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Abstract

Inland waterways form a natural network infrastructure with capacity
for more traffic. Transportation by ship is widely promoted as it is a reliable,
efficient and environmental friendly way of transport. Nevertheless, locks
managing the water level on waterways and within harbours sometimes
constitute bottlenecks for transportation over water. The lockmaster’s
problem concerns the optimal strategy for operating such a lock. In the
lockmaster’s problem we are given a lock, a set of upstream-bound ships
and another set of ships travelling in the opposite direction. We are given
the arrival times of the ships and a constant lockage time; the goal is
to minimize total waiting time of the ships. In this paper, a dynamic
programming algorithm is proposed that solves the lockmaster’s problem in
polynomial time. This algorithm can also be used to solve a single batching
machine scheduling problem more efficiently than the current algorithms
from the literature do. We extend the algorithm so that it can be applied
in realistic settings, taking into account capacity, ship-dependent handling
times, weights and water usage. In addition, we compare the performance
of this new exact algorithm with the performance of some (straightforward)
heuristics in a computational study.
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1 Introduction

Transportation of goods by ship, over sea as well as over waterways, is a promising
alternative for transport over land. Reasons are its reliability, its efficiency (a
barge of 3000 tons can transport as much as 100 train wagons or 150 trucks),
its relatively low operating cost and its environmental friendliness. Hence, the
relative importance of this mode of transport is rising. Maritime transport
for intercontinental trade receives increasing attention due to the high cargo
volumes that can be shipped at a much lower energy cost compared to air cargo
traffic. Inland waterways transport is therefore seen as a mode of transport that
can make a significant contribution to sustainable mobility. For instance, in a
recent report, the European Commission (2015) promotes a better use of inland
waterways in order to relieve heavily congested transport corridors. Not only is
the energy consumption of transport over water approximately 17% of that of
road transport and 50% of rail transport, it also has a high degree of safety and
its noise and gas emissions are modest. This natural network is the only existing
infrastructure with excess capacity and where congestion is limited (Inland
Navigation Europe, 2014). In the US, total waterborne commerce has risen from
about 1,500 million tons of goods in 1970 up to 2,600 million tons in 2006; due
to the economic crisis it has lowered since then to a level of about 2,200 million
tons in 2009 (U.S. Army Corps of Engineers, 2009). In a report prepared for the
State of New York (Goodban Belt LLC, 2010), the potential of the New York
Canal System for container-on-barge logistics is extensively described and an
increased flow is expected after the Panama Canal expansion in 2015. The cargo
volume transiting the Panama Canal is expected to grow on average 3% per
year between 2005 and 2025, mainly due to an increase in container transport
(Panama Canal Authority, 2006). In China, 88 million tons of freight passed the
Three Gorges Dam in 2010; this is nearly 5 times the maximal annual volume
reported before 2003 (ChinaDaily, 2011).

Many of these waterways (the Panama Canal, the Three Gorges Dam, inland
waterways in Europe such as the Kiel canal (Luy, 2010), and many others) are
accessible through sea locks and are often interrupted by river locks. Locks are
needed to control the water level so that large and heavy ships can continue to
access the corresponding waterways. At several waterway networks, congestion
is expected to increase, yielding extra pressure on the locks. Examples are the
New York State Canal System (Goodban Belt LLC, 2010) and the North Sea
Canal region (van Haastert, 2003). Some locks are being expanded, such as
locks on the Twente Canal in the Netherlands (Rijkswaterstaat, 2010). Also,
new locks are being built, for example, the Deurganckdock lock at the harbor of
Antwerp (Antwerp Port Authority, 2011), which will become the world’s largest
lock by volume.

These locks are bottlenecks for transportation over water, and hence, operat-
ing locks wisely contributes to the attractiveness of transportation over water
and can help to avoid expensive infrastructural interventions. However, the
algorithmic problem of how to operate a lock has not been studied broadly in
the scientific literature. The purpose of this paper is to fill this gap. Our point
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of view here is to see the lock as an entity providing a service to the ships. Then,
it makes sense to identify a strategy for the lock that optimizes some criterion
related to service (as we do in this paper). Another point of view would be that
the lock announces times when ships can enter the lock in order to be transferred,
and that the ships simply need to respect these times. Clearly, even in the latter
model, there is still a decision to be made concerning these times.

1.1 Problem definition

We now give a formal description of a very basic situation that will act as our
core problem: the lockmaster’s problem. We first study this simplified problem;
the results obtained for this problem will serve as a basis for dealing with more
realistic settings later on. Consider a lock consisting of a single chamber. Ships
that are travelling downstream arrive at the lock at given times. Other ships
travelling upstream arrive at the lock, also at given times. Let A = 1, . . . , n
represent the set of all ships. Let t(a) be the given arrival time of ship a ∈ A,
and p(a) the arrival position of ship a ∈ A, with p(a) = 0 for a downstream
arrival, and p(a) = 1 for an upstream arrival. For convenience, we assume that
a total order 1 < 2 < . . . < n is imposed on A so that ships are ordered by
non-decreasing arrival time, i.e. t(i) ≤ t(i + 1) for i = 1, . . . , n − 1. Note that
multiple ships may have the same arrival time; the total order thus breaks these
‘ties’ arbitrarily. It is important to emphasize that we do not require ships to
enter the lock in the order imposed on A, except in the cases (see sections 5.1
and 5.3) where we explicitly state this as a requirement.

Let T denote the lockage duration: this is the time needed for the water level
to rise from the downstream level to the upstream level (or vice versa), plus the
time needed to load and unload the lock (which is assumed to be constant in
the basic problem). In other words, T measures the time that elapses between
opening the lock such that ships can enter, and closing the lock after ships have
left. Throughout the paper, we assume T > 0 as the problem becomes trivial
for T = 0. We further assume that all data are integral. Our goal is to find a
feasible lock-strategy that minimizes total waiting time of all ships. The waiting
time of a ship is the length of the period that elapses between the ship’s arrival
time and the moment in time when the ship enters the lock. Thus, we need to
determine at which moments in time the water level in the lock should start
to go up (meaning at which moments in time downstream ships enter the lock
and are lifted), and at which moments in time the water level in the lock should
start to go down. For such a strategy to be feasible, (i) going-up moments and
going-down moments should alternate, and (ii) consecutive moments should be
at least T time-units apart.

This particular problem (to which we refer as the lockmaster’s problem) is a
simplified version of reality. However, we see this problem as a basic problem
underlying any practical lock scheduling problem; and we show how to solve
this basic problem by dynamic programming (DP) in Section 3. Practical
problems obviously feature many properties that are absent in this basic problem.
In Section 5 we give an overview of many such features and investigate the
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complexity of these problem extensions.
The contributions of the present paper can be summarized as follows. We

show that (1) there exists an O(n2) algorithm (see Section 3) for the lockmaster’s
problem; (2) this algorithm can be extended to solve variants with capacities,
ship-dependent handling times, ship priorities, non-uniform lockage times, and
settings with a limited number of lockages (Section 5).

In addition, we investigate the performance of several heuristics by running
them on randomly generated instances that possess real-life characteristics
(Section 6).

2 Literature

2.1 Lock scheduling

Lock scheduling has not been studied very thoroughly in the academic literature,
although it has recently started to attract more attention. We mainly focus on
the literature that considers scheduling a single lock. A relatively early work by
Petersen & Taylor (1988) considers the Welland Canal in Canada. The authors
present a dynamic programming algorithm for scheduling a single lock with unit
capacity and extend this to obtain a heuristic result for the entire canal. A more
recent paper (Nauss, 2008) deals with optimal sequencing in the presence of
setup times and non-uniform processing times for the case where all arrival times
are equal to zero. Smith et al. (2009) simulate the impact of decision rules and
infrastructure improvements on traffic congestion along the Upper Mississippi
River. Ting & Schonfeld (2001) use heuristic methods to study several control
alternatives in order to improve lock service quality. Verstichel & Vanden Berghe
(2009) develop (meta)heuristics for a lock scheduling problem where a lock may
consist of multiple parallel, capacitated chambers of different dimensions and
lockage times, making this problem at least as hard as a bin packing problem.
The question of filling a lock with ships, i.e. the packing problem, is discussed
by Verstichel et al. (2014a). Verstichel et al. (2014b) propose a mixed integer
programming model to solve a generalized lock scheduling problem for instances
with a limited number of ships. Recent work by Hermans (2014) considers the
optimization problem of scheduling a single lock with a capacity that allows a
single ship. A polynomial time procedure asserts feasibility with respect to given
deadlines in O(n4 log n) time; it can further be used to minimize the maximum
lateness.

In a related problem, ships need to pass a narrow canal, and only a restricted
number of wider areas is available where ships can pass each other. Ships need
to wait in these areas and are arranged in convoys that transit in a one-way
direction, see e.g. (Griffiths, 1995; Panama Canal Authority, 2006; Luy, 2010;
Günther et al., 2011). For instances where all ships travel in the same direction,
total waiting time is equal to zero, which is not necessarily the case in the
lockmaster’s problem.
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2.2 Machine scheduling

Smith et al. (2011) relate traffic operations at a river lock with a variant of
the job shop scheduling problem with sequence dependent setup times and a
two-stage queuing process. The lockmaster’s problem is more general since ships
(i.e. jobs) have release dates and multiple ships can be locked together. The
relation between the lock scheduling problem and classical machine scheduling
is also observed in the literature. In fact, the lockmaster’s problem introduced
in this work is closely related to a batch scheduling problem. Batch scheduling
involves a machine that can process multiple jobs simultaneously. Suppose that
the basic lock scheduling problem only has downstream-bound ships (we will
refer to this special case of the lockmaster’s problem as the uni-directional case).
The lock can be seen as a batching machine and the jobs are the arriving ships
with release dates and equal processing times, and the flow time of a job is
the waiting time of a ship. Following the notation of Baptiste (2000) this is
problem 1|p−batch, b = n, ri, pi = p|

∑
wiFi. In words: the problem has a single

parallel batching machine with unrestricted capacity (b = n), release dates on
the jobs, and uniform processing times. The objective is to minimize the sum
of weighted flow times (

∑
wiFi), although we first discuss the problem where

only unit weights are considered. Baptiste (2000) shows that this problem is
polynomially solvable for a variety of objective functions. Cheng et al. (2005)
developed an O(n3) algorithm for 1|p − batch, b = n, ri, pi = p|f where f can
be any regular objective function. Condotta et al. (2010) show that feasibility
of the same problem with bounded capacity and deadlines can be checked in
O(n2), even for a setting with parallel batching machines. Ng et al. (2003)
study a single machine serial batching scheduling problem with release dates and
identical processing times. Machine setup only happens after arrival of the final
job in a batch and there is a fixed setup time equal to s. The completion time
of a batch is equal to the sum of the processing times of the jobs in the batch.
This problem is equivalent to the uni-directional lockmaster’s problem with
s = T and pi = p = 0, and can be solved in O(n5) by a dynamic programming
algorithm described in Ng et al. (2003). Clearly, the lockmaster’s problem is
more general. Indeed, in case of both upstream and downstream-bound ships,
we are dealing with two families of jobs, and only jobs of the same family can
be together in a batch. Further, in our case, processing a batch of one family
needs to be alternated by processing a (possibly empty) batch containing jobs of
the other family; i.e. it is not possible to process two batches of the same family
consecutively.

The concept of a “family” of jobs is also described by Webster & Baker
(1995), be it without a batch processing machine. They deal with a scheduling
problem in which setup times can be reduced by consecutively scheduling jobs
of the same family. This type of problem is also known as batch scheduling with
job compatibilities. Jobs within a batch need to be pairwise compatible, and
these compatibilities can be expressed using a compatibility graph. Boudhar
(2003) and Finke et al. (2008) study different variants of these batch scheduling
problems when the compatibility graph is bipartite or an interval graph. The
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compatibility graph of the lockmaster’s problem is the union of two cliques.
The lockmaster’s problem can be summarized as 1|p− batch, b = n, ri,Φ =

2, sfg, pi = 0|
∑
Fi, with sfg = 2T if f = g and sfg = T if f 6= g, where Φ

refers to the number of families and sfg to the setup times between batches.
For a review on scheduling a batching machine we refer the reader to Potts &
Kovalyov (2000) and Brucker et al. (1998). A related problem is studied by Lee
et al. (1992) who develop dynamic programming algorithms for scheduling a
batching machine with release dates, deadlines and constant processing times
when the goal is to minimize makespan or minimize the number of tardy jobs.
In conclusion, the complexity of the lockmaster’s problem does not follow from
results in literature.

3 A polynomial time algorithm for the lockmas-
ter’s problem

In this section, we construct a graph such that the shortest path in the graph
corresponds to a solution for the lockmaster’s problem. We show that the
corresponding shortest path algorithm runs in O(n3) time. In addition, we
propose a more sophisticated implementation in Section 4, which results in an
O(n2) algorithm.

3.1 Definitions and terminology

For clearness of presentation, let us describe some terminology. We define a lock
movement as the act of bringing the water level down from its high point to
its low point, or vice versa, plus loading and unloading the lock. Such a lock
movement takes T time units, with T > 0; thus, when a lock movement starts
at time t, it finishes at t + T . A pair of lock movements is called consecutive
when the starting time of the second lock movement equals the starting time of
the first lock movement plus T . Clearly, after two consecutive lock movements
starting at time t, the lock is back at the same position at time t + 2T as it
was at time t. A set of ` lock movements is called consecutive when the pairs
(i, i+ 1) are consecutive, i = 1, . . . , `− 1. Clearly, when a set of ` consecutive
lock movements start at time t, it finishes at t+ `T . Recall that each a ∈ A has
an associated arrival time t(a) ∈ N and an arrival position p(a) ∈ {0, 1} (1 for
upstream and 0 for downstream).

Definition 1. For each pair a, b ∈ A with p(a) = p(b), and t(a) + 2T < t(b), we
define a block B = (a, b) as the set of `(B) consecutive movements that starts at
t(a) and ends at t(a) + `(B)T , where `(B) is the largest even integer such that
t(a) + `(B)T < t(b).

For each pair a, b ∈ A with p(a) 6= p(b), and t(a) + T < t(b), we define
a block B = (a, b) as the set of `(B) consecutive movements that starts at
t(a) and ends at t(a) + `(B)T , where `(B) is the largest odd integer such that
t(a) + `(B)T < t(b).
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Figure 1: Lockmaster’s problem: concepts

A geometric visualization of an instance and a corresponding solution is given
in Figure 1, where upstream arrivals appear on the upper horizontal line and
downstream arrivals on the lower horizontal line, and the schedule is represented
by the lock movements between both lines.

We see a solution to the lockmaster’s problem as a set of lock movements,
each lock movement starting at some given time. Such a solution will be called
a schedule. However, some schedules are more interesting than others. We first
identify schedules that possess a certain structure.

Definition 2. A schedule is called a block-schedule if it consists of a sequence
of blocks B1, . . . , Bs where Bq = (aq, bq), q = 1, . . . , s, and bq = aq+1 for each
q = 1, . . . , s− 1; and with a final set of consecutive lock movements starting at
t(bs), and ending not later than t(n) + 3T .

Notice that the distinguishing feature of a block-schedule is that each move-
ment starts at an arrival time or it directly follows the previous movement. Now,
we are ready to state the following characteristic.

Lemma 1. There is an optimal lock schedule that is a block-schedule.

Proof. We first observe that the following properties characterize block-schedules:

Property 1. Each lock movement either directly follows upon a previous lock
movement, or starts upon some t(a) while containing ship a.

Property 2. The length of a period in which there is no lock movement (a
so-called empty period) is at most 2T .

Property 3. The final lock movement does not end later than t(n) + 3T .

It is easily verified that any schedule satisfying Properties 1-3 is a block-
schedule, and any block-schedule satisfies these properties.

We now prove Lemma 1 by showing that any schedule not satisfying the above
properties can be transformed into a schedule satisfying them without increasing
the objective value. Consider some schedule for the lockmaster’s problem not
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satisfying Property 1. Let t denote the earliest time where a lock movement
starts, such that t is neither the ending time of a previous lock movement, nor
the arrival time t(a) of some ship a ∈ A contained in this lock movement. Since
at t− ε, with ε > 0 and small, the lock is waiting to go up, and since no ships
contained in the lock movement arrive between t− ε and t, we could have started
this lock movement at t − ε without increasing the objective function value.
Thus, we start the lock movement earlier in time, at either (1) the latest arrival
time of a ship contained in the lock movement, or (2) the ending time of the
preceding lock movement.

Next, consider a solution where no lock movement occurs during a period
S > 2T . At the beginning of this period, two additional movements can be
scheduled, reducing S by 2T time units. By repeating this step we end up only
with empty periods shorter than 2T (Property 2).

Further, assume a solution exists with a final lock movement that does not
end before t(n) + 3T . Then, the last movement contains no ships and, hence,
can be dropped. By repeating, we obtain a solution which ends not later than
t(n) + 3T (Property 3).

We conclude that any schedule can be transformed in a block-schedule without
deteriorating the objective value. This completes the proof.

Furthermore, since all ships are identical, ships can be interchanged in any
solution to the lockmaster’s problem, such that the following property holds:

Property 4. [FCFS] For each pair of ships a, b ∈ A with p(a) = p(b): if a < b,
then ship a will leave the lock not later than ship b.

Now, we describe an algorithm solving the lockmaster’s problem in polynomial
time. The basic idea is to build a directed acyclic graph G = (V,E) with a
given cost ce for each e ∈ E. The arcs in the graph represent the blocks of a
schedule, the situation before the first block or the final set of movements. After
describing this graph, we argue that a path in this graph with a certain cost,
corresponds to a block-schedule with a total waiting time equal to this cost, and
vice versa. Thus, a shortest path corresponds to a solution to the lockmaster’s
problem.

3.2 Constructing the graph

There is a node s, a node t, and for each a ∈ A, there is a set of n+ 2 nodes that
we denote by a layer of nodes L(a). One node from this layer is called the top
node, indicated by atop. All other nodes of the layer are indexed by k = 0, . . . , n,
and are denoted by ak. Hence V has O(n2) nodes in total.

There are five types of arcs, namely arcs leaving s, arcs entering t, so-called
block1 arcs, block2 arcs, and 0-cost arcs; we now describe these arcs and the
corresponding costs. See Figure 3 for a graphical representation, corresponding
to the instance shown in Figure 2, assuming T = 30.

There is an arc from s to a single node from each layer L(a), a ∈ A, say
node ak, with k ∈ {0, . . . , n}. The value of k is determined by the number of
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Figure 2: Lockmaster’s problem: example instance
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Figure 3: Lockmaster’s problem: the graph
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Figure 4: Waiting times covered by block (a, b) of length at least 2

ships arriving in (−∞, t(a) + T ] at position 1 − p(a). This arc represents the
situation where the first block of a schedule starts at time t(a) and position p(a).
Accordingly, the cost of this arc equals the waiting time accumulated at time
t(a) of all ships arriving in (−∞, t(a)] at position p(a), plus the waiting time
accumulated at time t(a) + T of all ships arriving in (−∞, t(a) + T ] at position
1− p(a).

There is an arc from a top node atop from each layer a ∈ A to node t. The
cost of this arc equals the waiting time of all ships arriving in [t(a), t(n)] at
position p(a), and in [t(a) + T, t(n)] at position 1− p(a), in a solution where at
time t(a) a set of consecutive movements starts, serving all these ships.

We now describe the block2 arcs. For each block B = (a, b) ∈ A × A
with `(B) ≥ 2, there is an arc from node atop to node bl ∈ L(b), where l
equals the number of ships that arrive at position 1 − p(b) in the interval
(t(a) + (`(B)− 1)T, t(b) + T ]. The cost of such an arc equals the waiting time
accumulated in block B at time t(b)+T , of, in case p(a) = p(b), all ships arriving
in (t(a), t(b)] at position p(a), and in (t(a) + T, t(b) + T ] at position 1 − p(a);
in case p(a) 6= p(b), all ships arriving in (t(a), t(b) + T ] at position p(a), and in
(t(a)+T, t(b)] at position 1−p(a). These are the block2 arcs. Figure 4 illustrates
a block (a, b) of length at least 2. It can be seen easily that all ships arriving in
p = 1 in (t(a) + T, t(a) + 3T ] are moved at time t(a) + 3T . Similarly, all ships
arriving in p = 1 in (t(a) + (`(a, b)− 2)T, t(b)] are moved at time t(b). Finally,
notice that ships arriving in p = 0 in (t(a) + (`(a, b)− 1)T, t(b) + T ] are moved
at time t(b) + T .

We now describe the block1 arcs. For each block B = (a, b) ∈ A × A with
`(B) = 1, there is an arc from each node ak (k = 0, . . . , n) to some node bl from
layer L(b) where l equals the number of ships that arrive at position 1 − p(b)
in the interval (t(a), t(b) + T ]. The cost of such an arc consists of two parts,
first, the waiting time accumulated at time t(b) + T of all ships arriving in
(t(a), t(b)+T ] at position p(a), and in (t(a)+T, t(b)] at position p(b); and second,
k× (t(b)− t(a)−T ). Figure 5 illustrates a block (a, b) of length 1. Ships arriving
in the time interval represented by the dashed section at p = 0, are transported
by a movement starting at time t(b). Since t(b) > t(a) + T , we need to take
this additional waiting time into account, which is achieved by the second term
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Figure 5: Waiting times covered by block (a, b) of length 1

described above. Note that, by construction of the block2 arcs, the index k of
ak corresponds precisely to the number of these waiting ships for block2 arcs
ending at ak.

Finally, within each layer L(a), a ∈ A, there is an arc with cost 0 that goes
from each node ak, k = 0, . . . , n, to node atop; these are the 0-cost arcs. This
completes the description of graph G. We now prove a lemma that establishes
the correspondence between block-schedules and paths in G.

Lemma 2. An s, t path in G corresponds to a block schedule and vice versa.

Proof. Consider some path from s to t in G. Clearly, the path will visit some
nodes of some layers. More precisely, the path can only visit a node in some
layer by entering a node ak in L(a) for some k ∈ {0, . . . , n}. The cost defined
above, of any arc entering node ak assumes that the lock will move at t(a). Next,
there are two ways of leaving node ak: either, the path proceeds with a 0-cost
arc to the top node, or it proceeds with a block1 arc. Proceeding with a 0-cost
arc means that the lock will move at t(a) + T , since all arcs leaving the top
nodes correspond to blocks of length at least 2. Proceeding with a block1 arc
to some node b` means that there is no lock movement starting at t(a) + T . In
this situation, by construction, k ships are waiting at position 1− p(a) at time
t(a) + T . The waiting time of these ships after t(a) + T is included in the cost
of the block1 arc leaving node ak. Hence, the cost on the arc entering node
ak is defined appropriately. Finally, note that the arcs leaving s represent the
waiting time before the first block and the arcs entering t represent the final
set of consecutive movements. It follows that the cost of each path from s to t
corresponds to the total waiting time of a block schedule. The reverse is easy to
see: any block schedule can be mimicked by choosing the appropriate arcs.

Theorem 1. The lockmaster’s problem can be solved in O(n3) by a straightfor-
ward implementation of a shortest path algorithm on the acyclic graph G.

Proof. The previous Lemma, combined with Lemma 1 and the observation that
the graph G is acyclic, and contains O(n3) arcs, imply this result.
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Notice that the problem definition does not impose a starting position for
the lock. In case the starting position of the lock is pre-specified, it is easy to
modify the algorithm to deal with this feature.

4 A faster algorithm for the lockmaster’s prob-
lem

We describe here a more efficient implementation that uses the structure in the
graph G to solve the lockmaster’s problem. The resulting complexity is O(n2).
The method used to obtain this speed-up shows similarities to the approaches
proposed by Wagelmans et al. (1992), Federgruen & Tzur (1991), and Aggarwal
& Park (1993), where an improvement procedure is described to solve the well-
known lot sizing problem. We use a specific forward labelling algorithm, where
we label the nodes layer by layer, and within a layer, we start with a0, then a1,
up to an, and finally atop.

Define sp(ak) as the shortest path length from s to node ak, with k = 0, . . . , n.
Further, define spak(bi) as the shortest path length to node bi, with i = 0, . . . , n;
b = a+ 1, . . . , n, when the node visited just before bi is ak. Note that the arc
(ak, bi) is a block1 arc in G, which is defined only when t(a) + T < t(b) and
p(a) 6= p(b).

There are O(n2) arcs leaving nodes from layer L(a), O(n) block2 arcs and
O(n2) block1 arcs. A shortest path to some node bi has as last arc either a block1
arc, or some arc that is not a block1 arc. It follows that, for each bi ∈ L(b),

sp(bi) = min

 min
a<b

k=0,...,n

{spak(bi)} , min
a<b
{spatop(bi)} , sps(bi)

 .

In the following, we argue that once sp(ak) is determined for arbitrary a and
each k = 0, . . . , n, all spak(bi), i.e. shortest paths determined by block1 arcs
leaving L(a), can be obtained in O(n) time.

For a given bi, it holds that spak(bi) = sp(ak) + c(ak, bi), whereby c(ak, bi) =
w(a, b) +k(t(b)− t(a)−T ) is the length of the block1 arc (ak, bi) in G. The term
w(a, b) represents the waiting time accumulated at time t(b) + T of all ships
arriving in (t(a), t(b) + T ] at position 1− p(b) and the waiting time of all ships
arriving in (t(a) + T, t(b)] at position p(b); this is a constant over all ak, bi for
which a block1 arc (ak, bi) exists. Note that for each ak, there is at most one bi
from layer L(b) for which an arc (ak, bi) exists. We argue that finding all spak(bi)
for k = 0, . . . , n and for b = a+ 1, . . . , n (i is fixed, given ak and b), corresponds
to finding the minimum value of at most n linear functions (∀k = 1, . . . , n) for
no more than n inputs (∀b = a+ 1, . . . , n).

Lemma 3. Given m linear functions fi(x) = αi ·x+βi with αi, βi ∈ R for each
i = 1, . . . ,m, αi ≤ αi+1 for each i = 1, . . . ,m− 1, and an ordered finite set Q.
Then the indices arg min{fi(q) | i = 1, . . . ,m} for each q ∈ Q can be found in
O(m+ |Q|).
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Figure 6: Lower envelope

Proof. It is clear that we may assume w.l.o.g. that no two of the given functions
are identical. We start by eliminating dominated functions. We say that fi is
dominated by fj , j < i, if βj ≤ βi because then fj(q) ≤ fi(q) for each q ≥ 0.
Henceforth, we assume that βi > βi+1 for each i = 1, . . . ,m− 1 in the following.

Next, we find the lower envelope of the functions f1, . . . , fm. We refer to
Sack & Urrutia (2000) for an overview of methods devoted to computing the
lower envelope of a set of functions. We maintain a list L of active functions
which potentially contribute to the lower envelope. Note that functions may be
dropped from this list later on. Initially, this list contains fm and fm−1. We
consider the functions fm−2, fm−3, . . . , f1 in this order. Let fi be the function
to be considered, and fv and fu the last and next-to-last function contained in
L, respectively. We determine the q-coordinate qi,v ≡ βi−βv

αv−αi
of the intersection

of fi and fv and the q-coordinate qi,u ≡ βi−βu

αu−αi
of the intersection of fi and fu.

If qi,u ≥ qi,v, then we remove fv from L since fv(q) ≥ min{fi(q), fu(q)} for each
q ≥ 0, and we repeat this step with L := L \ {fv} until qi,u < qi,v. We then
add fi to L, i.e. let L := L ∪ {fi}, and consider the next function. Note that at
the end of each iteration, L must contain at least two functions since fm is not
dominated due to assumption.

Finally, by scanning through the sorted set of intersections of linear functions
and through values in Q, we find arg min{fi(x) | i = 1, . . . ,m} for each q ∈ Q.
For a graphical representation of the lower envelope, see Figure 6.

It remains to show that this procedure runs in linear time. Eliminating
dominated functions takes O(m). During the construction of L, each function
is added at most once and each function is deleted at most once. The decision
whether to add the next function at the end of L or remove the currently last
function from L can be taken in constant time. Thus, constructing L takes O(m)
and, consequently, finding arg min{fi(q) | i = 1, . . . ,m} for each q ∈ Q takes
O(m+ |Q|).

We now use Lemma 3 and consider all block1 arcs leaving L(a), for a given
a ∈ A. Consider the linear functions spak(bl) = sp(ak) + w(a, b) + k(t(b) −
t(a) − T ), for k = 0, . . . , n and for b = a + 1, . . . , n. As mentioned before,
w(a, b) is a constant for any given a and b. We thus exclude it from the linear
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construct graph G as described above
sp(ak)←∞ for all a ∈ A and 0 ≤ k ≤ n
for a ∈ A do

consider block (s, a) and update sp(ak) for k corresponding to (s, a)
end for
for a = 1, . . . , n do

set sp(atop) = min {sp(ak) | 0 ≤ k ≤ n}
determine the lower envelope for all block1 arcs (ak, bi)

with k = 0, . . . , n and b = a+ 1, . . . , n (i follows from ak and b)
for b = a+ 1, . . . , n do

if l(a, b) == 1 then
update spak(bi) using the lower envelope

else
update spak(bi) using sp(atop)

end if
end for

end for

Algorithm 1: O(n2) algorithm for finding the shortest path in G

functions to be considered for the lemma, and add this constant later. Let
Q = {t(b)− t(a)− T | b = a+ 1, . . . , n} and fk(q) = sp(ak) + q · k for each
0 ≤ k ≤ n. Thus, referring to Lemma 3, αk = k, βk = sp(ak), and q ∈ Q. In
Lemma 3 it is assumed that the αi and the set Q are ordered, which is obviously
the case. Now, arg min{spak(bi) | 0 ≤ k ≤ n} for each bi determines the shortest
path to bi having a block (ak, bi) of length one as last part. Note that its length
is min{fk(q) | 0 ≤ k ≤ n}+ w(a, b). Hence, we can update all sp(bi) taking into
account all block1 arcs leaving layer L(a) in O(n) time.

Applying this procedure to all layers L(a), with a ∈ A, all shortest paths
with correct cost values are obtained in O(n2). The overall procedure to find the
shortest path in O(n2) is shown in Algorithm 1. We can summarize the above
in the following theorem.

Theorem 2. The lockmaster’s problem is solvable in O(n2).

5 Extensions

It can be argued that the basic problem defined in Section 1, due to different
assumptions regarding the input, ignores a number of issues regarding practical
lock operation. We now proceed by showing how the procedure described in
Section 3 can be extended towards a closer approximation of reality.

5.1 Capacity

Section 3 did not take any capacity restrictions into account. We now discuss
two different settings with capacity restrictions. In one setting, the lock can
accommodate at most a given number of ships; in another setting each ship has a
size, the total size of ships within a lock should then not exceed the given lock’s
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size. A fundamental difference with the basic lockmaster’s problem is that ships
may be “left behind”. Thus, ships that lay waiting may not all be transferred in
the same lock movement.

When the number of ships that may be contained within the lock at any
given time is bounded by a constant, a similar procedure to Section 3 may be
used.

Theorem 3. The lockmaster’s problem with a bound on the number of ships in
the lock is solvable in O(n4).

Proof. Suppose that the lock can accommodate at most c ships at once. We
can reformulate Property 3 as follows: the final lock movement does not end
later than (1 + dnc e)2T . For this generalization, Lemma 1 remains true. Indeed,
Properties 1 and 2 remain trivially true; moreover, the ships being identical
(except for their arrival time) implies that there exists an optimal schedule that
satisfies Property 4.

Definition 3.

• For each a ∈ A, let Ua = {b ∈ A | p(b) = 1, b < a, t(b) ≤ t(a) − |p(b) −
p(a)|T}.

• For each a ∈ A, let Da = {b ∈ A | p(b) = 0, b < a, t(b) ≤ t(a) − |p(b) −
p(a)|T}.

Thus, the set Ua (Da) contains all ships b for which b < a, that arrive upstream
(downstream), not later than t(a) if ship a arrives upstream (downstream), and
not later than t(a)− T if ship a arrives downstream (upstream).

We now design the following directed graph G = (V,E) in order to represent
the problem. In contrast to the graph used for the lockmaster’s problem, here,
each arc directly corresponds to a set of ships transferred, and there is no
need to distinguish block1 and block2 arcs. We have V = {s, t} ∪ V A with
V A = {(a, u, d) | a ∈ A, u ∈ Ua, d ∈ Da}. A node (a, u, d) corresponds to a
block starting at t(a) and position p(a) while u and d represent the latest (with
respect to the ordering in A) served downstream- and upstream-bound ship,
respectively. It is easily seen that whenever a ship a does not enter a lockage
starting not earlier than t(a) from position p(a) while sufficient lock capacity
is available to serve this ship, the solution is suboptimal. In combination with
Property 4 it follows that, within each block, each ship is served by the next
appropriate lockage with sufficient capacity, and it is thus known when each ship
is handled. We thus know which ships u′ and d′ become the latest ships served
upstream and downstream, respectively. We record this observation by writing
u′ = fup((a, b), u) and d′ = fdown((a, b), d) for each block (a, b), u ∈ Ua, d ∈ Da.

Definition 4. We say that two nodes (a, u, d) and (b, u′, d′) are compatible if
(a, b) is a block and if u′ = fup((a, b), u) and d′ = fdown((a, b), d).

The set of edges in our graph is given as E = Es ∪ EB ∪ Et, with

• Es =
{

(s, v) | v = (a, ∅, ∅) ∈ V A
}

,
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• EB = {(v, v′) | v and v′ are compatible}, and

• Et =
{

(v, t) | v = (a, u, d) ∈ V A
}

.

The cost c(v, v′) of the edges in EB, with v = (a, u, d) and v′ = (b, u′, d′),
equals the sum of waiting times of all ships k with u < k ≤ u′ arriving at p = 1
and the sum of waiting times of all ships ` with d < ` ≤ d′ arriving at p = 0,
such that these ships are handled while respecting the lock capacity.

The costs c(s, v) on edges leaving the origin are equal to 0, since no ship has
been transferred yet. The costs c(v, t), with v = (a, u, d), represent the waiting
times of ships k with u < k arriving at p = 0 and the waiting times of ships `
with d < ` arriving at p = 1. These ships are served by the final sequence of lock
movements.

Then, a path from s to t represents a feasible lock schedule and the shortest
path represents the lock schedule having minimum total waiting time of ships.
G is acyclic and contains O(n3) nodes, each node being source of at most O(n)
arcs. Furthermore, we can determine u′, d′, and total waiting of ships according
to all arcs emerging from v ∈ {s} ∪ V A in O(n) time. The total time complexity
for this algorithm is thus O(n4).

A more general setting assigns to each ship and lock an arbitrary size. When
each ship and lock has an associated length and width, the problem is easily seen
to be NP-hard by reduction from rectangle packing, as mentioned by Hermans
(2014). We extend this result to instances where the size of the lock is represented
by a scalar value. Thus, at any given time, the sum of size values of the ships in
the lock must not exceed the size of the lock.

Theorem 4. The lockmaster’s problem with a (scalar) bound on the size of the
lock is NP-hard.

Proof. We provide a proof by reduction from 3-PARTITION. In an instance of
3-PARTITION, we are given an integer B and a set A consisting of integers ai
(i = 1, . . . , 3n) subject to B

4 < ai <
B
2 for each i. The question is whether A can

be partitioned into n triples such that the sum of integers in each triple equals B.
This problem is known to be NP-complete. We now construct an instance of the
lockmaster’s problem where the size of a ship is encoded by the number of the
3-PARTITION instance, all ships arrive at t = 0 in position p = 1, and the lock’s
size encodes the value B to be met by each triple. Clearly, if the instance of
3-PARTITION has a solution, then there exists a lock schedule where n lockages
each serve exactly 3 ships. Each of these lockages is followed by an empty lock
movement that returns the lock to position p = 1, resulting in a solution with a
total waiting time of 3n(n− 1)T . On the other hand, any solution with a total
waiting time of 3n(n − 1)T such that at most 3 ships can be handled in each
subsequent 2T interval, will transfer all ships in the first n lockages starting
from position p = 1. Consequently, there must exist n subsets of ships so that
each subset fills the lock completely, and thus a solution exists to the instance of
3-PARTITION.
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We may, however, impose the requirement that all ships travelling in the same
direction must be handled in a predetermined order. More specifically, we will
require that ships travelling in the same direction are handled according to the
total order on A. We will say that solutions satisfying this requirement adhere
to a first-come first-served (FCFS) policy. The FCFS policy is currently applied
as the standard handling policy for ships at many locks, see e.g. Smith et al.
(2009); Ting & Schonfeld (2001); van Haastert (2003). When this requirement is
enforced, an efficient procedure exists for finding an optimal solution.

Theorem 5. Under a FCFS policy, the lockmaster’s problem with a bound on
the size of the lock is solvable in O(n4).

Proof. In a preprocessing step, the subsets of consecutive ships that fit together
in the lock, are determined. Here, it is possible to include all kinds of filling and
entering rules that can be important in practice, see e.g. Verstichel & Vanden
Berghe (2009). This step can be executed in O(n2) time. We use the same graph
as defined for the setting with bounded capacity, described above. Note that
when determining u′, d′, and total waiting time of ships according to arcs, we can
only fill the lock with ships that fit together in the lock, which we determined
initially. Still, we can treat all arcs emerging from a node in O(n) time.

Notice that although in the instance constructed in the proof of Theorem
4 all ships arrive at the same time, it is not true that every sequence of ships
respects FCFS; only the sequence that is compatible with the given order on
A adheres to the FCFS policy. This explains why Theorems 4 and 5 are not
contradictory.

5.2 Ship priorities

In this subsection we are interested in minimizing the weighted sum of waiting
times; this allows us to take into account ship priorities. This is often relevant,
for instance, in locks operating in ports. It is indeed quite common to distinguish
between sea ships (having limited manoeuvrability) and inland ships. In addition,
ships transporting dangerous goods receive priority over regular cargo ships (Du
& Yu, 2003), which in turn may have priority over leisure ships, see e.g. (Smith
et al., 2009; Verstichel & Vanden Berghe, 2009). All this can be dealt with by
assigning a weight wa to each ship a ∈ A, revealing their priority.

It is not hard to see that we can generalize the construction of the graph G,
and in particular the arc-costs, to this setting by multiplying the waiting time of
ship a by its weight wa. We state without proof:

Theorem 6. The lockmaster’s problem with objective to minimize total weighted
waiting time is solvable in O(n3).

Notice that when the ships are weighted and the capacity of the lock is
limited, the algorithm described in Section 5.1 might fail to find an optimal
solution. Earlier, specifying a block would implicitly specify the set of ships that
are transferred in this block. This, however, need then no longer be the case;
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although the optimal solution can still be seen as consisting of blocks, it is not
clear which particular ships are transferred during which movements in a block.
When considering the uni-directional case, Baptiste’s algorithm (Baptiste, 2000)
(see Section 2) yields a polynomial time procedure.

5.3 Handling times

In practice, placing a ship into a lock takes a certain amount of time, such that the
total time a ship spends in the lock may depend on the other ships present. The
required handling time per ship may be constant, which is approximately the case
for inland ships. For sea ships, on the other hand, the handling time depends on
the size and manoeuvrability of the ship. In Smith et al. (2011), a lock scheduling
problem is described where handling times are not only ship-dependent, but
also sequence dependent. In this section, we consider the extension where each
ship a ∈ A requires a certain, integral, handling time ha. We model this by
modifying the lockage time so that it is no longer constant, but depends on the
ships that are present in the lock movement: Tj = T +

∑
a∈Aj

ha, where Aj
refers to the set of ships transferred in the j-th lock movement, and Tj denotes
the corresponding lockage duration, j = 1, 2, . . ..

Observe that, due to possibly distinct ha values, it may be optimal to let
a ship with a relatively large handling time wait while handling subsequent
arrivals first. Thus optimal solutions may involve the overtaking of ships, and
hence violate Property 4. We show that the lockmaster’s problem with ship
dependent handling times is NP-hard. However, as mentioned earlier, the FCFS
policy is a reasonable additional requirement when dealing with lock scheduling
problems. Also notice that, even when solutions must satisfy FCFS, it might be
beneficial to let a ship with a relatively large handling time wait, so that the lock
is able to move quickly to the other side and transfer ships that have arrived
there. Nevertheless, we show that for this case a polynomial time dynamic
programming approach exists. Note that this also applies to the setting where
all handling times are equal, i.e. the case where h = ha for all a ∈ A.

It may also be worth noting that by introducing these ship-dependent handling
times, an alternative definition for waiting time arises. Recall that the waiting
time for a ship a ∈ A was defined in Section 1 as the difference between the
starting time of the lockage containing a, and the arrival time of a. However,
when handling times are present, we may define the waiting time for a ship to
be the difference between the actual and the earliest possible time where that
ship could leave the lock, i.e. for ship a ∈ A this waiting time corresponds to the
ending time of the lockage containing ship a, reduced by the arrival time t(a),
the fixed part T of the lockage time, and the handling time ha. Note that, with
this definition of waiting time, even if ship a enters the lock at time t(a), it may
still incur a positive waiting time due to the presence of other ships in the same
lockage. When all handling times are equal to zero, both definitions result in
the same value for each ship. In the remainder of this section, we will continue
to use our original definition of waiting time.

We first show that the general setting for the lockmaster’s problem with

18



handling times is NP-hard.

Theorem 7. The lockmaster’s problem with ship-dependent handling times is
NP-hard.

Proof. We provide a reduction from 3-PARTITION (see the proof of Theorem 4
for the definition). For any given instance of 3-PARTITION, we construct a
corresponding instance of the lockmaster’s problem with ship-dependent handling
times. We argue that solving the latter instance to optimality allows to decide
the question of the 3-PARTITION instance.

The lockmaster’s instance is constructed as follows: Let T = 1, although
it can be seen that an instance can be constructed for arbitrarily chosen T .
At time t = 0, a set of 3n ships arrives on the downstream side, with for
each ship a handling time hi = ai (i = 1, . . . , 3n). At each of the times
t = B + T, t = 2B + 3T , . . . , t = n(B + 2T ) − T , a set of 3(B + 2T )n2

ships arrives on the upstream side. Each of these ships has zero handling
time, i.e. hj = 0 for j = 3n + 1, . . . , 3n + 3(B + 2T )n3. The question is the
following: “does there exist a solution with total waiting time not greater than
Q ≡ 3(B + 2T )n(n− 1)/2?” This completes the description of the instance of
the lockmaster’s problem with handling times. Figure 7 provides a graphical
illustration of this instance.
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X
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X
X
X

X
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hi = 0

X
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B+T T B+T T B+T T

Figure 7: Illustration of the instance for the proof of Theorem 7

We now argue that the existence of a solution to the lockmaster’s instance with
total waiting time not greater than Q implies a ‘yes’ answer to the 3-PARTITION
question. Observe that since all data are integral, we can assume that the lock
moves only at integral moments in time. Then from Q < 3(B + 2T )n2 it follows
that any solution with value no greater than Q must handle all upstream ships at
their arrival time. Hence, for all such solutions, the lock moves from the upstream
to the downstream side at times t = B + T, t = 2B + 3T, . . . , t = n(B + 2T )− T .
The lock thus has n intervals of size B+T at the downstream side to handle the
ships that arrive at t = 0. Because the duration T cannot be avoided regardless
of the number of ships in the lock, it follows that the sum of handling times
of all ships in each upward lockage can be at most equal to B. Since B

4 < ai,
it is impossible to handle four ships in such an interval. As a result, the only
way to achieve a total waiting time not greater than

∑n
i=1 3(n− i)(B + 2T ), is
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to handle three ships in each of the n intervals with length B + T . Note that∑n
i=1 3(n− i)(B+ 2T ) = 3(B+ 2T )(n− 1)n/2 = Q. This, however, implies that

the sum of handling times in each upwards lockage is exactly equal to B, and
thus a corresponding solution to the initial 3-PARTITION instance exists. Thus,
we can verify whether an instance of 3-PARTITION is a ‘yes’-instance by solving
the corresponding lockmaster’s instance with ship-dependent handling times and
checking whether the total waiting time is no more than Q. Conversely, it is
obvious that if a partition exists where all triples sum up to B, there is also a
lock schedule with total waiting time equal to Q. Thus, if the optimal solution
value to the lockmaster’s instance is strictly greater than Q, this identifies the
given instance as a ‘no’-instance.

Note that when the waiting time for a ship is defined according to the
alternative definition described in Section 5.3, we can easily modify the proof so
that the theorem remains valid. Indeed, we may choose T >

∑3n
i=1 hi, increase

the number of ships arriving on the upstream side at t = B+T, t = 2B+3T , . . . ,

t = n(B+2T )−T by 2
∑n
i=1 hi, and let Q ≡ 3(B+2T )n(n−1)/2+2

(∑3n
i=1 hi

)
.

Observe that because 3-PARTITION is NP-complete in the strong sense, we
may assume that the values ai are bounded by a polynomial in n; the size of the
corresponding lockmaster’s instance thus also remains polynomial in n. Because
the value for T was chosen to be sufficiently large, any solution where an upwards
lockage contains two or less ships necessarily has an objective value larger than Q.
Each lockage starting in position p = 0 in a solution with value not greater than
Q must thus contain exactly 3 ships. It then follows that, in all such solutions,

a waiting time of 2
(∑3n

i=1 hi

)
is incurred due to ships being simultaneously

present within the lock. The remaining argumentation for the proof remains
unchanged since the redefinition of Q reflects this increase in waiting time.

Similar to the setting with capacity and arbitrary ship sizes (Section 5.1),
which is also NP-hard in general, we observe that a polynomial time procedure
exists when restricting the solutions to those which adhere to the FCFS policy.

Theorem 8. The lockmaster’s problem with arbitrary handling times under a
FCFS policy can be solved in O(n10) time.

Proof. Observe that the arguments used to establish Lemma 1 in Section 3 also
apply to the case of arbitrary handling times. Hence properties 1 and 2 remain
valid in this setting.

We now construct a graph G = (V ∪ {s, t}, E) as follows. For each ship
a ∈ A, and for each possible number of ships waiting upstream at time t(a)
(referred to as wu), and for each possible number of ships waiting downstream at
time t(a) (referred to as wd), we create a node (also called state) v = (a,wu, wd)
in V . Notice that a is not included in either wu or wd. To define the edges of
G, we consider each pair of states (v, v′) with t(a′) > t(a) + T if p(a) 6= p(a′)
or with t(a′) > t(a) + 2T if p(a) = p(a′). It is important to realize that, when
given two states v and v′, it is exactly known which ships are transferred when
moving from state v to state v′. Indeed, the FCFS assumption, together with
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the number of ships waiting at t(a) and t(a′) directly reveals which ships have
been transferred. We will denote this set of ships by A(v, v′) ⊆ A.

We define a handling strategy from v to v′ as a set of consecutive lock move-
ments that start at t(a), ends in the interval (t(a′)− 2T, t(a′)], and collectively
transfer the set of ships in A(v, v′). Notice that a handling strategy need not
exist; in addition, there may be different handling strategies for a given pair of
states (v, v′). However, the following is true for any handling strategy (if one
exists):

Lemma 4. Given a pair of states v = (a,wu, wd) and v′ = (a′, w′u, w
′
d), any

feasible handling strategy consists of the same number of lock movements.

Proof. Since we know v and v′, we know which ships are transferred by any
handling strategy, and hence we know the total handling time: H(v, v′) =∑
a∈A(v,v′) ha. By Property 2 above, we also know that the ending time of the

last movement of the strategy cannot exceed t(a′), nor can it end earlier than
t(a′)−2T . Thus, in case p(a) = p(a′), we look for an even number of movements,
called m(v, v′), that satisfies:

t(a′)− 2T < t(a) +H(v, v′) +m(v, v′)T ≤ t(a′).

Similarly, in case p(a) 6= p(a′), we look for an odd number of lock movements
m(v, v′) satisfying the equation above. Due to Property 2, the value of m(v, v′)
is unique and the lemma follows.

For all pairs v, v′ for which a number m(v, v′) can be computed, we have an
edge in G. Further, there is an edge from node s to each state v, and there is an
edge from each state v to node t.

We now turn to describing how the costs of the edges in E are chosen. To
compute the costs of an edge from v to v′, we will invoke a procedure that
computes the cost of the corresponding optimal handling strategy from v to
v′. We point out that it may still be the case that, although a number m(v, v′)
can be computed, no feasible handling strategy exists. This will follow from
the procedure that we describe next. The resulting cost of that edge is then set
to ∞. A handling strategy from v to v′ will specify for each ship in A(v, v′) in
which lock movement of the handling strategy it will be transferred.

The cost of a handling strategy consists of the waiting time of relevant ships.
A ship b is relevant when, at time t(a), it has not yet been transferred and at
time t(a′) it has arrived, (i.e. when t(b) ≤ t(a′)). For each relevant ship b, its
waiting time equals the time that elapses between max(t(a), t(b)); until the
minimum of the starting time of the lock movement containing b, and t(a′).

Let us now show how to compute the minimum total waiting time of the
optimal handling strategy from v to v′. This will become the cost of the arc from
state v to v′ in the graph G. Recall that A(v, v′) is the set of ships transferred;
we write A(v, v′) = Au(v, v′) ∪ Ad(v, v′), where Au(v, v′) (Ad(v, v′)) refers to
those ships in A(v, v′) that arrive on the upstream (downstream) side. Given an
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integer k, let tu(k) and td(k) refer to the arrival time of the k’th ship in Au(v, v′)
and Ad(v, v′) respectively.

Given v and v′, we construct a graph H. There is a node in H for each state
(ku, kd,m); ku ranges from 0, . . . , |Au(v, v′)|, kd ranges from 0, . . . , |Ad(v, v′)|,
and m = 1, . . . ,m(v, v′). Note that m(v, v′) can be uniquely determined as a
result of Lemma 4. Thus, a state (ku, kd,m) represents the situation that the
first ku upstream ships from A(v, v′), as well as the first kd downstream ships
from A(v, v′) have been transferred using m lock movements. In addition, we
add a starting node (0, 0, 0). Let us now consider the edges in H. For any vertex
w = (ku, kd,m), we find all possible states w′ = (k′u, k

′
d,m + 1) that can be

reached by the next lock movement. Notice that this includes an empty lock
movement, i.e. state (ku, kd,m+ 1). Also, a single lock movement cannot serve
both upstream and downstream ships: thus, only states with either k′u = ku or
k′d = kd can be reached. More formally, we associate to each state a so-called
ending time T (ku, kd,m), which can be computed as follows:

T (ku, kd,m) = t(a) +mT +
∑

a∈Aku,kd
(v,v′)

ha,

where Aku,kd(v, v′) corresponds to the first ku upstream ships, and the first kd
downstream ships from A(v, v′). Observe that T (0, 0, 0) = t(a).

We now specify the arcs in H. Observe that since we know the position
of ship a (upstream or downstream), and we know m, we can infer whether
an arc from node (ku, kd,m) to node (k′u, k

′
d,m + 1) represents an upward or

a downward movement of the lock. Without loss of generality, let us consider
a downward movement of the lock: we draw an arc from node (ku, kd,m) to
node (k′u, kd,m + 1) for all k′u that satisfy tu(k′u) ≤ t(q), where q is the latest
ship to arrive upstream before T (ku, kd,m). A similar construction holds for
any upward movement of the lock. Since we know which ships we transfer for
each arc in H, we can compute the total waiting time of the relevant ships in
this lock movement. This number is the cost of this edge, and we have specified
the graph H.

We claim that a shortest path in H from (0, 0, 0) to (|Au(v, v′)|, |Ad(v, v′)|,
m(v, v′)), if it exists, corresponds to a minimum-cost handling strategy from v to
v′. Indeed, this claim follows from the observation that any way of transferring
the ships in A(v, v′) is a path in H with the corresponding waiting time, and
vice versa. Furthermore, we argue that such a shortest path can be found in
O(n4) time. We introduce the following lemma which reduces the number of
handling strategies that we need to consider:

Lemma 5. All handling strategies where two consecutive empty lock movements
are followed by a nonempty movement can be excluded without impacting the
optimality of the resulting solution.

Proof. Assume w.l.o.g. that the non-empty movement starts on the downstream
side. Notice that the handling strategy is non-optimal if any ship moved by the
nonempty movement arrives before the first empty movement. We thus assume
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the existence of at least one downstream arrival during the empty movements. It
is then easy to see that there is an optimal block schedule with a block starting
at that arrival, and thus excluding the two empty movements.

Note that for all m larger than 2|A(v, v′)|+ 1, either two consecutive empty
movements are followed by a nonempty movement, or all ships in A(v, v′) have
been moved. The values for m that we need to consider is thus bounded by O(n)
so that we find a shortest path in H considering only O(n3) nodes and O(n4)
arcs.

Correctness of the theorem thus follows from the fact that we argued that
an optimal solution exists that displays the structure of Lemma 1. Next, we
showed how to compute, for each possible pair of states, a handling strategy
with minimum cost. Since any s-t path in G represents a feasible lock schedule,
the shortest path in this graph corresponds to the optimal lock schedule. With
respect to the complexity of the procedure we observe by Lemma 5 that the
number of states to be considered in G equals O(n3), and hence the number of
edges equals O(n6). Since a shortest path in H can be found in O(n4) steps, we
have a polynomial time bound of O(n10).

5.4 Non-uniform lockage duration

It is not uncommon that lockage times for going up (Tu) and down (Td) differ.
Indeed, upstream going ships might need more time to enter the lock compared
to downstream going ships, due to the current. We argue that the procedure
for the lockmaster’s problem outlined in Section 3 is easily adjusted to take this
into account.

Theorem 9. The lockmaster’s problem with a lockage duration that depends on
the position of the lock is solvable in O(n3).

Proof. We redefine a block B(a, b) from Section 3 as follows.

Definition 5.

• For each a, b ∈ A with p(a) = 0 6= p(b) and with t(a) + Tu < t(b), a block
B(a, b) is the set of l(B) consecutive movements that starts at t(a) and

ends at t(a) + d l(B)
2 eTu + b l(B)

2 cTd; with l(B) the largest odd integer such

that t(a) + d l(B)
2 eTu + b l(B)

2 cTd ≤ t(b).

• For each a, b ∈ A with p(a) = 1 6= p(b) and with t(a) + Td < t(b), a block
B(a, b) is the set of l(B) consecutive movements that starts at t(a) and

ends at t(a) + d l(B)
2 eTd + b l(B)

2 cTu; with l(B) the largest odd integer such

that t(a) + d l(B)
2 eTd + b l(B)

2 cTu ≤ t(b).

• For each a, b ∈ A with p(a) = p(b) and with t(a) + Tu + Td < t(b), a block
B(a, b) is the set of l(B) consecutive movements that starts at t(a) and

ends at t(a) + l(B)
2 (Tu + Td); with l(B) the largest even integer such that

t(a) + l(B)
2 (Tu + Td) ≤ t(b).
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It is not difficult to verify that all results from Section 3, mutatis mutandis,
apply to this setting.

5.5 Water usage

Due to organizational/environmental reasons, there can be a limit on the number
of lock movements allowed in some time-interval. In particular, when water is
scarce (e.g. after dry seasons), lockages may seriously disrupt the water level. In
such a case, the number of allowed lockages is bounded in order to keep the water
at a navigable level (Verstichel & Vanden Berghe, 2009). Again a modification
to the original procedure can be found which finds an optimal solution. This
procedure runs in polynomial time provided that the bound Q on the number of
lockages is part of the input.

Theorem 10. The lockmaster’s problem with a bound Q on the number of lock
movements is solvable in O(Q2n4).

Proof. Let Q refer to the maximum number of allowed lockages. Notice that
in this situation Lemma 1 no longer holds. Indeed, a lock movement will
no longer occur at least every 2T interval. However, it does hold that lock
movements are either consecutive or start upon arrival time of a ship; and the
final lock movement ends no later than t(n) + 3T . We now define a bounded
block B = (a, b, l(B)) for each a, b ∈ A, l(B) ≤ Q with t(a) + l(B)T < t(b), as a
set of l(B) consecutive movements starting in t(a), with l(B) even if p(a) = p(b),
and l(B) odd if p(a) 6= p(b). It must hold that t(a) + l(B)T < t(b).

Again, l(B) is called the length of block B. We do not prove it formally
but it should be clear that each schedule can be represented by a sequence of
bounded blocks B1, . . . , Bα where Bk = (ak, bk), k = 1, . . . , α with ak, bk ∈ A
and bk = ak+1 for each k = 1, . . . , α− 1.

If we define Ua and Da as in Section 5.1, we may design the following directed
graph G = (V,E) in order to represent the problem. We have V = {s, t} ∪ V A
with V A = {(a, u, d, q) | a ∈ A, u ∈ Ua, d ∈ Da, 0 ≤ q ≤ Q}. A node (a, u, d, q)
corresponds to a bounded block starting at t(a), while u and d represent the
latest ships served coming from upstream and downstream, respectively, and q
denotes the number of finished lock movements. It holds that:

u′ = fup((a, b, l(a, b)), u); d′ = fdown((a, b, l(a, b)), d)

Definition 6. We say that two nodes (a, u, d, q) and (b, u′, d′, q′) are compatible
if (a, b) is a block and if u′ = fup((a, b, l(a, b)), u) and d′ = fdown((a, b, l(a, b)), d),
and q′ = q + l(a, b).

The set of edges is given as E = Es ∪ EB ∪ Et, with

• Es =
{

(s, v) | v = (a, ∅, ∅, 0) ∈ V A
}

,

• EB = {(v, v′) | v and v′ are compatible}, and
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• Et =
{

(v, t) | v = (a, u, d, q) ∈ V A with q + κ ≤ Q where κ is the short-
est length of a bounded block starting in t(a) and serving all ships not
transported yet}.

The meanings of nodes and arcs are analogous to the ones in Section 5.1.
The only difference is that the number of lock movements is encoded in nodes
here and arcs represent bounded blocks instead of blocks. Graph G now contains
O(n3Q) nodes. Note that each node is source of O(Qn) arcs. We can deter-
mine u′((a, b, l(a, b)), u) and d′((a, b, l(a, b)), d), and total waiting time of ships
according to all arcs emerging from v ∈ {s} ∪ V A in O(Qn) time.

Obviously, a path from s to t then represents a feasible lock schedule and
the shortest path represents the lock schedule having minimum total waiting
time of ships. Since G is acyclic the theorem follows.

6 Computational study

Is it worth the effort to solve instances of the lockmaster’s problem to optimality?
Or, are heuristics sufficient to achieve near-optimal solutions? In this section we
answer this question by performing computational experiments. We consider
the basic problem setting as well as a number of extensions and compare the
optimal solution to a number of straightforward heuristics.

6.1 Instances and problem setting

As far as we are aware, the only publicly available instances are maintained by
Verstichel & Vanden Berghe (2009). We report results for these instances below.
As these instances do not contain all information needed for the extensions we
cover here, we also generate new instances for the experiments below, simulating
a realistic arrival process. We sample the waiting time between subsequent
arrivals from a memoryless distribution, i.e. the arrival probability for a ship is
unrelated to the elapsed time since the last arrival. To obtain integral arrival
times, we use a geometric distribution which allows for simultaneous arrivals.
The geometric distribution can be seen as the discrete analogue of the negative
exponential distribution. The time unit is one minute. All instances consider a
time horizon of 24 hours. The lockage duration is assumed to be 30 minutes,
a typical value similar to that reported by Smith et al. (2009) for ‘single’ lock
operations. The only remaining parameter to decide upon is the parameter p
that specifies the geometric distribution. This parameter corresponds to the
arrival probability as follows: if we let X denote a random variable representing
the number of ships that arrive at any given time in the instance, the following
holds: P (X ≥ n) = pn for all n ∈ N. Each generated instance can thus be
considered as a random realization of a ‘typical day’ where the arrival probability
is specified by the value of p. We report here the results averaged over 25 random
instances with equal p. Rijkswaterstaat has kindly provided a dataset with arrival
information for the three parallel locks of Terneuzen, the Netherlands. Regression
on the interarrival times shows that the geometric distribution assumed above
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corresponds well to reality. Furthermore, the arrival probability of p = 0.1 used
in the simulations below reflects the arrival process observed at the locks of
Terneuzen. In addition to the arrival times, each arriving ship is also assigned a
priority value and a handling time for the extensions below. We consider the
following problem settings:

1. Basic: The basic settings described in Section 3. This considerably
simplified problem serves as the starting point for all cases below. Further,
it acts as a reference to compare the relative performance of the different
solution methods.

2. Capacity: The extension covered in Section 5.1. We assume that the
number of ships in the lock is limited for any lock movement. We arbitrarily
set the bound equal to 3 for all capacitated instances below. Separate
simulations with capacity values of 6 and 12 respectively, resulted only
in minor differences with the basic setting, indicating that the optimal
solution is rarely restricted by these capacity bounds. For this reason,
results for the larger capacity bounds are omitted.

3. Weights: The extension considered in Section 5.2. All ships are given a
priority value which is used as a weight factor in the objective function.
Lock capacity is not limited in this case. The generated instances each have
ship priority values chosen randomly from {1, 2, 3} with equal probability.

4. Handling times: The extension considered in Section 5.3. All ships are
given a handling time. For any lock movement the lockage time is increased
by the sum of the handling times of all ships present in the lock. For the
instances below, handling time values are chosen uniformly random from
{0, 2, 5}. Ship priorities and lock capacity are not considered. Note that
finding the optimum solution is NP-hard as shown in 5.3.

To allow the fairest comparison of solution performance, the instances used for
each of the extensions have arrival times identical to the corresponding instances
in the basic setting.

6.2 Heuristics

Let us also define the behaviour of each of the heuristics. Each of these will
be applied to all problem settings where possible. Since the solution values for
these heuristics depend on the initial position of the lock (whereas it does not
for the exact solution), we obtain a heuristic solution for both starting positions
and report the best of both solutions.

Continuous up/down (CUD): The lock will move whenever possible,
resulting in a continuous up/down movement. At the start of each movement,
as many ships are moved as the lock capacity (if limited) allows. This strategy
uses no information whatsoever, and even ignores the number of ships present
at the lock. The first lock movement is assumed to start at t = 0. When ship
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handling times are present, the lockage duration is adjusted accordingly. Ship
waiting time is weighted by its priority value if required.

Move upon arrival (MA): The lock will not move unless a ship arrives
or a ship is already waiting. Whenever a ship arrives on either side, the lock
will immediately move and handle this ship (potentially by first performing an
empty lock movement so that a ship on the opposite side can enter). When
given knowledge concerning the ships that have arrived so far while having no
future arrival information, this may be the most straightforward way to operate
the lock. Capacity, handling times and weights are again straightforward to take
into account.

Wait until threshold (WUT): For this strategy, the lock is expected to
move only when a certain number of ships is reached on either side of the lock.
We choose to linearly decrease this threshold value to zero over a constant
interval I after each lock movement. This guarantees that the lock will move
at least once every T + I time units. Note that this ensures that this heuristic
always generates a feasible solution. If the threshold would not decrease over
time, the last ship may not pass the lock if the threshold value is not met. Also
note that, by choice of both the threshold value and I, this heuristic can be
seen as a generalization of the CUD as well as the MA heuristic. The WUT
results reported below assume an interval I of T/2, and a threshold of 2. Higher
threshold values quickly decreased the performance for the instances used below.
Capacity and handling times are again easy to include. When taking priority
values into account, it makes sense to adjust the threshold value accordingly. We
now consider the weighted number of ships waiting for service, and the original
threshold value is multiplied by the mean of all ship priority values.

The heuristics above use no information about future arrivals. On real-world
waterways however, ships should typically announce their arrival at a lock some
time in advance. For example, the River Information Services being implemented
in the European Union by the Central Commission for Navigation on the Rhine
(2015) specifies that lock operators should be notified at least two hours before
arrival. This standard already applies to all cargo ships on the Rhine and
Danube rivers. More information can thus be expected to be available to the
lockmaster. We present two additional heuristics below that incorporate some
of this information in the decision process.

Minimum unavoidable increase (MUI): Assume that the lock is in a
given position, say p, at a certain time t. A decision has to be made whether to
move the lock immediately or to keep waiting for more ships. When the lock
does not move, we assume that it waits at least until the next arrival at that
position p. If no arrival occurs at position p within 2T time units, we restrict
ourselves to this 2T horizon to limit the ‘look-ahead’ time. Thus, we assume the
lock will leave at an arrival time of a ship, say t′, with t ≤ t′ ≤ t+ 2T . Given
t′, we determine the unavoidable increase Uwait as the waiting time of all ships
arriving at p, that were already present at time t; and of those ships that arrive
in the interval (t, t′]. In addition, all ships waiting at the opposite side 1 − p,
need to wait an additional T time units, compared to ships arriving at p, for
the lock to arrive. This justifies the notion of ‘unavoidable’ waiting time; an
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increase in total waiting time at least as large as Uwait is incurred regardless
of any future decisions. Alternatively, when the lock moves immediately, we
apply a similar strategy. Once the lock starts to move, it cannot arrive back in
its original position for a period of at least 2T . We let Umove be equal to the
unavoidable waiting time of all ships on the opposite side as before, as well as the
waiting time of all ships at the original position that can not be handled until
the earliest time when the lock may return. The heuristic will now decide to wait
when Uwait < Umove, or move immediately otherwise. This decision is repeated
when the lock arrives at its new position, or at the end of the waiting time. Ship
priorities and lock capacity can be incorporated without any problem. Some
care must be taken when including handling times in the model, as the waiting
time of ships positioned at the opposite site of the lock will then increase beyond
T . Similarly, the earliest return time for the lock when determining Umove may
be larger than 2T . If capacity is included, it is assumed optimal to handle as
many ships as the lock allows while handling ships with the shortest handling
time first. All other aspects of the decision procedure remain unchanged.

Look-ahead 2T (LA2T): Like the previous heuristic, this procedure also
makes use of future arrival information. The LA2T heuristic again decides
whether or not to move the lock at certain decision times. However, we now base
this decision on the optimum solution for the look-ahead interval. We assume
that all arrival information is known for the next 2T time units and we create a
new subproblem over this 2T horizon, also including all unhandled ships that
are waiting at the decision time. This subproblem is then solved with the exact
solution procedure outlined in sections 3 and 5 while ensuring that the initial
position of the lock is fixed. If the lock moves immediately in the solution to
the subproblem, the heuristic now decides to move immediately in the original
problem. If not, the lock waits until the next decision point, which corresponds
to the arrival of a ship at the lock’s position, or whenever a new ship is added to
the 2T look-ahead period. Lock capacity as well as ship priorities are easy to add.
Handling times cannot be included since an efficient procedure to find an exact
solution is not available, as argued in 5.3. The look-ahead interval can be chosen
arbitrarily large to improve the performance of this heuristic. However, repeated
application of the exact procedure quickly increases the LA2T computation time
beyond that of the other heuristics. For small look-ahead intervals such as 2T ,
the exact procedure does find a solution quickly since the solution graph has
very few edges in general.

For those problem setting where the first-come first-served assumption (i.e.
property 4) does not hold, each of the heuristics requires a sequencing rule to
decide on the order in which the ships are handled. This is the case for the setting
where capacity, priority, and handling times are considered simultaneously. We
apply a greedy strategy in this case. Intuitively, one expects that ships with high
priority and/or short handling times should be handled first. A decision rule
could be to order waiting ships by decreasing value of P/HT , where P is the
priority value and HT the handling time. For our set of instances however, it
turns out that handling ships by decreasing priority leads to significantly better
performance. Many other greedy policies can be used, but are not considered
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p = 0.0333 basic capacity weights handling cap + W + HT

exact (min.) OPT 727.3 793.8 1381.4 X X

heuristic (%)

CUD 201.6% 195.8% 214.0% 1555.6 3296.1
MA 192.3% 187.8% 204.2% 1557.6 3357.5

WUT 212.6% 210.1% 214.4% 1649.7 3353.9
MUI 115.2% 128.4% 110.3% 866.0 1982.4

LA2T 107.2% 109.4% 104.6% X X

Table 1: Results for different problem settings. Each value represents the average
of 25 instances simulating the same arrival process. The arrival parameter equals
1/30.

p = 0.0666 basic capacity weights handling cap + W + HT

exact (min.) OPT 1884.9 3768.8 3644.0 X X

heuristic (%)

CUD 152.3% 130.4% 158.5% 3524.6 11972.6
MA 153.1% 132.3% 159.2% 3516.6 12049.2

WUT 156.3% 131.6% 158.7% 3472.3 11787.3
MUI 115.7% 151.7% 114.7% 2397.2 12379.3

LA2T 105.8% 107.6% 104.9% X X

Table 2: Results for different problem settings. Each value represents the average
of 25 instances simulating the same arrival process. The arrival parameter equals
1/15.

below. For the setting with all extensions, we report results for the decreasing
priority policy.

6.3 Results

We summarize the results of all simulations in tables 1, 2, and 3. Each table
shows values obtained by averaging over 25 instances for each heuristic under
different problem settings and for a specific arrival probability (see 6.1). We do
not separately list the required computation time as minimizing the solution
time was not our main priority. Nevertheless, the exact solution is obtained
in less than a second on average, except for the bounded capacity setting,
where the increased graph complexity increases the computation time up to
a 10 minutes average on a 3.4 GHz machine with 4GB RAM. Exact results
are reported in minutes of total waiting time. Heuristic values are shown as
a percentage relative to the corresponding exact solution where possible, and
as total waiting time in minutes where the exact solution is not available. All
generated instances and results for each individual instance are available online
(https://perswww.kuleuven.be/~u0086328/lockmasterdata.html).

We see from the tables that the straightforward heuristics (CUD, MA, WUT)
perform significantly worse than their look-ahead counterparts, though per-
formance improves as the arrival probability increases. The WUT heuristic
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p = 0.1 basic capacity weights handling cap + W + HT

exact (min.) OPT 3361.3 21592.2 6474.6 X X

heuristic (%)

CUD 137.1% 109.7% 141.1% 6166.0 60722.2
MA 134.8% 108.4% 139.6% 6199.2 60003.0

WUT 134.0% 107.4% 139.2% 6246.9 59995.4
MUI 118.5% 138.9% 118.3% 5134.1 94393.9

LA2T 105.3% 103.7% 105.3% X X

Table 3: Results for different problem settings. Each value represents the average
of 25 instances simulating the same arrival process. The arrival parameter equals
1/10.

only realizes very small improvements over MA in some cases; we expect that
there may in fact be certain conditions when such a threshold policy is bene-
ficial. Especially when capacity is considered limited, moving a lock while it
is not ‘sufficiently’ full may introduce unnecessary waiting times in future lock
movements.

When comparing the columns for the capacity simulations, it is clear that
the lock quickly becomes heavily congested for higher values of p, as reflected in
the large difference between optimal values for the capacity and basic settings.
The optimality gap induced by all heuristics except for MUI tends to decrease
as the arrival rate increases. This behaviour is to be expected as for a congested
lock with a high arrival rate, the optimal decision would be to keep moving
continuously up and down taking as many ships as possible. This decision also
follows from each of the heuristics, except for MUI, which sometimes decides
to wait for the next ship while moving is the better option. This tendency is
most obvious when capacity is bounded, as the MUI heuristic does not explicitly
consider capacity limits in its decision. However even when capacity is not
an issue, the same tendency arises, to a minor extent, for the other problem
settings. MUI is the only heuristic where performances decrease as the arrival
rate increases.

LA2T clearly has the best heuristic performance overall. Making use of
future arrival information clearly pays off. This appears the best available
strategy, provided that the optimal solution to subproblems can be found. The
smaller size of subproblems may also allow an exact MIP solution in reasonable
time, even for settings that are known to be NP-hard. This suggests using
this heuristic as a ‘rolling horizon’ strategy for large instances where the exact
solution is infeasible. Increasing the look-ahead horizon will further improve the
performance of this heuristic, though it should be mentioned that computation
time likely becomes a restraining issue as the horizon increases. For our instances,
the LA2T computation was at least an order of magnitude faster than for the
exact solution, and frequently the difference was even larger. For one of the
larger instances in the basic setting however, the exact solution for the entire
problem was actually found faster, albeit only slightly, than the heuristic result.
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Instance OPT CUD MA WUT MUI LA2T

P 10 20 0.3 429 134% 125% 134% 116% 100%
P 10 20 0.5 400 138% 133% 140% 100% 108%
P 15 20 0.3 456 130% 117% 114% 153% 104%
P 15 20 0.5 385 145% 114% 140% 166% 103%
P 30 20 0.3 208 230% 171% 327% 145% 116%
P 30 20 0.5 261 190% 188% 194% 113% 119%
P 5 20 0.3 327 131% 149% 133% 100% 100%
P 5 20 0.5 428 116% 125% 118% 117% 106%

P 10 100 0.3 2281 131% 127% 131% 133% 109%
P 10 100 0.5 2084 134% 129% 134% 127% 104%
P 15 100 0.3 1993 142% 138% 147% 137% 106%
P 15 100 0.5 2002 146% 144% 132% 112% 105%
P 30 100 0.3 1238 247% 235% 242% 157% 110%
P 30 100 0.5 1334 202% 195% 235% 121% 111%
P 5 100 0.3 2438 128% 110% 128% 207% 118%
P 5 100 0.5 2434 118% 126% 119% 152% 109%

P 10 1000 0.3 5160 612% 536% 556% 466% 391%
P 10 1000 0.5 6195 527% 485% 471% 386% 327%
P 15 1000 0.3 5131 613% 598% 655% 340% 303%
P 15 1000 0.5 12023 285% 266% 241% 158% 142%
P 30 1000 0.3 9276 349% 323% 337% 124% 119%
P 30 1000 0.5 10123 352% 289% 307% 118% 113%
P 5 1000 0.3 10555 280% 278% 280% 395% 251%
P 5 1000 0.5 4873 597% 592% 597% 716% 544%

Table 4: Exact solution and heuristic performance for the ‘Poisson’ instances for
the basic problem setting with unbounded lock capacity.

6.4 Results for the instances by Verstichel and Vanden
Berghe

Results for the instances maintained by Verstichel & Vanden Berghe (2009) are
presented in Tables 4-7. Relative weights and handling times are not included in
these datasets. A subset of the instances has interarrival times which follow a
Poisson distribution. Results for these instances are reported in Tables 4 and
6. Other instances have times between arrivals following a uniform distribution.
Results for these instances are given in Tables 5 and 7. We do not report averages
for the values in the tables as each of the instances simulates an arrival process
with different parameters. We refer to the original paper by Verstichel & Vanden
Berghe (2009) for details on the instance parameters. For Tables 6 and 7, where
capacity is considered, we ignore the ship size and assume a capacity bound
equal to 3 ships. The lockage time T is chosen equal to 30.

7 Conclusion

This paper introduced the lockmaster’s problem, a new problem that is closely
linked to batch scheduling problems. The problem can be solved in polynomial
time; we were able to build a graph such that applying a basic shortest path
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Instance OPT CUD MA WUT MUI LA2T

R 10 20 0.3 393 113% 134% 113% 123% 100%
R 10 20 0.5 421 124% 114% 124% 108% 100%
R 15 20 0.3 414 125% 125% 142% 114% 100%
R 15 20 0.5 368 144% 133% 161% 132% 112%
R 30 20 0.3 362 145% 151% 176% 111% 113%
R 30 20 0.5 350 166% 166% 138% 132% 100%
R 5 20 0.3 458 129% 134% 129% 120% 108%
R 5 20 0.5 444 127% 141% 129% 133% 109%

R 10 100 0.3 2234 124% 131% 124% 133% 108%
R 10 100 0.5 2168 129% 141% 129% 129% 106%
R 15 100 0.3 1832 156% 163% 159% 133% 103%
R 15 100 0.5 1815 168% 145% 154% 117% 104%
R 30 100 0.3 1533 187% 179% 212% 108% 106%
R 30 100 0.5 1181 224% 207% 248% 126% 104%
R 5 100 0.3 2568 110% 106% 110% 169% 104%
R 5 100 0.5 2424 118% 112% 118% 113% 111%

R 10 1000 0.3 11181 270% 266% 256% 207% 173%
R 10 1000 0.5 7225 451% 374% 416% 320% 288%
R 15 1000 0.3 13685 225% 221% 221% 117% 108%
R 15 1000 0.5 11577 293% 253% 251% 156% 145%
R 30 1000 0.3 3914 841% 727% 805% 280% 280%
R 30 1000 0.5 8040 443% 360% 385% 134% 134%
R 5 1000 0.3 19062 151% 149% 151% 255% 141%
R 5 1000 0.5 6174 469% 476% 469% 577% 442%

Table 5: Exact solution and heuristic performance for the ‘Uniform’ instances
for the basic problem setting with unbounded lock capacity.

Instance OPT CUD MA WUT MUI LA2T

P 10 20 0.3 696 126% 129% 126% 184% 100%
P 10 20 0.5 577 117% 124% 121% 102% 100%
P 15 20 0.3 704 144% 118% 119% 229% 113%
P 15 20 0.5 530 117% 128% 147% 275% 100%
P 30 20 0.3 208 230% 171% 327% 145% 116%
P 30 20 0.5 261 190% 188% 194% 113% 119%
P 5 20 0.3 767 157% 165% 160% 146% 123%
P 5 20 0.5 736 108% 130% 108% 167% 102%

P 10 100 0.3 14647 103% 109% 103% 131% 101%
P 10 100 0.5 5204 103% 123% 103% 201% 101%
P 15 100 0.3 2852 135% 132% 133% 280% 103%
P 15 100 0.5 2359 139% 140% 146% 138% 111%
P 30 100 0.3 1238 247% 235% 242% 157% 110%
P 30 100 0.5 1334 202% 195% 235% 121% 111%
P 5 100 0.3 42271 106% 103% 106% 123% 103%
P 5 100 0.5 26060 106% 104% 106% 116% 100%

Table 6: Exact solution and heuristic performance for the ‘Poisson’ instances for
the limited capacity setting with bound equal to 3.
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Instance OPT CUD MA WUT MUI LA2T

R 10 20 0.3 806 107% 125% 107% 175% 100%
R 10 20 0.5 665 114% 135% 114% 183% 100%
R 15 20 0.3 758 124% 108% 115% 169% 108%
R 15 20 0.5 368 144% 133% 161% 309% 122%
R 30 20 0.3 415 156% 142% 156% 112% 100%
R 30 20 0.5 350 166% 166% 138% 149% 100%
R 5 20 0.3 1373 113% 115% 113% 149% 115%
R 5 20 0.5 844 159% 152% 159% 195% 121%

R 10 100 0.3 20490 109% 103% 109% 117% 107%
R 10 100 0.5 9130 105% 104% 105% 169% 102%
R 15 100 0.3 8123 107% 110% 115% 173% 119%
R 15 100 0.5 2392 152% 132% 145% 241% 108%
R 30 100 0.3 1543 186% 177% 211% 118% 113%
R 30 100 0.5 1314 211% 198% 230% 136% 104%
R 5 100 0.3 36030 103% 105% 103% 132% 103%
R 5 100 0.5 29384 105% 102% 105% 113% 100%

Table 7: Exact solution and heuristic performance for the ‘Uniform’ instances
for the limited capacity setting with bound equal to 3.

algorithm solves the lockmaster’s problem, and several extensions, to optimality.
Computational experiments confirm that this exact algorithm outperforms a
number of basic heuristics.

8 Further research

In this work we study the lockmaster’s problem for a single lock. A relevant
question is how to deal with the problem in case of multiple locks in series, either
with ships sailing downstream at the first lock and upstream at the last lock, or,
more complex, with ships also arriving at intermediate locks. In general, more
complex waterway networks with several locks would be a nice subject for future
work. In reality, lockmasters do not know all the ship arrival times in advance,
except for ships that are already within a certain distance of the lock. Studying
the online version of the lockmaster’s problem could capture this element in a
better way. A different direction for future research is to go further into batch
scheduling with three or more job families, instead of the two families related to
the lockmaster’s problem studied in this paper.
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