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Summary  

The dorsal and ventral visual pathways represent both visual and conceptual object properties. 

Recent reports suggested the role of low-level visual properties in driving the organization of high-

level conceptual representations. However, these studies did not directly compare object shape and 

object category information. We present an event-related fMRI study with a two-factorial stimulus 

set with 54 images that explicitly dissociates shape from category in order to investigate their 

independent contribution as well as their interactions through representational similarity analyses. 

Results reveal a contribution from each dimension in both streams, with a transition from shape to 

category along the posterior-to-anterior anatomical axis. The nature of category representations 

differs in the two pathways: ventral areas represent object animacy and dorsal areas represent 

object action properties. Furthermore, information about shape evolved from low-level pixel-based 

to high-level perceived shape following a posterior-to-anterior gradient similar to the shape-to-

category emergence. To conclude, results show that representations of shape and category 

independently coexist but at the same time they are closely related throughout the visual hierarchy. 

 

Significant statement 

Research investigating visual cortex conceptual category representations rarely takes into account 

visual properties of objects. In this report, we explicitly dissociate shape from category and 

investigate independent contributions and interactions of these two highly correlated dimensions. 

 

 

Key words: visual cortex, object category, object shape, cortical organization, representational 

similarity analysis. 

 

 

 

 

 

  



 2 

Introduction 

 

Visual information is processed throughout a series of hierarchical stages in at least two pathways: a 

ventral stream for object recognition, and a dorsal stream for the visual guidance of actions (Goodale 

and Milner, 1992; Kravitz et al., 2013). At different stages along the ventral visual pathway, neurons 

are tuned to object contours and curvatures, position and three-dimensional object configurations 

(Kobatake and Tanaka, 1994; Brincat and Connor, 2004; Yamane et al., 2008). Higher up, in both 

human and monkey inferotemporal (IT) cortex, a large-scale division for animate and inanimate 

entities and further subdivisions within the animate domain for faces and bodies have been shown 

(Kiani et al., 2007; Kriegeskorte et al., 2008b; Bell et al., 2009). Although, a large body of evidence has 

shown that the ventral stream plays a critical role in representing both shape and semantic 

information (e.g., Grill-Spector et al., 1998), recently there has disagreement about the relative 

contribution of these two dimensions – and the nature of their interaction – in driving the visual 

cortex organization. 

In particular, recent work in monkeys (Rajimehr et al., 2011; Baldassi et al., 2013; Yue et al., 

2014) as well as in humans (Nasr et al., 2014; Rice et al., 2014; Watson et al., 2014) has argued that 

the organization of category representations in high-level visual cortex reflects brain selectivity for 

visual features, including relatively low-level dimensions such as spatial frequency and local 

orientation content which are typically associated with primary visual cortex. Similar unresolved 

discussions have arisen in the literature on the dorsal visual pathway (Sakuraba et al., 2012). 

These controversies arise and are not easy to resolve because category distinctions are 

typically correlated with visual dimensions. Entities within the same object category share similar 

shape features. Faces are round and bodies are elongated. Most animals have four legs, a face and 

round contours that largely differ from most man-made inanimate objects (e.g., a bookshelf). Given 

these constraints, it is not surprising that most studies investigating category selectivity do not 

control for shape differences among stimuli within and across classes. Typically, such studies resort 

to the post-hoc application of relatively limited computational models to argue that category effects 

cannot be reduced to visual features. However, these visual features are never captured fully by the 

models (Kriegeskorte et al., 2008a; Op de Beeck et al., 2008b). Thus, it is hard to exclude the 

possibility that observed large-scale divisions (e.g., animate/inanimate) might be largely accounted 

for by object shape information.  

To address these issues and compare the contribution of shape and category information 

within the two visual pathways, we implemented a two-factorial event-related fMRI design where 

shape and category membership are manipulated independently. This design allowed us to separate 

object shape and object category and investigate the contribution of the two factors.  



 3 

Materials and Methods 

 

Participants 

The fMRI study included 15 right-handed adult volunteers (8 females; mean age, 24 years). One 

participant was excluded because of excessive head motion. All participants gave informed consent 

to take part in the fMRI experiment. The study was approved by the ethics committee of the KU 

Leuven.  

 

Stimuli 

The 54 stimuli are shown in Figure 1. Six categories of objects were included in an event-related 

design fMRI experiment: minerals, animals, fruit/vegetables, musical instruments, sport articles, and 

tools. Each category consisted of 9 greyscale images on a white background and had a size of 8° x 8° 

(400 x 400 pixels). For each category, each image had unique shape properties, thus creating 9 

subsets of images with similar shape properties. Thus, the category and shape dimension were 

orthogonal to each other; each shape type (e.g., round) contained 1 image from each of the 6 object 

categories and each object category (e.g., animals) contained 1 image from each shape type. The 

nine summed images obtained by summing all images from each shape type are shown in the last 

row of Figure 1. The six summed images obtained by summing all images from each object category 

are shown in the last column of Figure 1. These six summed images suggest that object category 

could not be distinguished based on object shape properties. As a measure of image low-level shape 

properties (image silhouette), we computed pixelwise similarities among images (Op de Beeck et al., 

2008b). For the silhouette model, the resulting dissimilarity matrix (1 minus correlation) is reported 

in Figure 2a (left most column). The value in each cell (upper triangle) of this dissimilarty matrix 

reflects pixel-based differences for each object pair (blue represents large similarity). For the 

silhouette model, the two-dimensional arrangement derived from multidimensional scaling (MDS) is 

reported Figure 2b.  

 

Behavioral similarity judgments 

Similarity judgments for the category and shape dimensions were rated by an independent group of 

participants (N=16) using the multiple object arrangement method (Kriegeskorte and Mur, 2012). 

Differently from pairwise similarity judgments, the multi-arrangement method allows for measuring 

multiple similarity judgments in a single arrangement, thus allowing each item to be rated in the 

context of all the remaining items (Kriegeskorte and Mur, 2012). Each participant rated all 54 images 

used in the functional neuroimaging study. For shape similarity, participants were asked to arrange 

the images based on perceived object shape similarity. For semantic category similarity, participants 

were asked to arrange the images based on the semantic similarity among objects. Results were 

averaged across participants. The shape and semantic category models are summarized in Figure 2 

by means of dissimilarity matrices (Fig. 2a) and multidimensional scale arrangements (Fig. 2b).  

 

Scanning procedure 

The study consisted of two separated sessions, each performed in separated days. Each session 

included experimental runs as well as localizer runs. The stimuli presentation was controlled by a PC 

running the Psychophysics Toolbox package (Brainard, 1997) in MATLAB. Pictures were projected 

onto a screen and were viewed through a mirror mounted on the head coil.  

 

Experimental runs: Each session included 8 experimental runs (16 in total), each lasting 7 minutes 

and 40 seconds each. Within each run a fully randomized sequence of 54 image trials (repeated 2 

times) and 18 fixation trials (repeated 2 times) was presented. Each trial was presented for 1500 ms, 

followed by a fixation screen for 1500 ms. Each run started and ended with 14 seconds of fixation. 

Participants performed a 1-back real-world size judgment task by pressing a button with their right 
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index or middle finger if the current image was smaller or larger relative to the image presented in 

the previous trial. The fingers associated with each response were counterbalanced across runs.  

 

Localizer runs: Seven categories of objects were included in a block-design fMRI localizer: whole 

bodies, hands, faces, tools, chairs, places, and scrambled images. Each condition consisted of 18 

greyscale images (400 x 400 pixels) on a white background. In total, 4 functional localizer runs (2 runs 

for each session) were included in the study, each lasting 5 minutes and 12 seconds. Within each run 

a fully randomized sequence of 7 category blocks (each repeated 4 times) interleaved with a fixation 

block lasting 16 seconds was presented. At the beginning and at the end of each run an additional 

fixation block was presented for 14 seconds. Within each category block, images were presented at 

the center of the screen for 400 milliseconds with a blank interstimulus interval (ISI) of 400 

milliseconds. Participants performed a 1-back repetition detection task by pressing a button with 

their right index finger any time the same picture was presented two times in succession. In each 

block, 1 or 2 repetitions were presented.   

 

Imaging parameters  

Data collection was performed on a 3T Philips scanner with a 32-channel coil at the Department of 

Radiology of the University Hospitals Leuven. MRI volumes were collected using echo planar (EPI) 

T2*-weighted scans. Acquisition parameters were as follows: repetition time (TR) of 2 s, echo time 

(TE) of 30 ms, flip angle (FA) of 90°, field of view (FoV) of 216 mm, and matrix size of 72 x 72. Each 

volume comprised 37 axial slices (covering the whole brain) with 3 mm thickness and no gap. The T1-

weighted anatomical images were acquired with an MP-RAGE sequence, with 1 x 1 x 1 mm 

resolution. 

 

Preprocessing and data analysis 

Imaging data were preprocessed and analyzed using the Statistical Parametrical Mapping software 

package (SPM 8, Welcome Department of Cognitive Neurology, London, UK) and MATLAB. Functional 

images underwent the following preprocessing steps: slice timing correction, spatial realignment (to 

the first image) to adjust for individual head motion, co-registration of functional and anatomical 

images, segmentation and spatial normalization to an MNI (Montreal Neurological Institute) 

template. Functional images were resampled to a voxel size of 3x3x3 mm and spatially smoothed by 

convolution of a Gaussian kernel of 4 mm full-width at half-maximum (Op de Beeck, 2010).  

We modelled the pre-processed signal for each voxel, for each participant and for each of the 

54 images using a general linear model (GLM). The GLM included regressors for each condition of 

interest (54 conditions) and the 6 motion correction parameters (x, y, z for translation and for 

rotation). Each predictor’s time course was modelled by a boxcar function convolved with the 

canonical hemodynamic response function in SPM.  

 

Regions of interest 

Fifteen regions of interest (ROIs), which covered the wider lateral and ventral surface of OTC (LOTC; 

VOTC), and part of parietal and frontal cortices, were defined in each individual participant. ROIs 

were defined by means of an independent functional localizer and (when necessary) the anatomical 

WFU PickAtlas Toolbox (Wake Forrest University PickAtlas, http://fmri.wfubmc.edu/cms/software). 

Object-selective voxels (chairs > scrambled images) were localized in lateral and ventral occipital 

temporal cortex (Grill-Spector and Malach, 2004). Face-selective voxels [conjunction of (faces > 

chairs) and (faces > bodies)] and body-selective voxels (bodies > chairs) could be defined separately 

in LOTC (LOTC-face, LOTC-body;  Puce et al., 1996; Downing et al., 2001) but not in VOTC (Peelen and 

Downing, 2005; Schwarzlose et al., 2005), where face and body voxels (face + body > chairs) were 

combined in a single ROI (VOTC-face/body). Hand-selective voxels [conjunction of (hands > chairs) 

and (hands > bodies)] were defined in LOTC (LOTC-hand; Bracci et al., 2010). Additional hand-

selective voxels (hands > chairs) were defined in the intraparietal sulcus (IPS-hand). Scene-selective 
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voxels (scenes > chairs) were defined in the transverse occipital sulcus (TOS-scene; Nasr et al., 2011), 

posterior and anterior parahippocampal gyrus (pPPA-scene, aPPA-scene; Arcaro et al., 2009). Early 

visual areas (EVC-1 and EVC-2; all categories > baseline) were restricted to anatomical masking by 

Brodmann areas, BA-17 and BA-18 respectively. Superior parietal lobe (SPL; all categories > baseline) 

and inferior parietal lobe (IPL; all categories > baseline) were restricted to the anatomical mask BA-

5/7 and BA-40, respectively. Finally, dorsal prefrontal cortex (DPFC; all categories > baseline) was 

restricted to the anatomical mask BA-46. ROIs included all spatially contiguous voxels that exceeded 

the statistical uncorrected threshold p < 0.001. When less than 25 active voxels were found at this 

threshold, a more liberal threshold of p < 0.01 was applied. Only ROIs with at least 25 active voxels 

were included in an individual subject. To ensure that all ROIs were anatomically independent from 

each other a hierarchical inclusion criterion was applied which reflected the functional criterion. For 

example, if a subset of object-selective voxels were also selective for bodies, object-selective voxels 

were defined after excluding body-selective voxels (those voxels where the response to bodies was 

significantly higher than chairs). Table 1 reports details on ROIs’ localization (e.g., functional contrast, 

cluster size) and Figure 3 shows all ROIs in one representative participant. These ROIs provide a 

continuous and comprehensive window on the large cortical area activated when perceiving objects, 

the latter being displayed in grey on the small brain maps in Figure 3 (all categories > baseline, p = 

0.00001, uncorrected). With the exception of the region around the central sulcus, which is probably 

activated due to the execution of the motor response, a large part of the regions activated by 

viewing the object images is covered by the aforementioned ROIs. The choice of combining 

functional and anatomical criteria to define our ROIs – over possible alternatives such as anatomical 

parcellation – was preferred. This combined method (in several variations), very common in research 

on the visual system, allows determining functionally specific ROIs by including a large portion of 

visually active voxels and at the same time excluding voxels that do not show reliable visually object-

related information. 

Note that the ROIs differed in size. Whereas differences in ROIs size can lead to differential 

results in classification-based analyses, correlation-based analyses are not affected by different ROI’s 

size. To confirm this, we repeated our analyses using the same number of voxels for each ROI. As 

expected, exactly the same results were obtained in the two analyses.  

 

Multivoxel pattern analysis 

We used correlation-based multivoxel pattern analysis to analyse how the spatial response pattern in 

individual ROIs differs between experimental conditions (Haxby et al., 2001). Parameter estimates 

(‘responses’) for each condition (relative to baseline) were extracted for each voxel in an ROI, for 

each participant and each run, and normalized per run by subtracting the mean response across all 

conditions for each voxel separately. The full dataset was divided into two independent subsets of 

runs (set-1 and set-2). The multi-voxel patterns of activity associated with each condition (e.g., fish) 

in set-1 were correlated with the activity patterns in set-2. This procedure of splitting the data in two 

was repeated 100 times. Correlations were averaged across the 100 iterations, thus resulting in an 

asymmetric 54 x 54 correlation matrix for each participant and ROI. Subsequently, the two halves 

(above and below the diagonal) of the correlation matrix were averaged and only the upper triangle 

of the resulting symmetric matrix was used in the following analyses. To test whether the response 

pattern in an ROI conveyed information about stimulus identity, we compared the average of within-

condition correlations (diagonal cells) for each ROI with the average of between-condition 

correlations (off diagonal cells). Pairwise t-tests across participants revealed significant reliability of 

response patterns for each ROI (p < 0.01; for all tests). Thus, the multi-voxel patterns convey 

information about the presented conditions in all the ROIs. Subsequently, correlation matrices were 

converted into dissimilarities matrices (1 minus correlation) and used as neural input for the RSA 

analysis (Kriegeskorte et al., 2008a). As before (Op de Beeck et al., 2008b), we correlated the 

behavioural dissimilarity matrices for shape and semantic category with the neural dissimilarity 

matrix of each ROI. Resulting correlations were Fisher transformed {0.5*log[(1+r)/(1-r)]}.  
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To take into account the noise in the data, for each ROI we computed an estimate of the 

reliability of the data, which provides an indication of the maximum correlations we can expect given 

the signal to noise ratio of the data (Op de Beeck et al., 2008b). For each subject and each ROI, the 54 

x 54 correlation matrix was correlated with the averaged correlation matrix of the remaining 

participants. Values were averaged across participants. The resulting correlation values capture noise 

inherent to a single subject as well as noise caused by inter-subject variability. This measure of 

reliability gives an estimate of the highest correlation we can expect in each ROI when correlating 

behavioural dissimilarity (e.g., shape model) and neural dissimilarity (e.g., activation pattern in each 

ROI). We provide this measure as a reference in all the relevant data figures (grey-shaded 

background bars). It would also be possible to normalize for reliability by dividing all correlations 

through the reliability, and such approach results in very similar statistics and conclusions as our 

main, not normalized analyses. 

 

Multidimensional scaling and hierarchical cluster analysis.  

Multidimensional scaling (MDS) and hierarchical cluster analysis were used to visualize and compare 

neural similarity structures in all ROIs and similarity structures related to pixel-based overlap 

(silhouette similarity) and the behavioural models (shape similarity and category similarity). Metric 

multidimensional scaling was performed using Matlab function “mdscale” normalized with the sum 

of squares of the dissimilarities. The hierarchical cluster analysis was performed using the Matlab 

function “linkage” using the nearest distance default method.  
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Results 

Shape and category information in the ventral and dorsal pathway  

We collected behavioural and neural data on a set of 54 images (Fig. 1). An independent group of 

participants (N =16) performed similarity judgments on all images for the shape and the semantic 

category dimension (Materials and Methods). As intended, the two dimensions were independent 

(r= -0.01), and revealed a very different representational space (Fig. 2b). To investigate how 

information about shape and category is distributed throughout the ventral and dorsal pathway, 

dissimilarity matrices derived from behavioural judgments (Fig. 2) were compared with neural 

dissimilarity matrices derived from regions of interests’ (ROIs) activity patterns (Materials and 

Methods) by means of representational similarity analysis (RSA; Kriegeskorte et al., 2008a). Defined 

ROIs (Materials and Methods) covered a large cortical area of visually active voxels within both visual 

pathways (Fig. 3). As shown in Figure 4a, the neural similarity in most ROIs (BA-17, BA-18, TOS-scene, 

pPPA-scene, aPPA-scene, LOTC-object, LOTC-face, LOTC-body, LOTC-hand, VOTC-object, VOTC-

body/face and SPL) showed significant above baseline correspondence with shape similarity as rated 

behaviourally (p > 0.004 for all tests; Fig. 4a marked with green asterisks). We refer to these regions 

as shape-sensitive ROIs. Shape information was not present in IPS-hand, IPL and DPFC. Different 

results were observed for the category dimension. Whereas category information was not present in 

early visual areas  (EVC-1, EVC-2: t <1 for both tests) and scene-selective areas (TOS, pPPA, aPPA: t <1 

for all tests), significant above baseline category information was observed in object/face/body/hand 

selective areas in lateral and ventral OTC (LOTC-object, LOTC-face, LOTC-body, LOTC-hand, VOTC-

object, VOTC-body/face), SPL, IPL, IPS-hand and DPFC (p < 0.01 for all tests; Fig. 4a marked with 

orange asterisks). We refer to these regions as category-sensitive ROIs. Thus, category-related 

information is present even when shape similarity is orthogonal to category membership and goes 

against it so that stimuli with high shape similarity belong to different categories.  

Next, we assessed how the representational content is changing across ROIs. To compare 

representational content across ROIs, we performed second-order correlations across ROI’s 

correlation matrices averaged across subjects. The resulting dissimilarity matrix (1 minus correlation; 

Fig. 4b) captures similarities in representational content among ROIs: similarities in two ROIs’ 

representational content (e.g., BA17 and BA18) suggest that these ROIs represent the stimuli in a 

similar manner. The application of multidimensional scaling to this ROI similarity matrix revealed a 

two dimensional arrangement (Fig. 4c) in which the first (horizontal) dimension seems related to the 

anatomical posterior-to-anterior axis, and the second dimension to the ventral-to-dorsal axis. In 

Figure 4c, the color-coding of the ROIs in terms of their selectivity for shape (green color-coded), 

category (orange color-coded) or both types of information (yellow color-coded) suggests a transition 

in representational content from shape-sensitive ROIs to category-sensitive ROIs along the 

anatomical posterior-to-anterior axis. To quantify the relationship between the type of selectivity 

and the anatomical position of an ROI, we correlated the ROI’s mean anatomical location on the y-

axis with the amount of category/shape information present in each ROI (cs-index = (category – 

shape)/(category + shape)). Further confirming results shown in Figure 4c, we found a highly positive 

correlation between ROI’s mean anatomical location on the y-axis and the cs-index (r=0.76); from 

posterior to anterior, shape information decreases and category information emerges. Taken 

together, these results show a transition from object shape to object category along the posterior-to-

anterior anatomical axis, with many regions in high-level visual cortex encoding both types of 

information. 

In sum, we observed that category selectivity could not be reduced to object visual 

properties such as perceived shape. Nevertheless, many of the high-level visual regions encoded 

both dimensions of object images: the shape and the category they belong to. In the next sections, 

we will further characterize information content for shape-sensitive and category-sensitive ROIs 

separately.  
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Characterizing information content in category-sensitive ROIs  

What type of “category” information is represented in category-sensitive ROIs? The hierarchical 

cluster analysis (Material and Methods) performed on category-sensitive ROIs (marked with orange 

asterisks in Fig. 4a) revealed two main clusters reflecting differences in ROIs’ representational 

content (Fig. 5a): one cluster for more ventral ROIs in occipitotemporal cortex (light blue color-

coded: LOTC-object, LOTC-body, VOTC-object, VOTCface/body, LOTC-face, LOTC-hand) and one 

cluster for more dorsal ROIs in parietal and prefrontal areas (dark blue color-coded: IPS-hand, SPL, 

DPFC, IPL). This clustering suggests differential category-related information content for areas within 

the dorsal and ventral visual pathway. Figure 5d shows the category clusters for one representative 

subject on a brain template. 

The candidate hypotheses for the nature of these differences can be found in the literature. 

Although our results add to the increasing evidence that object representations are encoded in both 

visual pathways (Konen and Kastner, 2008; Grill-Spector and Weiner, 2014), the two streams are 

supposed to support different computations; whereas the ventral stream processing primarily 

supports object perception, such as the animate/inanimate division (Caramazza and Shelton, 1998), 

the dorsal stream processing sustains action-related computations (Buxbaum et al., 2014). Does 

information content in the ventral and dorsal cluster reflect this distinction? Up to now no single 

study directly compared these two hypotheses in ventral as well as dorsal visual cortex.  

To address this question, we used RSA to compare neural similarity matrices derived from 

ROIs’ activity patterns (averaged across ROIs within each cluster) to two category models: (1) The 

animate/inanimate model (Fig. 5b, light blue border) captures the animate/inanimate division 

previously reported in visual cortex (Kriegeskorte et al., 2008b; Konkle and Caramazza, 2013). This 

model assumes high correspondence between neural patterns for two animate objects (two animals) 

and for two inanimate objects (e.g., a mineral and a musical instrument), but low correspondence 

between neural patterns for one animate and one inanimate object (e.g., an animal and a mineral). 

(2) The action/non-action model (Fig. 5b, dark blue border) captures sensitivity to action-related 

properties of objects, which might be more emphasized in dorsal stream areas. Our stimulus set 

includes three action-related object categories (sport articles, musical instruments and tools). The 

action/non-action model predicts high correspondence between neural patterns for two action-

related objects (e.g., a musical instrument and a tool) and two non-action objects (e.g., an animal 

and a mineral), but low correspondence between neural patterns for one action-related and one 

non-action object (e.g., a musical instrument and a mineral).  

Results from RSA were tested in a 2 x 2 ANOVA with Cluster (ventral, dorsal) and Model 

(animate/inanimate, action/non-action) as within-subject factors. Results revealed a significant 

Cluster x Model interaction (F(1,13) = 31.15, p = 0.00009; Fig. 5b), as such indicating that the 

differences in the relation between models and representational content in the ventral and dorsal 

cluster can be captured by these two models. Post-hoc pairwise t-tests further confirmed this 

dissociation: whereas in the ventral cluster (cluster 1) the animate/inanimate model could 

significantly better explain the neural pattern relative to the action/non-action model (t13 = 4.70, p = 

0.0004; Fig. 5b), in the dorsal cluster (cluster 2) the action/non-action model was significantly more 

related to the neural data relative to the animate/inanimate model (t13 = 2.9, p = 0.01; Fig. 5b).  

The correlations between the best model and the neural similarity matrix are not as high as 

they could be given the reliability of the data, thus representations in the ventral and the dorsal 

stream are not captured fully by any of these models. Nevertheless, the models capture important 

aspects of those representations. This is visible in the two-dimensional space formed by the 

dimensions that capture most variation in the neural similarity matrices according to 

multidimensional scaling. These spatial configurations illustrate the animate/inanimate (left panel) 

and the action/non-action (right panel) division in the ventral and the dorsal cluster, respectively (Fig. 

5c). Thus, despite the fact that both ventral and dorsal regions show category information, this first 

direct comparison of the two pathways through RSA confirms that the informational content in 

ventral and dorsal regions differs and reflects the hypothesized different computations happening in 

the ventral and dorsal pathway. 
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Characterizing information content in shape-sensitive ROIs 

What type of “shape” information is represented in shape-sensitive ROIs? The hierarchical cluster 

analysis (Materials and Methods) performed on shape-sensitive ROIs (marked with green asterisks in 

Fig. 4a) revealed two main clusters (Fig. 6a). Cluster 1 included BA-17, BA18, TOS-scene, pPPA-scene, 

LOTC-face and LOTC-object. Cluster 2 included VOTC-face/body, VOTC-object, LOTC-body and LOTC-

hand. Two additional ROIs (SPL, aPPA-scene) did not group with either cluster, and were excluded 

from subsequent analyses. The ROIs in the two shape clusters differed in their anatomical location; 

along the posterior-to-anterior anatomical y-axis, single-subject MNI coordinates, averaged across 

ROIs within each cluster, were significantly more posterior in cluster 1 than in cluster 2 (t11 = 22.2, p < 

0.0001; only subjects where all ROIs could be defined were included in this analysis). Figure 6d shows 

the shape clusters for one representative subject on a brain template. Taken together, these results 

suggest differential shape-related information content in posterior (cluster 1) and anterior (cluster 2) 

shape-sensitive ROIs.  

In the visual system, information about shape is processed throughout a series of hierarchical 

stages, so that early visual areas process image low-level visual properties such as position and 

orientation (Hubel, 1963) and extrastriate visual areas represent perceived object shape (Haushofer 

et al., 2008; Op de Beeck et al., 2008b) in a way that is tolerant to changes in object position, size and 

orientation (Grill-Spector et al., 1999; James et al., 2002). To test whether representational content 

in the posterior and anterior “shape” cluster reflects this known hierarchical shape processing, we 

used RSA to compare neural similarity matrices derived from ROIs’ activity patterns (averaged across 

ROIs within each cluster) to two shape models: (1) the “low-level” shape model (silhouette model), 

based on image pixel-wise similarities, and (2) the “high-level” shape model (shape similarity), 

derived from shape similarity judgments, which is the shape model used up to now in the Results 

section. Figure 2b and 6b illustrate the two models and their differences. The two shape models 

correlate only partially (r = 0.25). Clear differences between the two models are obvious from visual 

inspection of the multidimensional scaling solutions (Fig. 2b): in the perceived shape model, shape 

types cluster in three main subdivisions (i.e., elongated shapes (different shades of red), round 

shapes (different shades of green) and triangular shapes (different shades of blue)). These divisions 

are not present in the silhouette model were the three elongated shape types are largely segregated. 

Stated otherwise, the judged shape similarity shows more tolerance for the image orientation of 

elongated stimuli. 

Results from the RSA were tested in a 2 x 2 ANOVA with Cluster (posterior, anterior) and 

Model (silhouette, shape) as within-subject factors. This analysis revealed a significant Cluster x 

Model interaction (F(1,13) = 11.6, p = 0.005; see Fig. 6b), as such confirming differences in the relation 

between models and representational content in the posterior and anterior shape-sensitive ROIs. 

Post-hoc pairwise t-tests further confirmed this difference: whereas in the posterior cluster (cluster 

1) the silhouette model could significantly better explain the neural pattern relative to the shape 

model (t13 = 2.20, p = 0.05; Fig. 6b), in the anterior cluster (cluster 2) the shape model was 

significantly more related to the neural data relative to the silhouette model (t13 = 4.71, p = 0.0004; 

Fig. 6b). There was also a main effect of Cluster (F(1,13) = 90.5, p < 0.0001), with much higher 

correlations overall in cluster 1 than in cluster 2. This main effect is at least in part a trivial 

consequence of the differences in reliability of the multi-voxel patterns in the two clusters (grey bars 

in Fig. 6b). We should also note that the fit with the best shape model is far from perfect in each 

cluster: the highly significant correlations between the best model and the neural similarity data are 

smaller than what could be expected given the reliability of the data. 

In Figure 6c, the two-dimensional arrangements derived from multidimensional scaling 

illustrate the representational structure in the posterior (left panel) and anterior (right panel) 

“shape” cluster. Consistent with the models, in the posterior cluster, vertical elongated objects (red 

color-coded stimuli) and horizontal elongated objects (dark red color-coded stimuli) were largely 

dissociated, whereas all elongated objects clustered together in the anterior cluster.  
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Relation between the representation of shape and category 

The orthogonal manipulation of shape and category has allowed us to assess the separate 

contribution of each factor. In addition we can investigate potential relations between the two 

factors. Despite the relatively artificial dissociation in our stimulus set, in a more general context 

shape can be a reliable cue to recognize, identify, and categorize an object. Not just any shape 

feature is useful though, and in the literature it has been suggested that a shape representation 

useful for object recognition and basic-level categorization should be sensitive to features that allow 

transformation-invariant object recognition (Biederman, 1987; Kayaert et al., 2003). The above 

results showed that we have the sensitivity in our dataset to differentiate between low-level pixel-

based shape features and more high-level shape representations: along the visual pathway, from 

posterior to anterior, there is a progression from “low-level” to “high-level” shape representation. If 

this subjective shape perception (e.g., recognizing elongate shapes irrespective of orientation) has 

any role in the ability to categorize objects at a superordinate level (e.g., animate versus inanimate), 

then we expect a close relationship between subjective perception of shape and semantic category 

sensitivity across the ROIs sensitive to shape (all ROIs marked in green in Fig. 4a).  

To investigate this question, we analyzed all ROIs with significant shape sensitivity (BA-17, 

BA-18, TOS-scene, pPPA-scene, aPPA-scene, LOTC-object, LOTC-face, LOTC-body, LOTC-hand, VOTC-

object, VOTC-body/face and the SPL). We calculated the relative amount of high-level as compared 

to low-level shape information, referred to as the perceived shape index (ps-index) by subtracting the 

correlation with the “low-level” shape silhouette model (shown in light blue in Fig. 6b) from the 

correlation with the “high-level” perceived shape model (shown in dark blue in Fig. 6b) separately for 

each shape-sensitive ROI. Results for the ps-index and for category similarity (as reported in Fig. 4a, 

orange color-coded) are shown for all shape-sensitive ROIs in Figure 7a. The correlation between the 

ps-index and category information (averaged across subjects) was highly significant across the 12 

ROIs (r(10) = 0.74, p = 0.006), thus suggesting a close relationship between hierarchical shape 

processing and category selectivity in visual areas (Fig. 7b). This statistical analysis only takes into 

account the variation across ROIs to determine significance. The same analysis performed on single 

subjects, confirmed that the relation between the ps-index and category information across shape-

sensitive ROIs is significantly positive when considering the variation across subjects (one sample t-

test computed across individual subject’s correlation values: t11 = 17.24, p = 0.0001; only subjects 

where all ROIs could be defined were included in this analysis). In sum, even though we have shown 

that semantic category selectivity cannot be reduced to shape selectivity, nor vice versa, we 

observed a close association between the two dimensions so that shape representations include 

more high-level shape properties in more category sensitive regions. 
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Discussion 

 

In addition to shared functional/semantic properties, objects within the same category typically 

share similar visual features. Here we created a stimulus set where the category and the shape 

dimension were orthogonal to each other, thus allowing disentangling their unique contribution to 

object representations. We found evidence for: (i) category representations with different properties 

in the ventral and the dorsal stream, (ii) shape representations of varying complexity, and (iii) 

association between category and shape representations.   

First, the pattern of activity in many regions in lateral and ventral occipitotemporal cortex 

was related to the category membership of stimuli. As such, our results put into perspective recent 

findings suggesting that the organization of category representations in the ventral visual pathway 

can be, in large part, reduced to relatively simple visual properties (Rice et al., 2014; Watson et al., 

2014). Nevertheless, the ventral category-sensitive regions, often regarded as the highest stage in 

visual information processing, also show shape sensitivity in addition to category sensitivity. As such 

the present study allows us to conclude that lateral and ventral occipitotemporal representations 

contain information about category as well as shape. Thus, extreme suggestions that one of the two 

dimensions can be explained by the other dimension are contradicted by the current results. Studies 

like ours are needed to determine the relative weight given to these dimensions. 

 There are of course other visual properties beyond shape. Nevertheless, shape is a very 

prominent alternative explanation for apparent category selectivity (Baldassi et al., 2013; Rice et al., 

2014; Watson et al., 2014). Importantly, our manipulation of overall shape also introduces large 

variations in other properties, making it unlikely that any other visual property could explain the 

consistent category selectivity. Thus, category selectivity is remarkably tolerant to large variations in 

shape and other visual properties.  

These results revealed that both visual streams encode information about object category. 

However, dorsal and ventral representations differed significantly in terms of their category 

information content. Regions in the ventral visual pathway mostly represent the animate/inanimate 

division. This result confirms the conclusion of previous studies (Kriegeskorte et al., 2008b), now with 

a stimulus set that dissociates this category distinction from other visual properties, and even 

without including exemplars from two very prominent classes of animate stimuli: human faces and 

bodies. Conversely, dorsal stream areas represent whether an object, regardless of its shape 

properties, is functionally associated with an action (musical instruments, sport articles, tools) or not 

(minerals, animals, fruit/vegetables). This is consistent with the proposed role of object 

representations in the dorsal stream. Neuropsychological studies have shown that whereas lesions in 

the ventral stream drastically affect object recognition (Caramazza and Shelton, 1998), parietal lobe 

lesions impair hand-object interactions, such as the ability to manipulate objects according to their 

function (Buxbaum et al., 2014). This evidence, together with functional neuroimaging studies 

showing, in parietal areas, selectivity for tools but not to other graspable objects (Chao and Martin, 

2000; Valyear et al., 2007), suggest that object representations within the dorsal pathway might 

encode object functional and motor representations necessary to perform skilful actions.    

As a second point, our results illustrate the distribution and transformations in how shape is 

represented. Shape representations were remarkably widespread throughout the ventral visual 

pathway, including more anterior occipitotemporal regions, where shape and category information 

co-existed. Within the shape domain, we observed a progression of shape representations from early 

visual areas to high-level visual areas; whereas representational content in more posterior areas 

(e.g., BA 17/18) was best predicted by the silhouette model, higher up in high-level visual areas, 

representations reflected perceived shape similarities (Fig. 6). The properties of high-level shape 

representations were in line with earlier reports (Eger et al., 2008) showing an increased degree of 

orientation invariance (all elongated objects cluster together despite differences in orientation). 

These results confirm evidence from multivariate analyses obtained earlier with artificial objects 

(Haushofer et al., 2008; Op de Beeck et al., 2008b), and show that these earlier conclusions hold for 
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images of real, everyday objects. Perceived shape similarity of familiar categories is represented in 

many category-selective regions. 

As a third point, our results suggest a relationship between shape and category 

representations. The degree to which information content in shape-sensitive ROIs reflected 

perceived rather than low-level shape properties was closely related to the degree to which that 

same ROI encoded category information (Fig. 7). These results suggest that object shape 

representations in high-level visual cortex might be influenced by the interaction with object 

semantic knowledge, or vice versa. This perspective differs from the point of view taken in most 

existing literature. Many studies have argued in favour of one dimension, category selectivity 

(Kanwisher, 2010) or particular visual properties (Ishai et al., 1999). Our findings indicate that either 

dimension cannot be explained by the other. Furthermore, these dimensions show interesting 

associations that might inform on why many properties co-exist. Op de Beeck and colleagues (2008a) 

already suggested that category selectivity might be based upon the coincidence of multiple 

features, each of which might be correlated to some degree with category distinctions. Many of such 

feature maps have been demonstrated, including eccentricity biases (Levy et al., 2001; Hasson et al., 

2002), curvature/shape (Brincat and Connor, 2004; Yamane et al., 2008) and spatial frequency 

(Rajimehr et al., 2011). Nevertheless, category selectivity cannot be reduced to a simple linear 

combination of these features. As the current study shows, category selectivity is robust even when 

the other features are not consistently associated with category membership or even manipulated 

independently from category membership. Instead, as suggested by the found association between 

perceived shape sensitivity and category sensitivity, it might be worthwhile to reverse our viewpoint 

and question to what extent can we understand the existing feature maps by assessing their 

usefulness for categorizing objects.  

Indeed, the observed feature maps and their relationships are difficult to understand without 

taking into account the relationship to category representations. As far as our results are concerned, 

the goal of recognizing and categorizing objects might be an important factor to understand the 

transition from low-level to high-level shape representations. As another example, the bias of face-

selective regions to prefer curved objects, lower spatial frequencies, and foveally presented stimuli is 

hard to explain without resorting to the concept of a face (Op de Beeck et al., 2008a). In early visual 

cortex, neurons that prefer foveal stimuli typically process higher spatial frequencies, not lower 

spatial frequencies. Thus, why would one and the same region prefer lower spatial frequencies and 

foveally presented stimuli if not for the fact that face recognition typically involves the processing of 

lower spatial frequencies of foveated faces? Thus, to understand how and why the functional 

organization for such visual properties is correlated with category selectivity, we might have to 

consider the association of these properties with category information throughout everyday visual 

experience.     

    To conclude, our results provide a significant advance in the debate of to what extent object 

shape and object category underlie the functional organization of object representations in visual 

cortex. We created a stimulus set that allowed disentangling the shape and the category dimension. 

Notably, our results show that object category representations in both visual pathways cannot be 

reduced to object shape properties. At the same time, shape and category information interact 

throughout the visual hierarchy shaping object perception in a fundamental way, ultimately leading 

to successful object recognition.  
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Figures and Tables Legends 

 

Figure 1. Experimental stimuli. The stimulus set consisted of 54 unique images comprising 6 object 

categories (rows) and 9 shape types (columns). Each object category (e.g., minerals) included 9 

images (one from each shape type), with unique shape features. Each shape type included 6 images 

(one from each object category) with similar shape features. The pixelwise overlap obtained by 

summing all images from each shape type and each object category are shown in the last row and 

last column respectively. Analyses of the 54x54 dissimilarity matrix (Fig. 2a-b, left most column) 

obtained from the pixel-based overlap between pairs of images reveal how strongly this physical 

measure of low-level dissimilarity is dominated by shape: large differences between stimuli from the 

same object category, and small differences between stimuli from the same shape type (Fig. 1, last 

row and last column). Thus, object category could not be distinguished based on shape information.  
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Figure 2. Models. (A) Mean representational dissimilarity matrices (red color indicates large 

dissimilarities), and (B) two-dimensional arrangements derived from multidimensional scaling for the 

silhouette model (left most panel), the perceived shape model (middle panel) and the category 

model (right most panel). Correlations between dissimilarity matrices are as follow: silhouette 

similarity and shape similarity (r = 0.25); silhouette similarity and category similarity (r = -0.05); shape 

similarity and category similarity (r = -0.01). 
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Figure 3. Regions of interest. Individual-participant ROIs are shown for the left hemisphere of one 

representative participant on a ventral, lateral and posterior view of the inflated PALS human brain 

template (Van Essen, 2005). Small brain maps display the significantly activated voxels when 

contrasting all categories included in the localizer with the fixation baseline (p = 0.00001, 

uncorrected). LH, left hemisphere.  
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Figure 4. Representational similarity analysis for shape and category. (A) Results of region of 

interest RSA for the shape similarity (green color-coded) and the category similarity (orange color-

coded). Green and orange asterisks highlight ROIs with significant shape and category information, 

respectively. For each ROI, the grey-shaded background bar represents the reliability of the 

correlational patterns in each ROI, which provides an approximate upper bound of the observable 

correlations between behavioural and neural data. (B) The dissimilarity matrix derived from second-

order correlations across ROI’s correlation matrices (averaged across subjects), shows similarities 

across ROI’s representational content. Blue represents similar ROI’s structural content. (C) 

Multidimensional scaling, performed on the ROI dissimilarity matrix from panel B, shows ROIs 

pairwise distances in a two dimensional arrangement. Pairwise distances reflect response-pattern 

similarity: ROIs positioned next to each other have a similar information content, whereas ROIs 

positioned far from each other show dissimilar information content. (D) Shape-sensitive (green color-

coded), category-sensitive (orange color-coded) and both shape/category-sensitive (yellow color-

coded) ROIs are shown for one representative subject on the inflated PALS human brain template 

(Van Essen, 2005). LH, left hemisphere. 
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Figure 5. Characterizing information content in category-sensitive ROIs. (A) The hierarchical plot 

derived from a hierarchical cluster analysis shows ROI’s activity-pattern similarity structure for 

category-sensitive ROIs. Results revealed two separated clusters: one (cluster 1) for ventral stream 

areas, and one (cluster 2) for dorsal stream areas. (B) Results of RSA at the cluster level for the 

animate/inanimate model (light blue color-coded) and the action/non-action model (dark blue color-

coded). For each cluster, the grey-shaded background bar represents the reliability of the 

correlational patterns in each cluster. (C) Multidimensional scaling, performed on neural dissimilarity 

matrices (1 minus correlation), averaged across ROIs within each cluster, shows objects pairwise 

distances in a two-dimensional space for the ventral cluster (left panel) and the dorsal cluster (right 

panel). Pairwise distances reflect response-pattern similarity: the animate/inanimate division and the 

action/non-action division are clearly visible in the ventral cluster (left panel) and the dorsal cluster 

(right panel), respectively. (D) ROIs from cluster 1 (light blue color-coded) and cluster 2 (dark blue 

color-coded) are shown for one representative subject on the inflated PALS human brain template 

(Van Essen, 2005). LH, left hemisphere. 
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Figure 6. Characterizing information content in shape-sensitive ROIs. (A) The hierarchical plot 

derived from the hierarchical cluster analysis shows ROI’s activity-pattern similarity structure for 

shape-sensitive ROIs. Results revealed two separated clusters: cluster 1 (BA-17, BA-18, pPPA-scene, 

TOS-scene, LOTC-face, LOTC-object) and cluster 2 (LOTC-body, VOTC-object, VOTC-face/body, LOTC-

hand). (B) Results of RSA at the cluster level for the silhouette model (light blue color-coded) and the 

perceived shape model (dark blue color-coded). For each cluster, the grey-shaded background bar 

represents the reliability of the correlational patterns in each cluster. (C) Multidimensional scaling, 

performed on neural dissimilarity (1 minus correlation) matrices averaged across ROIs within each 

cluster, shows objects pairwise distances in a two dimensional space for the posterior cluster (left 

panel) and the anterior cluster (right panel). Pairwise distances reflect response-pattern similarity. 

(D) ROIs from cluster 1 (light blue color-coded) and cluster 2 (dark blue color-coded) are shown for 

one representative subject on the inflated PALS human brain template (Van Essen, 2005). LH, left 

hemisphere. 
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Figure 7. Interaction between shape and category. (A) Results of region of interest RSA for the 

perceived shape (ps-)index (light blue color-coded) and the category similarity (dark blue color-

coded) in shape-sensitive ROIs. The ps-index reflects the relative amount of high-level as compared 

to low-level shape information and was computed by subtracting “low-level” shape silhouette 

information (shown in light blue in Fig. 6b) from “high-level” perceived shape information (shown in 

dark blue in Fig. 6b) separately for each shape-sensitive ROI. For each ROI, the grey-shaded 

background bar represents the reliability of the correlational patterns in each ROI. (B) Scatterplot of 

the relationship between the ps-index and category information (averaged across subjects) across 

the 12 shape-responding ROIs. 

                            

 

 

 

Table 1. ROIs localization. For each ROI, functional contrast, anatomical mask (if used), number of 

subjects in which the ROI was localized, single subject average MNI coordinates and cluster size are 

reported. 
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