work, we do not break any symmetry, but rather exploit symmetries to tra-
verse the local search space. Most importantly, the symmetries we use are not
symmetries of the whole optimization problem, since they are variant for the
objective function. As such, they cannot be broken, since this would risk remov-
ing an optimal solution from the search space. In this light, symmetry breaking
for optimization problems and exploiting symmetry properties to construct local
search neighborhoods are two orthogonal uses of symmetry.

On the other hand, neighborhood inducing symmetries share the fact that
they are variant for the objective function with dominance relations used in dom-
inance breaking. Dominance breaking is a generalization of symmetry breaking
for complete search algorithms where extra constraints remove dominated solu-
tions with a worse objective value from the search space [11]. These dominance
relations seem to also induce neighborhoods much in the same way symmetry
does and can be detected automatically [12], but it is not clear if dominance
relations of a COP are fundamentally different to symmetries that are variant
for the objective function.

Finally, in recent years the metaheuristic community is actively investigating
how to formalize and automate local search algorithms [13]. Our work can be
seen as an effort in that direction, opening up unexplored research avenues by
linking local search neighborhoods to symmetry properties of problems.

6 Conclusion and future work

In this paper, we propose a link between local search neighborhoods and sym-
metry. To our knowledge, this is the first time such a link is established. We used



this link to design and implement a transformation of a COP specification, in
the form of a MOP specified in FO(·), to input for an automated local search al-
gorithm. We conducted an experimental investigation of the symmetry-induced
neighborhoods detected by our implementation, which supports the viability of
this technique.

As future work, it remains to be seen how well symmetry-based neighborhood
detection algorithms perform on larger, more complex problems, with potentially
more symmetry breaking constraints. Allowing the relaxation of certain con-
straints might prove crucial in detecting sufficiently large neighborhoods. Also,
the link with techniques for dominance breaking is definitely worth investigating.

Secondly, it would be interesting to couple the detected neighborhoods and
input solutions to some local search engine, and experimentally verify their per-
formance. The challenge here lies in being able to quickly move from one satisfy-
ing assignment to another, and to incrementally update the value of an objective
function. The IDP system is currently unoptimized in this regard.

Thirdly, the problem of deciding which subset of detected symmetries are
used to induce neighborhoods can also be tackled by a hyperheuristic algorithm.
In general, a hyperheuristic aims to find the best combination of neighborhoods
by deciding which neighborhood to select for the next iterations of local search
and evaluating the resulting executed moves. Providing information on the whole
symmetry group to the hyperheuristic algorithm instead of only a subset of
symmetry-induced neighborhoods might allow it to derive more fitting combi-
nations of neighborhoods.

Lastly, for some problems, there exist complex neighborhoods involving smart
perturbation and repair steps. Detecting these still seems a hard challenge.
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