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Abstract—Multi-tenant Software as a Service (SaaS) is the
cloud computing delivery model that maximizes resource sharing
up to the level of a single application instance servicing many
customer organizations (tenants) at once. Due to this scale of
delivery, a SaaS offering, once successful, becomes difficult to
upgrade and evolve without affecting service continuity and
tenant businesses profoundly.

However, not all tenants are equal, and to some organizations
such disruptions are more costly than to others. To account
for such tenant-specific requirements, middleware for upgrading
SaaS applications should support tenant-specific enactment of
upgrades that allow for a customizable schedule and type of
enactment in accordance to the tenant SLA.

In this paper, we present our design and implementation of a
SaaS middleware that enables run-time adaptation by means of a
gradual tenant-by-tenant activation of upgrades. The adaptation
mechanism is multi-staged, i.e. supports configuration based on
the inputs of the tenant administrator and other stakeholders,
and is maximally automated.

We have validated the middleware in an OSGi-based pro-
totype implementation and evaluated this prototype, showing
negligible performance overhead of the middleware and yet
clearly showcasing service continuity improvements in realistic
upgrade scenarios.

I. INTRODUCTION

In the cloud computing paradigm, Software-as-a-Service
(SaaS) applications are long-living Internet applications that
are offered at low cost to organisations (called tenants) in
order to compete directly with business applications that are
operated locally. A SaaS provider’s key requirements for cost-
efficient service provisioning are high utilization of resources
and operation at large-scale in order to attain significant
economies-of-scale effects. At run time, the highest utilization
level can be attained with application-level multi tenancy [12],
i.e. sharing application instances among different tenants. For
ensuring application integrity of shared instances, however,
side effects of one tenant’s execution must be isolated from
those of the others [12], [51].

Such a multi-tenant SaaS application –once successful such
that it provides reliably to many tenants’ businesses– becomes
difficult to change without affecting service continuity, conse-
quently profoundly impacting tenant businesses. In the course
of evolution, a SaaS application eventually will, however, have
to tolerate service disruptions. As not all tenants are equal, to
some tenant organisations such disruptions are more costly
than to others, but manually managing individual exceptions
is complex, error-prone and costly [43], [13]. To account for
such tenant-specific quality requirements, support for dynamic
upgrades of a SaaS application is necessary that allows for
tenant-specific and customizable enactment.

Our proposed middleware provides support for multiple
enactment strategies, enabling the SaaS developer to provide
alternative impact variants on service continuity for unforeseen
upgrades out of which one can be chosen and configured
by involved stakeholders of the application’s operation in a
multi-staged [41] fashion; much in line with recent trends
such as DevOps [16] that advocate tight integration between
development and operation. Moreover, the actual dynamic
enactment is carried out by means of a gradual, maximally au-
tomated, tenant-by-tenant activation, allowing tenant-specific
constraints to be respected on the one hand, and improving
service continuity throughout the upgrade enactment process
on the other hand. More technically, our middleware enhances
SaaS applications modelled as dynamic service-oriented ar-
chitectures with explicit software variability support [42], [35]
in that it provides a dynamic service lookup component for
service composition based on tenant configurations which is
the key component we rely on for activating upgrades.

Focusing on the impact of the run-time transition between
two application versions, our middleware support for evolution
renders the upgrade enactment less harmful for the stakehold-
ers involved and in consequence more cost efficient. Specif-
ically, it allows for (i) scalable tenant-by-tenant activation
of upgrades which timely decouples its impact on different
tenants, and lowers the duration of service disruption per
tenant. Moreover, (ii) it supports different activation strategies,
effectively allowing for different compromises in service con-
tinuity, which are (iii) configurable by different stakeholders.

We have built a prototype of our middleware as an exten-
sion of the Apache Felix [1] OSGi framework, and evaluate it
in the context of a real-world multi-tenant SaaS application.

The remainder of this paper is structured as follows:
First a brief background on multi-tenant SaaS applications
is given in Section II and their need for and the challenges
of run-time evolution is motivated, putting forward a set of
key requirements for an enhanced middleware support that
addresses those challenges (Section III). Sections IV, V and VI
present our middleware concept, its prototype implementation
and evaluation. Thereafter, Section VII discusses our design
decision to use a service component as smallest unit of evo-
lution, and extends the application scope of our middleware.
Section VIII discusses related work before a final conclusion
and pointers to future work are given in Section IX.

II. BACKGROUND

Multi-tenant SaaS applications are commonly built as
service-oriented architectures: Loosely-coupled services are
stored in a repository and listed in a registry when becoming
available [29], [21], [52]. For cost-efficiency, a known tactic
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is application-level multi-tenancy [12] where service compo-
nent [10] instances are shared among tenants [35] in a way
that application state and user data are strictly separated [12],
and their composition is configured according to specific
tenant requirements [29], [17], [52], [7], [42], as illustrated in
Figure 1. To the artifacts that describe tenant-specific service
compositions, we refer as tenant configurations. They reside
in a tenant configuration repository (Fig. 1) that is accessible
for service components, and can be maintained directly by the
tenant organisation [43].

As typical for service-oriented architectures, several service
components of an application collaborate in order to provide
the requested end-to-end functionality to end-users (cf. service
composition illustrated in Fig. 1). Here, it is important to note
that service requests may be dynamically interdependent [32]:
a service request may trigger a service component to request
service from another (serial dependency), multiple service
requests between two parties may be required to complete a
collaboration (parallel dependency), or a combination of both.
In this paper, we use the notion of transactions [27], [49],
[32] to group the set of service requests that are dynamically
interdependent.

The following common stakeholders for multi-tenant SaaS
applications [52] are of significance to this paper: The SaaS de-
veloper and SaaS operator are employed by the SaaS provider.
While the former is aware of implementation internals of
current and upcoming versions, the latter is concerned with
the provisioning and operation of the SaaS application. The
tenant administrator and end users are associated with the
tenant organisation. The administrator configures and manages
the SaaS application on the tenant’s behalf, and end-users are
either its employees or customers and represent the consumers
of the SaaS application.

III. MOTIVATION

From the experience that we gained from different research
collaborations with actual SaaS providers [3], [5], [4], we
learned that over time, a successful multi-tenant SaaS appli-
cation not only serves a numerous amount of tenants simulta-
neously –and therefore must provide a continuously available
service– but also faces evolution that requires different kinds
of upgrades [30] of the application at run time. In this setting,
a dynamic enactment of upgrades is supposed to introduce
the upgraded software (for example, an upgraded service
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Fig. 1: Common multi-tenant SaaS applications built as dynamic service-
oriented architectures and employing dynamic service composition for tenant-
specific customization needs.

component), while imposing minimal (ideally, no) impact on
the on-going operations.

Whenever the enactment of an upgrade unavoidably causes
a disruption on service continuity (e.g. in the case of an incom-
patible upgrade [9]), it affects either its availability in favour
of maintaining behavioural consistency or vice versa [27],
[6]. To account for the interdependent relation between those
qualities, we defined in earlier work yield and harvest as
metrics for service continuity during dynamic enactment of
an upgrade [19]: yield describes the observable continuous
availability to accept new service requests, and harvest the
processing completeness.

An enactment mechanism that maintains one metric of
service continuity at the cost of the other provides a specific
quality compromise that may be easily compensable by some
tenants while proving harmful for others. Yet, a multi-tenant
SaaS application that traditionally evolves in one shot [9],
[13] has no room for considerations on a per-tenant basis.
Moreover, due to the large-scale operation of multi-tenant SaaS
applications, a service disruption is typically of significant du-
ration, potentially causing a profound impact on the businesses
of many tenants. For example, waiting for application-wide
quiescence [27] in preparation for enacting an upgrade will
cause huge loss of yield simultaneously for all tenants.

Our motivation is based on the following key observa-
tions: (i) Software upgrades of different compatibility have the
potential to vary the degree of impact in terms of yield and
harvest [9] (ii) activating an upgrade to a single tenant of the
systems is less disruptive than enacting the upgrade system-
wide (cf. time to reach quiescence), due to less application state
and user data involved, (iii) related work on dynamic software
upgrades and dynamic adaptations provides several alternative
strategies, each favouring either yield (e.g. [6], [31]) or harvest
(e.g. [27], [49], [32]) over the other, effectively enabling
alternative quality compromises throughout an upgrade.

From these observations we derive four requirements for
enhanced middleware support to evolve multi-tenant SaaS ap-
plications, while controlling the duration and business impact
of a service disruption:

(R1) Tenant Isolation of Upgrade Enactment: The
isolated dynamic enactment of upgrades –that is, an upgrade
becoming effective (or active) for one tenant, while for others
the SaaS application remains unchanged– is a key enabler for
fine-grained per-tenant control, as it facilitates the activation
for one tenant to be of a different nature than for another
tenant [19]. This independent upgrade activation for tenants
inherently requires support for co-existing service component
and tenant configuration versions [19]: Tenants that did not
(yet) upgrade must be served by the previous component
version which typically shares the operational environment
with the upgraded components. At the same time, the high
availability context requires a phased cut-off [33], i.e. to
overlap the phase-out of the current and the phase-in of the
upgraded version of service components, which renders co-
existing tenant-configuration versions necessary.

(R2) Support for Compatibility Nature of Upgrade:
Given the different compatibility natures [9] of upgrades
(i.e. each with a different potential impact on service conti-
nuity), alternative activations should be supported. In earlier
work [19], we presented a collection of alternative activation
strategies as a catalogue to address the compatibility nature of
upgrades closely by customizing the activation:

103103



(S1) Passivate and Queue. This strategy implements the qui-
escence [27] type of dynamic upgrade enactment in two-
phases: In the preparation phase, requests that would initiate
new transactions are blocked from the set of services that
are affected by the upgrade, called: the passivation set.
Requests that continue on on-going transactions, however, are
processed, while the system is waiting for those transactions
to complete. In the upgrade phase, the components-under-
upgrade are first replaced, before resuming normal operation.

(S2) Don’t Passivate and Process in Parallel. Current and
new service component versions are deployed in parallel.
Transactions initiated after the beginning of an activation are
dispatched to the new service component version.

(S3) Don’t Passivate and Upgrade In-progress. All service
requests (regardless whether they are part of an on-going
transaction or will initiate a new one) are dispatched to the
newest available service component version.

(R3) Control over Service Continuity Degradation: In
cases of unavoidable service disruption, alternative implemen-
tations of one or more activation strategies (hereafter referred
to as activation mechanisms) must be provided to support
alternative trade-offs between yield and harvest. As technical
aspects as well as the business context play a role in identifying
the most-suitable trade-off for a given upgrade, we suggest a
multi-staged configuration [41] in which multiple stakeholders,
e.g. the tenant administrator and SaaS operator, must be able
to pick and configure an alternative.

(R4) Limited performance and scalability repercus-
sions: The ability to address upgrade enactment on a per-
tenant basis should not cause significant scalability repercus-
sions, as scalability is a crucial driver for multi-tenant SaaS
applications. Specifically, a middleware for evolution support
must ensure (i) minimal overhead during normal operation,
and (ii) scalable management of upgrades. For example of
the latter, the enactment of upgrades should to be highly
automated [19] and if manual labour is required, it should
involve not single but clusters of tenants.

IV. SAAS MIDDLEWARE

This section presents our middleware for the basic case of
upgrading individual components that do not involve changing
service interfaces1.

In Section IV-A, we present a brief overview of our
middleware architecture, while sections IV-B, IV-C and IV-D
elaborate in further detail on respectively the dynamic service
composition mechanism, the packaging of upgrades, and the
provided evolution support that is built upon the service
composition mechanism.

A. Overview
We propose a middleware to support configurable activa-

tion of upgrades at run time that internally applies a sequence
of manipulations to specific service composition instances in
order to converge those that refer to service components of
the current version to those that refer to activated service
component versions in a gradual, controlled manner, and
limiting the impact on service continuity. A key component
in our middleware is the dynamic service lookup component
DSlookup that resolves only the single service binding of a
composition that is necessary for the service invocation at

1Section VII discusses how upgrades that do involve breaking service
interfaces can be supported.
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Fig. 2: Service Composition using Dynamic Service Lookup: DSlookup
queries tenant configurations to return a matching service binding.

hand, incrementally providing a tenant-specific, pre-configured
dynamic service composition. More specifically, when a ser-
vice component attempts to access a required service interface,
DSlookup determines a concrete service that provides that
interface by querying the tenant configuration (see Figure 2).
In this way, the end-to-end service composition is resolved
lazily and along the collaboration of service components.

DSlookup allows, in addition, its service lookup to be ma-
nipulated based on the transaction context of the triggering ser-
vice request. Our concept employs those manipulations to co-
host upgraded and current service composition simultaneously,
while facilitating version consistency [32] for transactions.

B. Dynamic Service Composition
A set of shared service components that serves tenant-

specific requirements must be aware of a tenant context and be
composed in a tenant-specific way, as introduced in Section II.
Both can be accomplished by the use of tenant context tokens
that are attached to all service requests of end-users [24]: A
tenant context must be attached across all service requests of
a transaction, i.e. a service component that creates (outbound)
service requests rO in the course of processing an (inbound)
request rI must copy the tenant context of rI to rO [24].
Service components that receive service requests without a
tenant context (e.g. situated at the authoritative boundaries of
the SaaS application) must generate an initial tenant context.

Our DSlookup component relies on a tenant context as
shown in Figure 2: A service component addresses DSlookup to
lookup a service that provides a specific interface, attaching the
tenant context token and a transaction UID ((1) in this figure).
To service the request, ((2) in this figure) DSlookup consults
the corresponding tenant configuration from the repository,
looking for a matching service binding. If successful, the
reference to an instance of the specified target service is
returned to the lookup requestor ((1) in Figure 2) who now
is able to invoke that service ((3) in Figure 2).

Tenant configurations contain a set of service bindings,
each specifying a mapping between a source and target (as
shown in Figure 3): the source entails a required service
interface as well as the identity of the calling service, and
the target describes the identity of a service instance that
provides the required interface. It is worth noting that on both
sides of the mapping, a service is identified by name and
version. This facilitates a version-aware configurability over
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Fig. 3: Format of a Service Binding stored in a Tenant Configuration.

TABLE I: Use of manipulation primitives for implementing an upgrade
strategy.

Strategy Supported Manipulation Primitives

Current Tenant Configuration Version
Configuration

Version
Service Ref.

Cache

S1 change at beginning of activation Fail generic

S2 change at beginning of activation - -

S3 change at beginning of activation Yes
generic and
TX-specific

service compositions in an application with co-existing service
component versions.

The tenant context token must uniquely refer to a tenant
configuration: not taking the evolution aspect into account,
a simple unique identifier of the tenant would be sufficient.
However, an evolving multi-tenant SaaS application has mul-
tiple co-existing tenant configurations in order to support the
overlap of operations in two adjacent application versions for
affected tenants (aka parallel cutover [33]). To that end, a
tenant configuration can only be referred to uniquely from
a tenant context token by tenant UID and version. An initial
tenant context token can be obtained as follows: the tenant UID
is derived from the service request (e.g. from authentication
data [51]), and the current configuration version can be looked
up from the tenant configuration repository (step 0 in Figure
2). The goal of using a version-containing tenant context token
in the presence of co-existing service component versions is to
ensure version consistency [32], i.e. service requests in a trans-
action that are being processed by one application behaviour
(described by one specific tenant configuration version), are
consistently processed with that behaviour oblivious from any
co-existing service component versions.

For performance and scalability reasons, each service com-
ponent caches service references in a hierarchical cache: a
service reference is indexed as a generic reference to that ser-
vice and as a transaction-specific service reference. The cache
is queried in the reverse hierarchy order: only if transaction-
specific service references cannot be found, generic references
are searched. It is interesting to note that such a cache supports
“sticky sessions”: Within a session (here: transaction), always
the same service component instance will be used, similar to
the work of Rellermeyer et al. [40] in the context of OSGi.

C. Upgrade Bundle
An upgrade bundle is a deployment unit that is pre-

pared by the SaaS developer and contains updated service
implementation(s), activation mechanism(s) and a description
of the upgrade (for example, using annotations [38]) that
indicate expected service impact(s) of the enclosed activation
mechanism(s).

An activation mechanism specifies a sequence of service
composition manipulation primitives –implementing an acti-
vation strategy for a concrete upgrade at hand– which are
supported by our middleware and available for instantiation
and configuration within an activation mechanism. Moreover,
we require the SaaS developer to implement and provide
activation mechanisms along with an upgrade bundle. To that
end, this role must be aware of those primitives and requires
know-how on developing an algorithm for dynamic enactment

that activates the upgrade at hand in a minimally disruptive
way. Specifically, the following primitives are available:
Change Current Tenant Configuration Version. The cur-

rent tenant configuration version (stored in the tenant config-
uration repository) can be changed. This causes new transac-
tions to be assigned a tenant context with a changed tenant
configuration version.

Change Configuration Version of Tenant Context Token.
At DSlookup, the configuration version entry of a tenant
context token can be manipulated for specific service
lookup queries before the actual lookup. Moreover, this
component can be set to fail a lookup deliberately,
i.e. return that no services are available. For communicating
such manipulations, we introduce a data structure called
Service Lookup Manipulation Directive that is similar to a
pattern-matching rule: a matching part describes a service
lookup query in terms of the source information of a
service binding, i.e. required service interface and a source
ServiceId, while the action part can either specify a specific
tenant configuration version to be set in the tenant context
token, or to fail the lookup in question.

Flush Service Reference Cache. This cache (maintained by
every service component), can be cleared for transaction-
specific or generic service references for a given service.

Table I shows our expected mapping between activation
strategies and manipulation primitives. For example, S1 (aka
Passivate and Queue) requires the upgrade of the current tenant
configuration version at the beginning of the activation and will
disable parts of the service composition by deliberately failing
the service lookup targeting the service components that are
being upgraded. Finally, it may flush the cached generic service
references to those service components.

D. Evolution Support
Our middleware enables configuration of upgrade activa-

tions and carries out the configured activation autonomously.
In this section, first the configuration options for an activation
are explained. Then, the activation protocol, a sequence of
activities that result in the activation, is presented. Finally, the
activation controller, our key component to coordinate manip-
ulation primitives (as described in Sec. IV-C) is introduced.

Activation Configuration Options: The activation can
be configured by either the tenant administrator or the SaaS
operator who is able to set the following options.
Time of Activation. The stakeholder may provide a specific

time of activation, typically aligned with the business context
of the tenant or the (expected future) load of the application.

Activation Mechanism. The stakeholder may pick one of
the alternative activation mechanisms that may have been
provided by the SaaS developer, each imposing a different
trade-off between yield and harvest.

Activation Protocol: After the deployment of an up-
grade bundle, the following protocol describes its activation
for a tenant:
Creation of Tenant Configuration. A new tenant configura-

tion must be provided that refers to the upgraded service
component(s), typically created by the tenant administrator
using a self-service.

Creation of Activation Configuration. An activation config-
uration must be provided.

Upgrade Activation. This step runs in full automation, pass-
ing through multiple activation phases: Given the content of
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the upgrade bundle and the two configurations of the previous
steps as input, the activation controller upgrades a service
component from a current to a new version in the following
phases:
(A1) Preparation. In this phase, only the current version of

the service component is available and potentially in use.
(A2) Transition. This phase starts when the new service

component version becomes available: Service component
instances of current and new version are active in this phase.
This phase must actively converge towards the next phase
A3. Moreover, we propose to set time boundaries for this
phase to ensure termination of the activation.

(A3) Postparation. At the point in time at which the current
service component version is no longer used, the postpara-
tion phase starts. Its purpose is to clean up settings and
manipulations that were only necessary for the transition
phase, such that after completion, the application returns to
a normal operation (or to phase A1 of the next activation
for that tenant).

Activation Controller: The activation controller pro-
vides two features, as shown in Figure 4: (F1) monitoring the
presence of active transactions, and (F2) coordinating a set
of service composition manipulation primitive invocations to
activate an upgrade as described by the activation configuration
and activation mechanism. For the former, each service com-
ponent is required to broadcast a notification at the beginning
and the end of a transaction. The activation controller observes
those notifications to maintain an accurate, up-to-date view of
on-going transactions. For the latter, the controller can infer
the current phases of an activation (A1, A2 or A3), either
based on an event (e.g. “no transaction active anymore”) or
on time (e.g. n seconds after previous phase), and invokes the
primitives of the given mechanism that are applicable to the
current phase. Several instances of an activation controller can
co-exist and balance the load of activations, which contributes
to the scalability of our approach. Yet, it is important to bear
in mind that a single activation controller is responsible for
a single activation, and that for one tenant, only a single
activation can be performed at a time.

V. IMPLEMENTATION

We have built2 our middleware for enhanced evolution
support on top of the OSGi framework Apache Felix [1]. In this
section, we first introduce the concepts of the OSGi framework
that we employed. Then we present the implementation of our
two key components DSlookup and the activation controller
along other supportive components.

A. Background on the OSGi framework
The OSGi framework is a highly modular middleware for

Java to build service-oriented architecture (SOA) applications
and provides explicit and fine-grained control over component
dependencies. Particularly, provided module versions can be
loaded into only the context of the required module which
enables the co-existence of otherwise incompatible service
component versions while imposing only little constraints.
Such capabilities successfully hide complexity of co-existing
service component versions in a SOA application.

On start-up (at service registration) a service component
has to specify its provided service interfaces and may expose
additional properties in the form of key-value pairs. Service
discovery, consequently, may match on both: provided service
interface and properties. For the sake of modularity, OSGi
does not encourage pro-active service discovery but instead
promotes a reactive discovery based on dependency injection
for which a service consumer must signal required interfaces
and may choose thereafter either to become passive and wait
for a service discovery or to continue and be called back on
a parallel thread. Under the hood, OSGi uses an event-based
infrastructure to propagate service (dis-)appearances.

B. Dynamic Service Lookup and Composition
While our concept requires to find specific (by UID and

version) service component instances, the OSGi framework
mandates for discovery by service interface and untyped prop-
erties only. Therefore, we introduce the ServiceId data type
(as seen in the service binding in Sec. IV-C) that stores a
UID and a version and that can be easily used to label and
discover service components. Moreover, we provide the Java
class MTServiceContext that implements the template method
pattern to abstract from the concrete use of the ServiceId
object, and that must be specialized by any service component.
It provides methods to instantiate and register local classes as
a service component on the one hand, and to deal with service
discovery on the other hand. Internally, the Java class name
of the service component implementation is used as the UID,
and the enclosing OSGi bundle’s version as service version.

Our Dynamic Composition Enablement Layer (DCEL),
as shown in Figure 5, implements two features: it provides
the template class MTServiceContext, and contains the ser-
vice reference cache. Both are implemented by encapsulating
outbound service component calls: For each service invocation,
the method callService of the DCEL must be called, speci-
fying a required service interface, a transaction identifier and a
call-back function which is called by the DCEL synchronously
after a successful lookup, and to which the resulting service
reference is passed as an argument. Internally, DCEL uses the
UID and tenant context of the local service and the service
reference cache to lookup the service.

DSlookup supports a service lookup directly or via the
tenant configuration: If the lookup request (pre-processed by

2available at https://distrinet.cs.kuleuven.be/software/flesensevo
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the DCEL) contains a ServiceId of the desired service, then
this service is looked up directly (this is a natural extension
of OSGi’s default behaviour using specific ServiceIds). Oth-
erwise, if the source side of a service binding is enclosed,
then an indirect lookup consulting the tenant configuration as
described in Section IV-B is performed.

C. Evolution Support
In our prototype, we employ the publish-subscribe infras-

tructure provided by the OSGi EventAdmin [2] to (i) notify
the activation controller(s) about on-going transactions in the
SaaS application (connectors marked with an oval in Figure
5) and (ii) to remotely invoke manipulation primitives (square-
marked connectors in Figure 5). For example of the latter, the
component-local service reference cache can only be flushed
at the component, and changing the configuration version
of a context token requires a manipulation at the DSlookup
component.

Support for Manipulation Primitives
We implemented the tenant configuration repository as a

simple, centrally-deployed RESTful web service (as depicted
at the bottom of Figure 5). It provides interfaces for CRUD
operations on both tenant configurations and tenants’ current
configuration versions.

As the DSlookup component is located within the OSGi
framework (run-time environment), each distributed instance
of a service component will access its own instance. For
allowing injection of manipulation directives into a distributed
OSGi framework instance, an event sink (OSGi service Lookup
Manipulation, see Figure 5) is deployed at each OSGi frame-
work instance that forwards those directives to DSlookup.

For the manipulation of the service reference caches, we
provided specific event sinks in the Dynamic Composition
Enablement Layer which are used by every service component.

Activation Mechanisms and Controller
We modelled activation mechanisms as Java objects that

are provided by the deployed upgrade package and executed
by the activation controller. The objects programmatically use
the capabilities provided by the middleware at the phases

Generation Signing Archival
(Adapter)

3rd Party
Archival

End 
users

interactio
n

send 
raw 
data

Document Processing SaaS application
Fig. 6: Interactions between service components, external services, and end-
users of the document processing muli-tenant SaaS application that we use
for evaluation.

indicated by the activation controller. To ensure termination
in our prototype, we set the time-out for the transition phase
A2 to 1800 seconds.

The activation controller is implemented as an OSGi
service providing two event sinks, as shown in Figure 5: one
for the notifications on transactions, and another one to accept
activation configurations. Receiving the latter triggers an action
for the therein specified upgrade and tenant.

VI. EVALUATION

We evaluate our enhanced middleware support for evo-
lution of multi-tenant SaaS application in the context of a
real-world SaaS provider that provides a document processing
service [21]: We enact three different upgrades to a multi-
tenant SaaS application that is constantly busy processing
requests. To showcase the flexibility of our middleware, we
define up-front a set of application-specific invariants that must
hold true in order to process transactions of service requests
correctly.

A. Document Processing SaaS application
This multi-tenant Software-as-a-Service application is a

composite service that generates, digitally signs, and archives
different kinds of documents (e.g. pay checks, invoices) on
behalf of its tenant organizations. Herein, the archival service
is offered by a third party service and connected to the SaaS
application by an adapter service, as shown in Figure 6. The
external archiving service is paid at the basis of the up-time
per tenant.

Once set up for a specific tenant, the SaaS application
accepts a list of raw data (batch) in which each entry represents
the inputs for generating one document. Each document in
this batch is generated, signed, and archived sequentially. For
correctly processing a batch, the following invariants must be
met:

Invariant 1: All documents of one batch must be signed
by the same cryptographic key material.

Invariant 2: All documents of one batch must be archived
at the same storage provider.

Invariant 3: Due to service fees, only one kind of archiv-
ing service shall be used at a time.

Implementation
For evaluation purposes, we implemented a simplified

version of this SaaS application on top of our middleware
prototype3: each service component performs a wait operation
of 300 milliseconds to simulate a corresponding workload.
Between the processing of two documents of a batch a delay
of 350 milliseconds in used to account for I/O operations.

For each service component the following information is
recorded in an event log for post-processing: the UID of the
service, service results (i.e. successful or exceptions thrown),

3available at https://distrinet.cs.kuleuven.be/software/flesensevo
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the time it completed, whether a lookup was necessary for
invoking the next service (i.e. at a cache miss), and the delay
of said lookup. The external archiving service is modelled to
shut down after an idle time of 2 seconds. That is, as long as
the adapter to that service keeps sending requests in shorter
intervals, the external service will be held back from shutting
down and, in consequence, continue billing fees for its up-time.

B. Evolution
We evaluate the enactment of three different yet related up-

grade scenarios, each one representing fundamentally different
types of upgrades.
Upgrade Scenario 1: Switching Archiving Service. In this

scenario, the SaaS application is required to switch to another
external archiving service and must therefore upgrade its
internal adapter service. The current and the future external
service can be used in parallel, however, attention must be
given to service fees: accessing both services during the
enactment will result in doubling the service fees. Ideally,
the SaaS application should therefore complete all requests
that require the current external service first. When invariants
2 and 3 are respected, this implies completing the archiving
step of all on-going batches (and thus, all on-going service
requests) before starting to use the new archiving service.
This upgrade scenario is representative of a type in which
requests of on-going and new transactions share significant
side-effects in an incompatible way (here: When the use
of both archival services are frequently alternated, the fees
are doubled). Typically, the dynamic enactment of such an
upgrade requires quiescence or tranquility.

Upgrade Scenario 2: Changing Cryptographic Keys. In
this upgrade, the signing service is replaced, together with
its cryptographic key material. In order to respect invariant
1, an upgrade should only affect transactions that have been
started with the new service component version.
This upgrade scenario is representative of a type in which
requests within a transaction share side-effects but either do
not share a significant side-effect with other requests or do
it in a compatible way.

Upgrade Scenario 3: Adding Meta-data to Signature.
The digitally signing service shall add a report (i.e. naming
the signing device and a time stamp) to its output.
This upgrade scenario is representative of a type in which
a request does either not share any significant side-effects
with another or does it a compatible way.

C. Service Continuity Metrics
As mentioned in Section IV, degraded service continuity,

for example during the enactment of an incompatible [9]
upgrade, can be measured in terms of yield and harvest: Yield
is a relative metric that involves comparing to the performance
of the application during normal (i.e. non-degraded) operation.
Harvest expresses relative completeness of requests, thereby
comparing against the yield of the application. In this section,
the concrete determination of these metrics in the context of
the three different upgrades is laid out.

Yield: Yield is determined by the amount of document
processing requests accepted. Such a request is considered
accepted only if all service components accept it.

Harvest for Upgrade 1: If archive requests are received
more frequently than each every 2 seconds, the external
service does not shut down. The processing times of the
adapter service (read from the event log) are used to trace

the time periods in which two external archiving services are
up simultanously. Documents that have been archived during
this period are considered invalid (due to invariant 3), and are
not counted into the harvest.

Harvest for Upgrade 2: If two documents of a batch are
signed with a different key, the batch is considered invalid (due
to invariant 1). All documents of that batch are not counted
into the harvest.

Harvest for Upgrade 3: Whether or not additional
meta-data is present along with the signature has no relevance
to the validity of a document.

D. Setup
We have deployed our middleware prototype together with

Apache Karaf 4.0M2, the document processing SaaS applica-
tion (Section VI-A), and the tenant configuration repository on
a standard laptop computer with an Intel i3 2.3 GHz CPU, 4
GB memory, and a Samsung 256GB solid state disk. We have
run multiple evaluations: One round for each combination of
upgrade and activation strategies (3x3=9 variants in total), and
one round of an evolution-free operation (used as a baseline).

Workload: For each round, the system is simultane-
ously servicing 3 tenants (hereafter referred to as tenant A, B
and C), each with three batches before and three batches after
the upgrade activation, as indicated in Table II. In order to
account for different workloads and different times at which
those arrive at the SaaS application, we chose batches that
contain random amount of documents, and different boundary
intervals for the tenants. For example, tenant B may have
batches containing at most 50 documents, thereby simulating
an early start of a batch, following the assumption that 100
documents is a typical size for a batch.

Evaluation Round: Each round is repeated 5 times
to limit the effect of accidental outliers, and consists of
the following three phases: In a warm-up phase, the SaaS
application is booted, the upgrades are deployed (but are not
activated yet), and the emulated payload of tenants and upgrade
activation configurations is loaded into memory. A schedule,
as shown in Table II, describes events for the operation phase
by their logical time (expressed in seconds). This phase starts
with a trigger that depicts the logical time of zero of the
application. As the time progresses, scheduled events are fired
via the publish-subscribe subsystem of OSGi. The cool-down
phase is triggered, when the application is no longer processing
any payload. Here, caches are cleared and current tenant
configuration versions are reset to their initial value.

E. Results
Table III shows a summary of the evaluation results:

each column represents an evaluation round (mean over all 5
iterations, including standard derivation), and the rows describe
harvest and yield measurements as well as the amounts in
which a dynamic lookup (using DSlookup) and the service
reference cache have been used to lookup a service.

Column (1) shows one representative of the measurement
for tenants A and B of an evaluation round with evolution in

TABLE II: Evaluation round schedule.

Time Tenant Event

0 A start of 3x batch, each 20-130 docs
B start of 3x batch, each 20-50 docs
C start of 3x batch, each 20-100 docs

10 C | all upgrade activation

16 all start of 3x batch, each 50-150 docs
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TABLE III: Evaluation measurements.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Strategy * ∅ S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S1 S1
Upgrade * ∅ U1 U1 U1 U2 U2 U2 U3 U3 U3 U1@all U2@all U3@all

Yield (#docs) 100%
(664)

100%
(655)

68%
(444±11)

100%
(655±0)

100%
(655±0)

68%
(445±4)

100%
(655±0)

100%
(655±0)

69%
(450±4)

100%
(655±0)

100%
(655±0)

55%
(361±6)

55%
(357±4)

54%
(356±6)

Harvest
(#docs)

100%
(664)

100%
(655)

100%
(444±11)

44%
(286±14)

83%
(546±149)

100%
(445±4)

100%
(655±0)

92%
(601±122)

100%
(450±4)

100%
(655±0)

100%
(655±0)

100%
(361±6)

100%
(357±4)

100%
(356±6)

DSlookup [#]
Cache [#]

8±5
1320±5

7±4
1303±4

222±8
1087±9

12±4
1298±4

10±2
1300±2

220±4
880±8

16±10
1294±10

11±3
1299±3

220±7
885±10

9±2
1301±2

8±3
1302±3

306±6
1004±6

309±6
704±9

310±7
701±12

Tenant A,B C

which tenant C but not tenants A or B have been activating
an upgrade (as indicated in Table II). In the next column (2),
the measurements for tenant C for an evolution-free round are
given; its yield specifies the reference value for all subsequent
columns. For tenant C, columns (3)-(11) present results of
evaluation rounds for the 9 variations as described above, and
columns (12)-(14) print the results of an upgrade enactment
without isolated per-tenant activation.

These results mainly confirm that our middleware meets
the requirements put forward in Section III:
R1: Comparing yield in (3), (6), and (9) with those of columns

(12)-(14) show an improvement due to isolated activation.
R2: Different strategies score best in columns (5), (7), (10)

and (11), depending on the type of the upgrade, indicating
the value of supporting multiple enactment strategies.

R3: Columns (3) and (5) represent service degradations, two
alternatives, each of which may be preferable in a spe-
cific business context (availability over completeness or vice
versa) – this has been our premise in R3 and is only feasible
in satisfaction of R1.

R4: To assess the performance impact, we measured all uses
of DSlookup during the evaluation rounds, including cases
in which DSlookup deliberately fails (and therefore does not
query the tenant configuration repository), and calculated a
mean service lookup time of 318,46±1707,16 milliseconds
(ms). Around 60% of this overhead can be accounted to
querying the tenant configuration repository (1001,28±34,13
ms), and by consequence, the DSlookup component intro-
duces around 700 ms overhead4. It is however important to
note that, due to hierarchical caching, the DSlookup compo-
nent is used fairly infrequently5, i.e. only once per service
component when processing the first (parallel) request(s) of
a tenant using a specific application version, and only for
the first (parallel) request(s) of a tenant after each upgrade
enactment. For enabling individual per-tenant enactment,
the SaaS provider’s necessary manual efforts are limited to
providing activation mechanisms and configurations, both on
a per-upgrade basis and, thereby, addressing many tenants at
once. We conclude that performance and scalability impact
of our middleware is acceptable.

VII. DISCUSSION

We chose a service component to be the smallest unit
of evolution for several reasons: Firstly, service-oriented ar-
chitectures provide mature support for connecting service

4Removing the static service lookup time of around 23,38±242,46 ms from
the equation.

5In our evaluation, only 1% of service requests triggered a dynamic lookup.
Exceptions observed in columns 3, 6, 9, and 12-14 represent the cases in which
DSlookup deliberately fails and can therefore be neglected, as performance is
only relevant for successful requests.

components – both in terms of technology and eco-system.
By our choice, these connection mechanisms can be leveraged
when rewiring the application to include the upgraded piece of
software. Secondly, as others [28], we consider the evolution
at the architectural level (i.e. replacing service component
modules) to be the appropriate level of granularity: its en-
actment can be generic [27] and does not require technology-
specific measures (cf. memory invasive operations) which are
not widely applicable in our context, as a cloud provider
may dictate the technology of the operational environment.
Simultaneously, it provides sufficient granularity to replace
only necessary fragments of the application, which leads to
high amount of service components that can be shared across
application versions.

Another motivation to activate an upgrade by adapting
the application’s control flow is run-time and management
efficiency of the enactment: components that consume the
service-component-under-upgrade are only made to switch
their reference at the right point in time and only for in-
progress transactions. As thereby most of the consuming
component’s architecture can operate in an unchanged manner,
only a little computational overhead is required from the
activation process that provides support for requests of the
“old” generation while the application is committed to serve
the “new”. Moreover, in presence of many tenants activating
different upgrades, maximally sharing service components
leads to less necessary service component deployments, which
increases manageability.

An obvious limitation of our approach as presented in
Section IV is the interface dependency between the consumer
and (two versions of) the provider. An upgrade that introduces
a change in a service component’s interfaces would require its
consumers to support this new interface additionally. That is
at the same time our proposition: When an upgrade Uprime

imposes a (syntactically or semantically) changed service
interface, then its consuming services must be upgraded in
advance (Upre) to support the change of Uprime. Note that
Upre is a compatible upgrade, as it does not expose any
changed behaviour to the in-progress transactions. Thereby
not causing service disruption, the additional activation Upre

is cost-neutral to the stakeholders involved and is therefore
negligible as far as service continuity is concerned.

Our middleware naturally supports upgrades that affect
multiple, interdependent service components, providing a bare-
bone infrastructure for activation mechanisms: While our mid-
dleware is concerned with the indication of the presence of
activities started before the activation and provides a set of
building blocks for the manipulation of service composition
instances, it is the obligation of the upgrade-specific activation
mechanism (provided by the SaaS developer) to coordinate in-
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dividual manipulations to account for interdependencies among
the service components that are upgraded.

VIII. RELATED WORK

We discuss related work in four domains:
a) Dynamic Software Updates and Adaptation: Updat-

ing an application at run time has been studied for decades
[8], [22], [27], increasingly reducing the impact on its nor-
mal operation. This body of work leads to two dominant
and essentially different approaches: Dynamic software up-
dates [23] score well in service continuity and focus on
update safety, but are limited to specific types of upgrades.
Moreover, they usually depend on memory-invasive opera-
tions which are not applicable in a cloud context. Dynamic
Adaptation concepts [27], [49], [32] are appliable for any
type of upgrade, are technology independent but require a
safe state of the application before upgrade, thereby imposing
significant impact on availability. Self-adaptive Systems [7],
[34] represent a subset of dynamic adaptation approaches that
address the complexity of a large and interconnected system in
an automated way [28]: Monitoring, Analysis, Planning, and
Execution form the closed feedback loop in which a system
is able to react to an environment based on a computational
model. Our middleware supports any type of upgrade and
different types of dynamic upgrade concepts to account for
the different nature of upgrades in terms of service continuity.
Moreover, in our context, the best of alternatives cannot be
determined by computation, as it requires assessment of the
business context and human input.

b) Adaptation through Control Flow Manipulation:
Jørgensen et al. [24] manipulate control flow within component
collaborations to customize client-specific behaviour. Unlike
us, they assume a “closed-world”, i.e. choosing between up-
front anticipated components. In the community of Aspect-
oriented Programming, the manipulations supported by our
middleware are known as regulative (“delaying operation” or
“preventing continuation”) and invasive aspects (adding and
removing operations) [26]. While Aspects are technology-
dependent (and therefore not suitable for the cloud context),
they are complementary to our work, providing a well-explored
formal foundation for manipulating control flows.

c) Business Process- and Workflow Management: An-
other area is that of workflow- and business process man-
agement [39], [45]: A workflow definition (WFD) specifies
a sequence of activities and supports conditional branches,
similar to a control flow graph of an application. As workflows
can incorporate interactive activities, their execution is often a
long-running process [25]. A workflow execution instance has
an execution state and instance variables. Run-time adaptation
is a popular topic in this research area. In its simplest case,
abstract activities are defined in the WFD and lazily bound
to service instances [35], based on a policy [18] or on the
argument (object type) passed to the external service [11] – an
approach that applies to a closed world but not to our context.
Alternatively, the definition a workflow execution is using is
dynamically changed [14], [44]; this approach is limited to
certain changes, thereby similar to Dynamic Software Updates.
A fundamentally different approach proposes at the end of
one activity to determine the next one, thereby abandoning
predefined work- or control flows: Case handling [47] man-
dates (manual or computation-based) roles to decide on the
basis of available activities and current instance variables of an

workflow execution, while constraint-based approaches [36],
[46] evaluate decisions computationally. As such an approach
anticipates coarse-grained request-aware service compositions,
it would add significant overhead in our context of a fine-
grained but pre-configured service composition during normal
operation. Moreover, we cannot demand knowledge about
composability from the end-users.

d) Management and Middleware Support for Evolu-
tion of Cloud Applications: Dumitras et al. [13] propose a
middleware that moves an entire application to a “parallel
universe” to avoid inconsistencies of otherwise incremental
upgrades of enterprise-sized cloud applications. Opposed to
theirs, our approach promotes a service component as the
smallest unit for evolution. Others [29], [17] support adaptation
and evolution of a SaaS application for anticipated upgrades.
Ertel et al. [15] present a framework to support dynamic
evolution of dataflow programs. While their support is based
on types of applications that differs from multi-tenant SaaS
application, their work is complementary to ours as it focuses
on an algorithm for automated enactment (corresponds to our
activation mechanism), accounting for state-transfer, referential
integrity and timeliness of dependent upgrades. In the context
of the Internet of Things, a middleware has been proposed
for dynamic adaptation in the sense that collaboration with
unanticipated services is supported seamlessly [50]. While we
focus on service continuity improvements, their focus is on
service discovery and ad-hoc interaction.

IX. CONCLUSION AND FUTURE WORK

We presented our enhanced middleware support for evolu-
tion of multi-tenant SaaS applications that incorporates control
of multiple stakeholders (developer, operator and tenant ad-
ministrator) using a multi-staged configuration, and allows for
customized service continuity compromises (from a technical-
and cost-perspective) when enacting different types of soft-
ware upgrades. A key enabler is our dynamic service lookup
component that allows fine-grained (yet efficient) manipulation
of service compositions, and is used for a phased cut-off:
Operations of the current application are gradually phased
out while the application provides the functionality of its
upgraded version. This approach enables the SaaS developer
to implement an upgrade activation strategy using primitive
manipulation operations provided by the middleware. Our pro-
totype showed a significant improvement in service continuity
(expressing in yield and harvest) during upgrade enactment
while imposing negligible performance overhead at normal
operation.

In future work, we will strengthen the evaluation of our
prototype by involving additional SaaS applications and up-
grade scenarios. Furthermore, we will focus on the support
for different stakeholders in our middleware. Increasing au-
tomation for the SaaS developer is one example: a set of pre-
defined activation algorithms or automated reasoning based on
the application’s observed behaviour could be supported to
define an activation mechanism. Moreover, integrating change
impact analysis techniques [37] would enrich the activation
configuration in that it would project a technical expectation on
service disruption to the abstraction of the application. Finally,
we will explore the dimension of service continuity further,
addressing key questions, such as: What are common cases
for low harvest? Is an application-specific recovery of those
requests possible? If so, primitive building for recovery could
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be another addition to the middleware.
Our middleware architecture and in particular the mech-

anism for tenant-level fine-grained manipulation of service
compositions are key contributions to the challenges of con-
tinuously evolving multi-tenant SaaS applications for the sake
of time-to-market improvements [48], [20]. Moreover, the
flexibility we provide for service compositions has strong
potential in other challenging and highly dynamic customiza-
tion scenarios [41], [48], such as in the federation of SaaS
applications.
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