A comparison between the complex symmetric based
and classical computation of the singular value de-

composition of normal matrices
Ferranti Micol, Le Thanh Hieu, and Vandebril Raf

Micol Ferranti

Department of Computer Science Abstract
KU Leuven, Belgium An algorithm for computing the singular value decomposi-
Micol.Ferranti@cs.kuleuven.be tion of normal matrices using intermediate complex symmetric

matrices is proposed. This algorithm, as most eigenvalue and
singular value algorithms, consists of two steps. It is based on
Hieu Le Thanh combining the unitarily equivalence of normal matrices to com-
plex symmetric tridiagonal form with the symmetric singular

Department of ComPUter Science value decomposition of complex symmetric matrices.

KU LGUVeIl, Belgium Numerical experiments are included comparing several algo-
Hieu.LeThanh@cs.kuleuven.be rithms, with respect to speed and accuracy, for computing the

symmetric singular value decomposition (also known as the Tak-
agi factorization). Next we compare the novel approach with the
Raf Vandebril classical Golub-Kahan method for computing the singular value
decomposition of normal matrices: it is faster, consumes less

D epartment of Computer SCle‘nce memory, but on the other hand the results are significantly less
KU Leuven, Belgium accurate.

f. ril .kul n.

Article information

e Ferranti, Micol; Le, Thanh Hieu; Vandebril, Raf. A comparison between the complex symmetric based and
classical computation of the singular value decomposition of normal matrices, Numerical Algorithms, 2013.

The content of this article is identical to the content of the published paper, but without the final typesetting
by the publisher.

Journal’s homepage: http://link.springer.com/journal/11075

Published version: http://dx.doi.org/10.1007/s11075-013-9777-9

KU LEUVEN

KU Leuven’s repository url: https://lirias.kuleuven.be/handle/123456789/427977|

www.kuleuven.be

http://www.kuleuven.be
mailto:Micol.Ferranti@cs.kuleuven.be
mailto:Hieu.LeThanh@cs.kuleuven.be
mailto:Raf.Vandebril@cs.kuleuven.be
http://link.springer.com/journal/11075
http://dx.doi.org/10.1007/s11075-013-9777-9
https://lirias.kuleuven.be/handle/123456789/427977

Numerical Algorithms manuscript No.
(will be inserted by the editor)

A comparison between the complex symmetric based and classical
computation of the singular value decomposition of normal matrices

Micol Ferranti - Thanh Hieu Le - Raf Vandebril

Received: date / Accepted: date

Abstract An algorithm for computing the singular value decomposition of normal matrices us-
ing intermediate complex symmetric matrices is proposed. This algorithm, as most eigenvalue
and singular value algorithms, consists of two steps. It is based on combining the unitarily equiv-
alence of normal matrices to complex symmetric tridiagonal form with the symmetric singular
value decomposition of complex symmetric matrices.

Numerical experiments are included comparing several algorithms, with respect to speed and
accuracy, for computing the symmetric singular value decomposition (also known as the Takagi
factorization). Next we compare the novel approach with the classical Golub-Kahan method
for computing the singular value decomposition of normal matrices: it is faster, consumes less
memory, but on the other hand the results are significantly less accurate.

Keywords singular value decomposition, symmetric singular value decomposition, Takagi
factorization, normal matrix.

1 Introduction

Normal matrices (matrices commuting with their conjugate transpose) play a fundamental role
in various applications (see, e.g., [10,18,23] and the references therein). Not only the link to

The research was partially supported by the Research Council KU Leuven, projects OT/11/055 (Spectral Proper-
ties of Perturbed Normal Matrices and their Applications), PFV/10/002 (Optimization in Engineering, OPTEC)),
by the Fund for Scientific Research-Flanders (Belgium) project G034212N (Reestablishing Smoothness for Ma-
trix Manifold Optimization via the Resolution of Singularities), and by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy Office, Belgian Network DYSCO (Dynamical Systems,
Control, and Optimization).

T. H. Le
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: ThanhHieu.Le@Qcs.kuleuven.be

M. Ferranti
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: Micol.FerrantiQcs.kuleuven.be

R. Vandebril
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: Raf.Vandebril@cs.kuleuven.be

2 M. Ferranti, T. H. Le, and R. Vandebril

applications, but also their excellent numerical behavior makes them an appealing class of ma-
trices. An extensive list of properties of normal matrices can be found in [8,15-17,19]. Amongst
all normal matrices Hermitian, skew-Hermitian, and unitary matrices are the most common ones
and as such they were studied intensively, e.g., as intermediate matrices in eigenvalue computa-
tions [4,11,22,26].

Adapting and tuning the current standard algorithm for computing the singular value decom-
position (SVD for short) to general normal matrices has not yet been considered. The classical
Golub-Kahan SVD algorithm [2,12,13] is applicable to arbitrary matrices and does not exploit
the normality of the matrix in any way. It first reduces the input matrix by unitary equivalences
to bidiagonal form, after which the SVD of this intermediate bidiagonal matrix is computed by,
e.g., a QR based method, a divide and conquer approach, a bisection based algorithm, Jacobi
iterations, and other methods (see, e.g., [5] and the references therein).

It is possible to exploit the normality, however. From [25] it is known that every normal
matrix is unitarily equivalent to a complex symmetric tridiagonal matrix. Making use of the
complex symmetric tridiagonal matrix as intermediate matrix structure and combining this with
methods for diagonalizing it, see, e.g., [1,28,30] a new algorithm for computing the SVD of a
normal matrix is obtained.

We combine the unitary equivalence transformation to complex symmetric tridiagonal form
with three algorithms for computing the symmetric singular value decomposition (abbreviated
as SSVD) of a complex symmetric matrix!. The following SSVD algorithms are considered: a
divide-and-conquer method (shortened as DAC) [28], which is a recursive approach where the
original problem is split in two subproblems of half the dimension; the twisted factorization
method (addressed as Twist) [30], which is inspired by the MR? idea to accurately retrieve
the singular vectors once the singular values are known; and the last method is a modification
of the QR algorithm to retain the structure of the tridiagonal complex symmetric matrix [1]
(abbreviated as QR). An experimental comparison of these algorithms, with respect to timings
and accuracy is presented and the best one is taken to compete with the classical QR inspired
SVD algorithm. In the remainder of the text when considering the SVD, we tacitly assume it is
computed by an implicit QR based chasing method [14] or the so-called Golub-Kahan approach.

The following notation is used: for a matrix A, A7 denotes its transpose; A denotes the

element-wise conjugate, and AY = A" stands for the complex or Hermitian transpose of A. A
matrix C € C™ " is said to be complex symmetric if C = C7. In reality one could omit the
“complex” in the definition, but as often in the literature symmetric implies the matrix elements
to be real, we opt to keep the “complex”, indicating that the elements reside in the complex field.
Every matrix A admits an SVD: A = UXV# | with U and V unitary and X a diagonal matrix
containing the singular values; every complex symmetric matrix admits an SSVD: C' = QX Q7T
with @ unitary and X' a diagonal matrix having the singular values of C' as diagonal elements.
For our convenience, we write X' = diag(oy,...,0,) where o1 > ... > g,. Obviously an SSVD is
an SVD, but not vice versa.

We focus on the complex symmetric based approach and the paper is organized as follows.
The algorithm carrying out the unitary equivalence to tridiagonal form is presented in Section 2.
Section 3 details on three common methods for computing the SSVD of complex symmetric
tridiagonal matrices. In Section 4 numerical examples are presented to compare the various
SSVD algorithms and to compare the SSVD based approach with the classical SVD algorithm.
The conclusions are presented in Section 5.

I The SSVD is often also named the Takagi factorization [24].

Computing the SVD of normal matrices relying on intermediate complex symmetric matrices 3

2 Tridiagonal matrices unitarily equivalent to normal matrices

Some essential results on the equivalence between normal matrices and tridiagonal matrices
(see [25] for more detail) are summarized in this section.

The equivalence tridiagonalization procedure is quite similar to the tridiagonalization pro-
cedure for Hermitian matrices and also resembles the bidiagonalization procedure [14]. In both
cases reflectors (also called Householder matrices) are used to create the desired zeros. In the
Hermitian case a single operator can be used to enforce zeros above and below the diagonal by
a similarity. Here, however, we need equivalences and possibly differing reflectors to accomplish
this, just like in the bidiagonalization procedure. A reflector, say P, is typically used for zeroing
components in a vector [14, Section 5.1] and is of the form P = I — (#<)vv’, for some nonzero
vector v. The image of x under P is given by

2 vix

Px=x-—
vHv

For every x one can easily construct a v such that x’s image Px = w/||x||e; becomes a multiple
of the identity, where w is a unimodular factor.

The following algorithm executes the equivalence transformation of an arbitrary matrix to a
tridiagonal one. For N € C"*™ and k,1,s,t € N,k < 5,1 < t, we denote by Nj.s .+ the submatrix
of N consisting of the rows k,...,s and columns [,...,t. For k = s or | =t we write Ny ;¢ or
Ni.s,1, Tespectively.

Algorithm 1 (Equivalence tridiagonalization)

Input: A matrix N € C™*™,

Output: Unitary matrices U, V, and a tridiagonal matrix T such that N = UTVH.
Set U =V = I,,, where I,, denotes the identity matrix.

fork=1:n-—2,

1. Compute the reflector P = I — avv to zero components in x = Njy1..1;
H .

2. Set Nk—i—l:n,k:n =P Nk—i—l:n,k:n and Uk+1:n,k+1:n - Uk+1:n,k+1:nP7

3. Compute the reflector R = I — aww?!! to zero components in y = lekﬂm;

4. Set Nk:n,k—i—l:n - Nk:n,k+1:nR and Vk+1:n,k+1:n == Vk+1:n,k+1:nR-

end

When only the tridiagonal matrix T is desired, e.g., one is only interested in the singular values
and not in the singular vectors, it is not necessary to compute U and V explicitly. In this case
most of the work in each iteration goes to updating the submatrices Niy1:.n k:n a0d N kt1:n-
For each of them, take Nj 1., k:n, the update is executed as follows

Nk—&-l:mk:n - Nk—i—l:n,k:n — av (VHNk+1:n,k::n) . (1)

This requires approximately (we only consider the dominant terms) 2(n — k)? operations for the
dot products v Ny 1.0k, (n — k)? for the outer product (av) (vHNk+1:n7k;n), and (n — k)2
for the matrix subtraction. The dominant factor in the cost for computing (1) is hence 4(n — k)?
flops. So each update, left and right takes 4(n — k)? flops. In total we get thus

floating point operations for computing the tridiagonal matrix only.

4 M. Ferranti, T. H. Le, and R. Vandebril

If the unitary matrices are desired the reflectors need to be accumulated. This can be done
efficiently in %n?’ for each unitary matrix, resulting in a total of 1—36713 flops. Comparing this to
the bidiagonalization algorithm, we get an identical cost (see [5,14]). If one, later on, wishes to
apply these reflectors on another matrix one does not first accumulate them and then perform a
matrix-matrix multiplication, but one applies them directly on the matrix in 2n® operations.

Algorithm 1 transforms a normal matrix to a complex tridiagonal one which is not nec-
essarily symmetric. Suppose the tridiagonal matrix 7" in Algorithm 1 has diagonal elements
a;,t = 1,...,n, subdiagonal elements §;, and superdiagonal elements ;. We assume the sub-
and superdiagonal elements different from zero. There is no loss of generality in requesting the
tridiagonal matrix to be irreducible otherwise the problem can be decoupled into smaller tridi-
agonal matrices. It was proved in [25, Remark 1, Theorem 8] that the corresponding off-diagonal
elements for a normal matrix have identical absolute values |3;| = |v:|,Vi = 1,...,n — 1. So, set
E = diag(1, %, RN %) then F is unitary, diagonal, and T' = SFE is a compler symmetric
unitary decomposition of T i.e., S is complex symmetric and tridiagonal (see [25, Subsection 5.2]
and also [9,16]). More precisely, let 79 = 8o = 1, the elements of S are defined by

0 it |i—j| > 1,
o oz i 1<i—j<n
ij = "TI 2% Be = =

ILhve e s

s =L

Symmetrizing nonsymmetric tridiagonal matrices is quite often prone to numerical instabil-
ities. We stress, however, that in this case the scaling matrix is unitary, and as such amounts
to a stable scaling of the tridiagonal matrix. Moreover, every matrix is equivalent to a complex
symmetric matrix, but normal matrices are unitarily equivalent. We will exploit the complex
symmetry in the development of an alternative algorithm for computing the SVD of normal
matrices.

3 Computing the SSVD of complex symmetric tridiagonal matrices

Take S € C™*" complex symmetric and tridiagonal. We would like to find the unitary matrix
Q such that QTSQ = ¥ = diag(oy,...,0,), where X contains the singular values o; € R,Vi =
1,...,n ordered as o1 > ... > g, > 0.

We summarize five numerical methods for computing the SSVD of complex symmetric tridi-
agonal matrices, amongst which we will use three: a divide-and-conquer method (DAC) [28], a
QR based iteration (QR) [1,20,21,29], and a hybrid algorithm: the twisted factorization method
(Twist) [30]. Of course, if one separates the singular value and singular vector computations there
is a whole variety of combinations. We chose to focus on those algorithms available and studied
in the literature. For all these methods it holds already that they are more memory efficient as
only one matrix of singular vectors needs to be stored instead of two for the standard SVD.

The basic idea of the DAC method [28] is to apply the divide-and-conquer method for com-
puting the eigenvalues and eigenvectors of the symmetric matrix SS. This matrix is teared
into two pentadiagonal submatrices of half the dimension whose eigenvalues are then computed
recursively. The eigenvalues of the smaller matrices are then recombined to retrieve those of S5
by using four rank-one modifications. This method needs 3n> operations or a little less in case
one of the core matrix—matrix multiplications can be performed more efficiently, e.g., presence
of zeros, or premature deflations. The DAC approach is the fastest, but we will see, in Section 4

Computing the SVD of normal matrices relying on intermediate complex symmetric matrices 5

that it becomes numerically unreliable when some of the subdiagonal elements become relatively
small [28].

The QR based approach proposed in [1,21,29] translates the algorithm for computing the
singular values of a bidiagonal matrix to the tridiagonal setting. As one relies on the QR fac-
torization of SS this results in a double shifted QR step. In these articles an implicit version
is presented where the chasing relies on, and ensures at the same time the outcome to be of
complex symmetric tridiagonal form again. This method needs O(n?) flops for computing the
singular values and O(n?) flops for computing the singular vectors if all the transformation ma-
trices are accumulated. On average, it is stated in [21] that this algorithm needs only 6n3 flops;
the numerical experiments in Section 4.2 support this claim.

The twisted factorization method [30] focuses on computing the singular vectors assuming
thereby the singular values are known. This method is inspired on the MR? algorithm [6,7] for
computing the eigenvectors of symmetric tridiagonal matrices up to high relative precision. Its
complexity is 85n for computing a single eigenvector. It must be stressed, however, that this is
under the assumption that all singular values are separated well-enough. We will see in Section
4, Figure 2 that this method’s accuracy is highly related to the clustering of the singular values
and suffers from singular values being too close.

In [20] and [3] other QR inspired approaches are presented. These algorithms execute trans-
formations of the form Q7SQ to retrieve the singular vectors (instead of unitary similarity in
the QR case). These algorithms do, however, suffer from numerical instabilities, or are not able
to tackle the general setting and will therefore not be discussed in the remainder of the text.

Combining the tridiagonalization and the SSVD computation gives us the following alterna-
tive algorithm.

Algorithm 2 (Compute the SVD of a normal matriz)

Input: A normal matrix N.
Output: Singular value decomposition of N = UXVH.

Tridiagonalize N = UrT V2 using Algorithm 1.

Compute the symmetrization of T'= SFE.

Compute the singular values and singular vectors of S.

Recombine everything to obtain the singular value decomposition of N

W

The main cost of Algorithm 2 is the tridiagonalization and the computation of the singular
vectors if required, all summing up to O(n?) terms. Let us compare the SSVD and the SVD
computations based on the QR algorithm in detail as these algorithms are similar in nature and,
moreover, we will see in Section 4 that the QR based SSVD is the most reliable. We discuss
both phases namely the tri- and bidiagonalization and the diagonalization phase separately.
The bidiagonalization and tridiagonalization both take %n3. We do not accumulate the matrices
Ur and Vp, we will execute them on the singular vectors retrieved from the SVD and SSVD
computations which costs twice 2n3.

A single QR sweep in the bidiagonal case only uses O(n) operations to modify B, which
is similar to the complex symmetric tridiagonal setting. Again the dominant cost is hidden in
the updating of the singular vectors. For the bidiagonal case, in each QR step 6n? operations
are needed to update U and a similar cost to update V, so a total of 12n? for both matrices.
In [14] an approximate 1.2 iterations are assumed before convergence occurs, leading to an overall
complexity estimate for retrieving the SVD of a bidiagonal matrix of approximately 15n3.

For the complex symmetric tridiagonal matrix [21,27] the chasing is more involved as each
chase step corresponds to a double shifted QR step. Performing the operations on the tridiag-
onal matrix is again O(n) though with a larger constant than in the bidiagonal case (roughly

6 M. Ferranti, T. H. Le, and R. Vandebril

the double). Updating of the singular vectors takes now 11n? according to a chasing based on
reflectors as proposed in [21]. This 11n? is only a modest improvement with respect to the 12n2,
however, the usage of double shifts results in a significant reduction of the number of iterations.
In [21] an overall cost of only 6n3 is claimed. Besides the lower computational cost one should
not forget the reduced memory storage when comparing the SSVD with the SVD approach while
running QR steps.

In total, combining both phases the singular vectors retrieved from the bi- and tridiagonal
(S)SVD still need to be updated. For the SSVD we have

N = UrTV{ = UrS(EVS) = (UrQ)Z(QT EV{Y).

Since F is diagonal, the matrix multiplication 7' = SE costs only O(n?) flops, the remaining
updates cost just as in the SVD case 4n>. So, in total we arrive at approximate costs of 21n?
for the SVD (15n3 for the diagonalization, 4n3 for updating the singular vectors, and 8/3n3 for
the bidiagonalization) and 12n3 for the SSVD (612 for the diagonalization, 4n® for updating the
singular vectors, and 8/3n3 for the tridiagonalization) of an arbitrary normal matrix (assuming
the 613 to be valid). In Section 4.2, fortran codes of both methods are compared with respect
to speed and accuracy. The results confirm a speed-up of approximately 50%, but reveal on the
other hand that the complex symmetric approach is significantly less accurate.

4 Numerical experiments

We have executed two sets of experiments. Section 4.1 compares the three methods for computing
the SSVD. Based on the accuracy results in this section we opted to continue working with
the QR based SSVD to compare against the SVD in Section 4.2. The numerical experiments
ran on an Intel® Dual Core™@1.85 GHz. The algorithms in Section 4.1 were implemented in
MATLAB (R2012a) and based on software (if available) from the corresponding manuscripts. The
experiments in Section 4.2 were conducted in Fortran and the SSVD approached was compared
with the Lapack SVD implementation.

In the experiments, a normal matrix N is randomly created as N = Q¥ DQ where D is a
complex diagonal matrix whose diagonal elements have random normally distributed real and
imaginary parts in (0,1). The unitary matrix @ is the Q-factor of the QR factorization of a
random complex square matrix.

For each experiment, the relative backward error is computed as

IN - UXVH],
NIl

where N is the original normal matrix and UXVH the computed SVD. The relative singular
value error is given by

where ; are the computed singular values, and o; are the exact ones. The exact singular values
are known by construction, or are computed via the variable precision arithmetic in MATLAB.

When results related only to singular values are depicted, we do not show the performances
of the QR and Twist methods separately, as the Twist algorithm relies on the QR to compute
the singular values?.

2 This does not necessarily mean that their computed singular values are identical, as delayed convergence of
the QR method results in random shifts, which typically differ every run.

Computing the SVD of normal matrices relying on intermediate complex symmetric matrices 7

4.1 Comparing three algorithms for retrieving the SSVD

We compare the QR based, DAC, and T'wist method for computing the SSVD. In a first exper-
iment their speed and accuracy are examined for computing the SSVD of random tridiagonal
complex symmetric matrices. As we will see, the DAC method is not reliable in terms of accuracy,
because of its sensitivity to small off-diagonal elements, although it is the most efficient in terms
of speed. In a second experiment we investigate the sensitivity of the Twist method with respect
to clustered singular values.

Figure 1 depicts the running times, relative singular value errosr, and relative backward
errors for the QR based, the DAC based, and the T'wist method when computing the SSVD of
random tridiagonal complex symmetric matrices. The numerical results show that overall the
QR approach delivers the most accurate results, but is also the slowest one.

Time in seconds Relative singular value error
t T T T T 17 T T 1 171 ‘ : 101 = T T T 1 171 ‘ T T T T T 111 ‘ —]
102 H —0O— QR = ————0——0—0—0—0-0-0-000NNNNNIRD
F| —a— Twist E
101 ;,+ DAC ,; 1074 [|
10 ¢ E
é 1w 1
1071 E E
10*2 ; [Ll ; 10_14 T [|
102 103 102 103
Matrix dimension Matrix dimension

Relative backward error

100 |- oo oo o sscttemommn
1075 |- |
10710 a

102 103
Matrix dimension

Fig. 1 Running times and relative errors of the QR based, the DAC, and Twist method when applied on a
complex symmetric tridiagonal matrix (the legend of the first figure applies to all).

In a second experiment we generate matrices with clustered singular values, illustrating that
the accuracy of the Twist method is affected by this. The order of the matrix is fixed at n = 200

8 M. Ferranti, T. H. Le, and R. Vandebril

and the matrix equals
So

So |

where Sy is the 20 x 20 symmetric tridiagonal matrix having diagonal entries equal to 2, sub-
and superdiagonal entries equal to 1, and € = 27% for k = 0,5, 10, ...,55, such that the smallest
value of € just passes the machine precision. In Figure 2 the results are shown, with respect
to the parameter k. The QR method clearly outperforms the Twist approach when it comes
to computing singular vectors accurately. For the values k = 50,55, we even get NaN’s (Not a
Number) for the Twist algorithm.

Based on these experiments we believe that the best competitor to the classical SVD algo-
rithm is the QR based algorithm from [1,21]. Let us compare both approaches in detail in the
Section 4.2.

Relative backward error

T T T T
10° |- || @&
—— T'wist
1072 1
10—10 L |
00— 0000000
10-15 L | | ﬂ
0 20 40 60

Value k in e =27%

Fig. 2 Relative backward error of the QR based and Twist method when dealing with clustered singular values.

4.2 Computing the singular value decomposition of normal matrices

We analyze the speed and accuracy of the complex symmetric QR based approach with respect to
the classical SVD algorithm for retrieving the singular value decomposition of normal matrices.
In the remainder of the text we address these approaches as the SSVD (complex symmetric
based) and the SVD methods. Algorithm 2 was encoded in Fortran and was used to compare
the new approach with Lapack’s SVD implementation. Each method includes the two phases:
bi- or tridiagonalizing of the normal matrices, and diagonalizing the resulting bi- or tridiagonal
matrices.

Computing the SVD of normal matrices relying on intermediate complex symmetric matrices 9

Size H Time SSVD ‘ Time SVD H Error SSVD ‘ Error SVD

100 5.4e—-02 4.8e-02 3.2e-13 2.5e-15
200 3.7e-01 3.6e-01 3.9e-13 3.1e-15
300 1.2e-+00 1.4e4-00 8.7e-13 4.0e-15
400 2.9e+00 3.5e+00 74e-11 4.3e-15
500 5.8e-+00 7.1e+00 6.1e-13 4.8e-15
600 1.0e+01 1.2e+01 1.8e-12 59.0e-15
700 1.6e+01 1.9e+01 7.1e-12 9.5e—-15
800 24e+01 2.8e+401 1.5e-11 5.8e-15
900 3.5e+01 4.2e401 8.5e-12 6.1e-15
1000 4.7e401 5.8e+01 1.0e-10 6.3e-15
1500 1.5e+02 1.9e+02 29e-11 7.8e-15
2000 3.9e+02 9.5e+02 1.0e-10 1.0e-14
2500 7.8e+02 9.7e 402 7.6e-11 1.1e-14
3000 1.4e+403 1.8e+03 9.9e-10 1.2e-14
4000 4.1e403 9.5e+03 5.6e-11 1l4e-14
5000 8.6e 403 1.4e+404 2.6e-10 l4e-14

Table 1 Timings (in seconds) and the relative backward error of computing the singular value decomposition of
normal matrices via either the complex symmetric based (SSVD) and the classical approach (SVD).

Table 1 depicts the timings of both methods in seconds as well as the relative backward
errors for sizes 100 up to 5000. Each experiment was executed 3 times and the averages are
depicted. The matrices under consideration were random normal constructed as explained in the
beginning of the section. As soon as the matrix dimension becomes large enough, the difference
in computational complexity between the SSVD (12n3) and the SVD (21n3) approach becomes
clear. Unfortunately the table also reveals that the SSVD approach is significantly less accurate,
with a deteriorating accuracy for increasing matrix sizes.

5 Conclusions

An alternative algorithm for computing the SVD of normal matrices relying on intermediate
complex symmetric matrices was proposed. The results are mixed. With respect to memory
consumption the SSVD approach does better, as well as for computational complexity. Further
speed-up could be achieved if for instance the divide-and-conquer method could be made more
reliable and if the quality of the Fortran code would pair the standards of Lapack. On the other
hand, considering the accuracy of both approaches the classical SVD clearly outperforms the
SSVD method.

This approach could also be used to retrieve the eigenvalues of normal matrices, as the
SVD of a normal matrix closely links to the eigenvalue decomposition. If A is a normal matrix,
having distinct singular values and suppose A = UXV ¥ is a singular value decomposition then
A = UAUH | where A = Y(VHU), is an eigenvalue decomposition of A. Further research is
required, however, as clustered eigenvalues have a non-neglectable impact on the computations
and the accuracy.

10 M. Ferranti, T. H. Le, and R. Vandebril

Acknowledgements

The authors wish to thank Nick Vannieuwenhoven for the stimulating discussions on this sub-
ject. Furthermore, the authors value the editor and the referees careful reading and numerous
suggestions which led to major changes and greatly improved the presentation of the paper.

References

1. Bunse-Gerstner, A., Gragg, W.B.: Singular value decompositions of complex symmetric matrices. Journal of
Computational and Applied Mathematics 21, 41-54 (1988)

2. Chan, T.: An improved algorithm for computing the singular value decomposition. ACM Transactions on
Mathematical Software 8(1), 72-83 (1982)

3. Cullum, J.K., Willoughby, R.A.: A QL procedure for computing the eigenvalues of complex symmetric tridi-
agonal matrices. SIAM Journal on Matrix Analysis and Applications 17(1), 83-109 (1996)

4. Delvaux, S., Van Barel, M.: Eigenvalue computation for unitary rank structured matrices. Journal of Com-
putational and Applied Mathematics 213(1), 268—-287 (2008)

5. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia, Pennsylvania, USA (1997)

6. Dhillon, I.S.: A new O(n?) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem. Ph.D.
thesis, Dept. of Computer Science, University of California, Berkeley (1989)

7. Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigenvectors of symmetric tridi-
agonal matrices. Linear Algebra and its Applications 387, 1-28 (2004)

8. Elsner, L., Ikramov, K.D.: Normal matrices: An update. Linear Algebra and its Applications 285, 291-303
(1998)

9. FaBlbender, H., Ikramov, K.D.: A note on an unusual type of polar decomposition. Linear Algebra and its
Applications 429, 42-49 (2008)

10. Freund, R.W.: On Conjugate Gradient type methods and polynomial preconditioners for a class of complex
non-Hermitian matrices. Numerische Mathematik 57(1), 285-312 (1990)

11. Gemignani, L.: A unitary Hessenberg QR-based algorithm via semiseparable matrices. Journal of Computa-
tional and Applied Mathematics 184, 505-517 (2005)

12. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM Journal on
Numerical Analysis 2, 205-224 (1965)

13. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische Mathematik
14(5), 403-420 (1970)

14. Golub, G.H., Van Loan, C.F.: Matrix Computations, third edn. Johns Hopkins University Press, Baltimore,
Maryland, USA (1996)

15. Grone, R., Johnson, C.R., Sa, E.M., Wolkowicz, H.: Normal matrices. Linear Algebra and its Applications
87, 213-225 (1987)

16. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

17. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

18. Huckle, T.: The Arnoldi method for normal matrices. SIAM Journal on Matrix Analysis and Applications
15(2), 479-489 (1994)

19. Ikramov, K.D.: Short communications unitary-triangular factorizations of a normal matrix. Computational
Mathematics and Mathematical Physics 33(3), 407410 (1993)

20. Luk, F., Qiao, S.: Using complex-orthogonal transformations to diagonalize a complex symmetric matrix. In:
Spie proceedings the international society for optical engineering, pp. 418-425 (1997)

21. Luk, F.T., Qiao, S.: A fast singular value algorithm for Hankel matrices. In: V. Olshevsky (ed.) Fast Algo-
rithms for Structured Matrices: Theory and Applications, Contemporary Mathematics, vol. 323, pp. 169-177.
American Mathematical Society (2003)

22. Parlett, B.N.: The Symmetric Eigenvalue Problem, Classics in Applied Mathematics, vol. 20. STAM, Philadel-
phia, Pennsylvania, USA (1998)

23. Reichel, L., Noschese, S.: The structured distance to normality of Toeplitz matrices with application to
preconditioning. Numerical Linear Algebra with Applications (2010). DOI 10.1002/nla.735

24. Takagi, T.: On an algebraic problem related to an analytic Theorem of Carathéodory and Fejér and on an
allied theorem of Landau. Japanese Journal of Mathematics 1, 82-93 (1924)

25. Vandebril, R.: On tridiagonal matrices unitarily equivalent to normal matrices. Linear Algebra and its
Applications 432(12), 3079 — 3099 (2010)

26. Wang, T.L., Gragg, W.B.: Convergence of the unitary QR algorithm with unimodular Wilkinson shift. Math-
ematics of Computation 72(241), 375-385 (2003)

27. Wax, M., Shan, T.J., Kailath, T.: Spatio-temporal spectral analysis by eigenstructure methods. IEEE Trans-
actions on Acoustics, Speech and Signal Processing 32(4), 817-827 (1984)

Computing the SVD of normal matrices relying on intermediate complex symmetric matrices 11

28. Xu, W., Qiao, S.: A divide-and-conquer method for the Takagi factorization. SIAM Journal on Matrix
Analysis and Applications 30(1), 142-153 (2008)

29. Xu, W, Qiao, S.: A fast symmetric svd algorithm for square hankel matrices. Linear Algebra and its Applica-
tions 428(2-3), 550 — 563 (2008). Special Issue devoted to the Second International Conference on Structured
Matrices, Second International Conference on Structured Matrices

30. Xu, W., Qiao, S.: A twisted factorization method for symmetric SVD of a complex symmetric tridiagonal
matrix. Numerical Linear Algebra with Applications 16(10), 801-815 (2009)

	Introduction
	Tridiagonal matrices unitarily equivalent to normal matrices
	Computing the SSVD of complex symmetric tridiagonal matrices
	Numerical experiments
	Conclusions

