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Abstract (Word count 213)  1 

Adequate nutritional status is critical for optimal cell and organ function and wound healing. Options for 2 

artificial nutrition therapy have expanded enormously over the last several decades but concomitantly revealed 3 

limitations and potential side effects. Relatively few rigorous randomized controlled trials (RCTs) have been 4 

conducted using enteral nutrition (EN) and/or parenteral nutrition (PN) support, and evidence-based clinical 5 

guidance is largely restricted to the first week of critical illness. Whether artificial feeding is better than no 6 

feeding early in critical illness has been little addressed in existing RCTs. The expected beneficial effects on 7 

morbidity or mortality with various paradigms of early feeding interventions have generally not been supported 8 

by results of recent high quality RCTs. Thus, whether nutritional interventions early in an intensive care unit 9 

(ICU) course improve outcome remains unclear. Trials evaluating feeding interventions continuing beyond the 10 

first week of critical illness and into the post-ICU and post-hospital setting are clearly needed. While acute 11 

morbidity and mortality will remain important safety parameters in such trials, given the adjunctive nature of 12 

nutrient intervention in critical illness, primary outcomes should perhaps be focused on physical function, 13 

evaluated months to even years after ICU discharge. This review is based on results of high-quality RCTs and 14 

provides new perspectives on nutrition support during critical illness and recovery.  15 

 16 

Search strategy 17 

We searched Pubmed with the filter “Randomized Controlled Trials” and 18 

with the search terms 19 

1 “recovery AND nutrition AND ((critical illness) OR sepsis OR (Major Surgery))” 20 

2 “rehabilitation AND nutrition AND (surgery OR trauma OR sepsis OR critical illness)” 21 

3 “Critical Illness AND nutrition” 22 

The review was based –though not exclusively- on the results of these queries, prioritizing recent “high quality 23 

studies”. RCTs were considered “high quality” if the patient screening and selection was adequately reported 24 

(via a CONSORT diagram), intention to treat evaluation of predefined and publicly registered hard clinical 25 

endpoints was provided and interventions were allocated in a concealed manner. Double blinding is sometimes 26 

unfeasible in nutrition intervention studies; thus, blinding of outcome assessors was considered as reported. 27 

Older “milestone” studies were included, irrespective of the year of publication, to add meaningful perspective to 28 

the review from studies that have informed clinical practice.    29 

 30 
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In this article we will overview:  1 

The development of modern artificial nutrition support  2 

 Administration of nutrition support in the ICU 3 

Rationale for artificial nutrition in critical illness 4 

Potential complications of EN and PN 5 

Results of recent trials evaluating early EN and PN in ICU 6 

Understanding the failure of early enhanced feeding to counter catabolism in ICU 7 

Understanding the possible benefit of nutrient restriction  8 

Glutamine as a component of ICU nutrition therapy 9 

Nutrition during recovery after ICU discharge  10 

General conclusion  11 

  12 
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Introduction 1 

Strategies for enteral nutrition (EN) and parenteral nutrition (PN) have evolved in both intensive care unit (ICU) 2 

and post-ICU settings. Concomitantly, the mortality rate in critical illness has steadily declined over the last 3 

several decades, despite increasing age and comorbidities that undoubtedly complicate rehabilitation in ICU-4 

survivors. The focus of clinicians and investigators has shifted towards longer-term functional outcomes of 5 

survivors of prolonged critical illness. As muscle weakness and wasting, likely contribute to the physical and 6 

functional limitations experienced by these patients, nutritional interventions have received more attention. 7 

Finally the importance of methodological trial quality has been increasingly appreciated. Adequate reporting of 8 

patient screening and selection, concealed treatment allocation, blinding of outcome assessors and provision of 9 

intention to treat analysis of preregistered clinically meaningful endpoints are conditions for a trial to be 10 

considered “high quality”.(1;2) 11 

 12 

In this review article, we will particularly focus on two clinical paradigms: 13 

1. The overestimation of the potential benefit provoked by early feeding interventions in severe illness. Today, 14 

several recent high quality RCTs have drawn attention to the absence of clinical benefit and potential risks of 15 

such interventions in in the ICU. Unfortunately, patients with pre-existing severe malnutrition and receiving 16 

artificial nutrition prior to ICU admission are underrepresented in most of these RCTs. 17 

 18 

2. The underestimation of the incidence and importance of prolonged and undetected underfeeding during 19 

recovery, particularly after ICU-discharge and in the post-hospital home setting. Although RCT data remain 20 

limited, intensified nutritional monitoring and support, coupled with active mobilization, during recovery, when 21 

patients are likely to be avid for nutritional repletion compared to during the severely catabolic state, may 22 

improve clinical outcome and long-term physical function. 23 

 24 

A concise overview of the results of recent high quality RCTs evaluating early nutritional interventions in 25 

critical illness has been recently published.(3) In this paper, we will discuss ICU nutrition over a broader time 26 

window and with focus on pathophysiologic perspectives. Special attention will be given to data published very 27 

recently.(4-9) 28 

The focus of the review will be largely on clinical outcome. Interventions that have been tested in well-designed 29 

RCTs without evidence of clinical benefit were considered “ineffective” until future trials provide new 30 
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perspectives. This evidence-based approach results unavoidably in rather restrictive recommendations, while, 1 

even in adequately powered trials, the risk of overlooking a beneficial effect exists. An approach attributing 2 

more weight to observational associations, or pathophysiological deduction may result in very different 3 

conclusions.(10) Finally, clinicians may also prefer not to change their clinical practice until consecutive RCTs 4 

consistently reproduce similar results in specific patient subsets. This, however, may take several years and may 5 

not be forthcoming for interventions for which initial RCT results indicate increased mortality, harm or low cost-6 

effectiveness. 7 

 8 

 9 

The development of modern artificial nutrition support  10 

 11 

Artificial nutrition as last resource in patients unable to feed themselves has been described since ancient times 12 

as reviewed elsewhere.(11) Important progress in EN support was made during the last century with technical 13 

developments, including electronic infusions pumps, small-bore nasogastric tubes and safer surgical techniques 14 

for gastrostomy and jejunostomy.(11) Also commercially available complete EN formulations, that provide all 15 

known essential macro- and micronutrients, have evolved from the purely elemental formulas provided to 16 

astronauts in early space flight.(12)  17 

       Continuous intravenous administration of nutrients was first described around 1900. Up to 1000 kcal could 18 

be administered daily by peripheral infusion of several liters of dextrose 5% in critically ill patients after 19 

complicated abdominal surgery.(13) The first reports of successful total parenteral nutrition (TPN) were 20 

published in the late 1960's.(14) Early TPN was complicated by lack of standardized and safe central venous 21 

access techniques for prolonged use. Also the stability, sterility and safety of the intravenous nutrient 22 

preparations was a concern. Finally provision of adequate amounts of energy and amino acids without volume 23 

overloading the patient required solutions with a high osmolality. By the early 1970's, reports on the common 24 

prevalence of protein-calorie malnutrition in hospital patients were published, stimulating the growth of 25 

multidisciplinary clinical services delivering EN and PN.(15)  26 

Over time, complications associated with both EN and PN became better understood and safer practices for 27 

administration were introduced.(10;16) For example, it was recognized that provision of excessive amounts of 28 

calories and hyperglycemia were common during PN-administration in ICU.(17;18) Particularly in North 29 
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America, complications associated with PN use inspired guidelines suggesting avoiding PN for up to a week in 1 

non-malnourished acutely ill patients.(19) 2 

 3 

Artificial nutrition in the ICU 4 

Rationale for artificial nutrition in critical illness  5 

The rationale for administration of macronutrients (fat, protein, carbohydrate, including essential amino acids 6 

and fatty acids) and essential micronutrients (vitamins, trace elements and minerals) to critically ill patients 7 

builds on several important clinical concepts: 1) adequate nutritional status is essential for optimal cell and organ 8 

function and wound healing; 2) nutritional risk as defined by available scoring systems upon ICU admission and 9 

accumulation of energy debt during critical illness is associated with adverse outcomes in several studies; and 3) 10 

ICU-related muscle wasting appears a major factor in the morbidity of survivors of prolonged critical illness.(20)  11 

        Large observational studies established a strong relationship between compromised nutritional status upon 12 

ICU admission and increased mortality.(21) In ICU patients, there is currently no gold standard method to assess 13 

nutritional status and nutritional risk integrating variable objective and subjective parameters.(21) Whether 14 

simple clinical anthropometric measures, such as body mass index (BMI; kg/m2)(22)  with or without recent 15 

nutrition-related history (e.g. weight loss pattern from baseline and from ideal body weight (IBW))(23) are as 16 

informative as technical evaluations of body composition parameters in identifying such risk remains to be 17 

confirmed.(24) Moreover, it is currently unknown if feeding interventions improve clinical outcomes in patients 18 

with preexisting severe malnutrition (BMI<17) and those requiring long-term artificial nutrition prior to ICU 19 

admission. Recent nutrition RCTs didn’t specifically focus on such patients. Only stratifying patients by 20 

predicted nutritional risk, current compromised nutritional status or pre-ICU artificial nutrition utilization can 21 

answer these questions.  22 

     Several studies indicate that nutrition support, particularly via the enteral route, fails to reach targets for 23 

estimated energy requirements, particularly early in critical illness, resulting in accumulating energy debt. This 24 

has been associated with morbidity and mortality in observational studies.(25;26) Such analyses, however do not 25 

distinguish cause from consequence; whether patients are easier to feed when they are less ill or vice versa. In 26 

addition, observational analyses of nutritional intake in the ICU are complicated by  competing events (such as 27 

death in ICU precluding analysis of time to ICU-discharge), time bias (average energy intake improving in 28 

patients who have a longer ICU stay)(27) and selection bias.(28) Of note, studies on protein/amino acid 29 
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requirements in the ICU and the clinical and metabolic impact of different protein/amino acid doses remain 1 

surprisingly limited, as do studies on different regimens of vitamins and trace elements.(3;29)  2 

     Patients surviving acute critical illness often experience functional restrictions for several years after ICU 3 

discharge.(20) This post-ICU-burden appears to be related, in part, to skeletal muscle wasting and possibly ICU-4 

acquired-muscle-weakness (ICU-AW) rather than to initial organ damage. ICU-AW is strongly associated with 5 

increased mortality up to one year after ICU discharge.(30) However, even though weakness is intuitively linked 6 

to muscle catabolism and sarcopenia, microscopically, a reduced myofiber diameter does not predict ICU-7 

AW.(31)   8 

In summary, the aim of nutrition support in ICU settings is to provide energy and essential micro- and 9 

macronutrients in support of cell and organ function, both acutely and longer-term.(3;21) We will discuss the 10 

impact of several early feeding interventions from these perspectives. (Table 1) 11 

 12 

Table 1 13 
 14 
Effectiveness of early nutrition interventions in the ICU setting: Results of some recent randomized 15 
controlled trials 16 
                Therapeutic      

Target 

 

Nutrition 

Intervention 

Improving acute outcome 

(survival and length of 

stay)-- prevention of 

energy deficit in ICU 

Attenuating muscle 

wasting and improving 

long term function 

Protecting patients 

expected to be at  

increased nutritional risk 

according to admission 

characteristics or 

underlying pathology 

Early initiation of EN 

 

 

Yes:   

improved survival when 

initiated within 24 

hours(32) *   

Not assessed Impossible to determine: 

given the very small 

number of patients 

evaluated (32) 

Enhanced provision of 

EN 

 

 

 

No:  

-Neutral in EDEN(33) 

-Increased morbidity 

and/or mortality in 3 

smaller RCTs(5;34;35)** 

 

No:   

Only in EDEN: no effect 

of trickle versus full 

feeding on physical 

function after 6 & 12 

months.(36) 

Low BMI categories:   

- not evaluated in the 4 

RCTs 

- mostly medical ICU and 

long-ICU stay  

Completing failing EN 

with PN 

 

 

 

No: 

- Neutral in SPN trial (37) 

and Early-PN study(38) 

- Modestly increased 

morbidity with early PN to 

supplement early EN 

(EPaNIC)(39) 

- Mortality unaffected in all 

3 RCTs 

 

-Reduced incidence of 

infections with 

normocaloric EN+PN as 

compared to hypocaloric 

EN+PN?(7) 

Neutral: Less subjective 

muscle wasting with 

Early-PN in Early-PN 

trial but no effect on 

physical function(38) 

No:  

-Ongoing macroscopic 

and microscopic muscle 

wasting despite Early PN 

in EPaNIC(31;40) 

- Similar ADL and 6-

MWD at hospital 

discharge(39) 

- More ICU-acquired 

weakness with early PN 

to supplement early EN 

Similar benefit of Late PN 

in EPaNIC(39) preplanned 

subgroups: 

-with very  high NRS (≥ 5, 

N = 863) 

-with extreme  BMI ( <25 

or ≥ 40, N = 1989) 
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in EPaNIC(31) 

Administration of PN 

 when EN is contra 

indicated 

 

 

 

No:  

more infectious 

complications and 

morbidity in EPaNIC and 

in one mixed ICU and 

major surgery meta-

analysis (39;41) 

Not assessed in the 

EPaNIC(39) sub-group 

with EN contra indication 

Similar loss of lean body 

mass with normo- versus 

hypocaloric PN in a 

small RCT evaluating 

patients requiring PN  (6) 

No specific data on 

patients with a low BMI in 

the EPaNIC subgroup with 

a contra-indication for EN 

but severity of illness was 

very high and ICU stay 

long(39) 

 

* small number and methodological limitations ** Ref 32 is a pseudo-randomized clinical trial 1 
ADL = Activities of daily live, 6-MWD six minutes walking distance, NRS =Nutritional Risk Score, 2 
BMI = Body Mass Index 3 

Potential complications of EN and PN  4 

Modern complete EN and PN formulations contain all known essential macro- and micronutrients.(19;21) EN is 5 

intuitively the first choice when oral feeding fails. It is less expensive than PN and physiologically closer to 6 

voluntary feeding. Moreover, several additional beneficial effects have been attributed to EN (mostly in animal 7 

models), among them the protection of intestinal wall barrier function and prevention of bacterial 8 

translocation.(42) Administration of EN also promotes splanchnic blood flow; this however, may provoke a 9 

“steal” phenomenon in low intestinal flow states, with the potential for non-occlusive bowel 10 

necrosis(NOBN).(43) Evaluation of the safety and impact of different amounts of EN administered to 11 

hemodynamically compromised patients (e.g. those requiring pressor agents) will require adequately powered 12 

RCTs, given the low incidence of NOBN (1-3/1000).(44) Small observational studies suggest that EN in the 13 

hemodynamically unstable patient is feasible and safe.(45) 14 

Ventilator associated pneumonia occurs in up to 17 % of patients in ICU and is often associated with EN and 15 

aspiration of gastric content.(46) The incidence of vomiting is indeed highly increased in patients receiving EN 16 

as compared to PN but doesn’t result in more airway infections.(9) EN administration higher than 60% is 17 

associated with increased incidence of diarrhea.(47) However, the latter relationship has not been confirmed in 18 

RCTs. While nasogastric feeding tubes might induce patient discomfort and gastro-esophageal reflux, surgical or 19 

percutaneous gastrostomy or jejunostomy has a risk of surgical site infection, leakage, peritonitis and 20 

bleeding.(48)  21 

The most common consequence of enteral feeding is failure to reach the energy and protein target due to 22 

interruptions for diagnostic and airway procedures or surgery, diarrhea and vomiting and delayed gastric 23 

emptying.(18;49) Moreover, it is difficult to assess how much of the administered EN is truly absorbed by the 24 

patient.(50) If and when such underfeeding in ICU compromises clinical outcome remains to be 25 

established.(28;51) 26 
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     PN overcomes many of the barriers related to EN, but is less physiologic as nutrients are infused directly into 1 

the circulation, bypassing the portal vein and liver.(21) The major complications associated with PN (typically 2 

delivered via a central venous catheter in the ICU) are infections, mechanical issues related to the presence of the 3 

catheter and metabolic disturbances, including refeeding syndrome related to the infused nutrients.(18;21) In the 4 

home-PN setting, the occurrence of bloodstream infections is significantly higher when peripherally-inserted 5 

central venous catheters (PICC) are used compared to tunneled (e.g. Hickman) catheters.(52)  Blood stream 6 

infections due to rare contamination of the PN infusion bag may also explain some of the infectious burden with 7 

PN(53) but the use of commercial all-in-one PN bags possibly reduces this risk. (54) 8 

     Earlier data from small studies suggested that infusion of intravenous fat emulsions, particularly those that are 9 

soybean oil-based may compromise immune defenses, particularly when administered rapidly.(55;56) However, 10 

few rigorous trials comparing clinical outcomes with newer lipid emulsions (e.g. enriched in fish oil, olive oil, 11 

structured lipids or their combinations) compared to the standard soybean-oil based lipid emulsions have been 12 

performed to date, although several meta-analyses have recently been published on existing data.(29;57;58) A 13 

recent double-blind RCT comparing clinical and metabolic outcomes in 100 adult mixed ICU patients deemed to 14 

require PN for at least 7 days found no difference with conventional soybean oil-based PN as compared to PN 15 

containing an 80% olive oil/20% soybean oil lipid emulsion.(59) 16 

 17 

Many side effects of PN might be mediated through hyperglycemia, particularly in RCTs performed before the 18 

publication of recent landmark papers on the efficacy of tighter blood glucose control in the ICU than was 19 

practiced for several decades.(18;60) The effect of hyperglycemia on immune function and organ failure is now 20 

well established in human and animal experiments.(61-63) The widespread implementation of glycemic control 21 

in patients with different nutrition strategies and glucose measurement technology, however, has been less self-22 

evident and in one study even induced an unexplained increase of mortality.(64) Perhaps the most common 23 

consequence of PN is energy intake exceeding the target, or “overfeeding”, particularly when medication 24 

containing lipid or glucose as a source of “hidden” energy are co-administered.(21;65) 25 

The interpretation of all RCTs’ evaluating nutrition in critical illness is complicated by uncertainty how to define 26 

over- and underfeeding. Energy intakes considered  excessive today would have been judged hypocaloric twenty 27 

years ago.(66) Several studies caution against the inability of calculated estimated energy expenditure to predict 28 

measured energy expenditure(MEE), as determined by metabolic cart.(67) However, even if MEE may avoid 29 

overfeeding in some cases, there is no solid data demonstrating that using MEE to guide nutrition support 30 
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improves clinical outcome. (37;65) Finally, the available metabolic carts may provide different MEE values and 1 

technical issues (e.g. high inspired oxygen, air leaks) may preclude accurate measurement.(67;68) 2 

 3 

Results from RCTs evaluating early EN and PN in ICU 4 

      The only reliable method to estimate the effect of one versus another feeding strategy is a RCT of adequate 5 

power to assess the effect on clinically meaningful and unbiased pre-hoc endpoints.(1;2) Unfortunately, almost 6 

all RCTs evaluating nutritional interventions in ICU are restricted to the first week of critical illness. Hereby no 7 

reliable recommendations on feeding strategies beyond day 7 in ICU can be made at this time. 8 

To feed or not to feed? 9 

Strikingly, an adequate RCT answering the question whether artificial nutrition is superior to various durations 10 

of minimal or no feeding in critical illness has not been performed. An RCT comparing feeding versus no 11 

feeding early in critical illness would fill an important gap in the evidence. Observations in hunger-strikers 12 

however revealed that more than two months of fasting is lethal, even in the absence of disease.(69) Although 13 

not evidence based, given the myriad of factors that may contribute to net micronutrient, energy, protein and fat 14 

depletion in the ICU (e.g. lack of food intake, nutrient losses via diarrhea, drains, renal replacement therapies, 15 

etc.), it is likely that death directly or indirectly due to malnutrition/depletion of specific nutrients could occur 16 

sooner. 17 

 18 

When to start EN if oral feeding is not an option? 19 

Thus, the first question is when artificial nutrition should be started and a second question is via which route. 20 

Meta-analyses of relatively old RCTs suggest that EN is superior to PN(18) and that initiation of EN within 24 21 

hours improves survival as compared to late EN.(32) The total number of patients included in these trials and 22 

other methodological limitations, however, caution against over-interpretation.(70)  23 

Benefit of avoiding early underfeeding with EN in ICU? 24 

Despite the strong association between underfeeding and compromised clinical outcome in several(25;26) but 25 

not all (4;27) of the observational studies, the clinical impact of full feeding to estimated energy goals has been 26 

disappointing to date. The EDEN RCT (N=1000) compared a 6-day regimen of low-dose "trophic” tube feeding 27 

(providing approximately 400/kcal/day) versus feeding at ~1300 kcal/day in adults with acute lung injury.(33) 28 

The rationale for low-dose tube feeding is promoting gut mucosal integrity while avoiding the metabolic burden 29 

of early full EN. In contrast to other ICU studies, patients in the EDEN full feeding arm reached the calculated 30 
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energy target easily within two days.(4;33;49) The initial low-dose tube feeding thus provided energy, 1 

macronutrients and micronutrients below requirements and was followed after 6 days by the full feeding 2 

regimen.(33) Strikingly, the early restriction of nutrient intake did not affect morbidity or mortality nor long-3 

term functional outcome.(36)  4 

While early feeding to target energy goals provoked no benefit in EDEN, clinical outcomes with such an 5 

approach were worse in small RCTs. In a pseudo-randomized study (N=150), early full enteral feeding (~500 6 

kcal/day) begun on the first ICU day, as compared to low-dose enteral feeding for 4 days ~130 kcal/day)  was 7 

associated with increased airway infections and prolonged mechanical ventilation time.(34) The absence of 8 

benefit (but not the increased incidence of infections) with “full” feeding might be explained by the low daily 9 

intake achieved even in the “full” feeding arm. 10 

     In a trial with 240 subjects, “permissive underfeeding” (~1100 kcal/day) was associated with improved 11 

hospital and 180-day survival in a 2 by 2 factorial evaluation of hypocaloric feeding and strict glycemic 12 

control.(35) Interpretation is complicated by the small difference in energy intakes between the groups(±200 13 

kcal/day). In the recent INTACT trial in 78 adult patients with acute lung injury, increased hospital mortality 14 

with intensive delivery strategies for EN (via tube feeds and oral diet as tolerated) versus standard nutritional 15 

care occurred. PN use was similar between groups and mean energy intakes were ~1800 versus ~1200 kcal/d .(5) 16 

The unexpected mortality difference (40% versus 16% p=0.02) was not explained by differences in organ 17 

function.(5) 18 

    In summary, in four different RCTs early increased EN did not improve clinical outcome, even if they were 19 

together underpowered to definitely refute potential benefit or confirm the observed harm.(Table 1). The number 20 

of patients with a high nutritional risk as defined by BMI was low in all four studies. On the other hand, most 21 

patients had non-surgical admission diagnoses and a prolonged ICU stay and were thus expected to benefit from 22 

early enhanced feeding interventions. The impact of intensive EN, particularly in patients with underlying 23 

protein-energy malnutrition and given later in the ICU course, on body composition, long term functional 24 

outcomes and quality of live remains to be investigated.   25 

These studies outlined above are consistent with the data from several cluster randomized studies, which show 26 

that successful implementation of feeding guidelines results in more patients being fed, feeding initiated earlier 27 

and, in some studies closer to energy and protein target, yet with little effect on clinical outcomes.(71-73)  28 

 29 

What to do when EN remains insufficient? 30 
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     If enteral nutrition does not achieve the energy and or protein target due to delayed gastric emptying, use of 1 

prokinetic agents or other methods to facilitate post-pyloric feeding tube tip placement are options. Improving 2 

energy delivery through post-pyloric feeding as compared to gastric feeding in unselected ICU patients is 3 

complicated among others by the delay until the small intestinal feeding tube is in place. Recent meta- analysis 4 

of 15 RCTs’ revealed a modest (11%) increase in delivered energy and 25% reduction in relative risk for 5 

pneumonia, yet clinical hard outcome parameters were unaffected. Trials of small intestinal feeding in patients 6 

with proven delayed gastric emptying are eagerly awaited.(48;74) Also accepting higher gastric residual volumes 7 

or simply not measuring them, significantly enhanced enteral nutrient delivery in ICU patients.(75;76) 8 

When to start PN? 9 

    If despite the above interventions EN remains insufficient as is often the case in severe critical illness, 10 

initiation of PN could be considered.(4;39;49) However recent RCTs, including more than 6000 patients with 11 

varying indication for PN, each showed that early use of PN does not improve clinical outcomes in critically ill 12 

patients. The Australian Early-PN trial in 1372 patients compared PN initiated within hours after ICU admission 13 

versus pragmatic standard nutritional care. Although mechanical ventilation time was slightly shorter with early-14 

PN and skeletal muscle and fat wasting less pronounced, major clinical outcome parameters between the groups 15 

were unaffected.(38) Nevertheless, based on the RCTs’ clinical results, a model-based simulation predicted a 16 

reduction of health care related costs with Early-PN.(77) 17 

Supplemental PN (SPN) initiated on ICU day 4 in 153 patients achieving less than 60% of energy target the 18 

previous day by EN, resulted in a significant reduction in new hospital infections between days 9 and 28 of 19 

admission compared to 152 patients continued on EN alone.(37) However, the impact of supplemental PN on 20 

infection was not different from control subjects when all infections occurring after randomization were taken 21 

into account.(78;79) Functional outcomes were unaffected in the Early-PN trial and not assessed in the SPN 22 

trial.(37;38) 23 

In the EPaNIC trial (n=4640), the energy target was higher than in the Early-PN trial and EN failure (as 24 

anticipated) was more pronounced than in the SPN trial.(39) This resulted in a pronounced 7-day difference in 25 

energy and protein/amino acid intake between both groups. Patients in the Early-PN arm received initially 26 

dextrose 20%. If after 2 days EN remained insufficient, PN was initiated. The Late-PN patients received no PN 27 

before day 8 but glucose 5% for adequate hydration. In all subjects, parenteral vitamins, trace elements, 28 

potassium and phosphorus were administered until EN was sufficient, in order to avoid refeeding syndrome. This 29 

is a unique feature of this trial and may have contributed to decreased morbidity upon refeeding on day 8.(80) 30 



13 

 

Thus, differences between groups were likely due to macronutrient delivery.(29;39) Late-PN patients recovered 1 

faster, left ICU earlier and developed less infectious complications. Late-PN also shortened hospital stay without 2 

compromising functionality at hospital discharge.(39) Although bilirubin peaked higher in the Late-PN patients, 3 

Early-PN induced more sludge and hepatocellular damage.(81) Likewise, enhanced recovery and reduced 4 

infectious complications in the Late-PN arm were accompanied by higher rise in C-reactive protein, questioning 5 

strategies aimed at attenuating inflammation early in critical illness.(39) Not surprisingly, as withholding an 6 

expensive intervention prevented complications, Late-PN was superior in a health economy analysis based on all 7 

individual patient invoices.(82) Preplanned subgroup analyses revealed that the beneficial effect of late-PN could 8 

be generalized to patients with extremely high nutritional risk (NRS ≥ 5, N=863) and patients in the very low 9 

(<25 kg/m²) or very high BMI (≥ 40 kg:m²) range (N=1989). Also patients admitted after cardiac surgery as 10 

compared to other critically ill patients reacted identically to the randomized intervention.(83) Patients with an 11 

absolute contra-indication to EN were also included in EPaNIC (n=517) and the benefit of withholding PN for 7 12 

days was even more pronounced in these individuals.(39) Of note, a meta-analysis in 798 patients after major 13 

surgery or in the ICU published in 2001, predicted superiority of standard care over PN, albeit excessive PN 14 

caloric delivery was routine at that time and possibly influenced the results.(41) Given the entry 15 

inclusion/exclusion criteria, the results of EPaNIC cannot be generalized to significantly malnourished patients 16 

(BMI<17), those who were readmitted to the ICU prior to study entry, or patients receiving home-PN prior to 17 

ICU admission.(39)  18 

     Summarizing the above trials, use of PN early in the ICU course does not appear to improve clinical 19 

outcomes and, in the EPaNIC trial, increased morbidity in a time and dose-dependent manner. Questions remain 20 

as to whether these results are due to the PN per se (which includes fat emulsion, amino acids, and carbohydrate 21 

in addition to micronutrients) or the higher total energy intake. Indeed, in the EPaNIC and TICACOS trials, the 22 

patients receiving PN reached a higher energy intake than control patients and experienced more 23 

morbidity.(39;65) A recent small, but well-designed, RCT suggests that total energy intake rather than feeding 24 

route may be responsible for septic complications.(6) In this study, 50 patients requiring PN after major surgery 25 

were randomized to receive either 100% or 50% of calculated energy target. Although the actual energy intake in 26 

both groups differed only by 150 kcal daily on average, an important reduction in septic complications and 27 

feeding related complications with permissive underfeeding was observed by un-blinded outcome assessors.(6)   28 

The recently published CALORIES trial, performed in 33 English ICUs provides crucial results. A total of 2400 29 

patients without contra-indications to EN or PN were randomized to receive exclusively one route of feeding for 30 
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5 days beginning within 36 hours after admission to the ICU.(9)  The study differs from the 3 previous RCTs on 1 

early PN: 1) Randomization to late PN in EPaNIC meant relying on the very low levels of EN intake 2 

achieved(39); 2) in SPN, subjects remaining 30% below target energy goals for 4 days were randomized (37); 3 

while in the Early PN trial, physician discretion dictated  EN, PN or no feeding (38). In CALORIES “no PN” 4 

meant “adequate EN”.(9) Clinical outcome was unaffected besides a significantly increased incidence of 5 

vomiting with EN and a trend towards increased incidence of elevated liver enzymes with PN. There was no 6 

reduced mortality with PN in contrast to what was predicted by earlier meta-analysis.(84) Taken together, these 7 

results suggest that the potential harm with early PN observed in EPaNIC and TICACOS trials may relate to 8 

differences in overall macronutrient intake rather than route of nutrient administration.   9 

One recent small, but methodologically sound, RCT evaluating “normocaloric” versus hypocaloric feeding in 10 

100 critically ill patients expected to require artificial nutrition (EN, PN or both) for at least 3 days pleads in 11 

favor of achieving energy target early.(7) The mean daily caloric intake was ~20 kcal/kg in the normocaloric 12 

group and ~11 kcal/kg in the hypocaloric group.  Subjects in the normocaloric group received more PN and 13 

developed more diarrhea due to increased EN but exhibited significantly reduced incidence of total infectious 14 

complications even though blood stream infections and mortality were unaffected.  15 

 16 

Understanding the failure of early enhanced feeding to counter catabolism in ICU (figure 1) 17 

 Legend with figure 1: Early Critical Illness: a state of nutrient abundance 18 

Sepsis, shock/reperfusion and trauma induce a catabolic state. Together with immobilization, this provokes 19 

muscle protein breakdown that exceeds synthesis and, in adipose tissue, lipolysis releasing free fatty acids and 20 

glycerol into the circulation.(85) Together with hepatic gluconeogenesis, fueled by certain amino acids and 21 

glycerol, and peripheral insulin resistance, this results in an abundance of circulating endogenous nutrients.  22 

The effect of prompt therapy -directed at the underlying disease- on catabolism and on clinical outcome is 23 

unlikely to be tested for ethical reasons.  24 

Early physical activity and mobilization counteracts muscle protein wasting and improves functional 25 

outcome.(86) The beneficial effect of daily interruption of sedation, a strategy favoring early spontaneous 26 

mobilization is not yet definitely  established.(87)  27 

Avoiding hyperglycemia reduces morbidity and improves survival.(60;63) However, if adequate glucose control 28 

and insulin titration is unavailable, undetected hypoglycemia may contribute to adverse clinical outcomes.(64)  29 
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Catabolism is primarily not caused by anorexia (lack of intake) but by inflammation and inhibition of anabolic 1 

responses, coupled with excessive nutrient losses.(29) Thus provision of exogenous macronutrients is likely an 2 

incomplete therapy. This might explain why aiming at increased administration of EN, PN or glutamine resulted 3 

in no benefit in the EDEN trial and even a signal of harm in EPaNIC and REDOXs trials respectively.(33;39;88)  4 

As discussed above, early enhanced feeding in the ICU fails to promote recovery, let alone improve survival. 5 

One reason for this failure might be that lack of nutrients is unlikely to be the primary factor underlying the 6 

catabolic response in critical illness.(Figure 1)(21) Indeed gluconeogenesis is not suppressed by exogenous 7 

energy administration.(89) As the ongoing mobilization of endogenous nutrients (figure 1) is not measured by 8 

indirect calorimetry, MEE-guided feeding doesn’t protect against over- or underfeeding. In an EPaNIC sub-9 

study, femoral muscle volume decreased by 1% per day over the first ICU-week in the Early-PN group despite 10 

delivery of energy, protein/amino acids and insulin.(40) Moreover, Early-PN apparently induced lipogenesis, an 11 

effect noted several decades ago with intensive nutrition support in pilot ICU body composition studies.(90) In 12 

50 critically ill patients requiring PN, normocaloric as compared to hypocaloric PN likewise did not attenuate 13 

loss of lean body mass.(6) In EPaNIC, microscopic skeletal muscle myofiber diameter was reduced after one 14 

week in ICU, as compared to healthy volunteers.(31) Early-PN was associated with increased incidence of 15 

muscle weakness compared to Late-PN, while mRNAs encoding contractile myofibrillary proteins in muscle 16 

were decreased in the ICU patients-independent of treatment allocation- compared to expression in healthy 17 

controls.(31) 18 

The appearance of approximately 65% of additional amino acid administered in the Early-PN patients as urinary 19 

nitrogen suggest a metabolic resistance to protein anabolism early in critical illness.(91) Although not 20 

experimentally proven, enhanced ureagenesis may contribute to increased need for renal replacement therapy in 21 

patients receiving more amino acids via PN as observed in the EPaNIC trial and in the Nephroprotective 22 

trial.(39;92) The latter trial evaluated parenteral amino acid supplementation aimed at 2 gram/kg/day compared 23 

to standard care in 474 critically ill patients. (protocol_at_www.Evidencebased.net/NephroProtect)  24 

A major driving force behind muscle wasting in the ICU is likely the catabolic hormonal environment, coupled 25 

with decreased protein synthesis due to bed rest, thus provision of exogenous nutrients might be futile early in 26 

ICU.(figure 1)(21) Unfortunately growth hormone, despite its capacity to induce anabolism and positive nitrogen 27 

balances in critical illness(93), was shown to increase ICU-mortality, although this trial was conducted in an era 28 

when tight glucose control was not practiced and growth hormone-induced hyperglycemia may have contributed 29 

to the adverse effects.(94) Early active mobilization appears to be a promising method to promote recovery of 30 
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physical function in ICU-patients and may also facilitate anabolic responses to nutrient provision.(86;95)(Figure 1 

1) 2 

 3 

 4 

Understanding the potential benefit of nutrient restriction.  5 

As noted, some RCTs that achieve lower overall nutrient intake in the control arm report improved clinical 6 

outcomes compared to early feeding designed to achieve energy goals.(5;6;35;39) Acknowledging that not all 7 

were adequately powered, this raises the provocative question of how nutrient restriction could be beneficial 8 

apart from simply avoiding unrecognized overfeeding consequences in a context of ongoing endogenous nutrient 9 

mobilization.(96)(figure 1) In severely burned rabbits, parenteral nutrition provoked morphological deterioration 10 

in myofibers and hepatocytes(97)  explained by suppression of autophagy, a process of cellular degradation of 11 

damaged or dysfunctional components. Likewise, the beneficial effect of nutrient restriction on recovery of 12 

contractility after myocardial infarction in mice depends on adequate autophagy activation.(98)  13 

In muscle biopsies obtained after one week in EPaNIC, Early-PN suppressed indexes of autophagy and 14 

inadequate autophagy activation was associated with ICU-AW.(31) Further study is required to determine the 15 

clinical importance of insufficient autophagy in ICU patients and to identify other mechanisms that may explain 16 

failure of early feeding interventions.  17 

 18 

Glutamine as a component of ICU nutrition therapy 19 

 20 

3 paradigms inspired the study of administration of glutamine, particularly as a component of PN, in the ICU: 21 
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1° Absence in conventional PN: Standard PN preparations do not contain the L-amino acid, for reasons of 1 

chemical stability. Nevertheless commercially available glutamine dipeptides are soluble and heat-stable.  2 

2° Glutamine needs may exceed endogenous synthetic capacity in some ICU patients: Substantial evidence from 3 

animal and human models suggests that endogenous glutamine production might be insufficient to meet 4 

increased glutamine requirements in some individuals during catabolic stress. Low glutamine levels in blood 5 

have been associated with worse clinical ICU outcomes; thus, glutamine has been considered a “conditionally 6 

essential” amino acid.(99)  7 

3° Salutary effects in human and animal studies: Supplementation of PN with glutamine improves nitrogen 8 

balance in catabolic patients. (100) Both enteral and parenteral glutamine administration improves intestinal 9 

barrier function in animal models of catabolic stress.(101) These and other mechanisms may explain reduced 10 

infectious morbidity and mortality with parenteral or enteral glutamine administration seen in some RCTs 11 

performed in critically ill patients.(102) Based on the earlier salutary results for RCTs of glutamine-12 

supplemented PN,  clinical practice guidelines (from 2009) advocate parenteral glutamine use in critically ill 13 

patients receiving PN and enteral glutamine after trauma or burn injury.(103) However, recent high quality RCTs 14 

have tempered the optimism concerning glutamine.(102) A pragmatic multicenter, investigator initiated RCT 15 

evaluating intravenous glutamine administration 0.28 g/kg/d as a separate infusion during the entire ICU stay in 16 

413 patients receiving PN or EN showed decreased ICU, but not 6-month mortality, in per-protocol 17 

analysis.(104) Likewise the pragmatic SIGNET trial (N=502) failed to show intent-to-treat benefits of glutamine 18 

administration in critically ill patients requiring PN.(105) The low dose (0.2–0.3 g/kg/day) and short duration of 19 

glutamine administration were identified as possible causes of glutamine failure in this study. A recent 20 

systematic review of 26 studies (n=2,484) of parenteral glutamine administered in critical illness (primarily as a 21 

component of PN) concluded that parenteral glutamine, given in conjunction with nutrition support, is associated 22 

with significantly decreased hospital mortality and length of stay, but did not decrease hospital infections or 23 

overall mortality. (106) A recent Cochrane review of enteral and parenteral glutamine supplementation in critical 24 

illness or major surgery (53 RCTs, 4671 participants) found moderate evidence for glutamine supplementation to 25 

reduce the hospital infection rate and days on mechanical ventilation, low quality evidence for reduced length of 26 

hospital stay and little or no effect on mortality.(107) 27 

    The largest RCT including glutamine as an intervention is the REDOXS trial, a 2x2 factorial design study 28 

conducted in 1223 patients from 40 ICUs in Canada, the USA and Europe.(108) Combined parenteral and 29 

enteral administration of high-dose glutamine (0.35 g/kg/day intravenously plus 30 g/day enterally), with or 30 
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without administration of a daily antioxidant mixture (500 µg selenium parenterally plus enteral administration 1 

of selenium (300 µg), zinc (20 mg), vitamin C (1500 mg), beta-carotene (10 mg) and vitamin E (500 mg) versus 2 

placebo was given to patients with shock and multiple organ failure. Unfortunately, this intervention was 3 

associated with an unexplained increase in in-hospital and 6-month mortality in subjects whom received 4 

glutamine supplementation, with or without supplemental antioxidants.(88)  Inclusion of severely ill patients 5 

early in the course of shock and acute kidney or liver failure (which were exclusion criteria in most previous 6 

studies of glutamine supplementation in the ICU) may have provoked the significant increase in mortality risk; 7 

further the enteral plus parenteral dose of glutamine was higher than previously administered in ICU patients and 8 

then recommended in nutrition guidelines. (106;109) Initial glutamine levels were available in a very limited 9 

number of patients precluding interpretation of their impact on the observed effects. 10 

Endogenous glutamine release from muscle is not attenuated by glutamine administration in critical illness.(111) 11 

It has been speculated that low blood glutamine levels early in critical illness may be an adaptive response in 12 

some patients; although this is not evidence-based, if true, correction with exogenous glutamine will be 13 

ineffective.(110;111) Relevant to this discussion is the recent Metaplus trial of enteral nutrition supplemented 14 

with glutamine (30 g/1500 mL) plus antioxidants (vitamins C and E, selenium and zinc) and omega-3 lipids in 15 

300 stable critically ill patients compared to a standard high-protein tube feed. The supplemented formula did not 16 

reduce infectious complications or other hospital morbidity or mortality, yet unexpectedly increased 6-month 17 

mortality in the pre-specified septic subgroup.(8) Taken together, these recent data caution against relying on the 18 

results of meta-analyses of multiple smaller studies unless confirmed by subsequent larger high quality RCTs to 19 

define approaches to therapy.(112) Based on the mixed data to date, future research should identify the potential 20 

role of glutamine-supplemented  PN in specific subgroups of critically ill patients after resolution of shock and 21 

multiple organ failure.(3)While awaiting results of new RCTs, glutamine supplementation of PN and high-dose 22 

supplementation of EN should be avoided in multiple organ failure and/or shock.    23 

Nutrition during recovery and after the ICU stay  24 

Little information is available on the impact of nutrition support in the post-ICU hospital or home setting after a 25 

prolonged ICU stay.(29) Although the effect of early and enhanced EN and/or PN during acute critical illness is 26 

unclear to date(3), it is not possible to extrapolate these findings to nutrition therapy beyond day 7 and outside 27 

the ICU to the floor or home-rehab setting. A Cochrane analysis (2011) of dietary advice and/or complete oral 28 

nutrition supplements(ONS) in a mixed but largely outpatient population (N=3186) at nutritional risk revealed 29 

no difference in morbidity, mortality or quality of life but an increase in weight, muscle mass and handgrip 30 
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strength in some of the comparisons.(113) ONS or tube feeding reduced the incidence of pressure ulcers in 1224 1 

high risk hospitalized patients.(114) Enhanced and early oral feeding is also a cornerstone (together with other 2 

interventions) of Enhanced Recovery After Surgery (ERAS) strategies, which have shown to shorten hospital 3 

stay.(115) Likewise, multimodal interventions, including nutritional intervention, in patients recovering from hip 4 

fracture reduce disability, nursing home admissions and mortality in a dramatic way.(116) Current limited data 5 

preclude identifying the relative contribution of nutritional interventions to the observed clinical benefit to ERAS 6 

strategies,  as these are co-administered with resistance training, medical counseling, smoking cessation and 7 

much more. However, in sarcopenic outpatients, combined exercise and oral protein supplements improved 8 

functional indexes more than only protein or exercise or placebo alone.(116) In stable chronic obstructive 9 

pulmonary disease, growth hormone administration during rehabilitation improved muscle mass but not 10 

function(117) All these results together, suggest that clinical outcome is more easily modified by nutrition 11 

support in patients who are not critically ill and thus avid for nutrient repletion.  12 

Most patients do not achieve adequate oral intake on the post-ICU hospital ward and this is associated with 13 

increased mortality.(118) Meals delivered to hospital patients provide complete nutrition but are typically only 14 

partially consumed by hospitalized patients, due to illness-associated anorexia, gastrointestinal symptoms and 15 

meals interruptions for diagnostic tests or therapeutic procedures.(118;119) In this regard, multimodal and 16 

multidisciplinary institution-wide practice change strategies have been proposed to improve the early 17 

identification of patients at risk for malnutrition, the continuous evaluation of nutrition adequacy and eventual 18 

action. These strategies should now be validated in cluster randomized trials.(120)  19 

General conclusion  20 

The prevention or attenuation of early energy and macronutrient deficiencies in critical illness has been a 21 

cornerstone in many ICU nutrition strategies. Results of recent RCTs challenged the effectiveness of such 22 

interventions and cautioned against possible harm. It is unclear today whether the dose (full feeding versus 23 

moderate feeding), route of administration (EN versus PN) or a specific macronutrient (e.g. higher dose glucose, 24 

protein or glutamine) is responsible for these unexpected findings. These disappointing results should not be 25 

extrapolated beyond the acute phase of critical illness, probably, once acute disease resolves, the eventual 26 

metabolic burden of early nutritional interventions is outweighed by their anabolic benefits. Unfortunately, very 27 

limited evidence-based guidance is available for feeding beyond the first week in ICU. Therefore, future studies 28 

evaluating interventions continuing beyond the most acute critical illness and assessing outcome months and 29 

years after ICU discharge would be very informative. For the time being, clinicians should consider refraining 30 
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from high-dose nutritional interventions given during the first ICU-week, particularly in severely ill patients with 1 

high illness severity scores and multiple organ failure and/or hemodynamic instability. Thus, prudence with 2 

regard to administration of conventional doses of energy, glutamine and other amino acids, carbohydrate and fat 3 

may be important in the first ICU-week, when the benefit/risk ratio is not well established, especially for PN. 4 

However, in patients requiring artificial nutrition therapy pre-ICU admission, there are little data. The use of 5 

micronutrients (e.g. vitamins, trace elements) is even less evidence based, but the consequences of occasional 6 

deficiencies particularly upon initiation of artificial nutrition are well described. Yet the careful monitoring and 7 

prevention of prolonged underfeeding in and after ICU discharge merits even more attention given the available 8 

limited data. Combined EN and PN, based on gastrointestinal function and comprehensive rehabilitation 9 

interventions in the general hospital ward have barely been explored in ICU survivors and could contribute 10 

together to metabolic hemostasis.   11 
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