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We investigated the susceptibility of 10 enterovirus D68 (EV-D68) isolates (belonging to clusters A, B, and C) to (entero)virus
inhibitors with different mechanisms of action. The 3C-protease inhibitors proved to be more efficient than enviroxime and ple-
conaril, which in turn were more effective than vapendavir and pirodavir. Favipiravir proved to be a weak inhibitor. Resistance
to pleconaril maps to V69A in the VP1 protein, and resistance to rupintrivir maps to V104I in the 3C protease. A structural ex-
planation of why both substitutions may cause resistance is provided.

Human enterovirus D68 (EV-D68), first identified in 1962 in
the United States, is a single-stranded, positive-sense RNA

virus that belongs to the enterovirus genus in the family Picorna-
viridae. Until 2008, EV-D68 infections were only rarely detected
and typically resulted in a mild respiratory illness (similar to a
cold), with symptoms such as rhinitis, sneezing, coughing, and
mild fever (1). From 2008 on, EV-D68 outbreaks were observed
more frequently worldwide, including outbreaks in the Philip-
pines in 2008 and in The Netherlands and Japan in 2010 (1–3). In
2014, EV-D68 caused the largest outbreak until now in the United
States, with 1,153 people diagnosed with respiratory illness caused
by EV-D68 (4). Those affected were mostly children with asthma
or a history of wheezing. Occasionally, the virus has also been
associated with polio-like illness, such as acute flaccid paralysis
(AFP) and limb weakness (5, 6). Cases of severe AFP associated
with EV-D68 infection were also reported in Europe (7), but a
causal relationship was not established; EV-D68 was only detected
in respiratory specimens during the episode of respiratory illness
preceding AFP and not in central nervous system fluid.

So far, no vaccines or antivirals are available for the prophylaxis
or treatment of EV-D68 infections. Hence, effective and safe drugs
against EV-D68 infection are sought (8). Earlier studies revealed
that the capsid-binding compound pleconaril and the 3C protease
inhibitor NK-1.8k inhibit the replication of the EV-D68 Fermon
strain (9, 10). The latter compound is a peptide aldehyde with few
druglike properties. Some of these published results are conflict-
ing (see below); moreover, only one or a few strains or isolates
were used in these studies, and they did not represent the three
different genogroups (8, 9). We therefore carried out a compara-
tive in vitro antiviral study of known enterovirus-specific and
broad-spectrum inhibitors against a selection of EV-D68 strains
of the three major clusters (A, B, and C). To this end, a panel of
10 clinical isolates originating from The Netherlands (RIVM,
Bilthoven, The Netherlands), Thailand, or the United States during
the 2014 outbreak (obtained from the Centers for Disease Control
and Prevention, USA, via BEI Resources [www.beiresources.org])
were selected that consisted of representative strains of clusters A, B,

and C (Table 1) (2). The received viruses were cultivated on HeLa Rh
cells in the presence of 30 mM MgCl2 at 35°C.

The following enterovirus and broad-spectrum inhibitors
were included in this study: (i) the capsid binders (CBs) pleco-
naril, vapendavir, and pirodavir; (ii) the 3C protease inhibitors
(PIs) rupintrivir and SG85 (11); (iii) the host cell-targeting
molecule enviroxime; and (iv) the broad-spectrum antiviral
favipiravir (T-705) (12, 13). The antiviral activity of the above-
mentioned compounds against the panel of EV-D68 strains
(multiplicity of infection, 0.001) was assessed in a cell-based
cytopathic effect (CPE) reduction assay with a colorimetric
readout using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme-
thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium/phenazine metho-
sulfate (MTS/PMS) method as described previously (14).

The PI rupintrivir proved to be an efficient inhibitor of the in vitro
replication of all 10 EV-D68 isolates, with mean 50% effective con-
centrations (EC50s) ranging from 0.0018 to 0.0030 �M (Table 1).
Likewise, SG85, a Michael acceptor inhibitor of the EV-D68 3C pro-
tease, also efficiently inhibited all EV-D68 strains, with EC50s ranging
from 0.0022 to 0.0080 �M. Enviroxime, which targets the cellular
phosphatidylinositol 4-kinase III� (a kinase that is crucial for the
replication of picornaviruses), inhibited the replication of all tested
EV-D68 isolates, with EC50s between 0.19 and 0.45 �M. Favipiravir, a
drug that has been approved in Japan for the treatment of infections
with influenza virus but that also exerts activity against other RNA
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viruses, including Ebola virus, proved to be a weak inhibitor of the in
vitro replication of EV-D68 (EC50, �63 �M).

Conflicting data were reported on the antiviral activity of the
capsid binder pleconaril against EV-D68. On the one hand, ple-
conaril was reported to be unable to inhibit the currently circulat-
ing EV-D68 strains (8). In contrast, another study showed good
antiviral activity of pleconaril against the EV-D68 Fermon and
U.S. 2014 strains (9, 15). Here, we observed that pleconaril was
active against all 10 clinical EV-D68 strains from the selected ref-
erence panel, including EV-D68 strains that circulated in the
United States in 2014. The observed EC50s were comparable with
the earlier reported EC50s against the Fermon and U.S. 2014
strains (on HeLa H1 cells) (9, 15). Both vapendavir (Biota Phar-
maceuticals), currently being studied in a phase 2 clinical trial of
adults with moderate to severe asthma with symptomatic rhino-
virus infection, and pirodavir inhibited EV-D68 replication. Vap-
endavir was on average 3-fold more active than pirodavir but
proved inactive to one of the cluster A viruses (Table 1). However,
for the U.S. strains, some residual replication was still observed,
even at the highest concentration tested (50 �M, following micro-
scopic inspection).

To determine whether pleconaril-resistant and rupintrivir-re-
sistant EV-D68 variants can be selected, a clonal resistance selec-
tion protocol was performed, as described previously (16), using
the CU70 strain. Briefly, a CPE reduction assay was compiled that
consisted of a combination matrix of the compound concentra-
tion and virus input. Next, several 96-well plates with adherent
HeLa Rh cells were set up in the presence of the optimal viral input
and compound concentration (this is the highest viral input and
lowest compound concentration at which full inhibition of virus-
induced CPE can be observed). After 4 days of incubation at 35°C,
supernatant was harvested only from wells with complete virus-
induced CPE. The supernatant from a number of such cultures,
which may carry compound-resistant virus variants, were titrated
in the presence of the same compound concentration to enrich the
compound-resistant virus variants. At 4 days postinfection, su-
pernatant of virus-infected compound-treated cultures with the
lowest viral input and for which 100% CPE was still observed was

harvested. As a result of the above clonal selection methodology,
resistant variants of EV-D68 emerged in 9 of 144 cultures (6%)
that were treated with pleconaril, versus only 1 in 288 cultures
(0.3%) treated with rupintrivir. This is comparable to our findings
for human rhinovirus 14 (17). The antiviral phenotype of two of
the putative pleconaril-resistant EV-D68 variants and the rupin-
trivir-resistant EV-D68 variant were subsequently characterized,
revealing a �15-fold decrease in susceptibility to the antiviral ef-
fect of pleconaril (EC50, 0.13 � 0.06 �M versus 1.9 � 0.05 and
4.1 � 1.8 �M for the wild-type (WT) and two resistant vari-
ants, respectively) (Fig. 1A) and a 7-fold decrease in suscepti-
bility to the antiviral effect of rupintrivir (EC50, 0.0027 �
0.0005 �M versus 0.020 � 0.006) (Fig. 1B). A cross-resistance
evaluation with pirodavir proved that this compound was
�23-fold less active against the pleconaril-resistant variants,
while SG85 was 5-fold less active against the rupintrivir-resis-
tant EV-D68 variant than against WT EV-D68 (EC50, 0.0080 �
0.0009 �M versus 0.044 � 0.005). The two pleconaril-resistant
EV-D68 variants were found to share one amino acid substitu-
tion, i.e., V69A (according to the numbering in reference 9) in
the VP1 protein; an additional K155E substitution was also
detected in one of the pleconaril-resistant EV-D68 variants
(this substitution was not reported earlier in pleconaril-resis-
tant enteroviruses [18, 19]).

A modeling study was performed to elucidate the role of
amino acid substitution V69A in the VP1 protein in antiviral
resistance (Fig. 2A). This study revealed that one of the methyl
groups on the benzene ring in pleconaril engages in Van der
Waals contact with atom CG2 of residue V69 in chain A (4.3 Å),
pointing to a possible explanation for the valine to alanine
substitution effect that results in resistance. Substitution to
alanine removes the CG1 and CG2 atoms cancelling any possi-
ble Van der Waals stabilizing contact with the inhibitor. Fur-
thermore, the Val69 CG1 and CG2 atoms make hydrophobic
contacts with L103 and M241 side chains, which stabilize the
protein matrix. Substitution of the valine to alanine might dis-
turb the assembly in the interior of the protein, which in turn

TABLE 1 Antiviral activity of selected compounds on the in vitro replication of EV-D68 strains

Lineage Strain

Year clinical
specimen
collected

EC50 (�M)a with:

Pleconaril Vapendavir Pirodavir Rupintrivir SG85 Enviroxime Favipiravir

Cluster A CU70b 2011 0.13 � 0.06 1.4 � 0.5 2.4 � 0.3 0.0027 � 0.0005 0.0080 � 0.0009 0.27 � 0.04 97 � 29
4311000670c 2010 0.28 � 0.2 1.0 � 0.1 3.8 � 1.5 0.0027 � 0.0005 0.0072 � 0.0007 0.33 � 0.09 88 � 17
4311000742c 2010 0.14 � 0.02 1.8 � 0.8 7.1 � 1.0 0.0026 � 0.0008 0.0080 � 0.003 0.45 � 0.2 63 � 27
4310901348c 2009 0.37 � 0.2 �50 9.6 � 2.0 0.0030 � 0.0003 0.0074 � 0.0008 0.20 � 0.07 101 � 20
US/KY/14-18953c 2014 0.16 � 0.2 3.8 � 0.9 5.5 � 1.4 0.0024 � 0.0003 0.0027 � 0.001 0.43 � 0.2 78 � 7

Cluster B 4310900947c 2009 0.42 � 0.2 1.1 � 0.3 2.7 � 0.6 0.0029 � 0.0002 0.0065 � 0.003 0.20 � 0.05 97 � 12
4310902042c 2009 0.83 � 0.9 1.1 � 0.3 3.9 � 3.0 0.0020 � 0.0005 0.0051 � 0.003 0.19 � 0.04 121 � 31
US/IL/14-18952d 2014 0.26 � 0.2 1.3 � 0.7 4.7 � 4.2 0.0018 � 0.0005 0.0032 � 0.001 0.20 � 0.1 �100
US/MO/14-18947d 2014 0.39 � 0.6 0.5 � 0.3 3.1 � 1.7 0.0019 � 0.0007 0.0022 � 0.0004 0.21 � 0.07 �100

Cluster C 4310902284c 2009 0.081 � 0.03 1.2 � 0.1 2.7 � 1.0 0.0028 � 0.0002 0.0045 � 0.002 0.19 � 0.1 79 � 14
a The antiviral activity of the compounds against 10 EV-D68 isolates was determined in HeLa Rh cells by a CPE reduction assay (multiplicity of infection, 0.001). Cell viability was
measured with a colorimetric readout using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium/phenazine methosulfate (MTS/PMS)
method. Data shown are means � SD from at least three independent experiments.
b From Thailand (22).
c From The Netherlands (23).
d From the United States (24).
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may result in conformational rearrangement with secondary
effects on the binding of pleconaril.

The rupintrivir-resistant mutant was shown to carry a single
amino acid substitution (V104I) in the 3C protease. We ana-
lyzed the steric consequences of this mutation on the basis of
the crystal structure of the EV-D68 3C protease in complex
with SG85 (11), which shares identical P1= and P1 moieties
with rupintrivir. The mutation site is �10 Å away from the
inhibitor binding site. In fact, isoleucine is present at this po-
sition in all enteroviruses of groups A (such as EV-A71) and B
(such as CVB3). Although the model seems to suggest that the
V104I mutation might lead to a conformational rearrangement
of the side chain of Q146 (Fig. 2B), the crystal structures of the
3C proteases of EV-A71 and CVA16 in complex with rupintri-
vir (20) show that this is not the case. Instead, the difference at

position 104 may lead to different conformations of the loop
104 to 108, which in turn influences the exact position of the
main-chain carbonyl of E24 (Fig. 2B) (20). Differences in af-
finities of rupintrivir to various 3C proteases have been as-
cribed, in part, to the different sizes of the S1= site due to vari-
able orientations of E24 (20). It is conceivable that the
relatively small effects of the V104I mutation on the activity of
rupintrivir against EV-D68 infection are afforded by a similar
mechanism.

In conclusion, the antiviral activity of a panel of (entero)virus
inhibitors against EV-D68 was evaluated using a reference panel
of 10 clinical EV-D68 strains, representing the three major clus-
ters. Both the capsid binders and the PIs inhibited viral replica-
tion, albeit with different potency. Pleconaril-resistant variants
readily emerged, which was not the case with rupintrivir treat-

FIG 1 Resistance of EV-D68 CU70 variants to compounds. (A) The antiviral activity of pleconaril against WT (black dot) and pleconaril-resistant variant 1
(V69A, white square) and variant 2 (V69A � K155E, white triangle) was determined in a CPE reduction assay with an MTS readout. (B) The antiviral activity of
rupintrivir against WT (black dot) and a rupintrivir-resistant variant (V104I, white diamond) was determined in a CPE reduction assay with an MTS readout.
Data shown are means � SD from three experiments.

FIG 2 (A) Modeling of pleconaril in the VP1 pocket of WT EV-D68. The 4WM7 Protein Data Bank (PDB) entry was used with the pleconaril structure.
VP1 is shown as gray, VP2 as blue, VP3 as green, and VP4 as cyan ribbons. Pleconaril has magenta carbons. Interaction (mostly by hydrophobic contacts)
residues are in cyan. The surface of the pocket is partly shown. Residue V69 is highlighted in yellow. M241 and L103, which make hydrophobic packing
contacts with V69, are shown as a green surface. The image was created by UCSF Chimera (21). (B) The site of the rupintrivir resistance substitution in
the crystal structure of the EV-D68 3C protease in complex with the inhibitor SG85 (PDB, 3ZVF) (11). Introduction of isoleucine at position 104 may lead
to a conformational rearrangement of Q146. However, the crystal structures of EV71 and CVA16 3C proteases (where residue 104 is isoleucine) in
complex with rupintrivir (21) show that this does not happen. Instead, the loop 104 to 108 may change conformation, leading to a reorientation of E24
and changes in the size of the S1= pocket, thereby decreasing the affinity of the inhibitor. Carbon atoms of the protease are shown in green, and those of
the inhibitor SG85 are shown in pink. The figure was prepared using PyMOL (Schrödinger).
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ment. The data presented here offer a framework of reference data
against which other inhibitors of EV-D68 replication can be com-
pared.
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