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Origin of Meyer-Neldel type compensation behavior in organic semiconductors at large carrier
concentrations: Disorder versus thermodynamic description
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We have extended an effective medium approximation theory [Fishchuk, Kadashchuk, Genoe, Ullah, Sitter,
Singh, Sariciftci, and Bässler, Phys. Rev. B 81, 045202 (2010)] to investigate how polaron formation affects
the Meyer-Neldel (MN) compensation behavior observed for temperature-dependent charge-carrier transport in
disordered organic semiconductors at large carrier concentrations, as realized in organic field-effect transistors
(OFETs). We show that the compensation behavior in organic semiconductor thin films can be consistently
described for both nonpolaronic and polaronic hopping transport in the framework of the disorder formalism
using either Miller-Abrahams or polaron Marcus rates, respectively, provided that the polaron binding energy is
small compared to the width of the density of states (DOS) distribution in the system. We argue that alternative
models based on thermodynamic reasoning, like the multiexcitation entropy (MEE) model, which assumes charge
transport dominated by polarons with multiphonon processes and ignores the energy disorder, are inherently
not applicable to describe adequately the charge-carrier transport in disordered organic semiconductors. We
have suggested and realized a test experiment based on measurements of the compensation behavior for the
temperature-dependent conductivity and mobility in OFET devices to check the applicability of these models.
We point out that the MN behavior observed in thin-film OFETs has nothing to do with the genuine MN rule
predicted by the MEE approach, but rather it is an apparent effect arising as a consequence of the functional
dependence of the partial filling of the DOS in a disordered system with hopping transport. This fact is fully
supported by experimental results. The apparent MN energy was found to depend also on the shape of the DOS
distribution and polaron binding energy.
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I. INTRODUCTION

Organic semiconductor films offer potential for emerging
flexible large-area electronics, because they allow low-cost and
low-temperature device fabrication compatible with flexible
plastic substrates [1,2]. In spite of a large amount of work
having been done on the description of charge-carrier transport
in organic materials over the last decades, processes that
determine such charge transport in realistic organic electronic
devices are still not completely understood. Their comprehen-
sion, however, is definitely a key to rational material design
and, thereby, to further increase of device performance. The
commonly accepted mechanism of charge-carrier transport
in disordered organic semiconductors is thermally activated
hopping through a manifold of localized states distributed in
space and energy (see Refs. [3–8] and references therein). The
density of state (DOS) distribution in organic disordered solids
is commonly accepted to be of a Gaussian shape. The Gaussian
disorder (GD) in combination with the Miller-Abrahams (MA)
hopping rate model [9] has been the most widely used
formalism in the past decades to describe the charge transport
in small-molecule and polymer-semiconducting films [3–8].
One reason for the wide acceptance of the GD model is the suc-
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cessful numerical reproduction of experimental results in many
different organic materials and electronic devices. There have
been several important improvements of the initial GD model
of Bässler [3]; one of the recent prominent advancements is
accounting for the partial DOS filling in the presence of space
charge to relate charge-carrier concentration and mobility. The
latter has spurred the development of a so-called extended
Gaussian disorder (EGD) model [10–14], which is currently
commonly applied to describe the charge-carrier mobility in
organic field-effect transistors (OFETs) and organic space-
charge-limited diodes. The practical applicability of the EGD
approach for organic semiconductors is further proved by
its wide adoption in commercial device simulation software
packages.

Recently, Fishchuk et al. [15] applied an effective medium
approximation (EMA) theory in the framework of the EGD
model to consider the so-called Meyer-Neldel (MN) compen-
sation effect often observed experimentally for the charge-
carrier mobility in thin-film OFETs [16]. This EMA approach
was also used before to describe the carrier concentration
dependence [14] and electric field dependence [17,18] of the
OFET mobility in disordered organic semiconductors. The
analytic model demonstrated a perfect agreement with the rele-
vant computer simulation results [11,12] obtained for the same
material parameters and available experimental data. It should
be mentioned that originally the MN compensation rule was
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suggested in the 1930s as an empirical relation derived from
chemical kinetics [19]. Generally, it states that in a thermally
activated process R(T ), the increasing activation energy Ea

is partially compensated by an increasing prefactor so that
R(T ) = Rconst exp(Ea/kBTMN) × exp(−Ea/kBT ), whereTMN

is the so-called characteristic MN temperature. The major
results of the EMA-based EGD model [15], relevant to the
MN compensation behavior under consideration in the present
paper, are the following:

(i) It was predicted that the MN compensation effect
should be observable in disordered organic semiconductors
only if the carrier concentration is sufficiently large [15],
viz. when there is a partial filling of the DOS like in OFET
devices, and it should not be detectable in a small-carrier-
concentration transport regime, as for instance in time-of-
flight (ToF) measurements. The compensation effect was
experimentally observed for the temperature dependences of
the OFET mobility μ(T ) upon varying the charge-carrier
concentration, but it was not found in experiment by varying
the width of the DOS [20]. These two facts led to the
important conclusion that the MN type compensation effect
observed in organic semiconductors is an apparent rather
than a genuine MN rule [15]. Thus, with respect to the
temperature-dependent OFET mobility, it would be more
correct to call it a “compensation behavior,” as it will be used
hereafter in this paper.

(ii) The EGD model predicts that the isokinetic tempera-
ture (so-called MN energy EMN = kBTMN), obtained for OFET
mobility, is related to the width of the Gaussian DOS, σ ,
providing thus a method for evaluating the amount of energetic
disorder in the material [15,20], which could have a practical
importance. All the above mentioned predictions of the EGD
model have been verified by experimental studies of C60-based
OFET devices [20–22].

Generally, in the context of semiconductor physics, the MN
compensation phenomenon has often been observed in thin-
film transistors (e.g., in amorphous Si, chalcogenide glasses,
oxide semiconductors); however, the microscopic origin of the
effect and its physical meaning in disordered semiconductors
are still topics of discussions. Various theoretical explanations
suggested before can be divided into two main categories.

The first one, which invokes the concept of energy
disorder, has been more traditionally used to describe the
MN phenomenon in disordered inorganic transistors. Among
these models, the so-called statistical shift of the Fermi level
(SSF) model [23–26] is the most elaborated approach and
most commonly known as the origin of the MN effect for
electron transport in a-Si:H. The basic idea of the SSF model
is quite obvious: Thermally activated charge-carrier transport
in disordered semiconductors arises due to charge-carrier
hopping from the Fermi level to the mobility edge [27], and
since the Fermi level shifts with temperature (“the statistical
shift”) as a consequence of the asymmetry of the DOS
around it, the activation barriers that need to be overcome by
charge-carrier hopping would also change with temperature,
which immediately results in a kind of compensation effect.
The SSF models typically consider exponential DOS and MA
jump rates, and they also attribute the observed charge-carrier
mobility to the width of the DOS (kBTMN = E0, where E0

is the width of exponential distribution) in semiconductor

materials. The analytical EMA-based EGD model [14,15]
also belongs to the category of disorder models, with several
major modifications especially relevant to organic materi-
als. It assumes a Gaussian-shaped DOS and considers the
charge-carrier hopping from a broad equilibrium distribution
of occupied localized states, where the carriers migrating
within a Gaussian DOS settle; i.e., it accounts for the whole
occupational DOS (ODOS) distribution and not just a discrete
Fermi level as does the SSF model. The EGD model [14,15]
has also incorporated the concept of the effective transport
energy level, which is reminiscent of the mobility edge in
disordered inorganic semiconductors.

The second category of alternative models is based on
thermodynamic reasonings. Yelon and Movaghar [28] and
Yelon et al. [29] pointed out that enthalpy and entropy in
thermally activated kinetic processes are proportional. They
suggested the so-called multiexcitation entropy (MEE) model,
which considers the transition between two sites with a
difference in energies ε2 − ε1 = Ea (a two-site system). The
MN compensation effect in their model arises as a result of
multiphonon activated transitions, while no such a behavior
is expected for single phonon transitions. An important
requirement of the MEE model, for the MN compensation
effect to occur, is large values of the activation energies (they
indicated Ea ∼ 1 eV [28]). According to the MEE model, the
multiphonon excitations result in an exponential increase of
the number of different activation paths and consequently
in an exponential increase of the prefactor with increasing
Ea . This brought the authors to the interpretation of the
characteristic temperature as the excitation energy divided
by a coupling constant [29,31]. The authors eventually made
an ambitious claim that their MEE model offers a universal
explanation for the MN compensation effect for thermally
activated phenomena, irrespective whether they take place
in disordered or crystalline solids, in biology, in chemical
catalytic reactions, and even in geology (see Ref. [31] and
references therein). They claim that the MN effect should
always arise whenever the activation energy of a thermally
activated process is sufficiently large. In addition, Yelon and
Movaghar [28] and Emin [30] claim that in order to yield
the MN effect, the electron transport in a material should be
dominated by polarons with multiphonon processes.

Recently, the debate on the applicability of the above-
mentioned models to describe the MN behavior in disordered
semiconductors has been revived by Yelon [31]. It was argued
that (i) in general, the disorder formalism, including SSF
models, was not applicable to explain MN phenomena at all,
and leads to contradictions because of the use of the MA
hopping rates, and (ii) the EGD model was not appropriate
to experimental situations in OFETs and, therefore, the MN
temperature could not be attributed to a measure of disorder.
Instead, it was proposed that the observed compensation phe-
nomena in organic semiconductors can readily be explained
by the MEE model [28,29], which is the best one to provide
a correct and full description of the temperature-dependent
charge-carrier mobility in OFET devices.

The present paper reinvestigates the problem by thorough
consideration of polaron effects on the MN behavior of the
charge transport in disordered organic semiconductors. We
find, that although the MEE model might describe the “genuine
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MN compensation rule,” it is inapplicable to the “apparent”
MN-like compensation behavior observed in OFETs. The
compensation behavior in OFETs is dominated by disorder
effects and can be described within the EGD formalism for
both nonpolaronic and polaronic hopping transport. We show
that the recovered MN compensation behavior is virtually
independent of whether MA [9] or Marcus rates [32,33] are
used, unless the polaron activation energy is much larger than
the energy disorder parameter. In the current paper, we report
on test experiments in which we are able to distinguish between
the applicability of the EGD and MEE models to OFETs.
We found that the isokinetic TMN temperature is distinctly
different for mobility and conductivity, featuring normal- and
inverted-MN effects, respectively, which naturally follow from
hopping transport within a Gaussian DOS distribution. At the
same time, the MEE model predicts a single TMN for the
same material. The experimental results were found to be in
good agreement with the present theory. We focus here only
on organic semiconductors; other situations where the MN
behavior is observed are beyond the scope and ambition of
this paper.

II. THEORETICAL FORMULATIONS

We consider a disordered organic solid containing localized
sites with an average intersite distance a = N−1/3, where N

is the concentration of the localized states. Charge-carrier
transport in such a material occurs by thermally assisted
hopping. The MA hopping rate Wij for a charge carrier
between starting εi and target εj states has been suggested
for a rigid matrix devoid of any polaron effects and is given
as [9]

Wij = W1 exp

[
−|εj − εi | + (εj − εi)

2kBT

]
,

(1)

W1 = ν0 exp

(
−2

a

b

)
,

where ν0 is the attempt-to-escape frequency, and a and b are the
intersite distance and carrier localization radius, respectively.
The MA model is conventionally based on a single-phonon
approximation. On the other hand, the Marcus jump rates are
most often applied to account also for polaron formation in
organic materials in terms of the nonadiabatic small-polaron
concept given by the Marcus theory [32,33]

Wij = W2 exp

[
−εj − εi

2kBT
− (εj − εi)2

16E
pol
a kBT

]
,

(2)

W2 = W0 exp

(
−E

pol
a

kBT

)
,

where E
pol
a is the polaron activation energy, which is equal

to half of the polaron binding energy (Epol
a = Ep/2),W0 =

(J 2
0 /�)

√
π/4E

pol
a kBT exp(−2a/b), and J0 is prefactor in the

transfer integral.
We focus here on comparative consideration of the tem-

perature dependences of the hopping charge transport upon
varying carrier concentrations for nonpolaronic and polaronic
charge transport described by MA and Marcus jump rates,
respectively, in a three-dimensional (3D) disordered organic

system. For a given carrier concentration n, the Fermi energy
level εF is determined from the transcendental equation

n =
∫ ∞

−∞
dεg (ε) f (ε,εF ), (3)

where f (ε,εF ) is given by the Fermi-Dirac statistics

f (ε,εF ) = 1

1 + exp
(

ε−εF

kBT

) . (4)

Unless otherwise indicated, we use in this paper a Gaussian
DOS g (ε) distribution with variance σ , which is also called
the energy disorder parameter

g(ε) = N

σ
√

2π
exp

[
−1

2

(
ε

σ

)2]
, −∞ < ε < ∞. (5)

It should be mentioned that a previous EMA treatment [14]
considered either nonpolaronic (MA) mobility [15] or the
“specific” case of polaronic transport in a Gaussian DOS
distribution when polaron effects are much larger than the
disorder effects (Epol

a � σ ). In the latter case, the Marcus
jump rate could be readily reduced to a simpler so-called
“symmetric” jump rate equation (where the quadratic term
in Eq. (2) is ignored [14]). Unfortunately, the previous EMA
theory [14] was inherently unable to treat the case of relatively
small polaron formation energies, which is more relevant to re-
alistic situations in organic semiconductors normally featuring
small or moderate polaronic effects. Besides, we should note
that no MN compensation effect regarding the temperature
dependences of the charge-carrier mobility upon varying the
carrier concentration could be recovered by EMA theory
when E

pol
a � σ because of a vanishing carrier-concentration

dependence for the polaron transport [14] at large polaron
formation energy (see also discussion hereinafter). Thus, the
MN behavior was never considered before by the EMA
treatment for polaronic transport in organic semiconductors.

The present paper is based on a different and more advanced
EMA formalism formulated for the full Marcus jump rate
equation [Eq. (2)] and arbitrary E

pol
a /σ ratios, i.e., including

also relatively weak polaronic effects; therefore, it goes beyond
the aforementioned limitations of Ref. [14]. A key aspect of
the present theoretical treatment is that the effective charge
mobility is determined here from the effective conductivity as

μe = σe

en
, (6)

where concentration n is given by Eq. (3). The conductivity
can be calculated by the EMA method suggested earlier by
Kirkpatriсk [34]. The principal advantage of this approach over
a direct calculation of the charge-carrier mobility [14] is that it
can also be applicable for the description of polaronic transport
at arbitrary polaron activation energy E

pol
a with respect to the

energy disorder parameter σ , since it avoids shortcomings
involved in the effective transport energy concept. It should
be mentioned that calculation of the transport energy is very
problematic for the Marcus jump rates given by Eq. (2) [35].
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According to Kirkpatriсk [34], the effective conductivity σe

is determined as 〈
σ12 − σe

σ12 + 2σe

〉
= 0, (7)

where σ12 = G12/a is the conductivity in two-site cluster
approximation, and angular brackets 〈· · ·〉 denote the config-
uration averaging. Conductance G12 can be calculated for the
MA rates [cf. Eq. (1)] according to [36,37]

G12 = G1

exp
(−|ε1−ε2|

2kBT

)
4 cosh

(
ε1−εF

2kBT

)
cosh

(
ε2−εF

2kBT

) , G1 = e2W1

kBT
, (8)

and the Marcus jump rate [Eq. (2)] yields

G12 = G2

exp
[− (ε1−ε2)2

16E
pol
a kBT

]
4 cosh

(
ε1−εF

2kBT

)
cosh

(
ε2−εF

2kBT

) , G2 = e2W2

kBT
. (9)

Site energies ε1 and ε2 enter symmetrically into Eq. (7) and (8),
and that is why σ12 = σ21.

A. Miller-Abrahams nonpolaronic hopping

Let us first consider the nonpolaronic charge-carrier hop-
ping employing the MA jump rates [Eq. (1)]. As it was shown
recently [35], the effective conductivity σe within the MA rate
model can be calculated using the product of two independent
DOS functions, g(ε1)g(ε2), for configurational averaging in
Eq. (7). The effective MA conductivity is then obtained by
substituting Eq. (8) in Eq. (7), and the subsequent configuration
averaging yields

∫ ∞

−∞

∫ ∞

−∞
dt1dt2exp

[
−1

2

(
t2
1 + t2

2

)] x
4

exp(− x
2 |t1−t2|)

ϕ(t1, t2, xF ) − Xe

x
4

exp(− x
2 |t1−t2|)

ϕ(t1, t2, xF ) + 2Xe

= 0.

(10)

Here Xe = σe/σ1, σ1 = e2W1/aσ , φ(t1, t2, xF ) =
cosh[(x/2)(t1 − xF )] cosh[(x/2)(t2 − xF )], x = σ/kBT ,
and xF = εF /σ .

Figure 1(a) (bold curves) shows the temperature-dependent
effective nonpolaronic conductivity σe/σ1 calculated by
Eq. (10) for different carrier concentrations using MA rates.
Thin lines in Fig. 1(a) are linear asymptotes to the above
calculated Arrhenius plots (bold lines) made in the temperature
range where the ln(σe/σ1) ∝ 1/T law is obeyed, and these
asymptotes can be parameterized by the following approxi-
mate analytical relation

σas
e

σ1
= exp

{
1.4 −

(
σ

kBT
+ 1

)[
0.385 − 1.121

× log

(
n

N

)
− 0.0854 × log2

(
n

N

)]}
. (11)

As one can note, these asymptotes obtained at different
carrier concentrations feature a single crossing point at a
“negative” temperature, which is reminiscent of the so-called
anti-MN rule (or inverted MN rule) behavior, with negative
EMN energy observed before for the temperature-dependent
conductivity in heavily doped microcrystalline Si [26,38] and
some a-Si devices [39]. According to the present calculations,
the isokinetic temperature TMN in Fig. 1(a) depends on the

FIG. 1. (Color online) Temperature dependences of (a) the ef-
fective nonpolaronic conductivity σe/σ1 and (b) mobility μe/μ1

calculated for a Gaussian DOS and MA jump rates at different
charge-carrier concentrations (n/N ) (red bold curves). Thin straight
lines represent the approximated dependences calculated by Eq. (11).
Vertical dashed line denotes σ/kBT = 0 and is a guide to the eye.

width of the DOS as σ/kBTMN = −1.0, and it thus allows
estimating the σ from experimentally observed TMN.

The effective nonpolaronic mobilities were calculated from
the above conductivity data [cf. Fig. 1(a)] using Eq. (6)
as μe/μ1 = (N/n) σe/σ1, where μ1 = ea2W1/σ , and the
obtained temperature dependences are presented in Fig. 2(b)
(bold curves). The asymptotes to the calculated μe(T ) de-
pendences also feature a MN compensation behavior upon
varying the carrier concentration. However, in contrast to the
conductivity, the crossing point TMN (isothermal temperature)
is positive for the mobilities, which is fully in line with pre-
vious papers when the charge-carrier mobility was calculated
directly [15]. The latter fact verifies the validity of the present
approach, and therefore it is natural that these results are
similar to those we obtained before for MA mobilities [15].
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FIG. 2. (Color online) Temperature dependences of (a) the ef-
fective nonpolaronic conductivity σe and (b) mobility μe calculated
for an exponential DOS and MA rates at different charge-carrier
concentrations (n/N ) (red bold curves). Thin straight lines are linear
approximations of the calculated data in an Arrhenius representation.

It would be of interest to figure out how the DOS function
profile can affect the MN behavior. Below, we compare the
above calculations obtained for the Gaussian DOS with those
for an exponential DOS distribution, which is also sometimes
applied to organic semiconductors [40]. The same analytical
formalism was therefore applied to consider the nonpolaronic
hopping transport in an exponential DOS distribution

g (ε) = N/E0 × exp(ε/E0) (−∞ < ε � 0), where E0 is the
width of the exponential distribution, and the calculation
results are presented in Fig. 2. The calculated Arrhenius
plots demonstrate a MN behavior for the temperature-
dependent mobilities [Fig. 2(b)], featuring a crossing point at
E0/kBTMN = 1 for the corresponding linear asymptotes, while
no MN behavior is found for the temperature dependences of
the conductivity [Fig. 2(a)], which intersect at infinite temper-
ature. It should be noted that these isothermal temperatures are
found to be exactly the same as reported in a relevant paper
by Vissenberg and Matters [40], who applied a percolation
theory to the charge-carrier hopping in an exponential DOS.
The fact that the result of Ref. [40] has been recovered
using the present EMA method testifies to the applicability
of our theoretical approach.

Comparison of the calculation results in Figs. 1 and 2 proves
that the shape of the DOS distribution has a significant effect
on the MN behavior. The Gaussian DOS is certainly a good and
most commonly accepted approximation for organic materials.
However, recently it was suggested that the DOS profile in
real organic disordered organic semiconductors could not be
of perfectly Gaussian shape, but rather it has the form

g(ε) ∝ exp

[
− 1

p

(
ε

σ

)p]
, (12)

where p > 1.8 was needed to explain experimental results
for poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylene
vinylene (OC1C10-PPV) and poly-3-hexylthiophene
(P3HT) [41]. Generally, p values might range within
1 � p � 2 [41]. In such situations the MN isokinetic
temperatures observed experimentally might somewhat differ,
and therefore the MN effect might behave in an intermediate
manner to what is predicted for pure Gaussian and pure
exponential DOS shapes.

B. Marcus polaronic hopping

Next, we consider polaronic hopping transport within a
Gaussian DOS using the Marcus rate [Eq. (2)]. Recently it was
demonstrated [35] that appropriate configurational averaging
procedure has a profound effect on calculation results using
Eq. (6) for the Marcus hopping transport. It was shown
that results consistent with Monte-Carlo simulations for the
Marcus hopping, when both disorder and polaronic effects
are simultaneously present at arbitrary E

pol
a /σ ratio, can be

obtained when configurational averaging uses a product of
functions g(ε1) f (ε1, εF )g(ε2)[1 − f (ε2, εF )] [35]. Applying
this averaging procedure in Eq. (7), and using Eqs. (6) and (8),
one obtains the following transcendental equation

∫ ∞

−∞

∫ ∞

−∞
dt1dt2

exp
[− 1

2

(
t2
1 + t2

2

)]
{1 + exp[x(t1 − xF )]}{1 + exp[−x(t2 − xF )]}

x
4

exp[− x(t1−t2)2

16xa
]

φ(t1, t2, xF ) − Ye

x
4

exp[− x(t1−t2)2

16xa
]

φ(t1, t2, xF ) + 2Ye

= 0. (13)

Here Ye = σe/σ2, σ2 = e2W2/aσ ,ϕ(t1, t2, xF ) =
cosh[(x/2)(t1 − xF )] cosh[(x/2)(t2 − xF )], and xa =
E

pol
a /σ .

Temperature dependences of the effective charge-
carrier mobility μe/μ2 = (N/n)Ye exp(−xxa), where μ2 =
ea2W2/σ , calculated for a Gaussian DOS and Marcus rates
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FIG. 3. (Color online) Temperature dependences of the effective polaronic charge-carrier mobility calculated for Marcus rates as μe/μ2 =
(N/n) (σe/σ2) exp(−xxa) for different ratios between polaron activation energy and the width of the DOS with Epol

a /σ equal to (a) 0.25,
(b) 0.5, (c) 1, and (d) 3. Note that the calculated curves practically merge at large Epol

a /σ � 3 ratios (d), so no MN behavior could be clearly
distinguished. Short bold arrows indicate the isokinetic temperature TMN obtained for the nonpolaronic charge mobility calculated for MA
jump rate [cf. Fig. 2(b)] and are shown for reference.

using Eqs. (6) and (13) at different carrier concentrations
are shown in Fig. 3 by red bold curves for different ratios
E

pol
a /σ = 0.25, 0.5, 1, and 3 (indicated in figure). Asymptotes

to the calculated curves are given by black thin lines, and at
relatively small E

pol
a /σ ratios, they are found to feature a MN

compensation behavior with an intersection point at a finite
temperature, which turns out to depend on the E

pol
a /σ ratio

[Figs. 3(a)–3(c)].
Note that when polaron effects decrease, i.e., the E

pol
a /σ

ratio gets smaller, the isokinetic MN temperature for polaronic
mobility T Marcus

MN approaches that obtained for nonpolaronic
MA mobility, T MA

MN , indicated in Fig. 3 by the short arrow
for comparison. This additionally justifies that the MA jump
rate model can indeed provide an adequate description for the
charge hopping transport in conventional organic semiconduc-
tors with small polaron effects.

III. COMPARISON WITH EXPERIMENTAL RESULTS

To verify the present model, we performed a test experiment
where we compared the MN behavior for conductivity and

charge mobility μ(T ) measured in an OFET device based
on pentacene. The latter is often considered as a benchmark
organic semiconductor with relatively small polaron ef-
fects [8], and charge-carrier mobility properties were described
successfully with the EGD model [18] using MA rates. We
fabricated OFET devices with pentacene functional films in a
vacuum deposited onto a SiO2 (120 nm) dielectric pretreated
with a poly(α-methylstyrene) (PαMS) layer optimized to
maximize pentacene crystallinity (experimental details were
already published elsewhere [42]). Top contacts (Au) were
then deposited to define transistor structures for temperature-
dependent measurements. No permanent device degradation
was observed when comparing room temperature measure-
ments before and after the cooling cycle. At moderately high
temperatures (300–150 K), the OFET devices were found to
exhibit thermally activated conductivity and mobilities.

Arrhenius plots of temperature-dependent source-drain
(ISD) current and the charge-carrier mobility (μ) measured
at different gate voltages VGS in the pentacene-based OFET
device are presented in Figs. 4(a) and 4(b) (symbols), re-
spectively. Measurements were done in the linear regime of
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FIG. 4. (Color online) Temperature dependence of (a) the ISD(T )
and (b) OFET mobility μ(T ) in a pentacene film measured at different
VGS voltages (symbols) and results of their theoretical description
with the present model (red solid curves). The isothermal temperature
is indicated by a vertical arrow (note that it is negative for conductivity
and positive for mobility).

the ISD − VGS transfer characteristics. We assume here that
the current density is proportional to the conductivity as the
source-drain voltage was the same in these measurements.
Fitting of the experimental ISD data in Fig. 4(a) was done by
Eq. (11) assuming nonpolaronic transport (MA rates), which
is well justified for this material, and shown by solid curves. It
is evident that the extrapolations of these graphs intersect at a
negative isothermal temperature featuring anti-MN behavior,
which perfectly agrees with prediction of the present theory
for a Gaussian DOS [cf. Fig. 1(a)]. The theoretical μ(T ) de-
pendences were calculated by differentiating the fitting ISD(T )
curves from the previous ones [Fig. 4(a)] as μ ∝ ∂Ids/∂VG and
are presented in Fig. 1(b) (solid curves). This corresponds to
the theoretical relation μe = (1/e) ∂σe/∂n. The μ(T ) curves
calculated in such a way describe the experimental results

quantitatively reasonably well [Fig. 3(b)], and, in contrast
to the conductivity data in Fig. 3(b), the μ(T ) dependences
feature a positive isothermal temperature in accordance with
the present theory. Thus, both sets of experimental data in
Figs. 4(a) and 4(b) can be fitted by the present model using the
same material parameters.

We should note that a slight discrepancy in matching
the experimental μ(T ) data by dependences calculated using
Eq. (6) [Fig. 4(b)] was found to be due to the use of an ideal
Gaussian DOS distribution given by Eq. (5). Employment of
a recently proposed and probably more realistic DOS function
given by Eq. (12) [41] was found to provide a much better
fit; however, this makes the whole fitting procedure very
complex from a practical point of view. We therefore limit
our consideration here to just pure Gaussian DOS [Eq. (5)],
and the employment of the DOS in the form of Eq. (12) needs
to be investigated carefully in this context.

IV. DISCUSSION

A key result of the present paper is that MN behavior
regarding the temperature dependences of the charge-carrier
mobility and conductivity upon varying the carrier concen-
tration measured in the same OFET material yields distinctly
different isokinetic TMN temperatures for these two related
kinetic characteristics (Fig. 3). This can be well rationalized
within disorder formalism but is in sharp contrast to MEE
model, and therefore the study of the MN compensation
behavior for μ(T ) and IDS(T ) dependences at different carrier
concentrations can serve as a critical experimental test with
which to distinguish between the above models. Indeed,
since both μ(T ) and IDS(T ) are governed by the same
thermally activated hopping process, the MEE predicts a single
characteristic TMN temperature in the same material because
it defines TMN as the energy of excitations (phonons) divided
by a coupling constant [29,31]. On the other hand, emergence
of different TMN values for mobility and conductivity is quite
expected for the hopping transport in a disordered material
with distribution of localized states and is a direct consequence
of the presence of energy disorder.

The puzzle can be solved by realizing that the MN
compensation behavior observed for the charge transport in
OFETs is an apparent extrapolated effect and has nothing
to do with occurrence of the genuine MN rule amenable to
interpretation with the MEE model. As was already pointed
out in Ref. [15], there is no compensation behavior when the
activation energy of the mobility Ea is varied by the change
of the energetic disorder (the width of the DOS), while it does
occur upon varying the carrier concentration (gate voltage),
which was verified theoretically and experimentally [20]. This
is in clear disagreement with the conventional MN rule, which
predicts a correlation between prefactor rate and activation
energy regardless of how the change in Ea is accomplished,
i.e., by either changing the width of the DOS itself or changing
the degree of state filling. These arguments imply that for the
charge mobility in organic disordered films, there is in fact no
genuine correlation between the prefactor and the activated
jumps factor, i.e., there can be no change in the attempt
of the jump frequency [15]. This seems to be quite natural
because otherwise the conventional MN rule would lead to a
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kind of logical contradiction mentioned in Ref. [31] that “the
more disordered samples are more conductive than the less
disordered samples” due to the fact that the mobility prefactor
μ0 would be larger in a more disordered system. Regarding
the mobility prefactor, we should recall that, in reality, μ (T )
dependences in organic materials with a Gaussian DOS
distribution do not intersect each other. The physical reason
is that at high enough temperatures, when the equilibrium
energy level shifts beyond the Fermi level, it changes from
log (μ) ∝ T −1 to the conventional log(μ) ∝ T −2 dependence
(see Ref. [15] for more detailed discussion). Remarkably, the
same result was also obtained by computer simulation studies
of the charge transport using the numerical master equation
method by Coehoorn et al. [12] within the same disorder
formalism.

Another result of this paper is it demonstrates that the
MA jump rate model yields qualitatively similar compensation
behavior as polaronic jump rates based on the Marcus theory,
provided that polaron binding energy is not too large, which
justifies the MA model applicability and suggests that the
multiphonon (polaron) nature of thermally activated jumps
is not a prime cause of the MN compensation behavior
observed in OFETs. Figure 3 provides clear evidence that the
EGD model qualitatively reproduces the MN compensation
behavior similarly well for both MA and Marcus mobilities
at E

pol
a /σ < 3, i.e., when the transport is still dominated by

the energy disorder, implying that the polaronic transport
in such a disordered system is not much different from the
nonpolaronic one. The latter is quite plausible for conventional
organic semiconductors like pentacene. The polaron reorga-
nization energy in pentacene is of order of 100 meV [8],
implying a polaron activation energy of about 25 meV,
which is indeed smaller than the value, σ = 75 − 100 meV,
typically reported for pentacene films [15,43]. The isokinetic
T Marcus

MN temperature calculated for the polaronic mobility
within Marcus rates clearly tends to approach the T MA

MN value
obtained for the nonpolaronic MA mobility upon decreasing
the polaron activation energy (Fig. 3). Thus, reproduction of
the compensation behavior is in fact not rate-model-specific,
unless the polaron binding energy is relatively very large.
A similar conclusion was recently derived [35] from the
combined Monte-Carlo simulations and EMA calculations in
a study of temperature-dependent hopping diffusivity of triplet
excitations in a disordered system with superimposed polaron
effects. Indeed, satisfying the detailed balance condition is
the major requirement for a rate model to provide adequate
description of many transport characteristics in disordered
materials, while the choice between Marcus and MA rate
models for materials with small or moderate polaron formation
energies is not crucial. This proves that the establishment of the
compensation behavior in OFETs is a characteristic signature
of hopping transport in a random system with variable carrier
concentration regardless of the polaronic or nonpolaronic
nature of the charge carriers, and, in contrast to the MEE
model, multiphonon polaron transfer is not necessary needed
to provide the MN behavior.

The MA rate model has most commonly been used for the
analysis of thermally activated charge-carrier hopping trans-
port, and its applicability was proven by extensive computer
simulation studies [3,11,12] and analytical treatments [13,14].

Conventionally the MA model is considered as a one-phonon
approximation involving only low-frequency acoustic modes;
however, this limitation was recently overcome by extending
the model to account for all phonon modes, including also
high-frequency optical phonons [44,45] in organic semicon-
ductors. Though the polaron Marcus rate model seems to
be better justified for organic materials, the results obtained
using Marcus and MA rates are in fact not much different in
realistic situations [3,4,46–48]. The MA rate is certainly just
an approximation when applied at higher temperatures, but its
widespread popularity is caused by its simpler mathematical
relation and the fact that the numerous parameters of the
full polaron model are combined into a single adjustable
mobility prefactor parameter. This approximation is based
upon tunneling between sites, which is not accounted for in the
usual Marcus equation. Consequently, it is unable to explain
the decrease of the transition rate when entering the “Marcus
inversion region” at high enough electric fields. However, as
it was already argued before [47], at realistic material param-
eters, the inversion does not occur in most organic disordered
semiconductors at electric fields below 2 × 106 V/cm. Since
electronic devices based on disordered organic semiconductors
normally operate at F < 2 × 106 V/cm, this explains why the
MA simplification is equally well applied as the Marcus model
to the analysis of charge transport in them.

Let us consider other applicability issues of the MEE model
to the MN compensation behavior observed for the charge-
carrier transport in OFET devices. The MEE approach [28–31]
might look very appealing due to its ambition of universality
in explaining the MN effect in various situations by using
rather obvious thermodynamic arguments. However, this does
not guarantee that the model can really provide an adequate
physical description in all situations, especially if the com-
pensation behavior is an apparent rather than the genuine one.
This does not mean that the MEE description is impossible,
but it can be of little importance in some situations when other
effects prevail, like in disorder-dominated hopping transport
system. Several fundamental problems with applying the MEE
model to the transport in organic disordered solids have to be
admitted:

(i) The principal limitation of the MEE model is that it
reduces the complex hopping transport problem in a disordered
solid to consideration of just a two-site system—it considers
a transition within an individual pair of sites with a fixed
difference in site energies [28–31]. In other words, this model
attempts to adequately explain charge transport properties in a
random system based solely on a transition rate consideration.
This is inherently inadmissible for the hopping transport
in energetically disordered media. One cannot rule out the
relevance of the MEE model, for instance, for a crystalline
system where all pairs of sites could be equivalent, e.g., when
there is a discrete trap with the same activation energy Ea .
However, in a disordered material, by definition, there is a
great variety of such pairs for which energies are described
by a DOS distribution, i.e., all pairs of sites have different
Ea . In reality, a charge carrier moving through a random
system experiences a large number of hops between sites
with very different energies before it reaches a collecting
electrode. A prominent example could be the well-known fact
that the charge mobility in a random organic system follows the
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μ (T ) ∝ exp[−(2σ/3kBT )2] dependence [3–7,46–48] in the
low-carrier-concentration limit, which cannot be explained just
by a hopping rate consideration, but is rather a consequence of
carrier motion through a Gaussian-shaped DOS distribution.
The same problem is inherent to the polaron model suggested
recently by Emin [30], which can be considered as a version
of an MEE model [29]: It also never goes beyond the
two-site system approximation, which is clearly insufficient
and unacceptable to properly treat a disordered system.

(ii) Another piece of evidence for inapplicability of the
MEE model, as well as the related polaron model of Emin [30],
to the charge transport in organic semiconductors results
from the fact that the compensation behavior arises only
when the carrier concentration is sufficiently large, as, e.g.,
in OFET devices [12,15,16]. First, these models clearly fail
to explain the dependence of the charge-carrier mobility on
carrier concentration (on VG voltage) in OFETs because no
DOS tail state filling is expected within the MEE approach.
Therefore, there is no charge-carrier concentration factor in
these models. For this reason, the MN compensation behavior
in OFETs regarding changing the gate voltage cannot be
reproduced by these models because they do not predict
the dependence of the activation energy on VG. Secondly, the
Emin theory predicts that the characteristic MN temperature
TMN ≡ t/kB is determined by the electron-transfer energy t .
Therefore, to rationalize the experimentally observed changes
in TMN, which change almost twice with deliberate changing
of the energy disorder observed in C60-films grown at different
substrate temperatures [20], one has to assume a strong
increase of the average intermolecular distances in such films
because the Emin model relates the change in parameter t

to the change in intermolecular distance. This sounds highly
unrealistic and has not been confirmed experimentally. Third,
the Fröhlich long-range polaron approach implemented in
the Emin model requires a strongly polar medium that is
difficult to justify for OFET structures with nonpolar organic
semiconductors such as pentacene or C60 and organic dielectric
layers. Finally, the Emin model fails to explain why the charge
mobility in OFETs with organic single crystal channels is
temperature independent or even decreases with temperature in
some crystals, while the temperature-dependent charge-carrier
transport is typically observed in vapor-deposited thin films
of the same material, indicating a key role of disorder effects.
Polaron-based models such as the Emin model should result in
identical charge transport properties in both cases irrespective
of the disorder effects because they attribute the activation
energy to polaron formation, which is in clear contradiction to
experimental results.

V. CONCLUSIONS

Although the MEE model might be applicable to describe
the genuine MN compensation rule in relevant situations
where it really happens, including materials with dominant
polaron transport, it appears not to be relevant to the charge

transport in conventional organic disordered semiconductors
with distribution of disordered localized states, and it is
contradictory and fails to describe properly experimental
observations. Therefore, the recent claim that the MEE
concept could provide a possible mechanism for the MN
behavior observed in OFETs is erroneous and misleading. We
performed a test experiment based on the combined study
of compensation behavior for μ(T ) and IDS(T ) dependences
to check applicability of the MEE and EGD models. We
found that a distinctly different isothermal temperature TMN

is inherent for the compensation behavior of μ(T ) and IDS(T )
(normal and inverted MN effects, respectively), which is well
described by the disorder formalism assuming a Gaussian
DOS. In contrast, the MEE model predicts a single TMN for
the same material. The MN compensation behavior observed
in OFETs is an apparent effect—it resembles the conventional
MN rule only under certain experimental conditions and
arises as a consequence of the functional dependence of state
filling of the DOS. This has been validated by both analytic
calculations and computer simulations, and it is fully supported
by experimental observations. The temperature-dependent
mobility in thin-film OFET devices is largely dominated by
disorder effects, and small polaron formation plays a minor
role. Therefore, the framework of the EGD model provides
an adequate description of the MN compensation behavior
in such devices. We demonstrated that the polaron formation
can be readily included in this disorder formalism using the
Marcus jump rate model, and accounting for moderate polaron
formation energies does not significantly alter the qualitative
behavior of the charge transport properties, unless the polaron
effects become much larger than the disorder ones. The
MN energy (EMN = kBTMN) for the temperature-dependent
OFET mobility in a system devoid of polaronic effects is
determined by both the energy disorder parameter (the width
of the DOS) and shape of the DOS distribution. Therefore, if
the realistic DOS profile in an organic semiconductor is not
purely Gaussian [41], then EMN can differ from that predicted
for an idealized Gaussian profile and might behave in an
intermediate manner to what is predicted for pure Gaussian
and pure exponential DOS shapes. Moreover, a moderately
large polaron formation energy in disordered systems with
significant polaron effects was found to have an additional
impact on the EMN energy.
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