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Abstract

Optimal climate control for building systems is facili-
tated by linear, low-order models of the building struc-
ture and of its Heating, Ventilation and Air Condition-
ing (HVAC) systems. However, obtaining these models
in a practical form is often difficult, which greatly ham-
pers the commercial implementation of model predictive
controllers. This work describes a methodology for ob-
taining a linear State Space Model (SSM) of Building
Energy Simulation (BES) models, consisting of walls,
windows, floors and the zone air. The methodology uses
the Modelica library IDEAS to develop a BES model,
including its non-linearities, and automates its lineari-
sation. The Dymola function linearize2 is used to
generate the state space formulation, facilitating further
mathematical manipulations, or simulation in different
environments. Optionally this model can then be reduced
for control purposes using model order reduction (MOR)
techniques. The methodology is illustrated for the zone
air temperature in an office building. For this case, the
absolute error between the non-linear BES and its SSM
remains under 1 K and its yearly average is 0.21 K. The
original 50 states SSM could furthermore be reduced to
16 states without significant loss of accuracy.
Keywords: model predictive control, Dymola, building
energy simulation, linearisation, model order reduction.

1 Introduction

Building climate control uses around 18% of the to-
tal end energy in Europe (Perez-Lombard et al., 2008).
One way of reducing energy use is to develop more ef-
ficient control algorithms for the production and distri-
bution of heat and cold in buildings. Recent research
has shown that (near) optimal controllers such as Model
Predictive Control (MPC) can greatly improve the en-
ergy efficiency of buildings compared to traditional rule-
based-controllers (Gyalistras and Gwerder, 2009; Ver-
helst, 2012). However, its practical implementation is
hampered due to the difficulty of finding a controller
model that is simple enough to allow optimization within

a reasonable computation time but still accurate enough
to correctly predict the building behaviour. Linear mod-
els are preferred since efficient optimization algorithms
can then be used (Kummert, 2001; Sturzenegger et al.,
2012).

Controller models are often obtained using system
identification, i.e. fitting reduced order models based
on measurement data. Obtaining controller models for
buildings is an active research topic due to the complex-
ity of the systems and due to the difficulty or even im-
possibility of performing experiments allowing the iden-
tification of multi-input, multi-output building models
(Sturzenegger et al., 2014). An alternative approach is
to create models based on physical insight and knowl-
edge about the system. Lehmann et al. (2013) showed
that building energy simulation (BES) models are only
weakly non-linear. They set up a relative complex lin-
ear model based uniquely on physical data, which was
able to mimic the non-linear TRNSYS BES model with
an error smaller than 1 K. The accuracy of the model
is not enough for design purposes but it is sufficient for
MPC or sensitivity analysis. Sturzenegger et al. (2014)
automated their approach for deriving state space models
for MPC applications using the BRCM Matlab toolbox.
The toolbox needs a considerable amount of information
such as an EnergyPlus input file.

In this work, we propose an automated way of obtain-
ing accurate linear BES models based on a non-linear
model implementation in Dymola using the IDEAS li-
brary (Baetens et al., 2015). Section 2 describes the non-
linearities of BES models together with common sim-
plifications and Section 3 explains the linearisation tech-
nique. Section 4 describes the linearisation methodol-
ogy in IDEAS and Section 5 shows a validation of the
methodology. Section 6 briefly discusses a model order
reduction technique for the linear model and their use for
optimal controllers. Main conclusions are summarized in
Section 7.



2 Non-linearities in Building Energy
Simulation Models and Common
Simplifications

Typically, BES models contain three major sources of
non-linearities. The first is longwave radiation, which
is typically described using the Stefan-Boltzmann law.
The second is the absorption of incident solar radiation
by windows, which is a function of the incidence angle.
The third is convective heat transfer, which is usually de-
scribed using correlations for the convective heat trans-
fer coefficient. These non-linear equations are first de-
scribed in this section, then a linearisation technique is
proposed. Other non-linearities in real buildings exist
(e.g temperature dependent emissivity, pressure depen-
dent air leakage, ...) but they are rarely modelled. They
will not be treated in this work.

Radiation Radiation is described by the non-linear
Stefan-Boltzmann law which is given by Eq. 1 for two
grey-bodies with surface areas A1 and A2.

Q̇1→2(t) = σF1→2 A1
(
T 4

1 (t)−T 4
2 (t)

)
(1)

Q̇1→2 and F1→2 are the heat transferred from surface 1
to 2 and their view factor respectively, σ = 5.670373×
10−8 W/(m2.K4) the Stefan-Boltzmann constant, and Ti
the temperature of body i.

Radiative heat transfer between room surfaces is of-
ten approximated using the Mean Radiant Temperature
model (e.g. in TRNSYS TYPE 56 ( S.A. Klein et al.,
2010)) or using the Radiant Star Temperature model (e.g.
in IDEAS (Baetens et al., 2015)) since it greatly sim-
plifies the computations without a significant loss in ac-
curacy (Liesen and Pedersen, 1997). This radiant star
temperature Tstar is derived from the energy conservation
equation in the radiant node and the temperature of each
surface Ak is calculated using a distribution coefficient
Rk:

Q̇k→star(t) =
σAk

Rk

(
T 4

k (t)−T 4
star(t)

)
(2)

Eq. 2 is often linearised around nominal temperatures
Tk,nom and Tstar,nom (Eq. 3), which is an accurate ap-
proximation for small temperature differences. Figure 1
shows the approximation error for the heat exchange be-
tween two black bodies with view factor equal to one.

Q̇k→star(t)' c(Tk(t)−Tstar(t)) (3)

c =
σAk

Rk

(
(Tk,nom +Tstar,nom)(T 2

k,nom +T 2
star,nom

)
(4)

The longwave radiation heat flow Q̇lw,k(t) between ex-
terior surface k of the building with longwave emissivity
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Figure 1. Error made by the linearisation of the radiative heat
transfer equation between two black bodies with view factor
one.

εlw,k and its environment can be modelled as:

Q̇lw,k(t) = σεlw,kAk
(
T 4

s,k(t)−Fce,kT 4
ce(t)

−(1−Fce,k)T 4
db(t)

)
Fce,k =

1+ cos ik
2

(5)

with Ts,k(t), Tce(t), Tdb(t) the surface, celestial dome and
dry bulb temperature respectively, Fce,k the view factor
between the surface k and the celestial dome, and ik the
inclination of the surface. This equation is linearised by
default in IDEAS as:

Q̇lw,k(t)' c
(
Ts,k(t)−

4
√

Fce,kT 4
ce(t)+(1−Fce,k)T 4

db(t)
)

(6)

with c a parameter defined similar to Eq. 4.

Finally, the shortwave solar irradiation absorbed by
exterior surface k equals:

Q̇sw,k(t) = εsw,kAkEe,k(t) (7)

with Ee,k(t) the incident solar irradiation on surface Ak
as a function of time.

Absorption and transmission through glazing Heat
absorbed or transferred through windows is typically
highly non-linear as it depends on the spectral proper-
ties of the window, on the angle of incidence of the sun
and on possible shading. Typically, the window prop-
erties are pre-computed using specialized software and
delivered as an input to the simulation software. IDEAS
uses the software Window 4.0 (Finlayson et al., 1993)
to pre-compute window spectral properties but it com-
putes the amount of absorbed and transmitted light dur-
ing the simulation, requiring trigonometrical transforma-
tions and lookup tables, which are non-linear functions.



Convective heat transfer Two types of convective
heat transfer are present in buildings: exterior, forced
convection by the wind, and interior, natural convection
when forced ventilation is absent.

In IDEAS, the external convective heat transfer rate
Q̇cv(t) between an exterior surface with area Ak and the
outdoor air is based on Defraeye et al. (2011):

Q̇cv,k(t) = hcv(t)Ak
(
Tdb(t)−Ts,k(t)

)
hcv(t) = max

{
5.01(v10(t))0.85,5.6

}
W/m2K

(8)

with convective heat transfer coefficient hcv(t), dry bulb
ambient temperature Tdb(t), surface temperature Ts,k(t)
and the undisturbed wind speed at 10 meters above the
ground v10(t).

Eq. 8 is non-linear even if the convection coefficient
is an input due to the multiplication of input with input
(hcv(t)Tdb(t)) and inputs with state (hcv(t)Ts,k(t)). If the
nominal values of Tdb(t) and Ts,k(t) are equal, Eq. 8 can
be linearised as:

Q̇cv,k(t)' h̄cvAk
(
Tdb(t)−Ts,k(t)

)
(9)

with h̄cv the yearly average of the exterior convection co-
efficient.

The interior convective heat transfer rate of a wall,
ceiling or floor with surface area Ak and an air node is
computed as:

Q̇cv,k(t) = hcv,k(t)Ak
(
Tdb(t)−Ts,k(t)

)
hcv,k(t) = n1,k D

n2,k
k

∣∣Tdb(t)−Ts,k(t)
∣∣n3,k

(10)

with Dk the hydraulic diameter, and coefficients
ni,k. The value of the coefficients are n1:3 =
{1.823,−0.121,0.293} for vertical surfaces, n1:3 =
{2.175,−0.076,0.308} for heated floors and cooled ceil-
ings and n1:3 = {0.704,−0.601,0.133} for cooled floors
and heated ceilings (Awbi and Hatton, 1999).

These interior convection equations can be linearised
in IDEAS using an average value for hcv:

hcv,k ' n1,k D
n2,k
k |∆Tnom|n3,k (11)

with ∆Tnom the nominal temperature difference.

Heat diffusion through walls and floors Heat transfer
through walls and floors is characterized by convective
and radiative heat transfer at the surfaces and conduc-
tion through the solid layers. The latter is governed by
a partial differential equation (PDE). It extends in three
spatial dimensions and in time. However, the heat trans-
fer through walls and floor can often be approximated
using a one dimensional PDE due to the low thickness to
height and width ratio. The equations can then either be
solved using discrete Laplace transform (e.g. TRNSYS)
or using a finite volume method (e.g. EnergyPlus (Strand
et al., 1999)). In IDEAS, the finite volume method is
used, leading to a set of linear equations.

3 Linearisation Technique
The linearisation of a function consists of the first order
term of the Taylor expansion of this function around a
working point. Given a deterministic non-linear dynamic
system:

ẋ = f (x,u)
y = g(x,u)

(12)

where x ∈ Rnx are the states, ẋ are their derivatives, u ∈
Rnu the inputs, and y∈Rny the outputs. The linearisation
of Eq. 12 around point p? , (x?,u?) is defined as:

ẋ = f (p?)+
∂ f
∂x

∣∣∣∣
p?
(x− x?)+

∂ f
∂u

∣∣∣∣
p?
(u−u?)

, f (p?)+Ax̃+Bũ

y = g(p?)+
∂g
∂x

∣∣∣∣
p?
(x− x?)+

∂g
∂u

∣∣∣∣
p?
(u−u?)

, g(p?)+Cx̃+Dũ

(13)

where A,B,C,D are constant matrices.
The Dymola built-in function linearize2 of the

Modelica Linear System2 library provides the possibil-
ity of linearising Modelica models (Otter, 2014). The
hybrid differential-algebraic equation system is treated
as an ordinary differential equation system at the lineari-
sation point and the partial derivatives of the functions
f and g are obtained by evaluation of the analytical Ja-
cobian if it is available. Otherwise a central difference
method is used. The function can also be used to trans-
form a linear model into a SSM.

It should be noted that even for a linear system, the
linearisation point p? used by the function linearize2
should be chosen carefully to avoid numerical noise. The
states x? can be set using initial equations or start val-
ues. The inputs u? can be set using start values. The
default start value for the inputs in Dymola is zero
which can lead to significant error when evaluating the
derivatives using the central difference method.

4 Linearisation Methodology in
IDEAS

This section describes how IDEAS was adapted to au-
tomatically obtain a state space formulation of a BES
model in Dymola. Firstly the linearization of the equa-
tions is discussed, followed by the model structure re-
quirements for SSM’s. Finally the SSM structure is de-
scribed.

4.1 Linearisation of the equations
Here we describe how the non-linear equations of the
Modelica BES models are conditionally linearised or
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Figure 2. Left: original model with non-linear equations. Right: Adjusted model structure with moved and/or linearized non-
linear equations. Component models are outer wall ‘OutWall’, interior wall ‘IntWall’, Window ‘Win’, weather model inputs
‘Wea’ and HeatPorts embedded (Emb), convective (Con) and radiative (Rad). White triangles represent inputs to the model,
whereas black triangles represent outputs of the model.
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Figure 1.4: Schematic representation of a 2-zone office building with
3 disturbances: ambient temperature Tamb, solar radiation q̇sol and
internal gains q̇int,
2 inputs: water supply temperature Tws and ventilation supply
temperature Tvs
and 2 outputs: zone temperature Tz and concrete core temperature Tc

.

to be compensated either by the slow reacting, but high efficient CCA (Tws), by
the fast reacting ventilation system Tvs, having a lower efficiency, or possibly an
additional heating/cooling system. Because CCA has more moderate heating
and cooling water supply temperatures than required by the heating and cooling
coil of the ventilation system, producing conditioned water for CCA can occur
at a higher efficiency.

Heat transfer between CCA and room is driven by the temperature difference
between the CCA surface temperature and the zone temperature: q̇CCA =
hc+r(Ts−Tz), with hc+r the total heat transfer coefficient combining convection
and radiation (see Sec. 1.4). Since CCA is operated with low heating and high
cooling supply water temperatures, (Ts−Tz) is never very large. Therefore, the
so-called ‘self-regulating’ effect is important: when CCA is heating the room
and Tz increases, (Ts − Tz) and q̇CCA will quickly decrease. This prevents
overheating the room. This also applies for cooling. When internal or solar
gains are heating up the room and Tz increases, (Ts−Tz) and q̇CCA will quickly
increase, providing extra cooling power in the zone.

Firstly, looking at the steady-state, CCA is a heating and cooling system with
a low thermal power. Table 1.1 compares typically occurring heat gains and
losses in an office building with the steady-state heating and cooling power
from a 20 cm thick activated concrete slab: cooling is a critical issue, for which
a backup system might be required. The presented values are explained further

Figure 3. Illustration of the office building section, (Sourbron et al. (2013), p 5)

moved outside the model and replaced by model inputs.
Note that the moved equations should not depend on any
state variables.

Radiation As described in the previous section, all
longwave radiation equations can be linearised accu-
rately. If linearise = true, Eq. 2 and Eq. 5 are re-
placed by Eq. 3 and Eq. 6, respectively, where the square
root term is transformed into a model input for each dif-
ferent orientations and inclination. The solar irradiation
E(k)

e (t) required for the shortwave absorption is also con-
verted into a model input per orientation and inclination.

Window models Window models contain equations
for calculating the solar irradiance, the impact of shad-
ing and the amount of heat that is absorbed and transmit-
ted through the window. These are non-linear equations
indicated in Figure 2 by ‘Eq. Win’. Linearising these
equations would introduce large errors. Linearising them
at may for instance have the consequence that the so-
lar position and corresponding incidence angles become
fixed, which can cause a large underestimation of the so-

lar gains for windows. Therefore the absorbed and trans-
mitted heat flow rates are calculated outside of the model
and they are inputs to the linearised model, as indicated
in the right of Figure 2. Each window model is instanti-
ated twice, once inside and once outside of the linearised
model. The grey boxes in Figure 2 indicate which equa-
tions are removed and replaced by inputs. Note that the
window model is thereby split into two parts. A bus con-
nector winBus for each of the nwin windows is used for
connecting the inputs.

Convective heat transfer The interior convective heat
transfer is linearised using Eq. 11. ∆Tnom was chosen
equal to the mean absolute temperature difference
between the window or wall and the zone air tempera-
ture. The exterior convective heat transfer coefficient
is simplified by using the yearly average convective
heat transfer coefficient h̄cv. These linearisations are
indicated on Figure 2 using green rectangles.

The remaining model equations, like thermal conduc-
tion equations, are already linear and they are retained.



4.2 State space formulation

In the previous paragraphs all non-linear equations are
removed from the building envelope model. This linear
model needs to be converted into state space format. This
requires that all exterior connections are either inputs or
outputs, otherwise Dymola does not detect the connec-
tions. However, HeatPort connections Emb, Con and
Rad contain variables T and Q_flow that do not spec-
ify whether they are inputs or outputs. Each HeatPort
for the room thermal gains is therefore connected to an
input-output block h2s, which either sets heat flow rate
Q_flow to a fixed input and temperature T to an output
or the other way around.

In order to propagate weather data inputs to all sub-
models, one weather bus weaBus with prefix input is
connected to each zone. The zone further propagates this
data to all its connected surfaces (walls, windows, ...) as
indicated by the dotted lines in Figure 2.

4.3 State space model structure

All non-linear equations are now removed and all con-
nections are either defined as an input or as an output.
The state space formulation can now be obtained by us-
ing the linearize2 function on the model containing
all components of the dashed green box in Figure 2. This
function returns matrices A, B, C and D. The SSM inputs
u are the heat flow rate or temperature for thermal gains
of the zones, the weather bus and nwin window buses.
Outputs are either the temperature or the heat flow rate of
the transformed HeatPorts. Additional outputs can be
defined in the linearised model by adding RealOutput
components.

5 Validation

In this section, the methodology is applied to a test case.
The case is firstly described after which the methodology
is validated.

Case description The validation uses the cut-out of
a typical office building with South and North oriented
facades described by Sourbron et al. (2013) (See Fig-
ure 3). We only consider the building structure, which
consists of three zones (a corridor, a south-oriented and
a north-oriented zone) each equipped with a thermally
activated ceiling and floor composed of multiple layers
(floor tiles, air layer, screed, and reinforced concrete),
two external walls composed of multiple layers (plaster,
concrete blocks, mineral wool, and bricks), and two win-
dows. Each zone has a convective and a radiative heat
gain input and heat can also be injected at the core of the
thermally activated building parts.

The model is implemented with all details above in
Modelica using the IDEAS library (Baetens et al., 2015).

Table 1. Comparison between three models based on equation
types and equation formats.

Ref Lin SSM

Convection non-linear linear linear
Radiation non-linear linear linear
Model inputs non-linear non-linear non-linear
Other equations linear linear linear
SSM formulation no no yes

The model has 8434 variables and 50 differentiated
states. Once linearised, the model has 52 inputs. The
model uses the weather data of Uccle (Belgium).

Each of the heat flow rate inputs is set equal to the
sum of the two sinusoids of Equations 14-15, with t = 0
at new year. The sinusoid with a period of one day and
one year respectively represent internal gains, and heat-
ing or cooling delivered by the HVAC system. The sinu-
soid parameters are tuned such that the zone temperature
remains around 22 ◦C.

sin1 = 4+4sin
(

2π t
86400

− π

2

)
(14)

sin2 = 13sin
(

2π t
31536000

−1.4
)

(15)

Model description In order to validate the method-
ology, the zone temperatures of three models are com-
pared. The reference model is the IDEAS model
with non-linear radiative heat transfer (Eq. 3 and 6),
temperature-dependent interior convection (Eq. 11) and
wind speed dependent exterior convection (Eq. 8).

The second model is identical to the reference model
but it uses the linearised equations for the radiation and
interior and exterior convection. The model is then fully
linear except for its inputs.

Note that the linearisation of the exterior convection
coefficient can cause a heat flow rate error of more to 150
W/m2 due to the wide range of hcv (from 7 to 55 W/m2K)
and the potentially large difference between the ambient
dry bulb temperature and the surface temperature. For
the given example, the maximum deviation is 141 W/m2.
This error culminates when both wind speed and solar
radiation are high, which causes both a high heat transfer
rate and a high surface temperature.

The third model is the state space version of the
second model. The SSM is loaded into Dymola using
Modelica.Blocks.Continuous.StateSpace.
Note that the difference between the third and the
second model should be around the solver tolerance.

A comparison between the equation types and formats
of the three models is given in Table 1.
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Figure 4. Result comparison between three model types for a one year simulation. The top graph shows absolute temperatures,
while the other two graphs show absolute temperature differences.

Model comparison The three model versions are sim-
ulated in one model for a whole year using solver Dassl
with a tolerance of 10−6. The zone air temperatures
are then compared. Figure 4 shows the southern zone
temperature of the different models, the average error of
the three zone air temperatures of the reference model
and the linear model, and this average error for the lin-
ear model and its SSM. The figure shows that the zone
temperature is excited over a realistic range. The CPU
time is also compared 1. Normalized CPU times tnorm
are computed by subtracting the ‘CPUtime’ required for
a simulation that only computes the building model in-
puts. The CPU time ratio ri is computed based on the
non-linear reference case: ri =

tnorm,re f
tnorm,i

. The total compu-
tation time for the reference case is 290 s.

Figure 4 shows that the linear model is a good approx-
imation of the non-linear model as the absolute error re-
mains smaller than 1K and its average is close to zero.
This justifies the often made linear approximations in
building modelling. Figure 4 also shows that the trans-
formation of the linear model into a SSM does not intro-
duce significant errors, as expected. This indicates that
the model equations were successfully extracted by the
linearize2 function.

The linear model is faster than the non-linear model
with rlin = 1.8. This can be expected because linear
equations typically require less operations and do not re-
quire non-linear algebraic loops to be solved. Interest-
ingly, the SSM is much faster with a rSSM = 8.5. This is

1Simulations are performed using Dymola 2016 and Euler integra-
tion using a fixed time step of 10 s and a duration of 107 seconds. Euler
integration is chosen to ensure that the same number of time steps is
performed.

because the state space model contains only 50 states and
therefore only 50 equations. The linear model contains
50 states and 453 additional2 algebraic variables, which
also need to be computed, often requiring the analytical
solution of linear systems of equations.

These results suggest that the symbolic processing
could be improved, resulting in faster models.

6 Model Order Reduction

The obtained SSM of Section 5 is accurate but a large
number of states is used. This might be problematic for
model-based optimal controllers such as MPC. In this
section, we apply a MOR technique for different orders
and we investigate their simulation accuracy compared to
the original model. The comparison is extended by im-
plementing a state observer for each ROM and by com-
puting the 48-hours ahead prediction performance. The
prediction performance is an indicator for the efficiency
of the MPC which uses the model predictions to optimize
the inputs of the system.

The different ROM’s are obtained by applying the
Matlab function reduce to the SSM, using the default
balance algorithm (balancmr). The simulation perfor-
mance is compared using the mininum, maximum, mean
and nominal root mean square error (NRMSE) (Eq. 16)
between the original SSM and the ROM’s for each of
the three zones. The errors are calculated over a period
of 100 days. The applied heat inputs and the gains are
computed as a sum of sinusoids with 30 frequencies and

2The translated linear model contains 453 ‘time-varying variables’
more than the translated SSM model.



realistic amplitudes. The weather-related inputs are com-
puted using a typical year of Uccle (Belgium).

NRMSE(n) = 100

(
1− ‖y− ŷ(n)‖

‖y− ȳ‖

)
(16)

with y the output signal, ȳ its time averaged value, and
ŷ(n) the output signal of the n order ROM.

Figure 5 shows the comparison for the reduced order
models of different orders. For this particular example,
the error rapidly decreases with the model order and it
becomes negligible for ROM’s with n ≥ 15 . The error
on the south zone, which is irradiated by more direct sun
light than the north zone, is the highest. We therefore
conclude that the MOR technique can for this case suc-
cessfully decrease the number of states without signifi-
cant loss of accuracy but that a minimal number of states
is necessary to correctly capture the faster dynamics of
the system. These dynamics correspond to small thermal
capacities of the different surfaces excited by the sun.
This result was expected as the MOR technique typically
removes the small eigenvalues of the system, responsible
for the fast dynamics.

Note that by applying model reduction, the size of
the SSM matrices decreases but the original matrices
sparsity is lost. It is therefore not interesting to use re-
duced order model in Dymola as the number of additions
and multiplication increase thereby. However, the loss
of sparsity for optimal controller model is not an issue,
since the required conversion from the continuous to the
discrete time domain already removes that sparsity of the
matrices.

7 Conclusion

This paper presents an approach for deriving linear state
space models from BES models using the IDEAS li-
brary and Dymola. To this end, weakly non-linear equa-
tions are linearised. The remaining non-linear equa-
tions can be evaluated outside of the model since they
do not depend on the model states. The resulting model
is linearised using the Dymola function linearize2,
which derives the state space matrices. The errors made
by linearising the models are found to be acceptable. The
SSM can be reduced using model order reduction tech-
niques. For the tested case, the order of the model could
be reduced by a factor three without significant loss of
prediction accuracy. An important advantage of the pre-
sented methodology is that it automates the conversion of
IDEAS BES models into state space formulation which
can then be used for different purposes or by different
programs.

The current implementation still presents some draw-
backs that can be solved in the future. So far, the model
can only have four different perpendicular orientations
and all surfaces should either be horizontal or vertical.

Furthermore, the Medium in the zone should be simple
air without any species concentration. Finally ventila-
tion can only be modelled using heat flow inputs and not
using mass/energy transport equations.
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