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Abstract 

This paper studies the relationship between egocentric collaboration networks and 

knowledge creation at the individual level.  For egocentric networks we focus on the 

characteristics of tie strength and tie configuration, and knowledge creation is assessed by 

the number of citations.  Using a panel of 1,042 American scientists in five disciplines and 

fixed effects models, we found an inverted U-shaped relationship between network average 

tie strength and citation impact, because an increase in tie strength on the one hand 

facilitates the collaborative knowledge creation process and on the other hand decreases 

cognitive diversity.  In addition, when the network average tie strength is high, a more 

skewed network performs better because it still has a “healthy” mixture of weak and strong 

ties and a balance between exploration and exploitation.  Furthermore, the tie strength 

skewness moderates the effect of network average tie strength: both the initial positive 

effect and the later negative effect of an increase in tie strength are smaller in a more 

skewed network than in a less skewed one. 
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1. Introduction 

In history, scientists were often depicted as lonely wolves, and prominent discoveries 

were often credited to solitary authors.  However, the production of science is increasingly 

collaborative (Adams et al. 2005, Hicks and Katz 1996, Price 1986, Wuchty, Jones and Uzzi 

2007).  By pooling together different expertise and perspectives, collaboration contributes to 

cross-fertilization of ideas and enables combining different pieces of knowledge to create 

something novel and useful (Katz and Martin 1997, Melin 2000, Page 2007).  The prevalence of 

collaboration in science has driven science studies to expand from lab benches to collaborative 

settings at a larger scale (Chompalov, Genuth and Shrum 2002, Cummings and Kiesler 2005, 

Finholt and Olson 1997, Shrum, Chompalov and Genuth 2001) and sparked vigorous studies of 

collaborative teams (Cummings et al. 2013, Hemlin et al. 2013, Lee, Walsh and Wang 2015, 

Levine and Moreland 2004, Murayama, Nirei and Shimizu 2015, Walsh and Lee 2015) and 

networks (Börner, Maru and Goldstone 2004, Guimera et al. 2005, Newman 2004, Sun et al. 

2013) in science. 

This study investigates the relationship between collaboration networks and knowledge 

creation at the individual level.  Dynamic egocentric collaboration networks are viewed as the 

venue where scientific knowledge is produced, and the characteristics of egocentric networks 

shape the process of knowledge creation within the network, which in turn affects the impact or 

usefulness of the knowledge created from the network.  At a fundamental level, knowledge 

resides within and is created by individuals (Nonaka 1994).  However, the creation of knowledge 

is also a social process (Latour and Woolgar 1986, Nonaka 1994).  Therefore, it is important to 

place a creative individual within a network of interpersonal relationships for a better 

understanding of knowledge creation (Simonton 1984).  Previous studies have extensively 

investigated the effect of collaboration networks on research performance at the individual level 

(Abbasi, Altmann and Hossain 2011, Gonzalez-Brambila, Veloso and Krackhardt 2013, Li, Liao 

and Yen 2013, McFadyen and Cannella 2004, McFadyen, Semadeni and Cannella 2009).  These 

studies typically adopt a social capital perspective, where a scientist’s egocentric network or 

his/her position in the global network represents his/her social capital, and social capital affects 

research performance indirectly, through serving as an input for current knowledge creation.  

However, this paper studies collaboration networks as organizations of knowledge creation and 

focuses on how the current network affects knowledge creation directly, via its effect on the 

creative process and resource mobilization.  Specifically, this paper focuses on the effect of tie 

strength and tie configuration on citation impact at the individual level. 

This paper makes the following theoretical contributions.  First, it adds to the 

organization of science literature, studying egocentric collaboration networks as organizations 

for science production.  Second, it explores tie configuration within collaboration networks and 

contributes to the development of a network theory beyond a simple dichotomy between strong 

and weak ties. 

The rest of the paper is organized as follows.  First, we briefly review the literature on 

collaborative teams and networks in science and discuss the motivation for studying egocentric 
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networks.  Second, we develop hypotheses concerning the effect of tie strength and tie 

configuration on knowledge creation, drawing literature of science studies, social networks, 

organization theory, and organizational behavior.  We use a panel dataset with both survey and 

bibliometric information for 1,042 American scientists in five disciplines (biology, chemistry, 

computer science, earth and atmospheric sciences, and electrical engineering).  We incorporate 

(1) individual fixed effects to account for unobserved time invariant individual heterogeneity and 

(2) career age and prior performance to control for time variant individual differences.  We found 

(1) an inverted U-shaped relationship between network average tie strength and citation impact, 

(2) a positive effect of the skewness of tie strength distribution on citation impact, when the 

network average tie strength is high, and (3) that the effect of network average tie strength is 

moderated by the level of skewness.  We also discuss the implications of these findings. 

 

2. Knowledge creation in science 

2.1. Collaborative science: teams and networks 

Scientific knowledge is increasingly created collaboratively, as reflected in the rising 

share of coauthored papers and the growing size of collaborative teams (Adams et al. 2005, 

Hicks and Katz 1996, Price 1986, Wuchty, Jones and Uzzi 2007).  While earlier science studies 

focus on individual traits and laboratory settings (Latour and Woolgar 1986, Simonton 1999, 

Zuckerman 1967), the prevalence of collaboration in science calls for studying the organization 

of collaborative science, and researchers have extended science studies and laboratory 

ethnographies from lab benches to collaborative settings at a larger scale (Chompalov, Genuth 

and Shrum 2002, Cummings and Kiesler 2005, Finholt and Olson 1997, Shrum, Chompalov and 

Genuth 2001). 

Recently, there emerges a new body of literature labeled as science of team science, 

which brings in insights from the psychology literature on small groups and the sociology 

literature on work organizations to study the team production of science (Falk-Krzesinski et al. 

2010, Fiore 2008, Stokols et al. 2008).  For example, previous research has investigated the 

group process (Levine and Moreland 2004), leadership (Hemlin et al. 2013), and 

bureaucratization (Walsh and Lee 2015) in scientific teams, as well as the effects of team 

characteristics on team productivity (Cummings et al. 2013), creativity (Lee, Walsh and Wang 

2015), and the quality of team product (Murayama, Nirei and Shimizu 2015). 

Besides scientific teams, collaboration networks have also been extensively studied at the 

system level (i.e., all sciences or a particular scientific field), covering topics such as patterns of 

collaboration networks (Guimera et al. 2005, Newman 2004), evolution of scientific networks 

and mechanisms underlying the process (Börner, Maru and Goldstone 2004, Sun et al. 2013), 

and the network effects on research performance (Guimera et al. 2005). 

 

2.2. Individuals and egocentric networks 

At the individual level, egocentric network or individual’s position in the global network 

have also been explored to explain the productivity or creativity of individual scientists (Abbasi, 
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Altmann and Hossain 2011, Klenk, Hickey and MacLellan 2010, Li, Liao and Yen 2013, 

McFadyen and Cannella 2004, McFadyen, Semadeni and Cannella 2009).  The individual-level 

network studies typically adopt a social capital perspective; a scientist’s egocentric network or 

position in the global network represents his/her social capital, which in turn affects his/her 

performance the same way as intellectual and other capital.  From this social capital perspective, 

collaboration networks affect individual performance indirectly through providing social capital 

as an input but not directly by serving as a work organization.  This nuance is more evident when 

scrutinizing empirical strategies adopted in these studies, which measure social capital based on 

collaboration networks in previous years and estimate its effect on individual performance in the 

current year (McFadyen and Cannella 2004, McFadyen, Semadeni and Cannella 2009).  

Preceding network provides social capital as an input for current knowledge creation, but the 

current network, which is directly responsible for the current science production, is ignored.  

Furthermore, focusing on the previous but not the current network does not explain how social 

capital is mobilized for current knowledge creation (Lin 1999, Lin 2001).  Different from the 

social capital perspective, this paper studies the current collaboration networks as work 

organizations bearing direct effects on current knowledge creation. 

The concept of social capital is evoked as a bridge between egocentric networks and 

individual performance, presumably because individuals or egocentric networks are not 

recognized as legitimate forms of organization for scientific production, while teams are.  

Accordingly, the distinction between our egocentric network approach and the team approach is 

twofold: in the egocentric network approach, (1) individual is still a relevant unit of analysis for 

studying knowledge creation in science and (2) egocentric collaboration network is also a 

legitimate form of organization for knowledge creation. 

Science is increasingly performed in teams.  However, at a fundamental level, knowledge 

still resides within and is created by individuals (Nonaka 1994).  Studies of group creativity also 

emphasize the importance of individuals’ abilities, previous experiences, and other resources that 

they carry with them (Amabile 1983, Ford 1996, Woodman, Sawyer and Griffin 1993).  

Therefore, research evaluation at the individual level is still a relevant practice, and a scientist 

endowed with a higher level of intellectual or social capital can contribute his advantages to all 

his collaborative teams and achieve better performance across all his collaborations. 

In addition, although science is increasingly performed in teams, knowledge creation 

within a team also depends on activities outside the team.  One distinct feature of modern science, 

compared with other systems of work organization, is its autonomy and self-governance 

(Whitley 2000).  As a result, scientific teams are extremely fluid, with ill-defined and constantly 

changing boundaries (Borgman 2007).  This fluidness of scientific teams is also reflected in the 

difficulty of determining authorships (Haeussler and Sauermann 2013, Laudel 2002).  More 

importantly, the fluidness of collaborative teams is associated with the interdependence between 

teams connected by common members.  Scientists often participate in multiple teams 

simultaneously, and these teams may share several common members and also similar research 

agendas.  Under such circumstance, knowledge spillovers across teams are likely to take place.  
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For example, Tang and Hu (2013) showed that scholars pick up new research lines from their 

international collaborators and further pursue them in their domestic collaborations, and Wang 

and Hicks (2015) demonstrated knowledge spillovers from a scientist’s new collaborators to 

his/her other teams not involving these new collaborators.  Since knowledge creation at the team 

level also depends on external activities, it is also important to study the open and dynamic 

egocentric networks, in addition to the closed collaborative teams, in order to better understand 

knowledge creation in science. 

Because of the fluidness of teams and the interdependence between them, the 

organization of scientific collaboration may be described by a garbage can model (Cohen, March 

and Olsen 1972).  There are streams of problems, expertise, and collaborators in the network.  

Problems are searching for relevant expertise, expertise is searching for problems, and 

collaborators are searching for common research interests (i.e., problems) and complementary 

expertise.  A collaborative team emerges when these three streams converge.  However, the 

emergence of a team is not the end of the story.  Instead, the team still interacts with these three 

streams and co-evolves with them.  Different networks may have different problem, expertise, 

and collaborator streams, and these differences in turn lead to variance in final creative outcomes.  

Furthermore, network structures determine the opportunities and constraints for (1) assembling 

differentiated but interdependent teams and (2) balancing explorative and exploitative research 

activities, and such opportunities and constraints affect knowledge creation at the individual 

level across teams.  Therefore a network approach, which investigates sources of knowledge 

creation in dynamic networks beyond team boundaries, is meaningful for understanding the 

production of science. 

 

3. Collaboration networks and knowledge creation 

3.1. Tie strength 

To study the relationship between egocentric collaboration network and knowledge 

creation, this paper only investigates direct ties, for two reasons:  First, direct ties play a much 

more central role in knowledge creation (McFadyen and Cannella 2004). While previous 

literature suggests the importance of indirect ties for knowledge transfer, McFadyen and 

Cannella (2004) suggested that direct ties are “absolutely central” for knowledge creation.  

Second, because of their direct and central role in collaborative knowledge creation, direct ties 

allow for studying collective action and resource mobilization for knowledge creation.  Among 

various characteristics of the direct tie, this paper further focuses on the strength of ties, for two 

main reasons:  First, there is a rich but divergent body of literature on the strength of tie, calling 

for testing and reconciling competing theories.  Second, the strength of tie only depends on two 

collaborators but not others, and is therefore easier to be managed by individual scientists, which 

allows drawing more direct policy and managerial implications. 

Before making the network level predictions, we will first discuss the effect of tie 

strength at the dyadic level.  Granovetter (1973) defined the strength of tie as “a (probably linear) 

combination of the amount of time, the emotional intensity, the intimacy (mutual confiding), and 
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the reciprocal services which characterize the tie” (p. 1361).  Weak ties are more likely to 

provide non-redundant information (Burt 1992, Granovetter 1973, Uzzi 1996, Uzzi and Spiro 

2005).  People bonded by strong ties are more likely to be similar to each other and connected 

with similar others.  Therefore, information obtained from such networks tends to be redundant.  

In contrast, weak ties are more likely to bridge structural holes between communities that are 

otherwise unconnected and provide access to information and resources beyond those available 

in one’s own social circles. 

Because of the access to non-redundant information, weak-tie-collaborations are more 

likely to generate novel and useful ideas.  One important benefit from collaboration is the cross-

fertilization of ideas by pooling together different expertise and perspectives (Hudson 1996, Katz 

and Martin 1997, Melin 2000, Page 2007).  Many scholars have suggested that one important 

source of novelty is making unusual but fruitful recombination of preexisting components, such 

as ideas, principals, and devices (Kuhn 1962, Mednick 1962, Nelson and Winter 1982, 

Schumpeter 1939).  Therefore, exposure to diverse knowledge and perspectives increases the 

chance of generating novel ideas.  Furthermore, according to Page (2007), scientific research can 

be understood as a search process in a complex problem space for the best solution, and 

cognitive diversity contributes to a broader and more thorough search and consequently a higher 

possibility of finding the global optimum instead of being trapped at a local optimum. 

However, the association between tie strength and knowledge creation is not so 

straightforward, because many other factors may affect the knowledge creation process.  Weak 

ties have low cognitive capital (i.e., shared knowledge and understanding) and relational capital 

(i.e., trust, norm, and obligation)(Nahapiet and Ghoshal 1998).  Because of the lack of a common 

knowledge base, collaborators bonded by weak ties may find significant communicational and 

epistemological problems in exchanging and integrating different perspective, ideas, and data 

(Edwards et al. 2011, Kuhn 1962, Star and Griesemer 1989).  In addition, the lack of mutual trust, 

obligation, and norm in the collaborative tie may increase opportunistic behavior and impede 

coordinated actions (Krackhardt 1992, Lin and Ensel 1989, Obstfeld 2005, Podolny and Baron 

1997, Uzzi 1996).  As the strength of tie increases, so does the cognitive and relational capital, 

and as a result, the collaboration has a more effective knowledge creation process.  Many 

empirical studies have also shown the advantage of strong ties for knowledge transfer (Hansen 

1999, Reagans and McEvily 2003) and knowledge creation (McFadyen and Cannella 2004, 

McFadyen, Semadeni and Cannella 2009, Tortoriello and Krackhardt 2010, Walsh and Maloney 

2002). 

However, this effect may turn negative when the strength of tie is too strong.  First, 

cognition of the collaborators becomes similar, so the potential of generating novel and useful 

ideas is diminished (McFadyen and Cannella 2004, Uzzi 1997).  Second, common collaboration 

experience gives birth to shared cognitive structures/routines that govern behavior of the 

collaborators (Granovetter 1985).  Skilton and Dooley (2010) argued that an enduring mental 

model would emerge from repeated collaboration and would shape not only the way that 

individuals explain, predict, and describe events, but also the way that the team differentiates 
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roles among members.  Furthermore, the mental model is inert and constrains subsequent 

collaboration.  Thereby, repeated collaboration is less able to generate novel ideas.  Empirical 

studies have also found a negative association between repeated collaboration and creativity 

(Guimera et al. 2005, Porac et al. 2004). 

In summary, at the dyadic level, there is an inverted U-shaped relationship between tie 

strength and knowledge creation, specifically, the effect of tie strength is initially positive and 

turns negative after a threshold.  How to translate this to the network-level analysis?  If we 

assume that ties in the same egocentric network are relatively homogeneous, then we can use the 

network average tie strength to indicate the overall tie strength of the whole network, and then 

the tie strength effect at the network level is a simple aggregation of effects at the dyadic level.  

Therefore, 

 

Hypothesis 1: there is an inverted U-shaped relationship between network average tie 

strength and knowledge creation, that is, the effect of network average tie strength is 

initially positive and turns negative after a threshold. 

 

3.2. Tie configuration: skewness 

However, this tie homogeneity assumption might be problematic.  Uzzi (1996) found that 

firms maintain both embedded and arms-length ties, suggesting that the configuration of ties, 

rather than a simple dichotomy between strong-tie-network and weak-tie-network, should be 

investigated.  Uzzi (1996) used a Herfindahl-type indicator to measure the dominance of strong 

ties in a network.  In addition, some other studies defined a boundary between strong and weak 

ties, counted the number of weak and strong ties separately, and evaluated their respective effects 

(Tortoriello and Krackhardt 2010, Walsh and Maloney 2002). 

This paper investigates tie configuration, specifically the skewness of the tie strength 

distribution.  It is common that a scientist simultaneously has a small group of colleagues with 

intense interactions on the one hand and a number of loose contacts on the other.  In other words, 

the tie strength distribution of an egocentric network tends to be skewed and different from a 

normal distribution, so that using the network average tie strength may hide distinct tie 

configuration characteristics.  For example, out of two networks with the same average tie 

strength, one may have all ties of medium strength, while the other has half strong and half weak 

ties. 

Empirically, egocentric collaboration networks have (positively) skewed tie strength 

distributions, with a long tail on the right side and the bulk of the values lie to the left of the 

mean.  The small number of strong ties may reflect the constraint of carrying capacity.  Scientists 

have limited amount of time and energy, but maintaining strong relations is costly.  Therefore, 

having too many strong collaborative ties is simply infeasible or inefficient (McFadyen and 

Cannella 2004, Perry-Smith and Shalley 2003).  On the other hand, the large number of weak 

ties may reflect scientists’ broad search for diverse and complementary knowledge.  A large 

number of weak ties may augment the scientist’s knowledge base about the research domain and 
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also enhance his/her absorptive capacity (Perry-Smith and Shalley 2003, Reagans and McEvily 

2003, Simonton 1999). 

In addition, there is another implicit assumption underlying the simple aggregation 

approach (i.e., network-level effect is an aggregation of dyadic-level effects):  There is no 

interaction effect between dyads.  However, individuals can bring in lessons learned from 

previous team experiences to new situations (Ancona 1990, Gino et al. 2010, Reagans, Argote 

and Brooks 2005), and there are significant knowledge spillover from one team to another 

connected by shared members (Tang and Hu 2013, Wang and Hicks 2015).  Therefore, many 

weak ties augment the knowledge base and enhance the absorptive capacity, which benefits not 

only weak-tie-collaborations themselves but also strong-tie-collaborations in the same network.  

In other words, the benefit of knowledge diversity gained from weak ties can also be transferred 

to other collaborations. 

A useful perspective to understand the effect of tie configuration on knowledge creation 

is the exploration vs. exploitation literature.  March (1991) distinguished between exploitation 

and exploration in organizational learning:  “The essence of exploitation is the refinement and 

extension of existing competencies, technologies, and paradigms...  The essence of exploration is 

experimentation with new alternatives” (p: 85).  This seminal work has trigged a large volume of 

studies of the tradeoff between exploration and exploitation (e.g., Fleming 2001, Katila and 

Ahuja 2002, Wong 2004).  March (1991) also suggested that both exploration and exploitation 

are important for the success of the organization, and recent studies suggested that one way of 

balancing exploration and exploitation is via ambidexterity, namely synchronous pursuit of 

exploration and exploitation through highly differentiated but weakly integrated subunits or 

individuals, each of which is specialized in either exploration or exploitation (Benner and 

Tushman 2003, Fang, Lee and Schilling 2010, Lazer and Friedman 2007). 

In addition, the organizational learning literature also suggests that newcomers are more 

likely to conduct exploration, while old-timers are more likely to do exploitation (Gupta, Smith 

and Shalley 2006, March 1991, Perretti and Negro 2006).  Newcomers are important sources of 

innovation for an organization because they (1) are more likely to bring in different knowledge 

and perspectives which are not yet shared in the organization (Gupta, Smith and Shalley 2006, 

March 1991, Perretti and Negro 2006) and (2) loosen the mental model, which emerges from 

previous collaboration experiences and constraints current collaboration (Skilton and Dooley 

2010).  Therefore, a balance between exploration and exploitation within a collaborative team 

can be achieved through a mixture of both old-timers and newcomers, and such mixture 

contributes to better team innovative performance (Chen 2005, Perretti and Negro 2006). 

Similarly, an egocentric collaboration network with a mixture of weak and strong ties can 

maintain a balance between exploration and exploitation and therefore can achieve better 

performance in knowledge creation.  Specifically, when the network average tie strength is high, 

a less skewed network suffers from the lack of weak ties and exploration.  In contrast, a more 

skewed network still has a number of weak ties.  Furthermore, gains from explorative activities 

in weak-tie-collaborations can be transferred to other collaborations and contribute to better 
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knowledge creation of the whole egocentric collaboration network.  In other words, when the 

network average tie strength is high, a more skewed network performs better in knowledge 

creation because it still has a “healthy” mixture of strong and weak ties and therefore can 

maintain a balance between exploration and exploitation.  When the network average tie strength 

is low, however, the effect of tie strength skewness is unclear.  Therefore, we hypothesize that 

 

Hypothesis 2: A more skewed network performs better in knowledge creation, compared 

with a less skewed network, when the network average tie strength is high. 

 

Furthermore, ties strength skewness moderates the effect of network average tie strength.  

Given the heterogeneity of tie strength in a skewed network, the average tie strength is not an 

accurate indication of the overall tie strength of the whole network, so a more skewed network is 

less sensitive to the changes in network average tie strength.  For example, when the network 

average tie strength is low, a more skewed network already has some very strong ties.  Under 

such circumstance, if we increase the strength of each tie, the network does benefit from the 

increase in those very weak ties but not from the increase in those already very strong ones.  

Therefore, the aggregated positive effect is smaller in a more skewed network than in a less 

skewed one.  Similarly, when the network average tie strength is high, a more skewed network 

still has many weak ties.  Under such circumstance, if we increase the strength of each tie, the 

network does suffer from the increase in those very strong ties but not as much from the 

increases in those still very weak ones.  Therefore, the aggregated negative effect is also smaller 

in a more skewed network. 

 

Hypothesis 3: tie strength skewness moderates the effect of network average tie strength, 

specifically, both the initial positive effect and the later negative effect caused by an 

increase in network average tie strength are smaller in a more skewed network than in a 

less skewed one. 

 

4. Data and methods 

4.1. Data 

A panel consisting of both survey and bibliometric data for 1,042 American scientists 

(i.e., egos) with 6,998 observations (i.e., ego-year) are used for testing our hypotheses.  The 

sample of scientists came from a survey funded by the United States National Science 

Foundation (NSF).  The survey was conducted in 2007 on 3,677 stratified randomly sampled 

American scientists in six disciplines: biology (BIOL), chemistry (CHEM), computer science 

(CS), earth and atmospheric sciences (EAS), electrical engineering (EE), and physics (PHYS).  

The random sample was stratified by sex, rank, and discipline, from the population of academic 

scientists and engineers in these six disciplines in Carnegie-designated Research I universities 

(150 universities).  The population was constructed by manually retrieving information from the 

websites of the relevant departments or university directories.  Of the 1,774 completed surveys, 
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176 were removed because of ineligible rank or discipline, resulting in a final total sample size 

of 1,598.  The overall response rate of the survey, calculated using the RR2 method of the 

American Association for Public Opinion Research (AAPOR) is 45.8%, and the weighted 

response rate is 43.0%.  The responses’ distribution of sex, rank, and discipline are similar to the 

survey population. 

Life-time publications for the survey respondents were subsequently retrieved from 

Thomson Reuters Web of Science (WoS).  The collection of the publication data firstly required 

an author name and affiliation match, and then cleaned out false papers of homonymous authors 

following the procedure documented in Wang et al. (2012).  Coauthor names were also cleaned 

and disambiguated to identify unique collaborators.  The retrieval of publication records from 

WoS for each ego was last updated in May 2011.  Because of the complex publishing practice in 

the field of physics (i.e., papers often have hundreds of authors), publication data for physicists 

were excluded from the data cleaning process, leaving 1,323 scientists in the remaining five 

disciplines available for analysis.  In addition, because (1) at the time of final retrieval of 

publication records for each ego, the database coverage for 2010 was still incomplete, and (2) for 

papers published in and after, but not before, 1980, we have complete citation information for 

each paper till the end of 2013.  We kept only papers published between 1980 and 2009 for 

analysis.  Out of the 1,323 scientists, 1,310 published 41,964 journal articles in total. 

In addition, papers with a large number of authors may cause problems for this study.  

The theory of this paper relies on substantial interpersonal interactions in collaborative ties.  

However, some papers with hundreds of authors were observed in the data, and it is unclear 

whether coauthors on this type of papers actually had substantial interpersonal interactions when 

collaborating on these papers.  In addition, theoretically, the hyper-authorship (Cronin 2001) is 

beyond the scope of this study.  Therefore, papers with more than 15 authors were not used for 

constructing the variables, leaving 1,310 egos with 41,364 journal articles.  Two other thresholds, 

10 and 29 were also tried and did not change the conclusions.  In addition, we also tried an 

alternative treatment, where an ego was completely excluded from the analysis if he/she has 

paper(s) with more than 15 authors.  This treatment also yielded consistent results. 

Reported regression results are based on a dataset constructed from these 41,364 journal 

articles.  Among them 7 are shared by three egos, and 559 by two egos, while 40,798 (98.6%) 

involve only one ego in our sample.  Therefore, the sampled egos are largely unconnected to 

each other, and different egos can be treated as independent observations. 

A panel dataset for these egos was constructed for the regression analysis, where one 

observation is one ego in one year.  Because the tie strength measure for year t is measured as the 

number of coauthored papers between year t – 4 and t, the first four years of observations of each 

ego were excluded from regressions.  In total, we have 6,998 observations of 1,042 egos. 

 

4.2. Measures 

Knowledge creation.  To assess knowledge creation in year t, we used the total number 

of citations received by an ego’s papers published in year t.  While there are concerns about the 



11 

 

validity of citations as a measure of impact (Bornmann and Daniel 2008, De Bellis 2009, Martin 

and Irvine 1983), citation-based metrics have been widely used in science studies and research 

evaluations.  From Merton’s perspective, citation serves as an elementary building block of the 

scientific reward system.  For a paper, the acceptance for publishing indicates the 

acknowledgement of its original contributions to science from peers in the field.  Being cited 

further indicates the peer-recognition of its value and its impact on the scientific community (De 

Bellis 2009, Merton 1973, Wang 2014).  Empirically, citations have been found positively 

related to winning Nobel Prize, peer recognition, and novelty (Cole and Cole 1967, Garfield 

1973, Newman and Cooper 1993, Uzzi et al. 2013).  Therefore, we used citation counts as a 

measure for the impact or usefulness of a scientist’s research.  A five-year citation time window 

was used to count citations, that is, for a paper published in year t, its citations between year t 

and t + 4 were counted. 

Several treatments were undertaken to address potential issues in the use of citation 

counts.  Martin and Irvine (1983) provided a thorough discussion on problems of using citations 

for research evaluation.  First, citation ageing pattern differs across papers; many highly cited 

papers takes a long time to establish themselves as elite papers, while many others have early 

citation peaks (Garfield 1980, Glänzel, Schlemmer and Thijs 2003, Van Raan 2004).  Therefore, 

a sufficient time window is needed to give reliable citation counts.  According to Wang’s (2013) 

calculation on the whole WoS database, the Spearman correlations between five-year citation 

counts and 31-year citation counts are: 0.810, 0.906, 0.852, 0.888, and 0.792 in fields of biology, 

biomedical research, chemistry, earth and space, and engineering, respectively.  The correlations 

are sufficiently high for this study.  The second issue pertains to “obliteration by incorporation,” 

that is, some fundamental papers become so widely known and integrated into the daily work in 

the field that they no longer need to be cited explicitly (Latour and Woolgar 1986, Merton 1983).  

This issue does not cause problems in this study because only recent publications were studied.  

Third, citations are incomparable between fields because of field differences in the volume of 

publications and the norms of referencing (Moed et al. 1985).  Fourth, there is a “halo effect” in 

citation; a paper of a prestigious author or institution tends to be evaluated more highly and gets 

more citations than another comparable paper of a less prestigious author or institution (Wang 

2014).  To address the third and fourth issue, our regression strategy incorporates ego fixed 

effects and estimates within-ego effects.  Therefore, our analysis does not make between-field or 

between-individual comparisons.  The fifth issue is about self-citations.  Some productive 

scientists may actively cite their own papers, but self-citations do not reflect the recognition from 

the community (Aksnes 2003, Glänzel et al. 2006).  Therefore, non-self-citation counts were also 

tried, which gave similar results. 

Collaboration network.  For an ego, his/her coauthors in year t were identified to 

construct his/her collaboration network for knowledge creation in year t.  Network size is the 

number of coauthors.  Previous literature suggested an inverted U-shaped relationship between 

network size and knowledge creation (Lavie and Drori 2012, McFadyen and Cannella 2004), 

because an increase in network size on the one hand increases cognitive diversity but on the 
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other hand may distract scientists from other more productive activities.  Therefore, both network 

size and network size
2
 were included in the regression models. 

Tie strength is operationalized as the frequency of collaboration in a five year time 

window, including the current and preceding four years.  Specifically, in year t, the strength of a 

tie between one ego and a coauthor was measured as the number of coauthored papers between 

them in the period from t - 4 to t.  At the egocentric network level, tie strength avg was 

calculated as the network average tie strength.  Skewness of the tie strength distribution was 

calculated using the following formula: 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
n

(n − 1)(𝑛 − 2)
∙

∑ (𝑥𝑖 − �̅�)3𝑛
1

(
1

𝑛 − 1 ∙
∑ (𝑥𝑖 − �̅�)2𝑛
1 )

3/2
 

 

where n is the number of ties in an egocentric network, and xi is the tie strength for the i-th tie in 

the egocentric network.  In addition, two other popular skewness formulas, i.e., 

1

𝑛
∙ ∑ (𝑥𝑖 − �̅�)3𝑛

1 (
1

𝑛
∙ ∑ (𝑥𝑖 − �̅�)2𝑛

1 )
3/2

⁄  and 
1

𝑛
∙ ∑ (𝑥𝑖 − �̅�)3𝑛

1 (
1

𝑛−1
∙ ∑ (𝑥𝑖 − �̅�)2𝑛

1 )
3/2

⁄ , were also tried, 

and all three skewness measures were highly correlated and yielded similar regression results. 

Control variables.  The number of papers published in year t (pubs) was controlled, 

given that more papers may result in higher total number of citations.  In addition, having 

ln(citations) and ln(pubs) on the two sides of the equation is the appropriate way of modeling the 

power law scaling relationship between them (Katz 1999, Katz 2000). 

We incorporated ego fixed effects to control for unobserved and time-invariant individual 

heterogeneities. In addition, we adopted the following variables to control for time-variant 

individual characteristics.  Both the number of citations (the dependent variables) and the 

collaboration network (the explanatory variables) are likely to be correlated with the ego’s 

previous performance.  For example, successful history breeds further success and also attracts 

new collaborators.  Therefore, we control for ego’s citation performance in year t - 1 (citations 

lag). 

Furthermore, age and experience are important factors of research collaboration and 

performance (Lee and Bozeman 2005, Levin and Stephan 1991, van Rijnsoever, Hessels and 

Vandeberg 2008, van Rijnsoever and Hessels 2011), so career age was included to control for 

both effects, following Lee and Bozeman (2005).  To account for the nonlinear trajectory of 

research performance over the life cycle (Cole 1979, Levin and Stephan 1991), both career age 

and career age
2
 were included in the regression models.  The list of variables is provided in 

Table 1. 

 

---------------- Please insert Table 1 about here ---------------- 
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4.3. Methods 

The total number of citations is a non-negative count variable with over-dispersion, so the 

Poisson model with robust standard errors was adopted, following previous literature (Hall and 

Ziedonis 2001, Hottenrott and Lopes-Bento In Press, Somaya, Williamson and Zhang 2007, 

Wang, Thijs and Glänzel 2015).  An alternative is the negative binomial model.  However, 

because the Poisson model is in the linear exponential class, Gourieroux, Monfort and Trognon 

(1984) have shown that the Poisson estimator and the robust standard errors are consistent so 

long as the mean is correctly specified even under misspecification of the distribution, but the 

negative binomial estimator is inconsistent if the true underlying distribution is not negative 

binomial.  Therefore, we report the Poisson model with robust standard errors in the paper, and 

use negative binomial models as a robustness check. 

Furthermore, we incorporated individual fixed effects to account for unobserved and 

time-invariant individual heterogeneities, so that within-ego effects were estimated.  Such fixed 

effects Poisson models can be fitted by conditioning out the individual fixed effects (Hausman, 

Hall and Griliches 1984).  Specifically, we used the xtpoisson command in STATA (StataCorp 

2013a), which implements the formula as presented in Wooldridge (1999).   

Hausman, Hall and Griliches (1984) also developed a conditional maximum likelihood 

strategy for negative binomial models, which is implemented in the xtnbreg function in STATA 

(StataCorp 2013b).  However, this method allows for individual-specific variation in the 

dispersion parameter rather than in the conditional mean, and therefore does not qualify as a true 

fixed effects method (Allison and Waterman 2002, Greene 2005, Guimarães 2008).  To the best 

of our knowledge, we are not aware of any statistics software providing a true fixed effect 

negative binomial solution.  For testing robustness of our findings, we also fitted the xtnbreg 

models and got consistent results. 

Poisson models predict the natural logarithm of the dependent variable with a linear 

combination of the independent variables.  Therefore, the natural logarithm of citations lag was 

used in the regression model.  In addition, Katz (1999)  suggested a power law scaling 

relationship between the number of citations and publications and suggested to use a log-log 

model for data analysis, so the number of publication (pubs) was also natural logarithm 

transformed. 

 

5. Results 

5.1. Descriptive statistics 

Descriptive statistics and correlations are reported in Table 2.  On average, the total 

number of citations is 58.44, the number of publications is 3.86, and career age is 16.79.  The 

average network size is 9.96, ranging from 3 to 109.  Network average tie strength has mean 2.46 

and ranges from 1.05 to 36.  Skewness has mean 1.38 and ranges from -3 to 5.71.  The number 

of citations is highly correlated with citations in the previous year, the number of publications, 

and network size, all above 0.5.  The number of citations is also positively correlated with 

network average tie strength (0.13) and skewness (0.20).  The focal variable tie strength avg has 
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the highest correlation with citation lag (0.25), and skewness has the highest correlation with 

network size (0.36).  We are not concerned about the multi-collinearity issue with these levels of 

correlations. 

 

---------------- Please insert Table 2 about here ---------------- 

 

5.2. Regression results 

Fixed effects Poisson models are reported in Table 3, which estimate within-individual 

effects.  From column 1 to 6, variables of interest are added sequentially, for appropriately 

testing the quadric effect of network average tie strength and the moderating effect of tie strength 

skewness.  Wald tests, Δχ
2
(model i vs i-1), are also reported to test whether each sequentially 

added variable is significant.  The second set of Wald tests, Δχ
2
(model i vs. i-2), test the added 

linear and quadric terms together.  For example, Δχ
2
(model i vs. i-2) in column 3 compares 

model 3 against model 1 to test the significance of tie strength avg and tie strength avg
2
 together. 

To better illustrate the relationship between network average tie strength and the number 

of citations, at different levels of tie strength skewness, Fig. 1 plots the estimated citations 

against tie strength avg in low-, median-, and high-skew (i.e., first, second, and third skewness 

quartile) networks separately.  Estimates are based on the regression result in Table 3 column 6. 

 

---------------- Please insert Table 3 about here ---------------- 

---------------- Please insert Figure 1 about here ---------------- 

 

In terms of the effect of network average tie strength on citations, without accounting for 

skewness, neither the linear nor the quadratic terms of tie strength avg is significant (column 3).  

However, after adding the skewness and interaction terms to the model, tie strength avg has a 

significantly positively effect, while tie strength avg
2
 has a significantly negative effect, 

suggesting an inverted U-shaped relationship between network average tie strength and the 

number of citations (Fig. 1).  To be more specific, for the same individual, with the same career 

age, number of publications, and prior citation performance, an increase in network average tie 

strength first has a positive and latter a negative effect on the number of citations for the 

currently produced papers.  Furthermore, the fact that the effect of network average tie strength 

is insignificant when the tie strength skewness is not appropriately accounted for also confirms 

our argument that the effect of network average tie strength is only pronounced when the 

network has a homogeneous tie strength distribution. 

We argued that, when the network average tie strength is high, a network with skewed tie 

strength distribution will achieve better performance, because it has a balance between 

exploration and exploitation.  The regression result (Table 3 column 6) suggests a significantly 

positive effect of skewness when network average tie strength is 0.  Fig. 1 further demonstrates 

that the positive effect of skewness is larger when the network average tie strength is higher. 
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Regression results also confirm the moderating effect of skewness on network average tie 

strength.  The interaction effect between network average tie strength and skewness is negative, 

indicating that the first-order positive effect of network average tie strength is smaller in more 

skewed networks.  This negative interaction effect between network average tie strength and 

skewness is significantly positive, indicating that the negative effect of tie strength increases is 

also smaller in more skewed networks. 

Effects of control variables might also be worth noting.  Within the observed interval of 

[-6, 56], career age has a continuously positive effect on citations.  This is different from 

previously observed inverted U-shaped relationship between age and publication productivity 

(Cole 1979, Levin and Stephan 1991).  This suggests divergent life-cycle dynamics in 

publication and citation performance.  As expected, the number of publications is strongly 

related to citations; as the number of publications increase by 1%, the number of total citations 

increases by 0.75%.  However, the prediction power of prior citations on current citations is not 

so strong; an 1% increases in citations received by papers published in the preceding year is 

associated with 0.04% increase in citations received by papers published in the present year.  On 

the other hand, the 0-order correlation between citations and citations lag is 0.52.  This suggests 

that the inertia or persistence in performance is more pronounced when making between-

individual comparisons.  In other words, scientist A’s current papers are much more likely to be 

highly cited than scientist B’s, if A’s previous papers have more citations than B’s.  However, 

when comparing A’s performance with him/herself over time, prior success has a lower 

prediction power.  In line with previous literature (Lavie and Drori 2012, McFadyen and 

Cannella 2004), an inverted U-shaped relationship between network size and citations is 

observed.  An increase in network size has a positive effect on citations at first, but after a size of 

around 58 collaborators, a further increase in network size has a negative effect on citations. 

 

5.3. Robustness tests 

There are remarkable differences between different scientific disciplines in terms of how 

science is produced and how the scientific work is organized (Whitley 2000).  Therefore, one 

question is whether our findings are field-specific or generalizable across fields.  To address this 

concern, we run regressions for five fields separately (Table 4 column 1 to 5).  Coefficients on 

tie strength avg, tie strength avg
2
, skewness, and interaction terms between them all have the 

same direction as in Table 3, where all fields are pooled together.  However, they are 

insignificant in most fields, except in chemistry.  This is probably because we don’t have enough 

data for individual field analysis.  Note that chemistry has the largest number of observations in 

our sample.  Given that all coefficients have the same direction, and no significant coefficients 

have the opposite direction, we cautiously conclude that there is no evidence that our findings are 

not generalizable cross field, but more data need to be collected to further test this in the future. 

Like most network studies, this paper focuses on the structural aspect of the network but 

does not account for differences between network nodes, such as whether the collaborators are 

prestigious or peripheral researchers, and whether the ego has higher power in choosing potential 
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collaborators.  With individual fixed effects and prior performance to account for both time-

invariant and time-variant individual heterogeneities, we believe that our model can 

appropriately control for differences in egos and their coauthors.  Nevertheless, we run separate 

regressions for senior and junior researchers.  The idea is that the differentiation between senior 

and junior should to some extent capture the difference in ego status and coauthor quality.  

Specifically, we partition our data into two sets with the same number of observations, one with 

career age above the population median and the other below.  Regression results are reported in 

Table 4 column 6 and 7.  After splitting the sample, the effect of career age disappeared.  For the 

senior group, coefficients on focal explanatory variables are all significant and have the same 

direction as in Table 3.  However, for the junior group, coefficients still have the same direction 

but none is significant.  A further scrutiny of the data shows that although two groups have the 

same number of observations, the junior group has more individuals.  Because each ego has a 

smaller number of observations in the junior group, there is not much within-individual variance 

left after controlling for individual fixed effects.  Again, since we do not observe significant but 

opposing results, we cautiously conclude that there is no strong evidence against our findings. 

 

---------------- Please insert Table 4 about here ---------------- 

 

Furthermore, we have done a number of robustness checks.  As reported in the data 

section, we excluded papers with more than 15 authors for constructing the dataset, in order to 

address the hyper-authorship problem.  In addition to the threshold of 15, we also tried two other 

thresholds, 10 and 29, and obtained similar results.  We also tried an alternative strategy, 

excluding all the observations of an ego if he/she has a paper with more than 15 authors, and got 

consistent results.  The reported results used one formula of skewness, using two other popular 

formulas yields robust results.  We used Poisson model, using the negative binomial model also 

led to similar results.  Reported results used a panel strategy with ego fixed effects, we also tried 

a cross-sectional strategy and got robust results, where we used the period between 2005 and 

2007 for each ego, without ego fixed effects but with additional field and demographic control 

variables. 

 

5.4. Alternative explanations 

For the observed relatively poor performance of networks with very high tie strength, our 

explanation is that networks dominated by strong ties have low cognitive diversity and therefore 

are less likely to generate novel ideas.  One alternative explanation is that it is not really because 

of cognitive diversity but because of network constraints.  Networks present not only 

opportunities but also constraints (Gabbay 1997), and this constraint effect can happen through 

the following two mechanisms.  First, strong relationships are binding and powerful to impose 

obligations to cooperate (Hansen 1999, Weick 1976).  This strong binding effect may help 

performance of the group but is not necessarily optimal for the individual personally, because it 

reduces individual’s autonomy and prevents him from strategically allocating energy and efforts 
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across different collaborations in order to maximize his personal gains.  Second, strong 

relationships further prevents individuals from altering current network structure or establishing 

new and more efficient networks (Gabbay 1997).  To assess this alternative explanation, the 

Spearman correlation between the number of new collaborators in 2008 and the network average 

tie strength between 2005 and 2007 was calculated, which is 0.03 and insignificant (p=0.34).  

Therefore, we did not find evidence that strong ties would restrict developing new collaborative 

relations. 

The second alternative explanation is that it is not really because strong-tie-collaborations 

are less likely to be creative but because they choose to produce many small papers which are 

expected to have narrow applications and small impact.  Scientists can be modeled as rational 

agents and only pursue the collaborative project when the expected payoffs are greater than the 

costs.  Since strong-tie-collaborations have lower costs because of high cognitive and relational 

capitals, many small projects with low payoffs become “profitable.”  Under such circumstance, 

the observed average citations of strong-tie-collaborations will be pulled down by these small 

papers.  The other side of the costs story is that experimental projects are also only “profitable” 

for strong-tie-collaborations (Aghion, Dewatripont and Stein 2008, Catalini 2012).  An 

experimental project has a high payoff once it reaches the final success.  However, it takes a long 

trial-and-error process and may fail at any stage in the process.  After accounting for the high 

probability of failure, the expected payoff of this experimental project is very low.  Therefore, an 

experimental project would be pursued only when the costs are very low, such as in strong-tie-

collaborations.  In summary, our explanation about the declined creative capacity predicts that 

strong-tie-collaborations have both low average and maximum citations, while the alternative 

costs theory predicts that strong-tie-collaborations have low average but high maximum citations.  

To test these two competing theories, we classified each scientist’s coauthors, in each year, into 

two types: new (not coauthored in the last three years) and repeated (coauthored at least once in 

the last three years).  Subsequently, we compared a scientist’s new collaboration papers (i.e., 

papers with only new collaborators) and his repeated collaboration papers (i.e., papers with only 

repeated collaborators).  This comparison focuses on purely new versus purely repeated 

collaborations and therefore excluded solo authored papers and papers with both new and 

repeated coauthors.  Paired Wilcoxon Signed-Rank tests suggested that repeated-collaborations 

have significantly lower average and maximum citations.  This result supported our creative 

capacity theory and rejected the costs theory. 

 

6. Conclusions 

This paper investigated the relationship between egocentric collaboration networks and 

knowledge creation at the individual level.  For egocentric collaboration networks, this paper 

focused on network characteristics in terms of tie strength and strong/weak tie configuration.  

Knowledge creation was evaluated by the number of citations.  An inverted U-shaped 

relationship was found between network average tie strength and knowledge creation.  An 

increase in tie strength (1) on the one hand increases the cognitive and relational capital in the 
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network and therefore facilitates the collaborative knowledge creation process, and (2) on the 

other hand decreases the cognitive diversity and therefore impedes the generation of novel and 

useful ideas.  Taking two mechanisms together, an increase in tie strength initially has a positive 

effect on knowledge creation, but the effect turns into negative after the tie strength reaches a 

threshold.  Furthermore, when the network average tie strength is high, a more skewed network 

can achieve better performance than a less skewed one, because a more skewed network still has 

a “healthy” mixture of strong and weak ties and a balance between exploration and exploitation.  

In addition, the skewness of tie strength distribution moderates the effect of network average tie 

strength.  In a more skewed network, both the initial positive effect and the later negative effect 

of network average tie strength are smaller than in a less skewed network. 

There are several limitations of this study.  First, because this study relied heavily on the 

bibliometric data, we could not avoid the issues pertaining to the use of citations for evaluating 

knowledge creation (Martin and Irvine 1983) and the use of coauthorships for measuring 

collaborations (Katz and Martin 1997, Laudel 2002), although we took various procedures to 

account for those potential issues and various robustness tests to ensure the reliability of our 

findings.  It may be helpful for future research to use different kinds of data and measures to 

validate these findings.  In addition, disambiguating author names is a difficult obstacle for 

individual-level analysis.  We have invested a lot of effort in collecting and cleaning publication 

record for individual scientists.  However, physics was excluded from the data cleaning process, 

because it is much more challenging to disambiguate physicists whose papers often have 

hundreds of coauthors.  However, leaving one important field out is a big limitation of this study.  

Furthermore, this paper studied only the egocentric networks, direct ties, and the strength of 

direct ties, but not the global networks, indirect ties, or other aspects of network structure.  

Therefore, it does not answer questions concerning these other aspects.  Different from previous 

individual level network studies following the social capital perspective and studying the indirect 

effect of previous network on current knowledge creation, this paper studied the current network 

as work organizations and its direct effect on knowledge creation.  Our approach contributes to 

understanding the organization of science and social capital mobilization, but also has a price.  

Specifically, we cannot study the effect of current network on productivity with our data, 

because the construction of current network and the assessment of current productivity will be 

like counting the same set of papers in different ways, which would have serious endogeneity 

issues.  Therefore, we only focused on the effect of current network on citations, controlling for 

productivity, where citations occur temporally after the network and is out of the hands of egos. 

This paper makes the following theoretical contributions.  First, it contributes to the 

organization of science literature.  The production of scientific knowledge is increasingly 

collaborative.  On the one hand, it is important to study collaborative teams which are the actual 

“factories” producing science.  On the other hand, because collaborative teams in science are 

fluid and interdependent, it is also important to look beyond team boundaries and account for 

external activities, in other words, it is also important to adopt the network approach for studying 

the organization of collaborative science.  Second, it contributes to the studies of individual 
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scientists.  Previous studies adopt the social capital perspective, studying the effect of previous 

network on current performance.  However, this paper follows a work organization perspective, 

studying the effect of current network on current knowledge creation.  This alternative approach 

allows for studying the knowledge creation process and resource mobilization in the current 

network.  Third, this study also demonstrates the importance of investigating the configuration of 

ties rather than adopting a simple dichotomy between weak and strong ties.  In social network 

studies, it might not always be appropriate to assume that network ties are homogeneous or view 

the network level effect as a simple aggregation of dyadic level effects.  For example, in the 

world of science, scientists’ egocentric collaboration networks have a mixture of strong and 

weak ties, and the network ties are heterogeneous.  This complicated configuration 

characteristics should be studied, instead of simply studying the overall tie strength of the 

network.  In this paper, we studied the skewness of tie strength distribution and demonstrated the 

positive and moderating effects associated with this tie configuration characteristic. 

This paper also has implications for science funding and research management.  Given 

the widely accepted notion that collaboration is good for productivity and creativity, many 

funding agencies have established special programs supporting collaborative research.  However, 

not all collaborations are equally beneficial.  Therefore, it is important to distinguish between 

different types of collaborations and design more targeted funding polices.  In addition, there is 

increasing concern in the United States that the current competitive project-based funding model 

may impede path-breaking discoveries, because it favors investigators with established 

successful records and favors projects confirming rather than challenging current norms (Alberts 

2010, NPR 2013, Petsko 2012, Walsh 2013).  This paper also contributes to this discussion; 

suggesting another risk in the current funding model, which may encourage repeated 

collaborations with prior success but discourage the exploration of new collaborative relations.  

Consequently, this may drive up the tie strength of scientists’ collaboration networks and impede 

creativity at both the individual level and the level of the whole science system.  In addition, 

findings of this paper suggest that individual scientists can benefit from a balance between 

explorative and exploitative collaborations and a mixture of both weak and strong ties.  It is a 

good strategy for individual scientists to maintain a small number of very close collaborators but 

at the same time expand personal networks and explore new collaborative opportunities. 

Dourish (2006) suggested that while empirical contributions provide more specific 

implications for practice, analytical contributions lead to more profound implications in terms of 

new ways to approach the problem.  Following this idea, this paper also contributes to the 

economics of science.  Economics studies have modeled the behavior of scientists in choosing 

collaborative partners or projects, where the goal of an scientist is to maximize his/her personal 

payoffs from one specific collaboration (Banal-Estañol, Macho-Stadler and Pérez-Castrillo 2014, 

Carayol 2003, Gans and Murray 2013).  However, this paper may suggest take into account the 

interdependence between different collaborations and consider the goal of a scientist as 

maximizing payoffs from his portfolio of collaborations instead of a single collaboration.  In 

addition, this study also suggests new ways for designing the funding systems.  There is a 
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remarkable transition towards competitive project-based funding systems (Stephan 2013) and a 

long-standing interest in estimating the funding effect on research productivity and impact 

(Arora and Gambardella 2005, Azoulay, Graff Zivin and Manso 2011, Jacob and Lefgren 2011).  

On the other hand, there is also debate on whether project- or individual-based funding system is 

more efficient (Ioannidis 2011).  This paper contributes to the design of funding programs by 

suggesting alternative strategies.  For example, set up lab-based funding programs with a 

proportion of funds reserved for outreaching activities.  On the one hand, this funding strategy 

facilitates the development of strong ties between lab members.  On the other hand, it creates 

opportunities for lab members to establish weak ties outside the lab. One essential component of 

this funding strategy is to encourage active interactions between lab members, instead of 

building a virtual lab pooling researchers’ profiles online without substantial collaborations 

between them. In addition, compared with project-based funding strategy, this lab-based funding 

strategy provides researchers with the flexibility to allocate the funds, which is found to be 

beneficial to creativity (Heinze et al. 2009).  Another essential component is the reserved funds 

to encourage researchers to establish weak ties through visiting other institutions, hosting visiting 

scholars, and organizing workshops and conferences. 
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Table 1 

Variable Descriptions 

Variables Descriptions 

Citations The total number of citation received by a scientist’s papers published in year t.  A 

five-year citation time window is used to count the citations for each paper, 

i.e., for each paper published in year t, its citations between t and t + 4 are 

counted. 

Citations lag The total number of citation received by a scientist’s papers published in year t - 1.  

A five-year citation time window is used to count the citations for each 

paper. 

Career age Year t minus the year receiving the PhD degree. 

Pubs The number of publications of a scientist in year t. 

Network size The number of coauthors of a scientist in year t. 

Tie strength avg The average tie strength between a scientist and his/her coauthors of year t.  A five-

year time window is used for measuring tie strength between an ego and 

his/her coauthor in year t, specifically the number of times that they 

coauthored between year t – 4 and t.  

Skewness The skewness of a scientist’s tie strength distribution in year t. 

 

 

 

 

 

Table 2 

Descriptive statistics. 

 

Variables Mean SD Min Max Spearman correlations 

      1 2 3 4 5 6 

1 Citations 58.44 80.17 0 2067 

      2 Citations lag 54.12 78.89 0 2067 .52 

     3 Career age 16.79 9.48 -6 56 -.02 .03 

    4 Pubs 3.86 2.74 1 25 .62 .33 .10 

   5 Network size 9.96 8.32 3 109 .56 .34 .10 .65 

  6 Tie strength avg 2.46 1.42 1.05 36 .13 .25 .11 .21 .02 

 7 Skewness 1.38 1.14 -3 5.71 .20 .12 .00 .20 .36 -.22 

Number of observations: 6998. 

Number of egos: 1042. 

Correlations with bold numbers are significant at p < .05. 
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Table 3 

Fixed effects Poisson models. 

 Citations 

 (1) (2) (3) (4) (5) (6) 

Career age -0.0318*** 

(0.0081) 

-0.0317*** 

(0.0082) 

-0.0321*** 

(0.0083) 

-0.0320*** 

(0.0083) 

-0.0326*** 

(0.0083) 

-0.0324*** 

(0.0082) 

Career age
2
 0.0006*** 

(0.0002) 

0.0006*** 

(0.0002) 

0.0006*** 

(0.0002) 

0.0006*** 

(0.0002) 

0.0006*** 

(0.0002) 

0.0006*** 

(0.0002) 

Pubs (ln) 0.7442*** 

(0.0401) 

0.7512*** 

(0.0401) 

0.7485*** 

(0.0396) 

0.7485*** 

(0.0396) 

0.7517*** 

(0.0391) 

0.7565*** 

(0.0388) 

Citations lag (ln) 0.0394*** 

(0.0149) 

0.0421*** 

(0.0161) 

0.0409** 

(0.0161) 

0.0409** 

(0.0161) 

0.0427*** 

(0.0161) 

0.0429*** 

(0.0161) 

Network size 0.0311*** 

(0.0041) 

0.0301*** 

(0.0043) 

0.0305*** 

(0.0043) 

0.0305*** 

(0.0041) 

0.0305*** 

(0.0040) 

0.0302*** 

(0.0040) 

Network size
2
 -0.0003*** 

(0.0001) 

-0.0003*** 

(0.0001) 

-0.0003*** 

(0.0001) 

-0.0003*** 

(0.0001) 

-0.0003*** 

(0.0001) 

-0.0003*** 

(0.0000) 

Tie strength avg  -0.0138 

(0.0147) 

0.0177 

(0.0327) 

0.0177 

(0.0342) 

0.0572 

(0.0354) 

0.0988** 

(0.0443) 

Tie strength avg
2
   -0.0034 

(0.0027) 

-0.0035 

(0.0028) 

-0.0047* 

(0.0027) 

-0.0090** 

(0.0038) 

Skewness    0.0001 

(0.0138) 

0.0530** 

(0.0221) 

0.1034*** 

(0.0365) 

Tie Strength avg * 

Skewness 

    -0.0215*** 

(0.0067) 

-0.0527*** 

(0.0186) 

Tie Strength avg
2
 * 

Skewness 

     0.0034** 

(0.0017) 

Ego fixed effects Yes Yes Yes Yes Yes Yes 

Log pseudolikelihood -74680 -74651 -74617 -74617 -74468 -74404 

Wald χ
2
 1312*** 1337*** 1345*** 1439*** 1507*** 1473*** 

Δχ
2
(model i vs i-1)  0.88 1.62 0.00 10.15*** 4.10** 

Δχ
2
(model i vs i-2)   3.92   10.36*** 

Number of observations: 6852. 

Number of egos: 896. 

146 observations/egos dropped because single observation per ego. 

Cluster-robust standard errors in parentheses. 

* p < .10, ** p < .05, *** p < .01. 

 

  



29 

 

Table 4 

Fixed effects Poisson models by field and seniority. 
 Citations 

 (1) (2) (3) (4) (5) (6) (7) 

 BIOL CHEM CS EAS EE Junior Senior 

Career age -0.0394** 

(0.0155) 

-0.0370*** 

(0.0123) 

0.0079 

(0.0323) 

0.0036 

(0.0114) 

-0.0474 

(0.0301) 

-0.0269 

(0.0282) 

-0.0153 

(0.0260) 

Career age
2
 0.0005 

(0.0004) 

0.0007*** 

(0.0003) 

0.0004 

(0.0007) 

-0.0002 

(0.0003) 

0.0021*** 

(0.0007) 

0.0002 

(0.0014) 

0.0003 

(0.0004) 

Pubs (ln) 0.6664*** 

(0.0584) 

0.7854*** 

(0.0605) 

0.7093*** 

(0.1496) 

0.6271*** 

(0.0778) 

0.9675*** 

(0.1083) 

0.7505*** 

(0.0510) 

0.7676*** 

(0.0564) 

Citations lag (ln) 0.0431** 

(0.0215) 

0.0764** 

(0.0295) 

-0.1064*** 

(0.0374) 

0.0040 

(0.0206) 

0.0754* 

(0.0423) 

0.0000 

(0.0257) 

0.0353* 

(0.0188) 

Network size 0.0348*** 

(0.0052) 

0.0311*** 

(0.0076) 

0.0419* 

(0.0248) 

0.0450*** 

(0.0107) 

0.0124 

(0.0080) 

0.0293*** 

(0.0061) 

0.0332*** 

(0.0061) 

Network size
2
 -0.0003*** 

(0.0000) 

-0.0004*** 

(0.0001) 

0.0003 

(0.0005) 

-0.0004*** 

(0.0002) 

-0.0001 

(0.0001) 

-0.0003*** 

(0.0001) 

-0.0003*** 

(0.0001) 

Tie strength avg 0.0088 

(0.0730) 

0.1416 

(0.0958) 

0.2338 

(0.2663) 

0.1507 

(0.0964) 

0.0717 

(0.0980) 

0.0683 

(0.0580) 

0.1328** 

(0.0627) 

Tie strength avg
2
 -0.0062 

(0.0060) 

-0.0157** 

(0.0080) 

-0.0164 

(0.0275) 

-0.0152* 

(0.0083) 

-0.0037 

(0.0067) 

-0.0059 

(0.0050) 

-0.0166*** 

(0.0059) 

Skewness -0.0202 

(0.0729) 

0.1670** 

(0.0693) 

0.0616 

(0.2181) 

0.1863* 

(0.0986) 

0.1413 

(0.1029) 

0.0747 

(0.0466) 

0.1463** 

(0.0662) 

Tie Strength avg 

* Skewness 

-0.0062 

(0.0449) 

-0.0958*** 

(0.0345) 

-0.0962 

(0.1222) 

-0.0838 

(0.0558) 

-0.0701* 

(0.0386) 

-0.0376 

(0.0232) 

-0.0921** 

(0.0364) 

Tie Strength avg
2
 

* Skewness 

0.0000 

(0.0046) 

0.0099*** 

(0.0034) 

0.0156 

(0.0130) 

0.0071 

(0.0054) 

0.0027 

(0.0028) 

0.0020 

(0.0020) 

0.0095** 

(0.0037) 

Ego fixed effects Yes Yes Yes Yes Yes Yes Yes 

N obs 1585 2207 727 1446 887 3357 3355 

N egos 201 236 135 197 127 666 486 

Log 

pseudolikelihood 

-19122 -24791 -6106 -13335 -8664 -34642 -32597 

Wald χ
2
 944*** 847*** 142*** 788*** 917*** 770*** 999*** 

Cluster-robust standard errors in parentheses. 

* p < .10, ** p < .05, *** p < .01. 
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Figure 1 

Tie strength effect on citations. 

 

 

 


