NUMERICAL SOLUTION OF BIVARIATE AND
POLYANALYTIC POLYNOMIAL SYSTEMS

LAURENT SORBER'$, MARC VAN BAREL', AND LIEVEN DE LATHAUWER/S

Abstract. Finding the real solutions of a bivariate polynomial system is a central problem
in robotics, computer modeling and graphics, computational geometry and numerical optimization.
We propose an efficient and numerically robust algorithm for solving bivariate and polyanalytic
polynomial systems using a single generalized eigenvalue decomposition. In contrast to existing
eigen-based solvers, the proposed algorithm does not depend on Grébner bases or normal sets, nor
does it require computing eigenvectors or solving additional eigenproblems to recover the solution.
The method transforms bivariate systems into polyanalytic systems and then uses resultants in a
novel way to project the variables onto the real plane associated with the two variables. Solutions are
returned counting multiplicity and their accuracy is maximized by means of numerical balancing and
Newton—Raphson refinement. Numerical experiments show that the proposed algorithm consistently
recovers a higher percentage of solutions and is at the same time significantly faster and more accurate
than competing double precision solvers.

1. Introduction. Computing the roots of a set of polynomial equations is a well
studied problem for which a wide range of techniques have been developed. These
can roughly be categorized into numeric, symbolic and hybrid methods. Numeric
techniques based on Newton’s method [38] are useful for finding solutions locally.
However, there is no guarantee of finding all solutions and multiple roots may cause
convergence issues. Methods based on interval arithmetic [35] are robust, but can
suffer from slow convergence and require bounds on the solutions of interest. In the
context of optimization, there also exist various convex relaxation methods for global
minimization of polynomials such as a semidefinite programming relaxation [26,39,45],
but these only return a lower bound on the objective function in general. Grébner
bases [9,17] and resultants [16] are symbolic methods that originate from algebraic
geometry. They are both used to eliminate variables, essentially reducing the problem
to finding the roots of univariate polynomials. However, Grébner bases are expensive
to compute and are often numerically ill-conditioned. On the other hand, resultants
can introduce spurious solutions and have historically not led to numerically robust
algorithms either. Homotopy continuation methods [29, 54] are hybrid techniques
that combine homotopy methods with numerical continuation methods. The idea is
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to start from a system with a known solution set, and then to numerically track the
solutions as the system is gradually transformed into the target system. Although
homotopy continuation has been vastly improved in recent years, issues such as path
crossing can decrease their robustness [36]. Adaptive multiprecision has proven to
be an effective means of dealing with these problems [6]. For a recent overview on
homotopy methods and algebraic geometry see the survey [55] and book [46].

In this article, we propose an efficient and numerically robust algorithm to com-
pute the isolated real solutions of bivariate polynomial systems. Instead of using
resultants to project the solution onto the complex plane associated with one of the
two variables, we apply them in a novel way to project solutions onto the real plane
associated with both variables. The key to this projection is to first transform the
bivariate polynomial system into a so-called polyanalytic polynomial system. The
projected system is then reduced to a polynomial eigenvalue problem, which can in
turn be linearized into a generalized eigenvalue problem. As such, our method can be
seen as a hybrid method, although symbolic manipulations are absent. In contrast to
existing eigen-based solvers [3,10,13,22,27,30,31,34,50], the proposed algorithm does
not depend on Grobner bases or normal sets, nor does it require computing eigen-
vectors or solving additional eigenproblems to recover the solution. Moreover, the
method returns solutions counting multiplicity and is also applicable to polyanalytic
polynomial systems. We aim to maximize accuracy with numerical balancing and
Newton—Raphson refinement, and present a robust method to filter out spurious solu-
tions introduced by the resultant. In our numerical experiments, we compare perfor-
mance with Bertini [7], Chebfun [51], PHCpack [53], the RealSolving C library [41,42],
the RegularChains package [2] and Maple’s BivariatePolynomial method on a range of
bivariate systems of varying difficulty. The resulting performance profiles show that
the proposed algorithm consistently recovers a higher percentage of solutions and is
at the same time significantly faster and more accurate.

The paper is organized as follows. In the next subsection we review our notation
and introduce some basic definitions. In Section 2 we examine a classical approach
to solving bivariate polynomial systems and propose an algorithm for solving both
bivariate and polyanalytic polynomial systems with a single generalized eigenvalue
decomposition. Furthermore, we also present several balancing steps and a robust
strategy for removing spurious roots. In Section 3 we evaluate the performance of the
proposed algorithm on a sizable set of low- to moderate-degree bivariate polynomial
systems using performance profiles [15]. We conclude the paper in Section 4.

1.1. Notation and preliminaries. Vectors are denoted by boldface letters and
are lower case, e.g., a. Matrices are usually denoted by capital letters, e.g., A. Higher-
order tensors are denoted by Euler script letters, e.g., A. An entry of a vector a,
matrix A or tensor A is denoted by a;, a;; or aji..., depending on the number of
modes. A colon is used to select all entries of a mode. For instance, a.; corresponds
to the jth column of a matrix A. When there is no confusion, we also use a; to
denote the jth column of the matrix A. Sequences are denoted by a superscript in
parentheses, e.g., {A<n>}£¥:1. The superscripts -7, -2, .71 and T are used for the
transpose, Hermitian conjugate, matrix inverse and Moore—Penrose pseudoinverse,
respectively. The complex conjugate is denoted by an overbar, e.g., @ is the complex
conjugate of the scalar a. We use parentheses to denote the concatenation of two
or more vectors, e.g., (a,b) is equivalent to [aT bT]T. The n x n identity matrix
is denoted by I, and the all-zero and all-one m x n matrices by O xn and 1,,xn,
respectively.



Let B be a basis for the ring of polynomials C[z] with basis polynomials B, (z)
of degree n. For example, if B is the monomial basis or Chebyshev basis, the corre-
sponding basis polynomials B,,(x) are 2™ and T, (x) := cos(n arccos(x)), respectively.
Given a choice of basis, we associate a coefficient vector p € Cé% 1, Pd,+1 # 0, with
polynomials

p(z) := [Bo(z) Bi(z) -+ By, (2)] p
of degree d,. Analogously, we associate a coefficient matrix P € C(déy>+l)x(dgm)+l),

max; |pi7d£)z)+1| # 0 A max; \pd;y)+17j| = 0, with bivariate polynomials

p(z,y) = |Boly) Bily) - Bdéy>(y)]~P-[Bo(x) Bi(z) - Bd;m(x)]T

of coordinate degree (d,(fﬁ)7 1(,‘7’)). The total degree d, of the polynomial p(z,y) is
defined as the largest value ¢ 4+ j for which p;y1 41 # 0. We represent bivariate
polynomials in product bases, i.e., as a linear combination of products B;(y)B;(z).

The choice of basis can depend on the application and in which region the roots
of interest lie. For example, the product monomial basis is orthogonal with respect
to the inner product over the two unit circles in the complex planes associated with x
and y, while the product Chebyshev basis is orthogonal on the unit square associated
with « and y.

Substituting « and y by z and its complex conjugate Z produces so-called polyan-
alytic polynomials p(z,Z). The term polyanalytic refers to the fact that the function
is not analytic in z, but is analytic in z and Z as a whole. Furthermore, it is not hard
to show that if p(z, %) is real-valued for all z € C, then P is Hermitian.

2. Solving systems of bivariate and polyanalytic polynomials.

2.1. The polynomial eigenvalue problem. In robotics [59], computer mod-
eling and graphics [19, 23], computational geometry [4] and numerical optimization
[11,47], a common task is to compute the isolated real roots of bivariate polynomial
systems

p(z,y) =q(z,y) =0 (2.1)
or the isolated complex roots of polyanalytic polynomial systems

r(z,2z) = s(2,z) =0, (2.2)

where the associated coefficient matrices P, @, R and S may be real- or complex-
valued. For example, such systems appear as line and plane search subproblems in
tensor optimization [47], and more generally also in polynomial optimization. Uncon-
strained tensor optimization problems are of the form

1 2
SR | B 2.
minimize Z|M(2) - T3, 23)

where 7 € CI1X*IN ig a given tensor and M is usually a multilinear function of the
variables z. A function is said to be multilinear in its argument z if for all ¢ it is linear
in z; when the remaining variables z; (j # i) are fixed. Among other applications,
(2.3) can be used to compute tensor decompositions such as the canonical polyadic
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decomposition [12,21] and low multilinear rank approximation [25,52]. Given a current
iterate z; and two descent directions Az; and Az,

1
mini&l:ize §||M(zk +alzy) - Tf (2.4a)
1
minﬁimﬁze §||M(zk +alz; + BAzy) — T3 (2.4b)
a,B e

are referred to as complex line search and real plane search subproblems, respectively.
Let fus(a,@) and fps(a, 3) be the objective functions of (2.4a) and (2.4b), respec-
tively, then the global line and plane search minimizers are solutions of the bivariate
and polyanalytic polynomial systems

Ofs  Ofus Ofes  Ofes
=—=0 and = =0,
Oa oa Jda op
where % (%) is a Wirtinger derivative and acts as partial derivative with respect to

a (@), while treating @ («) as constant [48].

Two-dimensional subspace minimization [11] is similar to the plane search (2.4b),
where M is a linear approximation of a nonlinear residual function F' and a norm
constraint on the step size such as [[aAz; + fAzs|| < ¢ is added. The stationary
points of the resulting optimization problem are the solutions of a bivariate polynomial
system in which the polynomials have total degree 2. In [47], it is shown that two-
dimensional subspace minimization can be generalized to higher-order Taylor series
expansions of the residual function F' and that the resulting optimization problem is
a bivariate polynomial system with polynomials of total degree 2 and 2d, where d is
the order of the Taylor series approximation.

A widely used technique to solve bivariate polynomial systems (2.1) is to eliminate
one of the two variables by reducing the problem to finding the roots of a so-called
resultant polynomial. Let V¢ denote the set {(z,y) € C?|p(z,y) = q(x,y) = 0}. If p
and ¢ have no common factor, then by Bézout’s theorem V¢ is zero-dimensional and
contains at most d,d, elements. The resultant of p and ¢ is an algebraic description of
the projections of the set Vi onto the complex plane associated with x or y, depending
on which variable is eliminated. In other words, the resultant is a polynomial whose
roots include the set

ch) ={2xeC|IyeC:plx,y) =q(x,y) =0} or (2.5a)
VY = {y € C|3r € C: plx,y) = q(x,y) = 0}. (2.5b)

From here on, we assume the variable y is eliminated so that the resultant is a polyno-
mial in z. Of course, the role of x and y may be reversed in the subsequent discussion.

Resultants have many formulations, but are typically represented by (ratios of)
determinants. The two most common resultants are those of Sylvester and Bézout,
the former of which is a corollary of the following lemma.

LEMMA 2.1. Let p(x,y) and q(x,y) be two nonconstant bivariate polynomials.
If p(z,y) and q(z,y) have a common zero (x*,y*) € C2, then there are monzero
polynomials u(y) and v(y) satisfying

p(x™, y)u(y) + q(z", y)v(y) =0, (2.6)

where d,, < dfj’) and d, < déy).



Proof. Write p(x,y) and ¢(z,y) as

d;)'y) déy)

pla,y) = pi(x)Bi(y) and q(z,y) = > a(2)Bi(y),
i=0 =0

where p; () (¢gi(z)) is the polynomial in x associated with the coefficient vector p; ;.
(@i41,.)- Since p(z*,y*) = q(z*,y*) = 0, p(z*,y) and ¢(*,y) will have a common
p(z”,y)

factor k(y) := (y — y*)™ for some positive integer n. We have that Ty)q(x*, y) =

2 (0 ). Set u(y) = qla”,y)/k(y) and v(y) = — p(e*,y)/k(y). D
Equation (2.6) expresses the fact that if (x*, y*) satisfies p(z*, y*) = q(z*,y*) = 0,
then there exist polynomials u(y) and v(y) such that all coefficients of the polynomial
n—1

p(a*, y)u(y) + q(z*,y)v(y) are zero. Writing p, ¢, v and v in the basis {B;(y)};
where n := d,(,y) + d((]y), these conditions are equivalent to the system

SPA(z*)-r =0, (2.7)

where r := (u,v) and SP(x) is a polynomial matrix called the Sylvester matrix.
In other words, Lemma 2.1 states that SP%(z) must be singular when evaluated
at the z-coordinate of a common root. The Sylvester resultant is now defined as
resP(x) := det(SP1(x)). Clearly, the resultant is a polynomial in z and vanishes if
and only if the Sylvester matrix is singular. The structure of the Sylvester matrix
depends on the choice of basis corresponding to the variable y. Let f(z,y) be a
polynomial in the basis { B;(y)} with polynomial coefficients f;(x). Define the infinite
Toeplitz, Hankel and shifted Toeplitz matrices

[ fo(x)
g o : .

L (x) fd;w(x) _E
:fo(x) e fyp @) 0]

M (z) = fd<fy>(x) and

0

0 0 .. ]

N (z) = 0 fo(z) --- fd(fy)(z) ’

respectively. For the monomial basis we have y*y? = 3*17 so that the Sylvester matrix
is given by

Sp,q(x> = [Lf:n,lzd((,y) (.’E) Lizn,lzdé,y)(x) :
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For the Chebyshev basis we have 2T;(y)T;j(y) = Tiy;(y) + Tji—;/(y) so that the
Sylvester matrix is, up to a scale factor, equal to

pT pT pT T
Sp’q(l’) _ L }F:n,l:dgy) (Z‘) + rlr:n,l:déy) (.T) +N rlrzn,l:déy) (J?)
ql:n,l:dl(oy) (JL‘) + Mql:n,l:d;y) (JC) + qu:n,l:d;y) (JU)

Importantly, the polynomial res”?(x) is in a sense a minimal characterization of
the x-coordinates of the roots of the system p(z,y) = q(z,y) = 0. In fact, its roots are

exactly the projected roots Véz) together with roots at infinity of the form (z*, 00).
THEOREM 2.2 (see, e.g., [5]). Ifp and q are coprime, the distinct roots of resP(x)

are the roots of the bivariate system p(x,y) = q(x,y) = 0 projected onto the complex

plane associated with x and the roots of the leading coefficient system pd;w(x) =

44w () = 0. More precisely,
{z €Clres”(zx) =0} = V" U{ze Cpy (x) = g0 (x) = 0}

The multiplicity of a root x* of resP1(x) is the sum of the multiplicities of all solutions
of p(z,y) = q(x,y) = 0 with x-coordinate x*.

To compute the roots of the resultant, one possible approach is to explicitly
compute the resultant resP?(x) as the determinant of a polynomial matrix [43], after
which the roots can be obtained as the eigenvalues of its companion matrix. However,
it is well known that a polynomial’s roots can be very sensitive to small changes in the
polynomial’s coefficients [57]. For this reason, the accuracy required of the resultant’s
coefficients makes this approach prohibitively expensive. Instead, the resultant’s roots
can be obtained directly without constructing resP?(x) by noticing that (2.7) is a
polynomial eigenvalue problem (PEP) [30] with matrix pencil

d
sP9(a") = 3 SO B, (), (2.8)
=0

in the basis {B;(z*)} and where S®) € C" " for i =0, ...,d and d := max(d”, dS").
It is well known that p(z,y) and ¢(z,y) share a nontrivial common factor if and only
if res??(x) = 0. In this case, the pencil (2.8) is said to be singular. If p(z,y) and
g(z,y) don’t share a common factor, the pencil is called regular. Unfortunately, the
eigenvalues of a singular (or close to singular) pencil can be changed arbitrarily by
small perturbations of its matrices [58]. However, the situation is not always as bad
as this. Wilkinson gives the example of a singular pencil A — AB, where

2 0 1 0
A= {0 0} and B = {0 0]

The perturbed pencil A— AB has characteristic equation det(A—\B) = [(2+Aa11)—
)\(1 + Ab11)](Aa22 — )\Abgg) — (Aalg — )\Ablg)(Aagl — )\Ab21)7 where A := A+ AA
and B := B + AB. For almost all perturbations A4 and AB, the characteristic
equation has a root which is very close to 2 [58]. Hence, it may in some cases be
possible to recover the eigenvalues of the regular part of a singular pencil. If this is
not the case, the greatest common divisor of p(x,y) and ¢(z,y) or the singular part
of the associated pencil should be extracted. Special care should be taken with both

6



approaches, as they will inevitably be based on decisions concerning the ranks of the
matrices involved.

A standard way of solving the PEP (2.7) is to linearize the polynomial pencil
SP(x*) into a linear pencil A — 2*B and solve its associated generalized eigenvalue
problem (GEP). The matrices A, B € CI* are chosen so that A—z* B has the same
spectrum as SP4(x*). In practice, the monomial basis is used most often together with
a companion linearization. For the Chebyshev basis, a colleague linearization can be
used. In fact, both of these are confederate linearizations [32,33], which are defined by
the polynomial basis’ recurrence relations. To construct such a linearization, consider
as per example the recurrence relations

e[l z =1 = -] 1 . and (2.9a)

- _
10 3
2 [To(x) Ti(z) -] =[To(x) Ti(z) -] 3 0 (2.9b)

for the monomial and Chebyshev basis, respectively. Let v(?(z) be the generalized
Vandermonde vector [Bo(z) -+ Bq_1(w)] T of length d and let I be a left eigenvec-

tor of the PEP (2.7) so that
1. sPa(z*) = 0. (2.10)

Now truncate equations (2.9) up to the dth term and convert to block form by treating
scalars as identity matrices, then use (2.10) to eliminate the last block row. Defining
w = v (z*) ® l, we obtain the companion and colleague linearizations

T 1 0 ~S©
. I -5
zrw?T - B : =w’ - _ ) and (2.11a)
5@ 1 g
! -S© 7
o ]
21 0 :
2w | : =w I . I —g@-3 (2.11b)
S(d) o0 S _ g(d-2)
] ] i I —8@-D

for the monomial and Chebyshev basis, respectively. Here, w is a left eigenvector of
the GEP (2.11). If (z*,5*) € C? is a root of p(z,y) = q(z,y) = 0, then v (y*) is a
left eigenvector 1 of (2.10) corresponding to the eigenvalue z* since

n * * * * (v) * * * (v) * —
o ()T SP(a) = | p(a,y ) (y)T e,y )o@ ()T | = 07
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This means that if * is a simple eigenvalue of the GEP (2.11), we can recover y* from
its corresponding left eigenvector w, which will be a multiple of v (z*) ® v (y*).
However, the situation becomes more difficult when (z*,y*) is a multiple root, or
when there is a §* # y* for which (z*,§*) is also a root. Both of these cases increase
the dimension of the kernel of SP9(z*) so that it is larger than one. Several solutions
for recovering all values y* under these circumstances have been proposed.

Some algorithms compute y* by solving a smaller eigenproblem for each distinct
x* [10, 13, 31]. However, this approach requires estimating the multiplicities of the
eigenvalues z*, along with the dimension of their corresponding kernels. The former
task is complicated by the fact that a multiple real eigenvalue z* often splits into sev-
eral nearby complex eigenvalues due to round-off errors or because the problem cannot
be represented exactly in finite precision. Then, for each distinct z* an eigenproblem
of size equal to the dimension of its kernel should be solved. Another approach is
to eliminate both x and y separately and then for each pair of projected coordinates
check whether it constitutes a solution of the given system or not [8,14,44]. For many
applications, a nontrivial final task is to determine which of the solutions are real.

To solve these issues, we propose to first project the solutions onto the real plane
associated with x and y, which will allow us to compute both the x- and y-coordinates
of the roots simultaneously and ensure they are real. Moreover, this approach does not
require computing any eigenvectors or solving any additional eigenproblems, which
saves both computational effort and memory. Consider the change of variables

1

(x»y)ZQ{l ;

i z] (z,w) (2.12)
which transforms the polynomials p(x,y) and ¢(z,y) into p(z,w) and §(z,w), respec-
tively. This operation can destroy the coordinate degree structure of the polynomials,
possibly changing the coefficient matrices from dense rectangular matrices to square
upper anti-triangular matrices. However, the total degrees of the polynomials remain
unchanged. We proceed as before, this time eliminating w from the modified system
p(z,w) = 4(z,w) = 0. The roots of the resultant res”4(z) now comprise the set

Véz) ={ze€C|3weC:p(z,w) = §(z,w) = 0}.

In fact, {z € C|resPd(z) = 0} is often exactly equal to V™), since the transformation
(2.12) generically gives rise to a constant leading coefficient system pq, (2) = da, (2) =

0 with no solutions. Since the transformation in (2.12) is invertible, V(C(Z) can be
characterized in terms of the roots of the original system p(z,y) = q(z,y) =0 as

VC(Z) ={zeC|3(z,y) € Vo : 2=z + iy}
Clearly, the set of projected real roots
V]Rgf) ={zcC|3(z,y) € Ve NR?: 2 = z + iy}

is a subset of V(C(Z). As we are only interested in real roots (z*,y*) € R2, we may
also interpret the transformed system as a polyanalytic polynomial system p(z,%z) =
4(z,%Z) = 0. Hence, the real roots (z*,y*) € R? of a bivariate polynomial system may
be obtained as the real and imaginary part of (a subset of) the eigenvalues of the

GEP (2.11) associated with the elimination of Z after converting the system into a
8



polyanalytic system with (2.12). Moreover, the method allows multiple roots to be
recovered without additional effort. Indeed, each eigenvalue’s algebraic multiplicity is
equal to the multiplicity of the corresponding root (x*, y*), so that multiple roots need
not be treated separately from simple roots. In contrast, methods based on recovering
y* from the eigenspace belonging to x* need to estimate the algebraic multiplicity of
each eigenvalue and apply relatively complicated techniques to extract y*.

In much the same way as the bivariate case, the complex roots z* € C of a
polyanalytic polynomial system can be obtained by eliminating Z. For both types of
systems, it remains to identify which of the eigenvalues do not correspond to roots of
the original system. In the final subsection, we present a robust method to remove
these spurious solutions based on a Newton—Raphson refinement on the original poly-
nomial system. The following subsection proposes several balancing steps that aim
to maximize the accuracy of the computed roots.

2.2. Balancing the system and its associated pencil.

2.2.1. Balancing the bivariate system. From here on, we restrict the discus-
sion to polynomial systems given in the product monomial basis for simplicity. For
both bivariate and polyanalytic polynomial systems, we center the exponents of the
elements of the associated coefficient matrices P and ) around zero with the scaling

P « 9—round(median(log,(|P]))) p (2.13a)
Q . 2—round(median(log2(|Q|)))Q. (213b)
Here, | - | is the absolute value, log(-) is the element-wise logarithm, median(-) is the

median over all finite elements of its argument and round(:) rounds to the nearest
integer to avoid introducing round-off error. The scaling (2.13) not only normalizes
the coefficients of the two polynomials relative to each other, but also maximizes the
available exponent range so that overflow is less likely to occur.

Bivariate systems p(z,y) = ¢(z,y) = 0 are then converted into polyanalytic
polynomial systems p(z,Zz) = ¢(z,2) = 0 using (2.12). The entries of the coefficient
matrices P and Q are linear combinations of the entries of the coefficient matrices P
and @. In order to minimize loss of precision due to rounding errors, we propose to
first minimize the variance of the exponents of their elements by scaling the variables
as ¢ < 2™z and y + 2"vy with

P« diag(v %+ (27)) - P - diag(v(®” 1) (270)) (2.14a)
O « diag(v %D (27)) - Q - diag(v(@” 1) (27+)) (2.14b)

where 7, and r, are real scalars that solve the least squares problem

minimize var(log(|P])) + var(log(|Q|)), (2.15)

Ta,Ty €

in which var(-) is the sample variance over all finite elements of its argument. Again,
we round 7, and 7, to their nearest integer values to avoid introducing round-off error.
After applying (2.14), we transform P and ) in-place with (2.12).

2.2.2. Balancing the polyanalytic system. Assuming we now dispose of a
scaled polyanalytic system p(z,%Z) = §(z,Z) = 0, our goal is to balance the problem
such that its associated pencil A — z*B is closer to a well-conditioned normal pencil
[28]. Ward suggests to scale all elements of A and B to the same order of magnitude

9



[56]. To this end, a simple heuristic is to minimize the variance of the exponents
of their elements by combining two balancing strategies. The first is to balance the
coeflicient matrices by scaling the variables z and Z with a real scalar s, as z + 2%z
and Z < 2°:%Z. The second is to balance the Sylvester blocks S(9) by scaling the
variable z* in the PEP (2.7) with a real scalar s, as z* < 2% 2*. We set

P« diag(v'@% D (2%:)) . P diag(v'd +D(25:+5:)) (2.16a)

0 « diag(v@i 1 (25:)) . O - diag(v(d +D) (25 +5:0)) (2.16b)
Analogously to (2.15), s, and s.« are the solution of the least squares problem

minimize var(log(| 1)) + var(log(| Q). (2.17)

Again, we round the solution of (2.17) to the nearest integer before applying transfor-
mations (2.16) to avoid introducing round-off error. Finally, we center the exponents
of the coefficient matrices by applying (2.13) to P and Q.

2.2.3. Balancing the pencil. Solving the GEP (2.11) consists of three steps.
Let A and B be the matrices in the right and left hand side of (2.11), respectively.
The first step is to reduce B to an upper triangular matrix with a QR-factorization.
Then, the pair (A4, B) is reduced to generalized upper Hessenberg form using unitary
left and right transformations so that A becomes an upper Hessenberg matrix and B
remains upper triangular. Finally, the QZ algorithm is applied on the resulting pencil.
Equation (2.11) is not the only way to linearize the PEP (2.7). However, compared
to other linearizations it has the advantage that the pencil is already in a block
generalized Hessenberg form. Moreover, many of the first Givens rotations reducing
the pencil to a generalized Hessenberg form will be permutations. An alternative
linearization is the second companion form [18], which is perhaps less efficient but in
our experience has a slight edge in accuracy over (2.11).

To improve the conditioning of the eigenvalues of the pencil A — z* B, most bal-
ancing strategies are based on a two-sided diagonal transformation. The LAPACK [1]
routine ZGGBAL implements Ward’s algorithm [56], which aims to scale the elements
of A and B such that their magnitudes are as close to unity as possible. Unfortu-
nately, LAPACK’s driver routine ZGGEV for computing the generalized eigenvalues
of a pair of complex nonsymmetric matrices (and, consequently, MATLAB) disables
Ward’s algorithm by default. More recently, Lemonnier and Van Dooren [28] suggest
to (approximately) solve the convex optimization problem

Dinimize | D, “A- Dl + Dy B- D% (2.18)
for the real positive diagonal matrices D; and D,.. In fact, this objective corresponds
to searching for D; and D, so that D? - (|A]* + |B|?) - D? is a doubly stochastic
matrix, i.e., having row and column sums equal to one. The Sinkhorn-Knopp (SK)
algorithm is perhaps the most simple method for finding a doubly stochastic scaling of
a nonnegative matrix. Its simplicity has led to the repeated discovery of the method
[24], of which the algorithm proposed in [28] is another variation. Given a nonnegative
matrix M := |AJ]? 4+ |B|?, SK alternately solves for D; and D, by fixing D,. (D;) and
then setting the column (row) sums equal to one with the iterates

D} + diag(M - D? - 14,%1)" " and (2.19a)
D2 « diag(1ixan - D} - M)7H, (2.19b)
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respectively. The main cost of the SK iterates (2.19) are the left and right matrix-
vector products with M, which are O(d?n?) floating point operations (flop) each.
Depending on the number of iterations, SK can be close to as expensive as solving the
GEP (2.11) itself, which costs O(d®n?) flop. To reduce the impact of SK on the total
computational time, the block structure in M can be exploited in the matrix-vector
products. Taking only the block structure and identity matrices into account reduces
the computational complexity to O(dn?) flop per matrix-vector product, which is
small enough in practice. Before applying D; and D,., their entries are rounded to the
nearest power of two so that the transformation does not introduce round-off error.

2.3. Filtering spurious solutions with Newton—Raphson. Removing spu-
rious solutions introduced by the resultant or by round-off error is not as easy as
testing if the polynomials evaluated at the candidate roots are (close to) zero, even
after normalization. This is because evaluating a polynomial may be, and often is,
ill-conditioned, especially as the modulus of the candidate root increases. Even taking
the condition number into account does not improve such a filter’s robustness much.
We propose to refine the roots with a (complex) Newton-Raphson algorithm [48],
and simultaneously remove spurious solutions based on the step length. For candi-
date roots close to a root of the polynomial system, the step length will be small
relative to the modulus of the root, while the step length for spurious roots tends to
be large relative to its modulus. We underline that this approach is only heuristic and
hence not guaranteerd to remove all spurious solutions. Moreover, Newton—Raphson is
known to fail for certain bivariate polynomial systems such as the Griewank—Osborne
example [7,20], where it iterates away from the isolated root at the origin for any
starting point in a punctured neighbourhood of that root. Even though such systems
are not common in practice, we limit the number of Newton—Raphson iterations and
only invert the (numerically) nonsingular components of the Jacobian to prevent good
candidate solutions from straying too far from the system’s roots.

Writing the bivariate polynomial system p(x,y) = q(x,y) = 0 as a vector-valued
residual function FP4(z,y) := (p(z,y),q(z,y)), the Newton—Rapshon step (Az, Ay)
for a candidate root (z*,y*) is computed as

o] = e ), (2.20)
Y

where JP? is the Jacobian OFP/d(z,y)T. The next iterate is then (z*,y*) <«
(*,y") + (Az, Ay).

In the polyanalytic case p(z,%z) = ¢(z,Z) = 0, the standard way of computing the
Newton-Raphson step at a candidate root z* is to write p(z,z) = u,(z,Z) + ivp(2,2)
and ¢(z,z) = uq(2,%) + iv4(2,%Z), wherein u,, vy, uq and v, are real-valued polyan-
alytic polynomials. Define the vector-valued residual function Fﬂgl”u"’v”’vq (2,2) =
(up(2,2),uq(2,2),vp(2,%2),v4(2,%)) and let x and y be the real and imaginary part
of z, respectively. The Newton—Raphson step (Axz,Ay) at a point z* can then be
computed as

Az Up,Vp,UqsVq [ % —k\\T Up,Uq,Vp,Vq [ % —%
[Ay] = (Jg (z5,29)" - Fy (z%,2%), (2.20b)

where Jp?"“""""" is the real Jacobian OFy? """ /0(x,y)T. With a step of this
form, the next iterate is z* < z* + (Az + iAy). However, obtaining u,, vp, u, and
vy and their partial derivatives given only p(z,%Z) and ¢(z,%) is cumbersome. The
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real Jacobian may be obtained much more elegantly from a complex Taylor series of
the complex vector-valued residual function F?P%(z,%) := (p(z,%),q(z,%)). First, we
compute its complex Jacobian

o op
P 0z 0z ’
: 9¢ Oq

0z 0z

where the partial derivatives are so-called Wirtinger derivatives and are with respect
to z (Z), while treating Z (2) as constant. By defining

1 3
e} ]

the real Jacobian can then be recovered from the identity [48]

Re{Jﬂz’Q}]
Im {727} ]

Jup,vp,uq,vq _

R = (2.21)

The advantage of (2.21) is that evaluating J&? requires only four complex function
evaluations, compared to eight real function evaluations for Jﬂg”’u"’v”’vq together with
the cost of constructing of the four polynomials w,, v,, uq and v,. It is interesting
to note that (J5?(2*,2*))" - FP4(z*,Z*) computes a complex Newton—Raphson step,
while the form (2.20b) ensures that the step will be real.

It is recommended to solve the least squares systems (2.20) either by regularizing
the system or by approximating the Moore—Penrose pseudo-inverse using the singular
value decomposition (SVD). This is especially important near multiple roots, where
the Jacobian tends to a singular matrix. Since the Jacobian is a small matrix of size
2 x 2 or 4 x 2, we choose the SVD and invert the first component if o7 > 7, and
additionally invert the second component if oo > 017,, where o7 and o5 are the first
two singular values of the Jacobian and 7, is a user-defined tolerance.

Next, we describe a method to remove spurious roots based on the Newton—
Raphson step length which we have found to work well in practice. Let (Ax, Ay) be
a solution of (2.20a) or (2.20b) at a candidate root (x*,y*) or z*, respectively. If the
candidate root is close to a root of the polynomial system, it may be expected that
its Newton—Raphson step will be small in comparison to a measure of the size of the
root. Based on this observation, we identify a candidate root of a bivariate system as
spurious if

[(Az, Ay)|| = Twr - max(([(z*, y7)[, 1) (2.22a)
and of a polyanalytic system if

(A, Ay)| = 7xr - max(|z*], 1) (2.22b)

holds for some tolerance 7wr. This condition corresponds to a relative tolerance on
the step length outside the unit circle, and an absolute tolerance inside the unit circle.
The smaller 7R, the less likely spurious roots are returned as solutions, but also the
more likely valid roots are discarded.
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In summary, we describe the complete process for solving bivariate and polyan-
alytic univariate polynomial systems in Algorithm 2.1. In the following section, we
investigate the performance of this and other algorithms on a set of bivariate systems,
a subset of which are considered difficult due to the wide variation in exponents of the
polynomial’s coefficients. We will see that Algorithm 2.1 is not only able to recover
the largest fraction of roots, but also does this accurately and efficiently.

Input: Two bivariate or polyanalytic univariate polynomials p and ¢
Output: Isolated real roots (z*,y*) or complex roots z* of the system
p=q=0
{P,Q} < Apply (2.13) to center the exponents of the coeflicients
if p and q are bivariate then
{rg,ry} < Solve (2.15)
{re,ry} + {round(rs), round(ry)}
{P,Q} + Apply the transformation (2.14) to balance the system
{]5, Q} < Apply the transformation (2.12) to obtain a polyanalytic system
end
{s., 82} + Solve (2.17)
{82, 82+ } < {round(s,),round(s.«)}
{]5, Q} < Apply the transformation (2.16) to balance the polyanalytic system
{]5, Q} + Apply (2.13) to {15, Q} to center the exponents of the coefficients
A — 2*B + Build (2.11) associated with eliminating z from p = ¢ =0
{Dy,D,} + Approximately solve (2.18) with SK
{Dlu Dr} — {diag(2round(log2(diag(Dl)))’ diag(2round(log2(diag(DT))))}
z* «eig(D;-A-D,,D;-B-D,)
foreach z* in z* do
if p and q are bivariate then
| (z*,y*) + Decode z* = z* + iy*
end
for i = 1 to maxiter (e.g., maxiter = 4) do
(Az, Ay) < Solve (2.20) at (z*,y*) or z* (for, e.g., 7, = 1079)
if (2.22) holds (for, e.g., 7r = 1072) then
| Discard (x*,y*) or z* and break
end
if p and q are bivariate then
| (@*,y7) « (2%, y7) + (Az, Ay)
else
| 2" 2* + (Az +iAy)
end
end
end

Algorithm 2.1: Compute isolated roots of a bivariate or polyanalytic univari-
ate polynomial system.

3. Numerical experiments. We compare the relative performance of Algo-
rithm 2.1, Bertini 1.4 [7], Chebfun 4.3.2987 [51], PHCpack 2.3.84 [53], the RealSolv-
ing C library [41,42], the RegularChains package [2] and Maple’s BivariatePolynomial
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method on a wide range of bivariate polynomial systems using the performance pro-
files proposed by Dolan and Moré [15]. Algorithm 2.1 was implemented as part of the
MATLAB toolbox Tensorlab [49], which is free for academic and non-commercial use.
Bertini has a variable precision (VP) and double precision (DP) mode, both of which
are evaluated in the numerical experiments. Chebfun currently has two algorithms
for computing the common roots of two bivariate functions. In our experiments, we
use the recently added method based on the Bézout resultant [37]. Chebfun is the
only software package in this comparison which chooses to represent the functions,
in this case polynomials, in the product Chebyshev basis. Bertini and PHCpack are
well-known homotopy continuation solvers. The RealSolving library is based on re-
ducing the polynomial system to a rational univariate representation, from which the
solutions can easily be recovered. The RegularChains package computes a triangu-
lar decomposition of the system, i.e., a set of simpler systems called regular chains
which represent the solutions of the original system. Similar to but less advanced
than Chebfun, Maple’s BivariatePolynomial algorithm applies a random orthogonal
change of variables, computes the y-coordinates of the isolated roots as the eigen-
values of the polynomial matrix associated with the Bézout resultant and recovers
the xz-coordinates from the corresponding eigenvectors. The first two algorithms were
applied in MATLAB 8.1 (R2013a), Bertini and PHCpack as standalone executables,
and the remaining three methods using Maple 17. In each experiment, all algorithms
were applied without supplying any parameters so that each method uses its default
parameter values. In the case of Bertini, we supplied the parameter MPTYPE: O to
select its DP mode, and omitted this parameter to apply the default VP mode. All
experiments were performed on a server with two hexacore Intel Xeon E5645 CPUs
and 48 GB RAM.

Each algorithm’s performance is evaluated on two problem sets!. The first set
is generated using the low-degree bivariate polynomial systems listed in Table 3.1.
The second set is more difficult and is generated using the bivariate polynomial sys-
tems listed in Table 3.2. The zero level lines and their intersections of two example
systems of each type are displayed in Figure 3.1 and Figure 3.2. Both tables show
the total degrees of the system and the exponent ranges of the coefficients. For a
polynomial system p(z,y) = ¢(x, y) = 0 the total degree is displayed as (d,, dq), while
the exponent range is defined as (range(p(z,y)), range(q(x,y))), where

range(p(x, y)) := maxlog,o(|p;|) — min logyo(|pis|).
’ pij 0

The total degrees define the size of the eigenproblem, which is generically equal to
max(dp,dq)(d, + dg). Large exponent ranges are usually associated with difficult
problems since round-off errors tend to increase in magnitude as the exponent range
increases. Table 3.1 also includes the fraction of systems with at least one solution
where the Jacobian is singular. Furthermore, Table 3.2 shows the exponent range
of the (finite) condition numbers of the Jacobian evaluated at all solutions of the
corresponding system. If a system has at least one solution where the Jacobian is
singular, we indicate this by taking the union with infinity.

All systems are given in the product monomial basis, often with integer coeffi-
cients. In some cases these coefficients contain more digits than can be represented
by double precision floating point numbers. For a fair comparison, each algorithm

I Available at http://esat.kuleuven.be/stadius/tensorlab/datasets/bivarsys.zip.
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TABLE 3.1

Properties of the initial low-degree problem set, containing a total of 50 systems.

Problem Total degree Coefficient range Singular
ex001-ex025 [10] (3,2) to (11,10)  (0.30,0.00) to (8.79,1.71) 68%
C1-C5, D1-D2, (2,2) to (16,5) (0.00,0.00) to (8.05,8.65) 71%
M1-M4, R1-R3 [14]
Q21-Q210, X [40] (3,3) (0.60,0.42) to (2.40,2.47) 0%
TABLE 3.2

Properties of the initial moderate-degree problem set, containing a total of 16 systems.

All of

these systems with the exception of lebesgue were taken from [8].

Problem Total degree Coefficient range Condition range
13_sings_9 (9,8) (6.91, 6.26) (0.54,9.31)
compact_surf (18,17) (3.76,3.76) (0.02,16.28) U co
curve24 (29, 28) (4.95, 4.68) (0.13,1.66)
curve_issac (16,15) (3.43,4.24) (0.28,16.23) U co
cusps_and_flexes 9,8) (4.74,4.29) (0.22,8.36)
degl6_7_curves (32,11) (3.16,1.08) (0.15,2.87) Uoco
dfold_10.6 (32,31) (4.97, 4.46) (0.07,1.41) U 0o
grid_deg_10 (10,9) (9.08,8.16) (0.11,3.27)
hard_one (27,10) (28.04,7.82) (6.65,20.85)
huge_cusp (8,7) (4.79,4.16) (0.37,7.96)
L4 _circles (16,15) (8.05,8.65)  (15.52,19.43) U co
lebesgue (20,20) (6.22,6.53) (0.10,1.64)
spiral29_24 (29, 29) (10.94, 4.95) (0.13, 6.66)
ten_circles (20,19) (6.10,5.57) (0.92,31.39) U oo
tryme (34,25) (7.68,6.96) (3.50,13.14)
vert_lines (16,14) (2.15,2.14) (0.49,1.75)
2 |- —
O |- .
y 0 : Y
_9oL i
_9oL |
\ \ \ \ \ \ \ |
e 0 2 4 -2 0 2
x x
(a) ex007 (b) c3

Fic. 3.1. Two examples of the low-degree bivariate polynomial systems and their solutions.

receives the systems in a normalized format.

More specifically, each polynomial’s

coefficients are converted to hardware double precision floating point numbers, after
which they are multiplied by an integer power of two such that their exponents are

approximately centered around zero.
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Fic. 3.2. Two examples of the moderate-degree bivariate polynomial systems and their solutions.

Some of the systems are of the form p(z,y) = g—i(x,y) = 0 and correspond to
finding roots of p(x,y) that are tangent to a vertical line. Taking inspiration from
this, we artificially expand the low-degree and medium-degree problem sets by taking
each system p(x,y) = q(z,y) = 0 and adding the systems p(z,y) = g—i(x, y) =0 and

%(m, y) = g—g(a:, y) = 0, tripling the total number of systems. The only exception to

this rule are the systems Q21-Q210 and X, which are already of the form g—g(x,y) =
g—g(x, y) = 0 and correspond to finding the stationary points of normal quartics [40].

For each system in the expanded low-degree and moderate-degree problem sets,
we compute a reference solution set as follows. First, all solutions of all systems as
computed by all eight algorithms are collected. There is no discrimination between
real or complex solutions and valid or spurious solutions. For each such candidate
root (z*,y*), we apply a high-precision Newton—Raphson method with 128 significant
decimal digits to Re{(z*,y*)}. We terminate the refinement after 500 iterations or
when the relative step size is less than €macn 1073, where €mach is the machine epsilon
for double precision. The refined root (x*,y*) is accepted as a valid root if both

conditions

p(z*,y")| < [pl(J2*], [y |)emacn10° and
la(z™,y")| < lal(l2” ], [y emacn10°,

hold when evaluated in high-precision. Here, the polynomials |p| and |g| correspond
to the coeflicient matrices |P| and |Q|, respectively. Evaluated at the absolute value
of (z*,y*), they are equal to the condition number of evaluating the polynomials p
and ¢ at (x*,y*). If accepted, the candidate root is truncated to double precision
and added to the system’s reference solution set. After all candidate roots have been
processed, the reference solution sets are reduced to their distinct elements.

For each problem set P, the performance profiles are computed as follows. Let
S be the set of solvers consisting of the previously mentioned eight algorithms and
let t, s denote the time required by solver s to solve problem p. If solver s did not
successfully solve problem p, we set ¢, s = co. The performance profile for solver s,

o) o W€ Pl <27 (minucs 1))
T 1P| ’
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depicts the fraction of problems that solver s was able to solve within a factor 27
of the fastest solution time for that problem. We say that a polynomial system p
has been solved successfully by solver s if for at least 99% of all roots (z*,y*) in the
reference solution set, there is a candidate root (&*, §*) computed by s which satisfies

(2", y") = (@ 91 < max([| (2", y")[|; 1) émax

for a certain maximal relative error €y,x. Chebfun computes roots on a rectangular
domain specified by the user, which is [—1, 1] x [-1, 1] by default. For each system, we
set this domain equal to the smallest axis-aligned bounding box of the corresponding
reference solution set, plus a small margin to prevent edge cases.

(a) emax = 5% (b) €max = 0.5%

Fic. 3.3. Performance profiles for low-degree bivariate polynomial systems. The problem set
consists of all these polynomial systems, and we say a system has been successfully solved if at least
99% of its roots have been found with a relative error that does not exceed emax. Legend: our method
(----), PHCpack ( ), Bertini VP ( ), Bertini DP (----), Chebfun (- . - ), RealSolving
(-----), RegularChains (---.-) and BivariatePolynomial ( ).

1 1
0.8 081 ..
0.6 0.6
p p
0.4 0.4
0.2 0.2 1"
0 | | i 1 } 0 \r'r | I | | i 1 }
0 2 4 6 8 1012 14 16 18 0 2 4 6 8 1012 14 16 18
T T
(a) €max = 5% (b) €max = 0.5%

Fic. 3.4. Performance profiles for moderate-degree bivariate polynomial systems. The problem
set consists of all these polynomial systems, and we say a system has been successfully solved if
at least 99% of its Toots have been found with a relative error that does not exceed eémax. Legend:
our method (----), PHCpack ( ), Bertini VP ( ), Bertini DP (----), Chebfun (- - ),
RealSolving (-----), RegularChains (-----) and BivariatePolynomial ( ).
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Figures 3.3 and 3.4 show the performance profiles of the expanded low-degree and
moderate-degree problem sets, respectively, for two choices of €,,,. The left hand side,
where 7 = 0, of each plot shows the fraction of successfully solved problems for which
a solver was the fastest solver. The right hand side, where 7 is large, shows the
fraction of problems a solver was able to successfully solve. Among the fixed precision
solvers, Algorithm 2.1 was able to successfully solve the largest fraction of problems
and was also considerably faster than most other algorithms for both problem sets
and choices of €.y, with the RealSolving library as a close second for the low-degree
problem set. Bertini was able to solve an impressive 90% of the moderate degree
problems in its variable precision mode, which is likely due to the increased flexibility
that variable precision offers. Concerning the accuracy of the computed solutions,
PHCpack and Chebfun seem to be sensitive to the tolerance ey, especially on the
moderate-degree problem set. The other algorithms’ performance profiles remain
relatively static when €, is decreased, indicating that their computed solutions are
relatively more accurate.

Compared to the low-degree problem set, the fraction of moderate-degree systems
that were successfully solved is much lower. These systems often have many more
solutions than their low-degree counterparts. Since a solver by definition fails to solve
a system as soon as over 1% of these roots is not found, we compute a second set of
performance profiles to examine the fraction of successfully recovered roots as follows.
We define two new problem sets containing all reference solutions of the expanded
low-degree systems and moderate-degree systems, respectively. The time for solver s
to solve problem p is then defined as the total time for solver s to compute all roots of
the bivariate polynomial system associated with p, divided by the number of roots of
the system’s reference solution set. If solver s was not able to successfully recover the
root p, we set ¢, ¢ = co. The condition for successfully recovering a root is identical
to that of the previous performance profiles.

(a) €max = 5% (b) €max = 0.5%

Fic. 3.5. Performance profiles for low-degree bivariate polynomial systems. The problem set
consists of all distinct roots of these systems, and we say a root has been successfully found if
its relative error does mot exceed e€max. Legend: our method (----), PHCpack ( ), Bertini
VP ( ), Bertini DP (----), Chebfun ( ), RealSolving (---.-), RegularChains (-.-.-) and
BiwvariatePolynomial ( ).

The performance profiles based on the redefined problem sets corresponding to
the expanded low-degree and moderate-degree systems are shown in Figure 3.5 and
3.6, respectively. Algorithm 2.1 was able to recover nearly all roots of both problem
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F1a. 3.6. Performance profiles for moderate-degree bivariate polynomial systems. The problem
set consists of all distinct roots of these systems, and we say a root has been successfully found
if its relative error does mot exceed €max. Legend: our method (----), PHCpack ( ), Bertini
VP ( ), Bertini DP (----), Chebfun ( ), RealSolving (---.-), RegularChains (-.-.-) and
BivariatePolynomial ( ).

sets and for both values of €,.cn. The roots that it did not recover, were spread out
among different systems, causing the fraction of successfully solved moderate-degree
systems to drop to around 80% (cf. Figure 3.4). Interestingly, the RealSolving library
successfully solved the (close to) second largest fraction of systems, yet other solvers
recover a higher fraction of roots in Figure 3.6. This indicates that the RealSolving
library is somewhat of a hit or miss algorithm, either recovering all solutions or very
few. In contrast, Bertini’s double precision mode, PHCpack and Chebfun are able
to recover a larger fraction of roots, but fail to recover at least one root for many
moderate-degree systems. Furthermore, we observe that for moderate-degree systems
around 20% of the roots computed by PHCpack and Chebfun are only accurate up
t0 €max = 5%.

4. Conclusion. We presented an algorithm for computing the isolated real so-
lutions of bivariate polynomial systems, and the isolated complex solutions of poly-
analytic polynomial systems. For bivariate systems in two variables, say x and y, the
algorithm projects the solutions onto the real plane associated with « and y by com-
bining a well chosen change of variables together with a resultant-based elimination of
a hidden variable. In this way, the problem is reduced to computing the eigenvalues
of a polynomial eigenvalue problem. In comparison to other eigen-based approaches,
there is no need to compute the accompanying eigenvectors or solve any additional
eigenproblems. To increase the algorithm’s robustness, we presented three methods
of balancing the eigenvalue problem and an elegant method to remove spurious roots.
Though the algorithm was chiefly developed for the polynomials expressed in the
product monomial basis, the generalization to other bases is straightforward. The
numerical experiments show that our method often outperforms other algorithms in
the fraction of roots successfully recovered, the accuracy of the estimated roots and
computational time. The algorithms discussed in this article were implemented as
part of the MATLAB toolbox Tensorlab [49] and are available online.
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