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Abstract
A  long-standing  debate  in  perception  concerns  the  question  of  whether 
perceptual organization is guided by internal efficiency (the simplicity principle) 
or by external veridicality (the likelihood principle). This article focuses on the 
simplicity principle which is a modern information-theoretic version of Occam's 
razor,  but also compares it  to  the likelihood principle  which reflects  classical 
information  theory.  Both  principles  can  be  modeled  by  Bayes'  rule  which 
combines  quantifications  of  view-independent  and  view-dependent  factors  to 
predict stimulus interpretations. Whereas the likelihood principle relies on hardly 
quantifiable  frequencies  of  occurrence  of  things  in  the  world,  the  simplicity 
principle relies on better quantifiable structural complexities of individual things. 
The simplicity principle is further argued to be sufficiently veridical in everyday 
perception,  and  neurally  realizable  via  cognitive  architecture  enabling 
transparallel processing. This quantum-like form of representational processing 
relates  to  connectionist  modeling  and  complements  dynamic-systems  ideas 
about neuronal synchronization.
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1. Introduction

Perceptual organization is the neuro-cognitive process that takes the light 
in our eyes as input and that enables us to interpret scenes as structured 
wholes consisting of objects arranged in space - wholes which, moreover, 
usually are sufficiently veridical to guide action. This automatic process 
may seem to  occur  effortlessly,  but  by  all  accounts,  it  must  be  very 
complex and yet very flexible. To organize meaningless patches of light 
into meaningfully structured wholes within (literally) the blink of an eye, it 
must combine a high combinatorial  capacity with a high speed (notice 
that a recognition model that tests previously stored templates against 
the visual input might avoid the combinatorics but would not achieve the 
required speed). To give a gist (following Gray, 1999, but many others 
have argued similarly), multiple sets of features at multiple, sometimes 
overlapping, locations in a stimulus must be grouped simultaneously. This 
implies  that  the  process  must  cope  with  a  large  number  of  possible 
combinations  in  parallel,  which  also  suggests  that  these  possible 
combinations are engaged in a stimulus-dependent competition between 
grouping  criteria.  Hence,  the  combinatorial  capacity  of  the  perceptual 
organization process must be very high. This, together with its high speed 
(it completes in the range of 100-300 ms), reveals the truly impressive 
nature of the perceptual organization process.

One of the great mysteries of perception is how the human visual system 
manages to do all  this. An intriguing idea in this context is that, from 
among all possible interpretations of a stimulus, the visual system selects 
the one defined  by a minimum number  of  parameters.  This  simplicity 
principle has gained empirical support but is also controversial. Indeed, 
simplicity is obviously an appealing property in many settings, but can it 
be  the  guiding  principle  of  the  intricate  process  sketched  above?  To 
review this  idea,  this  chapter  focuses  on  underlying  theoretical  issues 
which may be introduced by way of a brief history of this principle.

2. A brief history of simplicity

An early predecessor of the simplicity principle is what became known as 
Occam's razor. Its origins can be traced back to Aristotle (384–322 BC), 
and it entails the advice - expressed in various forms by William of Occam 
(±1290–1349) - to keep theories and models as simple as possible, that 
is,  to  not  make  them more  complex  than  needed  to  account  for  the 
available  data.  The  underlying  idea  is  that,  all  else  being  equal,  the 
simplest of all possible interpretations of data is the best one. A modern 
version of Occam's razor is Rissanen's (1978) minimum description length 
principle  (MDL  principle)  in  the  mathematical  domain  of  algorithmic 
information theory (AIT, a.k.a. the theory of Kolmogorov complexity; Li & 
Vitányi, 1997). The MDL principle applies to model selection and, more 
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general, to inductive inference (Solomonoff, 1964a, 1964b). It proposes a 
trade-off  between  the  complexity  of  hypotheses  as  such  and  their 
explanatory power, as follows:

The best hypothesis to explain given data is the one that minimizes the 
sum of
(a) the information needed to describe the hypothesis; and
(b)  the  information  needed to  describe  the  data  with  the  help  of  the 
hypothesis.

For instance, in physics, Einstein's theory as such is more complex than 
that  of  Newton,  but  because  it  explains  much  more  data,  it  is  yet 
considered  to  be  better.  Applied  to  perceptual  organization,  the  two 
amounts of information above can be taken to refer to, respectively, the 
view-independent complexity of hypothesized distal stimuli as such and 
their view-dependent degree of consistency with the proximal stimulus at 
hand. The MDL principle then suggests that, in the absence of further 
knowledge, the best interpretation of a stimulus is the one that minimizes 
the sum of these two amounts of information.

Another predecessor of the simplicity principle is the law of Prägnanz. The 
early  20-th  century  Gestalt  psychologists  Wertheimer  (1912,  1923), 
Köhler  (1920),  and  Koffka  (1935)  proposed  that  this  law  underlies 
perceptual  groupings  based  on  properties  such  as  symmetry  and 
similarity.  It  was  inspired  by  the  minimum principle  in  physics,  which 
holds that dynamic physical systems tend to settle into relatively stable 
states  defined  by  minimum  energy  loads.  Applied  to  perceptual 
organization,  the  law  of  Prägnanz  suggests  that,  when  faced  with  a 
stimulus, the human visual system tends to settle into relatively stable 
neural  states  reflecting  cognitive  properties  such  as  symmetry  and 
simplicity.  This  idea  does  not  exclude  the  influence  of  knowledge 
represented at higher cognitive levels, but it takes this influence to be 
subordinate  to  stimulus-driven  mechanisms  of  a  largely  autonomous 
visual system.

Nowadays, the neural  side of the law of Prägnanz finds elaboration in 
connectionist and dynamic-systems approaches to cognition. In the spirit 
of Marr's (1982/2010) levels of description, these two kinds of approaches 
are complementary in that connectionism usually focuses on the internal 
mechanisms of information processing systems, while dynamic systems 
theory (DST) usually focuses on the physical development over time of 
whole systems.  Also  complementary,  but  then  usually  focusing on the 
nature of outcomes of information processes, is representational theory in 
which the cognitive side of the law of Prägnanz finds elaboration. This 
may be specified as follows. For perceptual organization, Koffka (1935) 
formulated the law of Prägnanz as holding:

of several geometrically possible organizations that one will actually occur 
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which possesses the best, the most stable shape (p. 138),

and Hochberg and McAlister (1953) put this in information-theoretic terms 
by:

the less the amount of information needed to define a given organization 
as compared to the other alternatives, the more likely that the figure will 
be so perceived (p. 361),

specifying descriptive information loads, or complexities, by:

the number of different items we must be given, in order to specify or 
reproduce a given pattern (p. 361).

Hochberg  and  McAlister  coined  this  information-theoretic  idea  the 
descriptive minimum principle,  and nowadays,  it  is  also  known as  the 
simplicity principle.

Hence,  just  as  the  MDL  principle  in  AIT,  the  simplicity  principle  in 
perception  promotes  simplest  codes  as  specifying  the  outcomes  of  an 
inference process based on descriptive codes of things. Such descriptive 
codes are much like computer codes, that is, representations that can be 
seen as reproduction recipes for things and whose internal structures are 
therefore enforced by the internal  structures of those things. Both the 
MDL  principle  and  the  simplicity  principle  reflect  modern  information-
theoretic  approaches  which  contrast  with  Shannon's  (1948)  classical 
selective-information  approach  in  communication  theory.  Shannon's 
approach promotes optimal codes, that is, nominalistic label codes (as in 
the  Morse  code)  that  minimize  the  long-time  average  burden  on 
communication  channels  -  assuming  the  transmission  probabilities  of 
codes  are  known.  The  simplicity  principle  further  contrasts  with  von 
Helmholtz'  (1909/1962)  likelihood  principle.  The  latter  holds  that  the 
internal neuro-cognitive process of perceptual organization is guided by 
veridicality and yields interpretations most likely to be true in the external 
world  -  assuming  such  probabilities  are  known.  Shannon's  and  von 
Helmholtz' approaches are appealing but suffer from the problem that, in 
many  situations,  the  required  probabilities  are  unknown  if  not 
unknowable. A main objective of modern descriptive-information theory is 
to circumvent this problem, that is, to make inferences without having to 
know the real probabilities.

An initial problem for modern information theory was that complexities 
depend  on  the  chosen  descriptive  coding  language.  However,  both 
theoretical findings in AIT (Chaitin, 1969; Kolmogorov, 1965; Solomonoff, 
1964a,  1964b)   and  empirical  findings  in  perception  (Simon,  1972) 
provided evidence that, regarding complexity rankings, it does not matter 
much which descriptive coding language is employed. This evidence is not 
solid proof, but does suggest that descriptive simplicity is a fairly stable 
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concept.

The  simplicity  principle  in  perception  agrees  with  ideas  by  Attneave 
(1954, 1982) and Garner  (1962,  1974), for instance, and it  has been 
promoted  most  prominently  in  Leeuwenberg's  (1968,  1969,  1971) 
structural information theory (SIT). SIT was developed independently of 
AIT, but in hindsight, its current implementation of the simplicity principle 
can be seen as a perception-tailored version of the MDL principle in AIT 
(van  der  Helm,  2000).  A  notable  difference,  though,  is  that  the  MDL 
principle  postulates  that  simplest  interpretations  are  the  best  ones 
(without qualifying what "best" means), whereas the simplicity principle 
postulates that they are the ones most likely to result from the internal 
neuro-cognitive process of perceptual organization - which may not be 
interpretations most likely to be true in the external world.

This historical overview raises three questions which, below, are discussed 
in more detail.  The first question is whether the human visual  system 
indeed organizes stimuli in the simplest way; this is basically an empirical 
question, but because it has been plagued by unclarities, it is addressed 
by  looking  at  operationalizations  of  simplicity.  The  second  question  is 
whether simplest stimulus organizations are sufficiently veridical; this is a 
theoretical  question  which  is  addressed  by  using  AIT  findings  in  a 
comparison  between  the  simplicity  and  likelihood  principles.  The  third 
question is whether the simplicity principle agrees with the putative high 
combinatorial  capacity  and  speed  of  perceptual  organization;  this  is  a 
tractability  question  which  is  addressed  by  relating  SIT  to  DST  and 
connectionism to assess how the simplicity principle might be neurally 
realized.

3. Operationalizations of simplicity

Hochberg and McAlister (1953) introduced the simplicity principle in an 
article  entitled  A  quantitative  approach  to  figural  "goodness".  Figural 
goodness is an intuitive Gestalt notion and the idea behind the association 
between descriptive simplicity and goodness is that simplicity entails both 
accuracy and parsimony. For instance, a square can be represented as if 
it were a rectangle, but representing it as a square is both more accurate 
and more efficient  in terms of  memory resources as it  requires  fewer 
descriptive parameters.  Assuming that patterns  are represented in the 
simplest  way,  simpler  patterns  are  thus  expected  to  be  better  in  the 
sense that they can be remembered or reproduced more easily.

Hence, the motto here is "what is simple, is easy to learn". Notice that 
this is the inverse of the motto "what has been learned, is simple" which 
expresses that patterns, that have been seen often, are familiar so that 
they are experienced as being simple. The latter motto agrees with the 
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likelihood principle rather than with the simplicity principle, but it shows 
that  simplicity  has  different  connotations  which  may  be  relevant  in 
different  settings  (see  also  Sober,  2002).  Therefore,  this  section  first 
addresses this issue.

3.1. Classical versus modern information-theoretic simplicity
In classical selective-information theory, the idea is that simpler things 
are things that convey less information because they belong to larger sets 
of actually  occurring equivalent  things (i.e.,  identical  things, or  similar 
things if their dissimilarities can be ignored in the situation at hand). A 
random dot  cloud,  for  instance,  is  thus  said  to  be  simple:  the  set  of 
random dot clouds is larger than any set of more structured dot patterns, 
so that a randomly picked dot pattern has a relatively high probability of 
being a random dot cloud. It therefore gets a shorter optimal code in 
Shannon's selective-information approach.

Figure 1. Objects that are simple because they have a highly regular internal 
structure  consisting  of  a  superstructure  (visualized  by  thick  dashes)  that 
determines the positions of many identical subordinate structures (visualized by 
thin dashes). The hierarchy in (a) is the inverse of that in (b), and in both cases, 
the objects are presumably classified on the basis of primarily the perceptually 
dominant superstructure.

The objects in Figure 1, on the other hand, can be said to be simple in the 
sense that they have a highly regular internal structure. This idea about 
simplicity  agrees  with  modern  descriptive-information  theory,  in  which 
individual  things  get  shorter  descriptive  codes  if  they  contain  more 
structural  regularity.  This time, things may also be simple for  another 
reason,  by  the  way.  For  instance,  the  binary  string  11111111111  is 
simple because it contains a structural regularity as all bits are identical, 
while the binary string 01 is simple because it contains only two bits. 
Shortest descriptive codes account for the simplicity of both cases, but for 
the rest, the two cases are hardly comparable. This illustrates that the 
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complexity of simplest codes is not always the most appropriate property 
to be used in inter-stimulus comparisons (i.e., in comparisons between 
interpretations of different stimuli). Indeed, the simplicity principle applies 
primarily to intra-stimulus comparisons, that is, to comparisons between 
different candidate interpretations of an individual stimulus. Furthermore, 
beside the complexity,  also other properties  of simplest codes may be 
used in inter-stimulus comparisons. For instance, unlike optimal codes, 
simplest  codes  have  a  hierarchical  structure  reflecting  the  hierarchical 
structure  of  simplest  stimulus  organizations,  so  that  classifications  of 
different stimuli may be assessed on the basis of these hierarchical code 
structures (see Figure 1; for more examples, see Leeuwenberg & van der 
Helm, 2013).

These different ideas about simplicity are also reflected in the following. 
In  classical  information  theory,  the  length  of  an  optimal  code  for  an 
individual  pattern  is  determined  by  the  size  of  the  set  of  all  actually 
occurring identical  patterns. In modern information theory,  conversely, 
the  length  of  the  simplest  descriptive  code  for  an  individual  pattern 
determines the size of the set of all theoretically possible equally complex 
patterns  (as  in  AIT,  which  focuses  on the  algorithmically  relevant 
complexities of  simplest descriptive codes) or the set of all theoretically 
possible  equally  structured  patterns  (as  in  SIT,  which  focuses  on  the 
perceptually  relevant  structural  classes  implied  by  simplest  descriptive 
codes).  The  fact  that  descriptively  simpler  patterns  belong  to  smaller 
structural classes (Collard & Buffart, 1983) agrees with Garner's (1962, 
1970) idea of inferred subsets and his motto of "good patterns have few 
alternatives". For instance, the set of all imaginable squares is smaller 
than  the  set  of  all  imaginable  rectangles.  In  fact,  in  perception,  the 
structural  class  to  which  a  pattern  belongs  is  considered  to  be  more 
relevant than its precise metrical details (McKay, 1950), so that one could 
say that this class constitutes the generic representation of the pattern 
(e.g.,  the  mental  representation  of  a  particular  square  primarily 
represents "a square" and its precise size is secondary). This suggests 
that a pattern should not be treated in isolation, but in reference to its 
structural class (Lachmann & van Leeuwen, 2005a, 2005b).

Hence, all in all, it is true that Shannon's optimal codes have a flavor of 
simplicity.  They  are  shorter  for  more  frequently  occurring  things,  and 
thereby,  minimize  the  long-term  average  length  of  nominalistic  label 
codes over many identical and different things. However, it is crucial to 
distinguish this from the simplicity principle which minimizes the length of 
descriptive  codes  for  individual  things.  Furthermore,  notice  that  the 
foregoing deals with view-independent properties only. Indeed, initially, 
both  the  simplicity  principle  and  likelihood  principle  focused  on  view-
independent properties of hypothesized distal objects to predict the most 
likely outcome of the perceptual organization process - that is, ignoring 
how well hypotheses fit the proximal data. The latter issue is about view-
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dependencies, and as discussed next, the inclusion of this issue boosted 
research on perceptual organization.

3.2. View-dependencies
Because descriptive simplicity is a fairly stable concept (see above), the 
assessment of complexities of hypothesized distal objects (i.e., objects as 
hypothesized in candidate interpretations) as such is not a big problem for 
the  simplicity  principle.  For  the  likelihood  principle,  however,  the 
assessment of their probabilities is a problem. It predicts that the most 
likely outcome of the perceptual organization process is the one that is 
also  objectively  most  likely  to  be true in  the world.  However,  despite 
suggestions (Brunswick, 1956), such objective probabilities in the world 
are unknown if not unknowable. This does not exclude that perception is 
guided by the likelihood principle, but it does mean that this may not be 
verifiable (Leeuwenberg & Boselie, 1988).

Figure  2.  The  pattern  in  (a)  is  readily  interpreted  as  a  parallelogram partly 
occluding  the  shape  in  (b)  rather  than  the  shape  in  (c).  In  this  case,  this 
preference could be claimed to occur either because, unlike the shape in (b), the 
shape in (c) would have to take a rather coincidental position to yield the pattern 
in (a), or because the shape in (b) is simpler than the shape in (c). In general, 
however, both factors seem to play a role.

Be that as it may, in the 1980s, proponents of the likelihood principle 
switched  to  view-dependent  properties,  that  is,  to  properties  that 
determine the degree of consistency between a candidate interpretation 
and  the  proximal  stimulus  (see,  e.g.,  Gregory,  1980).  For  these 
properties, fair approximations of their objective probabilities in the world 
can be assessed better. This led to a debate in which advocates of one 
principle presented phenomena that were claimed to be explained by this 
principle but not by the other principle - however, advocates of the other 
principle  were  generally  able  to  counter  such  arguments  (see,  e.g., 
Boselie & Leeuwenberg's, 1986, reaction to Rock, 1983, and to Pomerantz 
& Kubovy, 1986; Sutherland's, 1988, reaction to Leeuwenberg & Boselie, 
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1988;  Leeuwenberg,  van  der  Helm,  &  van  Lier's,  1994,  reaction  to 
Biederman, 1987). The crux of this debate is illustrated by Figure 2, for 
which  both  principles  -  as  formulated  at  the  time  -  would  make  the 
correct  amodal-completion  prediction.  That  is,  the  simplicity  principle 
could say that the preferred interpretation is the one in which, viewpoint 
independently, the completed shape is the simplest one. The likelihood 
principle, conversely, could say that it is the one without unlikely view-
dependent coincidences of edges and junctions of the two shapes.

Both arguments seemed to be valid, and in both the simplicity paradigm 
and the likelihood paradigm, the result of this debate was the insight that 
perceptual  organization  requires  an  integrated  account  of  both  view-
independent and view-dependent factors (see, e.g., Gigerenzer & Murray, 
1987; Knill & Richards, 1996; Tarr & Bülthoff, 1998; van der Helm, 2000; 
van Lier, van der Helm, & Leeuwenberg, 1994, 1995; van Lier, 1999). For 
the simplicity principle, such an integration implies compliance with the 
MDL  principle  in  AIT  (see  above),  and  no  matter  which  underlying 
principle one adopts, it concurs with an integration of information from 
the ventral and dorsal streams in the brain (Ungerleider & Mishkin, 1982). 
These  streams  are  believed  to  be  dedicated  to  object  perception  and 
spatial perception, respectively, and an integration of view-independent 
and  view-dependent  factors  can  thus  be said  to  reflect  an  interaction 
between  these  streams,  to  go  from  percepts  of  objects  as  such  to 
percepts of objects arranged in space.

Hence, the past few decades showed a convergence of ideas about the 
factors  to  be  included  in  perceptual  organization.  This  convergence, 
however,  does  not  mean that  the  two principles  agree  on  how these 
factors are to be quantified. As explicated next in Bayesian terms, the 
latter issue is not just a matter of complexities versus probabilities.

3.3. Bayesian models
Thomas Bayes (1702-1761) proposed what became known as Bayes' rule 
(Bayes,  1763/1958).  It  holds  that  the  posterior  probability  p(H|D) of 
hypothesis  H given data  D is  to be computed by multiplying the prior 
probability p(H) of hypothesis  H as such and the conditional probability 
p(D|H) of  data  D given hypothesis  H (it  also involves a normalization 
factor,  but  this  factor  is  currently  irrelevant  as  it  does  not  affect  the 
ranking of hypotheses by their posterior probabilities).

Bayes' rule is a powerful mathematical tool to model all kinds of things in 
terms of  probabilities  (for  more background information,  see Feldman, 
Chapter  56).  Its  general  goal  is  to  establish  a  posterior  probability 
distribution over  hypotheses,  but a  specific  goal  is  to  select  the most 
likely hypothesis, that is, the one with the highest posterior probability 
under the employed prior and conditional probabilities. Notice, however, 
that  Bayes'  rule  does  not  prescribe  where  the  prior  and  conditional 
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probabilities come from (cf.  Watanabe, 1969). The failure to recognize 
this crucial point has led to overly strong claims (see also Bowers & Davis, 
2012a, 2012b). For instance, Chater (1996) claimed that the simplicity 
and  likelihood  principles  in  perception  are  equivalent,  but  this  claim 
assumed  implicitly  -  and  incorrectly  -  that  any  Bayesian  model 
automatically  implies  compliance  with  the  Helmholtzian  likelihood 
principle (van der Helm, 2000, 2011a). This may be clarified further as 
follows.

In Bayesian terms, the above-mentioned convergence of ideas about the 
factors  to  be included in  perceptual  organization means that  both the 
likelihood paradigm and the simplicity paradigm nowadays promote an 
integration of priors and conditionals - where the priors refer to view-
independent  factors  of  candidate  interpretations  as  such,  while  the 
conditionals  refer  to  their  view-dependent  degree  of  consistency  with 
proximal stimuli. Hence, Bayes' rule can be employed to predict the most 
likely outcome of the human perceptual organization process. However, 
for a modeler, the key question then is: where do I get the priors and 
conditionals from? If one wants to model perceptual organization rather 
than explaining  it,  one might  subjectively  choose certain  probabilities, 
whether or not backed-up by compelling arguments (for fine examples, 
see Knill & Richards, 1996). This is customary in Bayesian approaches, 
but notice that compliance with either one of the explanatory simplicity 
and likelihood principles requires more specific probabilities.

The natural way to model the likelihood principle, on the one hand, is to 
use  Bayes'  rule.  After  all,  this  principle  assumes  that  objective 
probabilities in the world (pw) determine the outcome of the perceptual 
organization  process.  That  is,  for  proximal  stimulus  D,  the  likelihood 
principle can be formalized in Bayesian terms by:

Select the hypothesis H that maximizes pw(H|D)=pw(H)*pw(D|H)

where pw(H) is the prior probability of hypothesis H, while pw(D|H) is the 
probability that the proximal stimulus D arises if the real distal stimulus is 
as hypothesized in H.

The natural way to model the simplicity principle, on the other hand, is to 
minimize the sum of prior and conditional complexities (just as specified 
for the MDL principle in AIT). However, one may also convert descriptive 
complexities  C into  artificial  probabilities  pa=2-C;  these  are  called 
algorithmic probabilities in AIT (Li & Vitányi, 1997) and precisals in SIT 
(van der Helm, 2000). Under this conversion, minimizing the sum of prior 
and conditional complexities C is equivalent to maximizing the product of 
prior and conditional probabilities pa. Normalization then is irrelevant, and 
these artificial  probabilities thus imply that also the simplicity principle 
can be formalized in Bayesian terms, namely, by:
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Select the hypothesis H that maximizes pa(H|D)=pa(H)*pa(D|H)

Thus, both principles can be formalized in Bayesian terms to predict the 
most likely outcome of the perceptual organization process. The crucial 
difference  then  still  is,  however,  that  the  likelihood  principle  employs 
probabilities  pw based on the frequency of occurrence of things in the 
world  whereas  the  simplicity  principle  employs  probabilities  pa derived 
from the descriptive complexity of individual things.

Hence, to determine if the Bayesian formulation of the simplicity principle 
complies with the likelihood principle, one should assess how close the 
latter 's objective probabilities pw and the former's artifical probabilities pa 

might be (van der Helm, 2000, 2011a). This is discussed further in the 
next section, but notice that a proof of equivalence of the principles is out 
of  the  question,  simply  because  the  pw are  unknown.  The  next  two 
examples may illustrate various things discussed so far.

3.4. Example 1: Straight versus curved edges
The general viewpoint assumption is an assumption put forward in the 
likelihood paradigm (Biederman, 1987; Binford, 1981; Rock, 1983; Witkin 
& Tenenbaum, 1983).  It  holds  that  a  proximal  stimulus  is  interpreted 
assuming  it  does  not  contain  features  that  would  arise  only  in  an 
accidental view of the distal stimulus. This suggests, for instance, that a 
proximal straight line can safely be interpreted as a distal straight edge 
because it can be caused by a distal curved edge only from an accidental 
viewpoint  position.  Straightness  is  therefore  called  a  nonaccidental 
property: if such a property is present in the proximal stimulus, then it is 
most likely present in the distal stimulus too.

The general viewpoint assumption is indeed plausible, but notice that it 
derives  its  plausibility  from  favoring  interpretations  involving  high 
conditional  probabilities.  For  instance,  a  curved  distal  edge  yields  a 
straight  proximal  line  from  hardly  any  viewpoint,  so  that  a  straight 
proximal  line  has  a  low probability  to  occur  if  the  curved  distal  edge 
hypothesis were true. A straight distal edge, conversely, yields a straight 
proximal line from nearly every viewpoint, so that a straight proximal line 
has a high probability to occur if the straight distal edge hypothesis were 
true. It is true that Pomerantz and Kubovy (1986) argued that, in the 
case of a straight proximal line, the preference for the straight distal edge 
hypothesis should be justified by showing that straight edges occur more 
frequently in the world than curved edges. This, however,  would be a 
justification in terms of prior probabilities whereas, as just argued, it is 
justified  better  in  terms  of  conditional  probabilities.  Yet,  according  to 
Bayes' rule, a high conditional probability may be suppressed by a low 
prior probability, so, it still remains to be seen if the prior probability in 
the world is high enough to allow for a justification within the likelihood 

11



paradigm (Leeuwenberg et al., 1994).

3.5. Example 2: T-junctions
Each of the four configurations in Figure 3 can, in principle, be interpreted 
as consisting of one object or as consisting of two objects. Going from left 
to right, however, the two-objects interpretation (definitely preferred in a) 
gradually  looses  strength  in  favor  of  the  one-object  interpretation 
(definitely preferred in d). By way of a clever experiment involving twelve 
of such configurations, Feldman (2007) provided strong evidence for this. 
For instance, he found that, just as the configuration in a, the T-junction 
in b is perceived as two objects, and that, just as the configuration in d, 
the hook in c is perceived as one object.

Figure 3. Four configurations that can be interpreted as consisting of one object 
or  as  consisting  of  two  objects.  Taken  as  one  object,  a  simpler  (i.e.,  more 
regular)  one  belongs  to  a  smaller  object  category;  taken  as  two  objects,  a 
simpler (i.e., less coincidental) relative position of the two objects belongs to a 
larger position category.

T-junctions  are  particularly  interesting  because,  in  many  models  of 
amodal completion, they are considered to be cues for occlusion (see, 
e.g., Boselie, 1994; see also van Lier & Gerbino, Chapter 11). That is, if 
the proximal stimulus contains a T-junction, this is taken as a strong cue 
that the distal scene comprises one surface partly occluded by another 
(see, e.g., Figure 2). However,  before the visual system can infer this 
occlusion, it first has to segment the proximal stimulus into the visible 
parts of those two surfaces, and Feldman's (2007) data in fact suggest 
that T-junctions are cues for segmentation rather than for occlusion. That 
is, they trigger segmentation even when occlusion is not at hand.

To  explain  this,  one  may  invoke  van  Lier  et  al.'s  (1994)  empirically-
successful  amodal-completion model.  It  quantifies  prior  complexities  of 
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interpretations  using  SIT's  coding  model,  and  it  quantifies  conditional 
complexities under the same motto, namely, that complexity reflects the 
effort to construct things. Thus, for an interpretation, the prior complexity 
reflects the effort to construct the hypothesized distal objects, and the 
conditional  complexity  reflects  the effort  to  bring these objects  in  the 
relative  position  given  in  the  proximal  stimulus.  Notice  that  these 
conditional complexities are quantitatively equal to what Feldman (2007, 
2009)  called  codimensions  -  with  the  difference  that  Feldman  (who 
assumed uniform priors) took a high codimension to be an asset of an 
interpretation, whereas van Lier et al. (who assumed nonuniform priors) 
took a high conditional complexity to be a liability. The latter agrees with 
the simplicity principle, and implies the following for Figure 3.

Going  from  left  to  right,  the  one-object  interpretation  has  prior 
complexities of 5, 4, 3, and 1 (reflecting the number of line segments and 
angles  needed  to  describe  each  configuration  as  one  object)  and  a 
conditional  complexity  of  0  in each case (i.e.,  no degree of  positional 
freedom  to  be  removed  to  arrive  at  the  proximal  configurations). 
Likewise, the two-objects  interpretation has a prior  complexity  of 2 in 
each case (i.e.,  just  two separate line segments to be described) and 
conditional  complexities  of  0,  1,  2,  and  3  (reflecting  the  degrees  of 
positional  freedom  to  be  removed  to  arrive  at  the  proximal 
configurations).  Hence,  the  one-object  interpretation  has  posterior 
complexities  of  5,  4,  3,  and  1,  respectively,  and  the  two-objects 
interpretation has posterior complexities of 2, 3, 4, and 5, respectively. 
This  explains  Feldman's  (2007)  data  that  the  hook  is  preferably 
interpreted as one object whereas the T-junction is preferably interpreted 
as two objects (see also van der Helm, 2011a).

Hence,  both  examples  stress  the  relevance  of  an  interplay  between 
nonuniform  priors  and  nonuniform  conditionals.  Notice  that  this  still 
stands apart  from the difference between the simplicity and likelihood 
principles. This difference returns in the next section.

4. The veridicality of simplicity

Evolutionary,  a  fair  degree  of  veridicality  in  the  world  seems  a 
prerequisite  for  any  visual  system  to  survive.  The  likelihood  principle 
yields highly veridical percepts by definition, but what about the simplicity 
principle? It is true that Mach (1922/1959) suggested that simplicity and 
likelihood  are  different  sides  of  the  same  coin;  that  Perkins  (1976) 
concluded that simplest interpretations run little risk of misinterpreting 
stimuli;  and  that  the  MDL  principle  postulates  that  simplest 
interpretations are the best ones. However, it is not obvious at all that 
simplicity  yields  veridicality  (see  also  Sober,  2002).  For  instance,  the 
simplicity and likelihood principles cannot be proved to be equivalent (see 

13



above).  The  next  two  preconsiderations  set  the  stage  for  a  further 
discussion of this issue.

4.1 Preconsideration 1: Feature extraction versus feature integration
In  neuroscience,  the  perceptual  organization  process  is  believed  to 
comprise three intertwined subprocesses which, together, yield integrated 
percepts  composed  of  selected  features  (Lamme  &  Roelfsema,  2000; 
Lamme,  Supèr,  &  Spekreijse,  1998).  These  subprocesses  are  feature 
extraction, feature binding, and feature selection (see next section for 
more details). As for feature extraction, the visual system's sensitivity to 
basic  features  such  as  line  orientations  seems  to  correlate  with  their 
objective probabilities of occurrence in the world (Howe & Purves, 2004, 
2005; Yang & Purves, 2003, 2004). This is interesting as it suggests that 
the  visual  system's  capability  to  extract  features  has  adapted  to  the 
statistics in the world. This may even extend to features like symmetry, 
and seems to be in the spirit of the likelihood principle rather than the 
simplicity principle.

The simplicity principle is indeed silent about the visual system's feature 
extraction capability, but notice that it is in its spirit to assume that, via a 
two-way  interaction  between  visual  systems  and  the  world,  feature 
extraction  mechanisms  obtained  sufficient  evolutionary  survival  value 
(see  below;  see  also  van  der  Helm,  Chapter  17).  Currently  more 
important, however, is that the simplicity and likelihood principles differ 
fundamentally regarding the selection of integrated percepts, and that the 
issue at stake here is not the visual system's feature extraction capability, 
but the veridicality of integrated percepts.

4.2. Preconsideration 2: Occamian bias in Bayesian modeling
It has been noticed that Bayesian models tend to exhibit a bias towards 
simplicity  (MacKay,  2003),  and  this  bias  has  been  taken  to  reflect  a 
rapprochement of the simplicity and likelihood principles (Feldman, 2009; 
Sober,  2002).  This  bias,  however,  has  nothing  to  do  with  the 
Helmholtzian  likelihood  principle,  and  merely  reflects  a  Bayesian 
implementation of the simplicity principle. This becomes clear if one looks 
closer at MacKay's (2003) explication of this bias. MacKay argued that a 
category  of  more  complex  instances  spreads  probability  mass  over  a 
larger number of instances than a category of simpler instances does, so 
that individual instances in such a smaller category tend to get higher 
probabilities.  This,  however,  presupposes  (a)  a  correlation  between 
complexity and category size, and (b) that every category gets an equal 
probability  mass.  These  assumptions  cannot  be  justified  within  the 
likelihood paradigm, but are in line with the simplicity paradigm.

That is, MacKay seemed to have in mind a world with objects generated, 
each time, by first selecting randomly a complexity category, and then by 
selecting randomly an instance from that category. Thus, in the first step, 
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every  category  has  a  same  probability  of  being  selected,  and  in  the 
second step, every instance in the selected category has again a same 
probability of being selected. The instances in a category of complexity C 
can be defined by C parameters, so that the category size is proportional 
to  2C.  This  implies  that  the  probability  that  a  particular  instance  is 
selected is proportional to 2-C which, notably, is nothing but the simplicity 
paradigm's artifical probability pa (see previous section).

4.3. The margin between simplicity and likelihood
In  the  just-sketched  imagined  world,  the  simplicity  and  likelihood 
principles would actually be equivalent (at least, regarding the priors). 
Thereby, it  touches upon the heart  of the veridicality issue, that is,  it 
immediately raises the question of how close this imagined world might 
be to the actual world, or more general, the question of how close the two 
principles might be in other imaginable worlds. Because the probabilities 
in the actual world are unknown, the first question cannot be answered, 
but the second question found an answer in AIT's Fundamental Inequality 
(Li & Vitányi, 1997) which, in words, holds:

For any enumerable probability distribution P over things x with Kolmogorov 
complexities  K(x), the difference between the real probabilities p(x) and the 
artificial probabilities 2-K(x) is maximally equal to the complexity  K(P) of the 
distribution P.

An  enumerable  distribution  is  (or  can,  with  arbitrary  precision,  be 
approximated by) a rational-valued function of two nonnegative integer 
arguments  (examples  are  the  uniform  distribution,  the  normal 
distribution, and the Poisson distribution).  Furthermore,  the complexity 
K(P) is  the  length  of  a  shortest  descriptive  code  specifying  the 
probabilities  p(x), that is, it is roughly given by the number of different 
categories  to  which  P assigns  probabilities.  In  other  words,  the  fewer 
different categories to be considered, the fewer different probabilities to 
be assigned, the simpler the probability distribution is.

The Fundamental  Inequality  is  admittedly  a  very general  finding.  It  is 
unknown if  any  actual  world  exhibits  an  enumerable  distribution  over 
things, and Kolmogorov complexity is in fact an incomputable theoretical 
construct. Nevertheless, this finding holds for both priors and conditionals 
and suggests that, depending on the probability distribution in a world at 
hand,  the simplicity and likelihood principles might be close.  The next 
question then is what this evidence suggests regarding the veridicality of 
simplest interpretations in perception.

In this respect, notice first that natural environments like jungles exhibit 
larger  shape  diversities  than  those  exhibited  by  human-made 
environments like cities. The Fundamental Inequality then suggests that 
simplicity-guided visual systems yield a higher degree of veridicality in 
human-made  environments  than  in  natural  environments.  This  makes 
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sense considering that jungle inhabitants rely on smell and sound rather 
than on sight. In fact, the Fundamental Inequality seems to explain why 
organisms  tend  to  create  environments  with  reduced  shape  diversity 
(Allen, 1879), that is, if visual systems indeed are guided by simplicity, 
then  reducing  shape  diversity  enables  them  to  yield  more  veridical 
percepts. This would establish the above-mentioned two-way interaction 
between  visual  systems  and  the  world  (van  der  Helm,  2011b).  To 
evaluate  the relevance of  the Fundamental  Inequality  in  perception in 
more detail, one has to consider priors and conditionals separately.

First, even in human-made environments, the shape diversity may be too 
large  to  allow  for  a  simple  probability  distribution.  The  Fundamental 
Inequality then suggests that the difference between prior probabilities pw 

in the world and simplicity-based artifical prior probabilities  pa may well 
be large. In any case, there is no indication that the pa might be veridical. 
Another way of  looking at this  is  by considering structural-class sizes. 
That  is,  simpler  objects  (i.e.,  those with  higher  pa)  belong  to  smaller 
object categories (see Figure 3), which suggests that they probably occur 
with lower pw in the world. Hence, the simplicity and likelihood principles 
seem far  apart  regarding  the  priors.  For  instance,  straight  edges  are 
simpler than curved edges, but there is no reason to assume they occur 
more frequently.

Second,  different  views  of  a  scene  usually  give  rise  to  only  a  few 
qualitatively different spatial arrangements of objects. This small diversity 
suggests,  by  the  Fundamental  Inequality,  that  the  difference  between 
conditional  probabilities  pw in  the  world  and  simplicity-based  artifical 
conditional probabilities pa may well be small, so that the pa may well be 
veridical.  To  look at  this  too in  another  way,  Figure 3 illustrates  that 
simpler arrangements (i.e., those with higher pa) belong to larger sets of 
position categories,  which suggests  that  they probably also occur  with 
higher  pw in  the  world.  Hence,  the  simplicity  and  likelihood  principles 
seem  close  regarding  the  conditionals.  For  instance,  for  the  spatial 
arrangements  in  Figure  3,  the  conditional  complexities  as  formally 
quantified by van Lier et al. (1994) are in fact basically identical to the 
number of coincidences one would count intuitively. Hence, taking high 
conditional complexities to be a liability (as the simplicity principle does) 
agrees with Rock's (1983) avoidance-of-coincidences principle which is in 
line  with  the  general  viewpoint  assumption  as  put  forward  in  the 
likelihood paradigm (see previous section).

Thus, in sum, the simplicity principle's priors are probably not veridical, 
but its  conditionals probably are. On the one hand, this suggests that 
attempts to assess if the human visual system is guided by simplicity or 
by likelihood should focus on the priors, because the conditionals do not 
seem to be decisive in this respect.  On the other hand, the simplicity 
principle's  veridicality  difference between priors  and conditionals  might 
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explain experiences that scenes look weird at first glance, but less so at 
subsequent glances. That is, by way of co-evolution, seeing organisms 
can usually move as well, and this allows them to get different views of a 
same scene to infer better what the scene entails. This inference process 
can be modeled neatly by a recursive application of Bayes' rule, which 
means that posteriors obtained for one glance are taken as priors for the 
next glance. This implies that the effect of the first priors fades away and 
that the conditionals become the decisive entities. Hence, although the 
simplicity  principle's  priors  probably are not veridical,  the fact  that  its 
conditionals  probably  are  veridical  seems  sufficient  to  reliably  guide 
actions in everyday situations. In other words, a visual system that aims 
at  internal  efficiency  seems to  yield,  as  a  side-effect,  an  evolutionary 
sufficient degree of veridicality in the external world.

5. The neural realization of simplicity

The previous sections focused on the question of what is processed rather 
than on the question of how things are processed. That is, the simplicity 
and  likelihood  principles  predict  which  interpretations  result  from  the 
perceptual  organization  process,  but  this  does  not  yet  indicate  how 
candidate  interpretations  are  processed.  Notice  that  any stimulus  may 
give rise to a superexponential number of candidate interpretations, so 
that evaluating each of them separately may require more time than is 
available in this universe (cf. van Rooij, 2008). To allow for a tractable 
process, the likelihood paradigm tends to rely on heuristics (see, e.g., 
Hoffman,  1998),  but  this  does  not  yet  indicate  how  candidate 
interpretations  are mentally  structured and represented.  The simplicity 
paradigm relies  on  descriptive  coding  schemes  which  do  suggest  how 
candidate  interpretations  are  mentally  structured  and represented,  but 
this does not yet resolve the tractability question (cf. Hatfield & Epstein, 
1985).

What is clear, however, is that the simplicity principle requires a nonlinear 
process: in line with the law of Prägnanz, it implies that a minor change in 
the input may give a dramatic change in the output. This is also the case 
in connectionism and DST, and honoring ideas therein, findings within SIT 
in fact open - in an explanatory or epistemological sense (cf. Jilk, Lebiere, 
O'Reilly,  & Anderson, 2008) - a pluralist perspective on  how the brain 
might  arrive  at  simplest  interpretations.  This  is  explicated  in  the next 
given context of (a)  processing in the visual hierarchy in the brain, and 
perhaps surprising (b) quantum computing.

5.1. The visual hierarchy in the brain
As mentioned, neurally, the perceptual organization process is believed to 
comprise  three  intertwined  subprocesses,  namely,  feature  extraction, 
feature  binding,  and  feature  selection  (see  Figure  4). Together,  these 
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subprocesses yield integrated percepts composed of selected features. For 
instance,  the  exogenous  (i.e.,  stimulus-driven)  subprocess  of  feature 
extraction -  which is  also  called the feedforward  sweep -  codes  more 
complex  things  in  higher  visual  areas.  Furthermore,  the  recurrent 
subprocess  of  feature  selection  selects  different  features  from feature 
constellations and integrates them into percepts. Here, without excluding 
influences  by  endogenous  (i.e.,  attention-driven)  recurrent  processing 
starting from beyond the visual hierarchy (Lamme & Roelfsema, 2000; 
Lamme et al., 1998; Peterson, 1994), the latter subprocess is taken to be 
a predominantly exogenous subprocess within the visual hierarchy (Gray, 
1999;  Pylyshyn,  1999).  Currently  more  relevant,  those  feature 
constellations are thought to be the result of the exogenous subprocess of 
horizontal  binding  of  similar  features  coded  within  visual  areas.  This 
subprocess seems to be mediated by transient neural assemblies which 
also have been implicated in the phenomenon of neuronal synchronization 
(Gilbert, 1992). This phenomenon is discussed next in more detail.

Figure 4. The process in the visual hierarchy in the brain is believed to comprise 
the three intertwined subprocesses of feedforward feature extraction, horizontal 
feature binding, and recurrent feature selection.

Neuronal synchronization is the phenomenon that neurons, in transient 
assemblies,  temporarily  synchronize  their  activity.  Not  to  be  confused 
with  neuroplasticity  which  involves  changes  in  connectivity,  such 
assemblies are thought to arise when neurons shift  their  allegiance to 
different groups by altering connection strengths (Edelman, 1987), which 
may also imply a shift in the specificity and function of neurons (Gilbert, 
1992).  Both  theoretically  (Milner,  1974;  von der  Malsburg,  1981)  and 
empirically (e.g., Eckhorn et al.,  1988, 2001; Finkel, Yen, & Menschik, 
1998; Fries,  2005;  Gray & Singer,  1989;  Salinas & Sejnowski,  2001), 
neuronal  synchronization has been associated with  cortical  integration, 
and  more  general,  with  cognitive  processing.  Synchronization  in  the 
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gamma-band (30-70 Hz), in particular, has been associated with feature 
binding in perceptual organization.

It  is  true  that  these  associations  are  indicative  of  what  neuronal 
synchronization is involved in, but notice that they are not indicative of 
the nature of the underlying process. For instance, not only inside but 
also outside connectionism, the neural network in the brain is taken to 
perform  parallel  distributed  processing  (PDP).  PDP,  however,  neither 
requires  nor  automatically  implies  synchronization  which,  therefore,  is 
likely  to  subserve  a  form  of  neuro-cognitive  processing  that  is  more 
special than standard PDP. The question then is what this special form of 
processing might be.

The neural side of this question has been investigated in DST. That is, by 
varying system parameters,  DST has yielded valuable insights into the 
physical  conditions  under  which  networks  may  exhibit  synchronization 
(e.g., Buzsáki & Draguhn, 2004; Campbell, Wang, & Jayaprakash, 1999; 
Hummel  &  Holyoak,  2003,  2005;  van  Leeuwen,  Steyvers,  &  Nooter, 
1997).  The  point  now  is  that  SIT's  simplicity  approach  provides 
complementary  insights,  namely,  into  the  cognitive  side  of 
synchronization. To set the stage, the next subsection ventures briefly 
into the prospected application of quantum physics in computing.

5.2. Quantum computing
Classical computers work with bits.  A bit  represents  either a one or a 
zero, so that a classical computer with  N bits can be in only one of 2N 

states at any one time. Quantum computers, conversely, are prospected 
to work with qubits (Feynman, 1982). A qubit can represent a one, a 
zero, or any quantum superposition of these two qubit states, so that a 
quantum computer with  N qubits can be in an arbitrary superposition of 
up to 2N states simultaneously. A final read-out gives one of these states, 
but  crucially,  the  superposition  of  all  these  states  directly  affects  the 
outcome of the read-out.  Such a superposition effectively  means that, 
until the read-out, the up to 2N superposed states can be processed in 
what  van  der  Helm  (2004)  called  a  transparallel  fashion,  that  is, 
simultaneously as if only one state were concerned. Hence, compared to 
naive  computing  methods,  quantum  computing  promises  a  dramatic 
reduction  in  the  amount  of  work  and  time  needed  to  complete  a 
computing task.

Inspired  by this,  quantum-physical  phenomena like  superposition have 
been proposed to underlie consciousness in that they might be the source 
of neuronal synchronization (Penrose, 1989; Penrose & Hameroff, 2011; 
see  also  Atmanspacher,  2011).  It  is  true  that  this  quantum  mind 
hypothesis does not seem tenable, because quantum-physical phenomena 
do  not  seem  to  last  long  enough  to  be  useful  for  neuro-cognitive 
processing (Chalmers, 1995, 1997; Searle, 1997; Seife, 2000; Stenger, 
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1992; Tegmark, 2000). However, a cognitive form of superposition seems 
yet needed to account for perceptual organization (see also Townsend, 
Wenger,  &  Khodadadi,  Chapter  29,  and  Townsend  & Nozawa's,  1995, 
similar  call  for  what  they  coined  a  coactive  architecture  yielding 
supercapacity). As discussed next, SIT provides such a cognitive option; it 
is  perhaps  somewhat  speculative  and  technical,  but  it  is  also 
mathematically sound and neurally plausible.

5.3. The transparallel mind hypothesis
Within SIT, an algorithm has been developed to compute simplest codes 
of symbol strings (van der Helm, 2004). Symbol strings are not visual 
stimuli, but the objective of computing simplest codes raises basically the 
same problems. To be more specific, this algorithm relies on distributed 
representations of transparent holographic regularities (see van der Helm, 
Chapter 17), and implements the three intertwined subprocesses that are 
believed to take place in the visual hierarchy in the brain (see Figure 4). 
For instance, it implements the subprocess of feature selection by way of 
Dijkstra's  (1959)  shortest  path  method.  This  method  relates  SIT's 
algorithm to connectionist modeling because it is comparable to computer 
implementations, in connectionist simulations, of selection by activation 
spreading. A notable difference, though, is that it is not applied to one 
fixed network suited for all possible inputs (as in standard connectionist 
modeling),  but  to  a  hierarchy  of  input-dependent  networks  which 
represents all candidate interpretations for only the input at hand.

Such an input-dependent network on N nodes at some hierarchical level 
forms a superposition of  up to 2N similar regularities extracted from the 
previous hierarchical level. These input-dependent networks therefore find 
neuronal counterparts in the transient neural assemblies that are thought 
to be responsible for binding similar features. Moreover, such an input-
dependent network is provably a hyperstring, which means that the up to 
2N superposed regularities can be hierarchically recoded in a transparallel 
fashion, that is, simultaneously as if only one regularity were concerned 
(van der Helm, 2004).

Hence, transparallel processing by hyperstrings is in fact as powerful as 
transparallel  processing  by  quantum  computers.  A  notable  difference, 
though,  is  that  quantum computers  form a  still  prospected  hardware-
option to perform transparallel processing, whereas hyperstrings provide 
an already feasible software-option to perform transparallel processing on 
classical  computers.  This  challenges  the  alleged  but  unproved general 
superiority  of  quantum computers  over  classical  computers  (cf.  Hagar, 
2011). By the way, more sophisticated computing methods usually have 
more  application  restrictions,  and  the  vast  majority  of  computing 
problems cannot benefit from either transparallel method. This does not 
detract from what they can do, however, and each method is bound to 
find its own niche.
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Currently more relevant, transparallel processing by hyperstrings not only 
enables a tractable computation of simplest codes of symbol strings, but 
also  provides  a  computational  explanation  of  neuronal  synchronization 
(van der Helm, 2012, 2013). That is, as said, neuronal synchronization is 
something else than standard PDP, and it might well be a manifestation of 
transparallel  recoding  of  similar  features.  Whether  this  explanation  is 
tenable remains to be seen, but for one thing, this pluralist picture of 
transient  hyperstring-like  neural  assemblies  subserving  transparallel 
feature processing does justice to the high combinatorial  capacity and 
speed of the human perceptual organization process.

6. Conclusions

It remains to be seen if human perceptual organization is indeed guided 
by the Occamian simplicity principle which aims at internal efficiency, but 
this  chapter  shows  that  this  principle  is  a  serious  contender  of  the 
Helmholtzian likelihood principle which aims at external veridicality. The 
controversy  between  these principles  is  plagued by unclarities,  but  as 
reviewed,  these unclarities can be resolved - enabling a clear view on 
their fundamental differences. One insight then is that empirical attempts 
to distinguish between them should focus on view-independent aspects of 
candidate stimulus interpretations,  because view-dependent  aspects  do 
not  seem  to  be  decisive  in  this  respect.  Their  functional  equivalence 
regarding  view-dependent  aspects,  in  turn,  suggests  that  also  the 
simplicity  principle  has  evolutionary  survival  value  in  that  it  yields 
sufficient veridicality in everyday situations. Furthermore, the simplicity 
principle's stance - that internal neuro-cognitive mechanisms tend to yield 
parsimoneous percepts - is not only in line with Gestalt psychology but is 
also  sustained  by  the  computational  explanation  of  neuronal 
synchronization  as  being  a  manifestation  of  transparallel  feature 
processing.  This  explanation  suggests  that  the  simplicity  principle  is 
neurally realized by way of flexible cognitive architecture implemented in 
the relatively rigid neural architecture of the brain.
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