
 

 

 

 

Optimizing the workforce 
schedule and collection 
routes for glass containers 
De Bruecker P, De Jaeger S, Beliën J, 
Demeulemeester E, De Boeck L, Van den Bergh J. 

KBI_1527 

      
 
 
 

      

 

 



Optimizing the Workforce Schedule and Collection Routes for Glass
Containers

Philippe De Bruecker∗

KU Leuven, Research Center for Operations Management, Leuven (Belgium)

Simon De Jaeger

KU Leuven, Center for Information Management, Modeling and Simulation (CIMS), Brussels (Belgium)

Jeroen Beliën
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Abstract

This paper presents and compares two different solution approaches to optimize the glass
collection process at a single intermunicipal authority in Belgium. First, a model enhance-
ment approach is proposed to solve a shift scheduling optimization problem integrating
the construction of glass collection routes. Second, a simulation based rolling horizon pro-
cedure is designed to determine the possible benefits of providing the glass containers with
fill level sensors. The performance of both solution approaches is evaluated and compared
using real-life data.

Keywords: Model enhancement, waste collection, shift scheduling
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1. Introduction

The continuous effort within the European Union to maximize the potential for re-use
and recycling has drastically increased the complexity of the waste and material collection
process in many member states. In addition, the growing tendency towards waste sepa-
ration at the source (i.e. the separation of waste into different flows at household or firm
level) stresses the need for an effective and efficient organization of the collection process.
In Belgium, the collection of household packaging waste is an important public service
that is outsourced to the private company Fost Plus. Fost Plus promotes, coordinates
and finances the selective collection, sorting and recycling of household packaging waste
in Belgium. Our focus in this paper is on the glass collection process that is coordinated
by Fost Plus. The glass collection itself is not performed by Fost Plus, but is decentralized
to different intermunicipal authorities (IAs). These IAs collect the glass and charge Fost
Plus with the collection costs which can amount to more than 500,000 Euro per year in
one IA. Fost Plus realizes a great share of its profit by selling the recycled waste to other
companies. This profit, of course, heavily depends on the costs charged by the IAs for
the collection process. Therefore, optimizing the collection processes in the IAs is very
important in order to maximize the recycling profits realized by Fost Plus.

A fixed weekly schedule is currently used in each of the IAs that defines the work schedule
(comprising the work days and the days off) for each truck driver as well as the collection
routes for each driver on each day. In order to optimize the current collection process,
Fost Plus wants to consider two different possibilities. First, it wants to consider a second
shift type (N shifts) on top of the single current shift type (P shifts) which contains the
peak traffic hours on the road. The current P shifts (containing the peak traffic hours) are
cheaper than the N shifts (not containing the peak traffic hours) because the P shifts cover
the normal daytime working hours (i.e., 9 AM to 5 PM) while the working hours of the
N shifts can lie (partially) outside this interval. Prior to any negotiations concerning the
definition of the N shifts, the company is primarily interested in the potential benefits of
these N shifts. While the P shifts are cheaper than the N shifts, the driving times during
the P shifts are on average higher than those during the N shifts. This difference creates
a trade-off between higher costs and faster driving times which possibly results in a better
workforce schedule with lower weekly labor costs.

Second, Fost Plus wants to analyze the possible benefits of installing and using sensors in
all glass containers in order to obtain a real-time view of the fill level of each container.
Using this information, collection routes can be constructed on a daily basis in order to
avoid wasting driving time to containers with sufficient capacity left (which is unavoidable
in the case of a fixed weekly schedule). We refer to the solution obtained with sensor
information as a flexible schedule compared to the fixed weekly schedule obtained by the
shift scheduling model.

3



In order to analyze both possibilities, two solution approaches to optimize the glass col-
lection process are proposed and compared. We illustrate the performance of our solution
techniques using several test cases based on real-life data. Finally, the proposed models
are applied on the real-life data of a single IA.

2. Literature review

Constructing a workforce schedule for glass collection is a complicated task. As in all
industries, workforce schedules should be constructed according to certain labor union
constraints. Each schedule is for example constrained by a maximum time limit and
should include a break of a certain duration. However, designing a workforce schedule for
glass collection also requires a routing decision. This means that we have to decide on
the composition of the collection routes (the routing decision) and the personnel and shift
schedules (the scheduling decision) at the same time. Only by combining the routing and
the scheduling decision can an optimal result be obtained. However, the integration of the
routing decision and the scheduling decision is not straightforward and makes these types
of problems very challenging.

The routing decision is an important complicating factor when solving the glass collection
problem. The routing problem considered here belongs to the broad class of Vehicle Rout-
ing Problems (VRP) (Mes, 2012). In the VRP, a given set of vehicles must deliver goods to
a given set of customers such that the overall transportation costs are minimized. Hence,
the goal is to construct a set of optimal routes in order to reduce the total traveled distance
and possibly the required number of vehicles. In our case, the glass containers represent
the customers and the goods to be delivered is empty space. Hence, collecting glass can be
seen as filling the containers with air. For an overview of the solution techniques designed
for the VRP we refer to Carić and Gold (2008). Recall that we propose two solution
approaches to optimize the glass collection process at Fost Plus: a fixed weekly scheduling
model combining N and P shifts and a flexible scheduling model based on fill level sensor
information. While both approaches contain the VRP, there is an important difference
which categorizes them into two different VRP subclasses.

In the first approach, the goal is to find a fixed weekly schedule that is repeated each week
during the considered time horizon (e.g., one year). This problem is related to the peri-
odic vehicle routing problem (PVRP) where customers require service on multiple days
during a given planning horizon, while the VRP is only concerned with one period. Two
decisions have to be made using an integrated or a two-stage approach. First, the weekly
service frequency (i.e., how often each customer is served) and service pattern (i.e., which
customers will be served on which day of the week) must be determined. Second, a VRP
is solved for each day based on the selected customers for that day according to the VRP
rules. Francis et al. (2008) present a literature review on the PVRP and its extensions,
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showing that most of the PVRP research assumes a predetermined service frequency. Only
a few researchers incorporate the service frequency as a decision variable in the optimiza-
tion model. While we also assume a predetermined service frequency (i.e., each container
should be visited at least once a week), the service pattern decision is integrated with
the routing decision. Our model has three special features which increases the complexity
compared to the standard PVRP. First, we incorporate a shift scheduling decision, which
is barely investigated in the existing literature in combination with the PVRP. In their
literature survey, Ghiani et al. (2014) state that a large percentage of total waste manage-
ment cost related to waste collection is due to the equipment and the workforce (about
75% according to Shamshiry et al. (2011)). Optimizing the workforce scheduling process
can therefore result in significant savings. However, these aspects have not been given
much attention in the literature (Ghiani et al., 2014). This is confirmed by Ernst et al.
(2004) in their literature review on staff scheduling and rostering where the authors point
out the lack of contributions related to personnel and vehicle shift scheduling in the waste
management literature. In the literature review of Francis et al. (2008) on the (P)VRP,
shift scheduling is not even mentioned. The papers that do consider a combination of staff
scheduling and the vehicle routing problem propose a multi-staged approach instead of an
integrated approach, or fail to incorporate important routing constraints such as truck ca-
pacity constraints (Baudach et al., 2009; Ghiani et al., 2013; Hansmann and Zimmermann,
2009; List et al., 2006). Second, while the standard PVRP only links the different days in
the planning horizon in the objective function, seeking the overall minimal transportation
costs over all days, we also link the days in the constraints. Like Coene et al. (2010), we
consider the scenario where the load of a vehicle at the end of a day needs to be equal to
the load of that vehicle at the start of the following day. Furthermore, Francis et al. (2008)
state that in the PVRP literature it is assumed that a fraction 1

fi
of the total demand

has to be delivered to customer i on each visit, with fi the number of visits required for
customer i during the planning horizon. Hence, at each visit, a demand of wi = Wi

fi
is de-

livered, with Wi the total demand of customer i. This can be a good approach when each
visit also involves a delivery and when the daily demand can be assumed to be constant.
However, in our problem, we assume that each visit does not necessarily involve emptying
the container. Furthermore, we show that strong seasonality effects exist in our data which
implies that we cannot assume a constant daily fill rate of glass over the considered time
horizon. Hence, our procedure will link all days in the considered time horizon by taking
into account the effect of the visits and/or emptying on each day on all succeeding days
in the considered time horizon. Third, our problem features intermediate facilities where
vehicles can unload (or reload) and thus renew capacity during a route. The PVRP with
intermediate facilities is described by Angelelli and Speranza (2002), Kim et al. (2006),
Alonso et al. (2008) and Coene et al. (2010). In order to deal with the increased com-
plexity in the PVRP caused by these three elements, we propose a model enhancement
heuristic that iteratively combines simulation and optimization.

In the second approach, the goal is to construct a flexible schedule based on fill sensor
information. The difference with the previous approach is that no service frequency or
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service pattern must be determined in this case. Each day, the most urgent containers
are first selected based on sensor information. Second, a VRP is solved for the set of
selected glass containers. This second approach is not related to the PVRP, but to the
Inventory Routing Problem (IRP) which integrates inventory management and vehicle
routing (Andersson et al., 2010; Campbell et al., 1998; Coelho et al., 2014). In the IRP,
a given set of vehicles must replenish the inventory of a given set of shops over a given
planning horizon such that the overall transportation cost is minimized and the total cost
of stockouts is minimized. The flexible glass collection scheduling problem can be seen
as an IRP since a stockout can be seen as a full container. Since decisions have to be
made for each day in the considered time horizon (e.g., one year), two solution approaches
are possible. On the one hand, one can consider all days in the planning horizon at
once and construct a model that seeks a global optimum since it considers the long term
effects of each routing decision. To solve this model, Campbell et al. (1998) propose an
integer program. However, in order to keep the integer program computationally tractable,
many simplifications and assumptions are required (Campbell et al., 1998), eliminating
its property to find the global (over the entire time horizon) optimum. On the other
hand, a rolling horizon approach can be much more efficient and effective to solve the IRP
(Jaillet et al., 1997). The advantage of a rolling horizon approach is that we do not have
to consider the entire time horizon. Instead, it is sufficient to consider only the next few
days. Such a rolling horizon approach is adopted by Mes (2012) and Johansson (2006) to
solve the dynamic waste collection problem. In the rolling horizon approach for dynamic
waste collection, Must Gos (MUGOs) and May Gos (MAGOs) are defined to determine
the most useful containers to visit and empty each day. In this paper, we follow a similar
approach as Mes (2012) and Johansson (2006) to construct a flexible schedule that is based
on fill level sensor information.

3. Problem definition

3.1. Glass collection procedure

This section describes the glass collection procedure as it is currently performed by the
different IAs. In each IA, a certain number of trucks is available each day for glass
collection. Furthermore, each IA employs a certain number of truck drivers that cannot
work in the weekend. The truck drivers are paid on a daily basis instead of on an hourly
basis. This means that on each week day, each truck driver is paid for 8 hours or has a
day off. When a driver has a day off, he is also not paid for that day. Each glass container
in the IA is located on a site. Each site can hold one or more glass containers. There
are two different types of glass containers: duo containers and standard containers. Duo
containers are divided in two equal compartments; one compartment for white glass and
one compartment for colored glass. Standard glass containers have only one compartment
and can be used for either white glass or colored glass. We make a difference between
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these two types of containers because of the differences in capacity and the time required
to empty the container and collect the glass. Duo containers are overground containers
that are smaller compared to the standard containers. Therefore, it takes less time to
empty duo containers compared to standard containers that are placed underground. To
minimize the glass placed next to the containers when the container is full (i.e., to minimize
overflow), Fost Plus demands that each glass container is visited at least once a week.

For each truck, the collection route starts at the depot of the IA. Each truck carries one
large container with two compartments, one for colored glass and one for white glass.
Leaving the depot, the truck will visit the glass containers as specified by the route in the
workforce schedule. While all containers specified in the route must be visited, they will
only be emptied when one of the compartments is filled for at least a certain percentage.
This percentage is referred to as the collection threshold and is further discussed in Section
5. The truck continues to check and empty glass containers until one of its compartments
is getting full. At this time, the truck has to make a trip to the drop-off site of the IA.
At the drop-off site, the full container is unloaded from the truck and is replaced with
an empty container. Of course, this unloading and loading takes a certain amount of
time. When all containers in the route are visited, the truck returns to the depot location.
Because a truck is only emptied when one of its compartments is getting full, its final fill
level at the end of the day equals the fill level of that truck in the beginning of the next
day. Allowing a trip to the drop-off site at the end of the day can, of course, reduce the
working time. However, this is not allowed in real life.

3.2. Fill rate of glass containers

The fill level of each compartment in each container on each day depends of course on the
routes and the collections that take place on each day. But in the first place, the fill level
depends on the fill rate. The fill rate is the amount of glass that is added to a certain
container on a specific day. Hence, accurate data regarding the fill rate is very important to
make a realistic model. The next paragraph therefore describes our procedure to calculate
the fill rate based on glass collection data.

In order to determine the fill rate for each compartment of each container on each day
based on the collection data made available by Fost Plus, some data conversions were
required. Because some important constraints in our model are expressed in volume (e.g.,
the capacity of glass containers and the capacity of the trucks), the collection data (given
in weight) is converted to dm3. To make these conversions, a conversion of 400 kg/m3

for overground containers and a conversion of 600 kg/m3 for underground containers is
assumed. Because an underground container is larger in size, the impact of falling glass and
the compression inside the container caused by the weight of the glass is greater. Therefore,
the glass inside an underground container is more shattered and a larger conversion factor
is assumed. Based on the resulting volumes, the daily fill rate is calculated for each
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container representing the glass volume that is added (in dm3) in each compartment of
the container. We assume that an equal daily amount of glass is added to a container
between two consecutive collections. Hence, the daily fill rate is assumed to be constant
between two consecutive collections. As a result, it is sufficient to divide the collected
amount of glass on a given collection day by the number of days since the last collection
day to obtain the daily fill rate. If, for example, 7500 dm3 of white glass was collected
on day 7 for a specific container, and that container was emptied on day 2 last time, the
daily fill rate is 1500 dm3 for day 3 until day 7.

3.3. Shift scheduling

As Fost Plus wants to consider a combination of different shift types (i.e., P shifts and N
shifts), we propose a general shift scheduling model to optimize the glass collection pro-
cess. The goal of the proposed general model is to analyze different scenarios regarding
shift costs and driving times. This problem can mathematically be represented by the
model presented below.

We first list the sets, along with their associated indices:

d ∈ D: days in the week. With D = {1, 2, ..., 5}
w ∈W : available truck drivers = daily available trucks
i ∈ I: set of glass containers
r ∈ R: set of feasible routes
t ∈ T : set of different shift types

The coefficients and right hand side constants are presented below:

Ct,d,w: cost of scheduling a shift of type t on day d for truck w
Vi,r: = 1 if container i is visited in route r; = 0 otherwise
ΘMax: maximum daily average working time (in hours)

The decision variables are:

xt,d,w ∈ {0, 1}: = 1 if a shift of type t is scheduled on day d for truck w; = 0 otherwise
λr,d,w ∈ {0, 1}: = 1 if route r is used on day d for truck w; = 0 otherwise

We define the following auxiliary variables which completely depend on the former two
decision variables:

τ routet,r,d,w: average time required to perform route r on day d with truck w with a shift of
type t (in hours)

The optimization model can be formulated as follows:
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Model 1: Shift scheduling model

Minimize:
∑
t∈T

∑
d∈D

∑
w∈W

Ct,d,wxt,d,w (1)

Subject to:

∑
t∈T

xt,d,w ≤ 1, ∀d ∈ D,∀w ∈W (2)∑
r∈R

λr,d,w −
∑
t∈T

xt,d,w = 0, ∀d ∈ D,∀w ∈W (3)

if xt,d,w = 1 then:
∑

t′∈T\t

xt′,d+1,w = 0, ∀t ∈ T, ∀w ∈W,

∀d ∈ {1, ..., 4} (4)∑
d∈D

∑
w∈W

∑
r∈R

Vi,rλr,d,w ≥ 1, ∀i ∈ I (5)∑
t∈T

∑
r∈R

λr,d,wτ
route
t,r,d,wxt,d,w ≤ ΘMax, ∀d ∈ D,∀w ∈W (6)

τ routet,r,d,w = f

(
{λr′,d′,w′ : r′ ∈ R, d′ ∈ D,w′ ∈W} ,
{xt′,d′,w′ : t′ ∈ T, d′ ∈ D,w′ ∈W}

)
, ∀t ∈ T, ∀r ∈ R,

∀d ∈ D,∀w ∈W (7)

In the objective function (1) the weekly labor costs are minimized. The total number of
shifts required (i.e.,

∑
t∈T
∑

d∈D
∑

w∈W xt,d,w) is also referred to as the total number of
truck days.

Expressions (2) to (7) represent the constraints in the shift scheduling problem. Constraint
(2) ensures that there will be at most one shift scheduled on each day for each driver.
Constraint (3) shows that each shift should be associated with exactly one collection
route r ∈ R. The set of feasible routes R contains all collection routes that meet certain
conditions. First, each route r ∈ R is a tour that begins and ends at the depot location
of the IA. Second, a feasible collection route consists of at least one glass container and
at most 60 glass containers. According to Fost Plus, this maximum number of containers
keeps the schedule manageable and allows the truck drivers to become familiar with the
collection routes.

According to the labor union requirements, there should be at least a certain amount of
time between two consecutive shifts. Because two different shift types (e.g., an N shift and
a P shift) cover different working hours, they cannot succeed each other. For example,
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an N shift cannot be followed by a P shift or vice versa. This is ensured in our model
by Constraint (4) which represents the shift succession constraint. Because none of the
workers can work in the weekend, the shift succession constraint is only concerned with
the week days.

To minimize the amount of glass that is put next to the glass container (i.e., to minimize
overflow) because the container is full, Fost Plus determined that each glass container
should be visited at least once a week. This is ensured by Constraint (5). Recall that
visiting a container does not necessarily mean that this container is emptied. Only when
one of its compartments is filled for at least the collection threshold, both compartments
are emptied.

Finally, the labor union requirements also state that a worker can work (on average) for
at most 8 hours in a shift including a 30 minute break. With the average working time,
we mean the average working time for that day and truck over all weeks in the considered
time horizon. The considered time horizon can be as small as one week and as large as
1 year (since we have data for one year). This labor union requirement is represented by
Constraint (6). Hence, the Right Hand Side (RHS) of this constraint equals 7.5 hours
(ΘMax = 7.5). The Left Hand Side (LHS) calculates the total average working time of the
respective route for that particular day and truck (driver).

Constraint (7) shows that τ routet,r,d,w is a function of all routing variables λr′,d′,w′ with r′ ∈ R,
d′ ∈ D, w′ ∈W and all shift scheduling variables xt′,d′,w′ with t′ ∈ T , d′ ∈ D and w′ ∈W .
Hence, it is a function of all the routing and scheduling decisions in the model. To make
things more clear, we can write τ routet,r,d,w as the sum of three separate times as follows:

τ routet,r,d,w = Θdriving
t,r + τ collectionr,d + τdrop-off

t,r,d,w (8)

According to Equation (8), the total average working time (τ routet,r,d,w) consists of three parts,

namely the driving time (Θdriving
t,r ), the collection time (τ collectionr,d ) and the drop-off time

(τdrop-off
t,r,d,w ). The first part (Θdriving

t,r ) only represents the driving time from the depot loca-
tion to the first container in route r, the driving time between all consecutive containers
in route r and the driving time from the last container in route r back to the depot loca-
tion. Hence, Θdriving

t,r only depends on the sequence of glass containers in route r and is
independent of the fill level of the containers and the fill level of the truck. This means
that Θdriving

t,r is independent from the routing decisions in the model. Therefore, Θdriving
t,r

is not a decision variable, but a parameter of the chosen route with index r. The sub-
script t shows that, depending on the scheduled shift type t for that day and truck, the
location-to-location driving times are different. However, we assume that these driving
times will be exactly the same in each week in the considered time horizon. Hence, we
assume deterministic driving times.
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Note that, based on the former definition of Θdriving
t,r , the sum of the three terms in

Equation (8) would account for more time than is actually required. Recall that Θdriving
t,r

consists of the driving time from the depot to the first container in route r, the driving
time between all consecutive containers in route r and the driving time from the last
container in route r back to the depot location. However, when a drop-off is required,
the truck immediately goes from container K to the drop-off location and returns to the
next container K + 1 in the route (with K the value of the index of a container in the
route). Hence, the trip from container K to K + 1 (trip K → K + 1), which is accounted

for in Θdriving
t,r , gets replaced by trip K → drop-off → K + 1. To make sure that we do

not account for more driving time than is actually required, these excess driving times
(from K to K + 1) should be subtracted. As Θdriving

t,r is preferred to remain a constant,

the excess driving time is accounted for in τ collectionr,d and τdrop-off
t,r,d,w . This is very important

in order for the proposed solution technique to perform well and is further explained in
Section 4.4.

The second part of the total average working time is the collection time τ collectionr,d . This
time does not have a subscript t which means that it is independent of the scheduled shift
type. This is because this time does not contain any driving time. The collection time
only consists of the average collection time for all containers in route r. Hence, it is the
time required to empty containers when one of its compartments is filled for at least the
collection threshold on day d. Therefore, the collection time τ collectionr,d depends of course
on the route decisions for the other days. This is because a certain glass container can
also be collected by this or another truck on another day. Therefore, τ collectionr,d depends
on the values of the decision variables in the optimization model and, hence, is not a
constant like Θdriving

t,r . While the driving time is independent of the day, the collection
time does depend on the day during which the route is executed because the fill level of
each container can be different on each day. Note also that τ collectionr,d is an average over

all weeks in the considered time horizon while we assumed Θdriving
t,r to be constant over all

weeks.

The last part of the total average working time is the drop-off time τdrop-off
t,r,d,w . Just as

τ collectionr,d , τdrop-off
t,r,d,w is also considered to be a decision variable because the drop-off time

depends on the routing decision in the optimization model. Furthermore, just as τ collectionr,d ,

τdrop-off
t,r,d,w is an average over all weeks in the considered time horizon. First, τdrop-off

t,r,d,w consists
of the time that is required to interrupt the route when the truck is getting full. Based
on his experience, the truck driver decides whether the next container in the route can be
emptied without causing the truck to overflow. When, according to the driver, it is not
possible to empty the next container without causing an overflow of the truck, a trip to the
drop-off location is required. Second, the drop-off time also consists of the total average
time that is required to unload the truck at the drop-off location and load it again with an
empty container. The position of the different drop-offs in the route (which determines the
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total driving time to and from the drop-off location) and the number of required drop-offs
(which determines the total loading and unloading time), not only depend on the fill level
of the containers on day d, but also on the initial fill level of truck w at the beginning
of that day. Recall that the initial fill level of a truck depends on the route during the
previous shift for that truck. Just as Θdriving

t,r , τdrop-off
t,r,d,w contains the subscript t because

the driving times during the trips to and from the drop-off depend on the scheduled shift
type.

The definition of each of the three terms in Equation (8) shows that only τ collectionr,d and

τdrop-off
t,r,d,w are variables in τ routet,r,d,w that depend on the decisions made by the optimization

model, while Θdriving
t,r is a constant belonging to the route with index r and the shift type

with index t. Therefore, both τ collectionr,d and τdrop-off
t,r,d,w are a function of the set of all routing

variables λr′,d′,w′ and shift scheduling variables xt′,d′,w′ with t′ ∈ T , d′ ∈ D and w′ ∈W :

τ collectionr,d = f ′
({

λr′,d′,w′ : r′ ∈ R, d′ ∈ D,w′ ∈W
}
,{

xt′,d′,w′ : t′ ∈ T, d′ ∈ D,w′ ∈W
} ) , ∀r ∈ R,∀d ∈ D

τdrop-off
t,r,d,w = f ′′

({
λr′,d′,w′ : r′ ∈ R, d′ ∈ D,w′ ∈W

}
,{

xt′,d′,w′ : t′ ∈ T, d′ ∈ D,w′ ∈W
} ) , ∀t ∈ T, ∀r ∈ R,

∀d ∈ D,∀w ∈W

Based on Equation (8), we can now rewrite Constraint (6) as Constraint (9):

∑
t∈T

∑
r∈R

λr,d,w

[
Θdriving
t,r + τdrop−offt,r,d,w

]
xt,d,w+∑

r∈R
λr,d,wτ

collection
r,d ≤ ΘMax, ∀d ∈ D,∀w ∈W (9)

As our problem contains the vehicle routing problem (VRP), our problem is NP-hard. This
makes it very difficult to solve to optimality in a reasonable amount of time for realistic
sized instances. But even without the difficulty added by the VRP, so even if we assume a
very small set of possible routes R, solving model 1 is not straightforward. The difficulty
of solving model 1 clearly lies in the definition of τ routet,r,d,w and in particular of τ collectionr,d and

τdrop-off
t,r,d,w . An explicit definition of τ collectionr,d and τdrop-off

t,r,d,w implies an explicit formulation
of the functions f ′ () and f ′′ (). This would require a complete mathematical description
of the entire collection process in each week of the considered time horizon linking the fill
level of each container and the route decision for each truck driver on each day with each
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other. Instead of such a complex explicit mathematical formulation, simulation is much
better suited for these cases. We evaluate a certain workforce schedule with a simulation
model resulting in a value for τ collectionr,d and τdrop-off

t,r,d,w without the requirement for an explicit

mathematical formulation of f ′ () and f ′′ () in the optimization model. Since τ collectionr,d and

τdrop-off
t,r,d,w are also averages on day d over all weeks in the considered time horizon, simulation

also removes the need to model each single week explicitly in the optimization model.

Section 4 describes the iterative model enhancement procedure combining simulation and
optimization to solve model 1.

3.4. Sensors and a flexible schedule

Until now, we only focused on a fixed weekly schedule that determines for each driver
the collection route and shift schedule. Hence, every week, the same collection routes
are executed and the same containers are visited on the same day. Recall that visiting a
container does not necessarily mean that this container is also emptied. A container is
only emptied when one of its compartments is filled for at least the collection threshold.
When a container is visited while it was not necessary (i.e., when none of its compartments
is filled for at least the collection threshold), time is wasted.

We now consider a scenario where we want to avoid visiting containers that are not very
critical in order to avoid wasting time. Based on sensor information, we can get information
about the fill level of each container, allowing us to avoid such useless trips. However, using
sensor information to search for critical containers and constructing routes accordingly,
means that we cannot longer assume a fixed weekly schedule. In fact, a completely flexible
schedule is required which entails that each route for each truck on each day in each week
can be different. Fost Plus only started to experiment very recently with such sensors and
is interested in the possible savings that can be obtained.

Based on the fill rate data, a solution procedure is suggested in Section 4.5 that analyzes
the possible benefits of sensors and a flexible schedule. The obtained results presented in
Section 5 are not only useful to analyze the benefits of sensors, but also to evaluate the
performance of the solution procedure to obtain a fixed weekly schedule.

4. Methodology

In this section we investigate the two possible ways to improve the current glass collection
process as it is currently in use in the IA under study in order to reduce the costs that are
charged to Fost Plus. First, we investigate the possibility to extend the current workforce
schedule (consisting of only shifts of type P) with shifts of type N. As was already discussed
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in Section 3.3, the difficulty of the shift scheduling problem as described in model 1 lies
in the explicit definition of τ collectionr,d and τdrop-off

t,r,d,w which requires the complex explicit
formulation of f ′ () and f ′′ (). Instead of such an explicit formulation, simulation is much
better suited in these cases. In Sections 4.1 to 4.4, we discuss the model enhancement
procedure that iteratively combines simulation and optimization to approximate and solve
model 1.

Second, we move away from a fixed schedule to a flexible schedule and investigate the
possibility to exploit the use of sensors. This is the subject of Section 4.5.

4.1. Model Enhancement

In this paper, we use a technique called “model enhancement” to solve the shift schedul-
ing problem. The term model enhancement (ME) was used by Bachelet and Yon (2007)
to indicate a different way of combining simulation and optimization. It can be seen
as a decomposition method like Benders’ decomposition as it enhances an optimization
model based on simulation results by adding constraints (Benders, 1962). While most
optimization-simulation couplings focus on improving the objective function evaluated
from simulation (like the simulation optimization approach), ME still focuses on opti-
mizing the theoretical objective function. It tries to improve the solution provided by
a mathematical model by the use of simulation (Bachelet and Yon, 2007). In their pa-
per, Bachelet and Yon (2007) assume that in practice several modeling simplifications are
needed to construct the mathematical optimization model to solve a real-life problem. In
most cases, the resulting model therefore fails to give a correct representation of reality. In
the ME framework, simulation is used to enhance the mathematical model and to improve
the realism and applicability of the solution.

One way to solve model 1 presented above is to estimate τ collectionr,d and τdrop-off
t,r,d,w for each day,

truck, route and shift type and to use this estimate in the optimization model. This way,
variables τ collectionr,d and τdrop-off

t,r,d,w are transformed into parameters Θcollection
r,d and Θdrop-off

t,r,d,w ,

removing the need for Constraint (7) in model 1. Hence, Θcollection
r,d and Θdrop-off

t,r,d,w are
independent of the shift and route decisions in the optimization model. Constraint (9)
can therefore be rewritten as:

∑
t∈T

∑
r∈R

λr,d,w

[
Θdriving

t,r + Θdrop-off
t,r,d,w

]
xt,d,w +

∑
r∈R

λr,d,wΘcollection
r,d ≤ ΘMax, ∀d ∈ D,

∀w ∈W

This is of course a simplification that allows us to approximate τ collectionr,d and τdrop-off
t,r,d,w
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without explicitly modeling them in the optimization model. However, we do not know
whether we will obtain a good or even feasible solution this way. Because of its simplicity,
this approach is called straightforward optimization by Bachelet and Yon (2007).

A better way to approximate τ collectionr,d and τdrop-off
t,r,d,w is to use ME which allows to iteratively

improve the initial estimate of τ collectionr,d and τdrop-off
t,r,d,w with the help of simulation. In a

ME model, optimization and simulation are used in an iterative procedure to enhance the
optimization model. Hence, the goal is to exploit the benefits of simulation which allows
us to solve the problem without an explicit formulation of f ′ () and f ′′ (). Just as with

straightforward optimization, ME allows us to replace the variables τ collectionr,d and τdrop-off
t,r,d,w

by parameters. However, in contrast to straightforward optimization, the estimate of the
parameter values is enhanced during each ME iteration based on a simulation run.

The three phases of the ME procedure are shown in Figure 1 and are discussed below.

Figure 1: Model enhancement algorithm

Optimization Simulation Enhancement

 

4.2. Phase I: Optimization

The first phase in the ME procedure is the optimization phase. In order to apply ME to
solve model 1, variables τ collectionr,d and τdrop-off

t,r,d,w are transformed into parameters. Therefore,

τ collectionr,d and τdrop-off
t,r,d,w must be made independent of the decisions made by the optimization

model (i.e., the shift scheduling and the routing decision). First, this means that the route

index r in the subscripts of τ collectionr,d and τdrop-off
t,r,d,w should be removed (since the model

decides on the route). Since there can only be one route for each day and truck (see
Constraint (2)), the route index r can be replaced by the truck index w. Second, making

τ collectionr,d and τdrop-off
t,r,d,w independent of the decisions made by the optimization model means

that also the shift type index t can be removed (since the model decides on the scheduled
shift types).

Hence, both variables are transformed into parameters as follows:
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τ collectionr,d → Θcollection
d,w

τdrop-off
t,r,d,w → Θdrop-off

d,w

Because both Θcollection
d,w and Θdrop-off

d,w will now be parameters in the optimization model

with the same indices d and w, we can add them together as Θc&d
d,w :

Θc&d
d,w = Θcollection

d,w + Θdrop-off
d,w , ∀d ∈ D,∀w ∈W

We can now formulate model 2, the adjusted shift scheduling model, as an approximation
of model 1. As shown below, model 2 features the same objective function as model
1. Model 2 only differs from model 1 regarding Constraint (6) (which is the same as
Constraint (9)) and Constraint (7). These two constraints are replaced by Constraint (10)
as follows:

Model 2: Adjusted shift scheduling model

Minimize:
∑
t∈T

∑
d∈D

∑
w∈W

xt,d,wCt,d,w

Subject to:

Constraints (2) to (5)

∑
t∈T

∑
r∈R

λr,d,wΘdriving
t,r xt,d,w +

∑
r∈R

λr,d,wΘc&d
d,w ≤ ΘMax, ∀d ∈ D,∀w ∈W (10)

4.2.1. Solution technique

In order to solve the problem formulated in model 2, tabu search is used. Tabu Search (TS)
is a local search combinatorial optimization technique developed by Glover and Laguna
(1997). It starts from an initial solution and tries to improve that solution by making
moves through a specified search space to the neighborhood of the current solution. The
move that improves the solution the most is then made. This procedure continues until a
stopping criterion is met. Each time a move is made, that move becomes tabu for a certain
number of iterations. The set of moves that are made tabu are collected in a tabu list. By
holding these moves in a tabu list for a certain number of iterations, the algorithm avoids
making loops through the search space and tries to escape from local optima.
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During the first enhancement iteration (i.e., the first loop through the three phases in
Figure 1), the simulation phase (phase II) is only executed after the optimization phase
for the first time. Therefore, there were no previous simulation results to define Θc&d

d,w .

Θc&d
d,w is therefore initialized to an initial estimate for each day d ∈ D and each truck

w ∈ W . During the next enhancement iterations, Θc&d
d,w is defined and enhanced during

the enhancement phase (phase III).

In order to optimize the solution to the problem described in model 2, a tabu search
algorithm is designed that swaps the shift type of each scheduled shift. Tabu search is
ideal for this because swapping one P shift for an N shift will not immediately decrease
the objective value in most cases. In fact, the objective value will most likely increase with
a single swap. In most cases, several swaps are required before the objective value will
decrease. By making recent swaps tabu, it is possible to escape from this local optimum
and to search for a better shift schedule. In each optimization phase, the tabu search
algorithm is applied to the shift schedule obtained during the previous optimization phase.

The idea behind swapping P by N shifts is to reduce the number of truck days (which
is the total number of required shifts). Depending on the cost of an N shift, this swap
move can also decrease the objective value (the total weekly labor costs). The idea behind
swapping N shifts by P shifts is to decrease the total weekly costs while maintaining the
same number of truck days.

In order to evaluate each swap move, a collection route is constructed for each scheduled
shift in the adjusted shift schedule until all containers are included in a collection route.
The constructed collection routes are first assigned to the schedule of the first truck and
only then to the second truck. Hence, we make a distinction between the two trucks as we
first try to fill the schedule of the first truck and only use the second truck when the first
truck appears to be insufficient to visit all the containers. This distinction between the two
trucks during the optimization phase removes symmetry and avoids the efficiency problems
that symmetry would cause. When the shift schedule consists of too few scheduled shifts
in order to construct collection routes such that all containers are included, an extra P
shift is added to the end of the shift schedule and the procedure continues. Recall that
during each optimization phase the tabu search algorithm is applied to the shift schedule
obtained during the previous optimization phase. Since there is no previous shift schedule
during the first enhancement iteration, a certain number of P shifts is added until all
containers can be included in a collection route. The collection routes are constructed
using a cheapest insertion heuristic in order to reduce the required number of shifts while
minimizing the driving times in each route. This way we are compressing the collection
routes in view of reducing the required number of shifts. Hence, when it appears that
fewer shifts are required in order to include all containers in a collection route than the
number of shifts that is currently scheduled, the unnecessary shifts are removed. Note
that compressing the collection routes in view of reducing the required number of shifts
means that the total driving time of the obtained solution does not necessarily decrease
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during the enhancement iterations. Therefore, the best shift schedule with the lowest total
driving time is saved during the enhancement procedure. Minimizing the driving times
can be of interest because of its direct link with fuel costs.

When the collection routes are constructed, the succession constraints are checked and
the shift schedule is adjusted if necessary. When the succession constraints are violated
because of the swap move, the necessary days off are inserted (if possible) to render the
shift schedule feasible again. This step also allows to remove unnecessary days off from
the shift schedule resulting from the swap move.

After building and optimizing the collection routes and adding or removing shifts from
the adjusted shift schedule, the cost of the shift schedule is calculated according to the
objective function (1) in order to numerically evaluate each move. Note that it is only
during the construction of the collection routes that Constraint (10) is checked to ensure
a feasible shift schedule.

During each optimization phase, 100 tabu search iterations are performed. The optimiza-
tion phase will always result in a feasible result with respect to Constraint (10). While
the objective value of the obtained result is not necessarily lower than the one during the
previous enhancement iteration, the assumptions made in the model (i.e., the approxima-
tion of the real average collection and drop-off times by Θc&d

d,w ) are getting more realistic.
Eventually, this will result in good feasible solutions with respect to Constraints (6) and
(7) in model 1.

4.3. Phase II: Simulation

The second phase in the enhancement procedure is the simulation phase. It is during this
phase that a simulation model is ran in order to evaluate the solution obtained in phase
I. Figure 2 shows a schematic overview of the steps in the simulation process.

As Figure 2 shows, the fill level of all glass containers is only updated at the beginning of
each day based on the fill rate (see Section 3.2). This means that the simulation model has
a precision of one day. Hence, we assume that the containers are filled at the beginning
of each day with the total amount of glass that was dropped in the container during the
previous day. During the rest of the day, no glass is added to the container. When the
current day in the simulation is a working day (i.e., not a weekend day), the scheduled
collection routes are executed within the scheduled shifts. The execution of the collection
routes is simulated by letting a truck with a certain capacity follow the route within the
scheduled shift. Recall that the initial fill level of the truck depends on the final fill level
during the previous shift of that truck. The truck visits each container according to the
collection route and collects the glass of the visited container if one of its compartments
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Figure 2: Schematic overview of the simulation process

For each day:

Update fill level of glass 
containers

If day is a working day:

Execute collection routes 
within scheduled shifts

 

is filled for at least the collection threshold. When the truck is full (which depends on the
judgment of the driver as is explained in Section 3.3), the collection route is interrupted
by a trip to the drop-off location.

The goal of the simulation is to evaluate the solution obtained during the optimization
phase with respect to the total average working time on each day d for each truck w.
Hence, the simulation gives us the real (under the assumptions of the simulation) value
of the LHS of Constraint (6) in model 1. Since Constraint (10) in model 2 is only an
approximation of Constraint (6) in model 1, Constraint (6) may or may not be satisfied
according to the simulation results. To make sure that Constraint (10) is a good approxi-
mation of Constraint (6), causing both Constraint (10) and Constraint (6) to be satisfied,
the simulation information is used to enhance the approximation. This is done during the
enhancement phase.

4.4. Phase III: Enhancement

During the enhancement phase, the estimate of Θc&d
d,w in model 2 is enhanced based on

the simulation results during phase II. The following notations are used to formulate the
enhancement function:
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ΘrouteSimulation

d,w : average time required according to the simulation to perform the
route scheduled on day d with truck w with the scheduled shift
type on day d for truck w (in hours). Recall that we define the
total route time as the sum of the driving, collection and drop-off
time.

Θ
(c&d)Simulation

d,w : average time required according to the simulation to empty glass
containers and to perform the required drop-offs in the route sched-
uled on day d with truck w with the scheduled shift type on day
d for truck w (in hours).

Next, we define δ as the index of the enhancement iterations, with δ = 1 the first enhance-
ment iteration. Using δ, all notations in model 2 can be indexed for each enhancement
iteration. This way, we can define:

Θrouteδ

d,w : total estimated average time (resulting from the optimization of model 2)
required to perform the route scheduled on day d with truck w with the
scheduled shift type on day d for truck w during enhancement iteration
δ (in hours). Recall that we define the total route time as the sum of
the driving, collection and drop-off time. Hence, this equals the value of
the LHS of Constraint (10) in the optimal solution for model 2 during
enhancement iteration δ.

Θ
(c&d)δ

d,w : estimate during enhancement iteration δ of the average time required to
empty glass containers and to perform the required drop-offs in the route
scheduled on day d with truck w with the scheduled shift type on day d
for truck w (in hours).

Based on the former definitions, we can now state the enhancement function to enhance
the previous value of Θc&d

d,w as follows:

If
(

ΘrouteSimulation

d,w ≤ ΘMax
)

:

Θ
(c&d)δ+1

d,w =
Θ

(c&d)δ

d,w · δ
δ + 1

+
Θ

(c&d)Simulation

d,w

δ + 1

Else:

Θ
(c&d)δ+1

d,w = Θ
(c&d)δ

d,w + ΘMax −Θrouteδ

d,w + 0.01 (11)

In enhancement function (11), Θ
(c&d)δ+1

d,w is the estimate during the next enhancement
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iteration of the average time required to empty glass containers and to perform the required
drop-offs in the route scheduled on day d with truck w with the scheduled shift type on
day d for truck w. If ΘrouteSimulation

d,w ≤ ΘMax, a moving average is calculated causing the
impact of the simulation to diminish over time. This way, we seek after the convergence

of Θc&d
d,w . As Θc&d

d,w converges and stabilizes, Θ
(c&d)Simulation

d,w can also converge and stabilize.

In most cases, Θc&d
d,w will therefore converge to Θ

(c&d)Simulation

d,w just as in Figure 3.

Figure 3: Example of the convergence of Θc&d
d,w to Θ

(c&d)Simulation

d,w
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However, it is possible that Θc&d
d,w will not converge to Θ

(c&d)Simulation

d,w as is shown in Figure

4. Figure 4 shows an example of the progress of Θc&d
d,w and Θ

(c&d)Simulation

d,w over the course
of 116 enhancement iterations for a certain day and truck. As the graph in Figure 4

shows, Θc&d
d,w descends towards Θ

(c&d)Simulation

d,w during the first 54 iterations. However,

during iteration 55, Θ
(c&d)Simulation

d,w suddenly peaks over Θc&d
d,w . It is at this point that

Θc&d
d,w is small enough to add one extra glass container in the route of this truck according

to model 2. Recall, however, that model 2 does not immediately take into account the
possible extra collection and drop-off time that is required to add this extra glass container.
In order for model 2 to take this extra time into account, we have to wait for the feedback
from the simulation evaluation. As the peaks during iterations 55, 73 and 95 show, it
appears to be impossible to add an extra container to the route when the extra collection
and drop-off time is accounted for. In other words, the total average working time is

greater than ΘMax during these peaks. Hence, Θc&d
d,w can never be as low as Θ

(c&d)Simulation

d,w

in this case since we do not immediately take into account the extra required collection
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and drop-off time.

When ΘrouteSimulation

d,w > ΘMax, we want to escape as quickly as possible from this infeasible
situation. Therefore, the second part (the Else case) of the enhancement function (11) is
applied. In order to avoid spending too much time in the infeasible situation waiting for

Θ
(c&d)δ

d,w to increase with the help of the moving average, Θ
(c&d)δ

d,w is immediately increased

by the spare time during iteration δ (ΘMax−Θrouteδ

d,w ). To ensure that the extra container
cannot remain in the route, an extra 0.01 hours is added. This makes sure that the con-

tainer is removed from the route during iteration δ+ 1. This explains why Θ
(c&d)Simulation

d,w

peaks at iterations 55, 73 and 95, and drops immediately at the next iteration. This
procedure renders the solution feasible more quickly and assures more stability during the
next iterations which allows to find better solutions more quickly.

Figure 4: Example of the convergence of Θc&d
d,w
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To determine the value of Θ
(c&d)Simulation

d,w during the enhancement procedure, we do not
directly use the collection and drop-off time supplied by the simulation. In Section 3.3
we argued that the drop-off time, as it is defined in Section 3.3, should be reduced by
some driving time in order for Equation (8) to be exact. Recall that the driving time

(Θdriving
t,r ) consists of the driving time from the depot location to the first container in

route r, the driving time between all consecutive containers in route r and the driving
time from the last container in route r back to the depot location. However, when a
drop-off is required, the truck does not immediately go to the next container, but goes
first to the drop-off location. Hence, Θdriving

t,r contains some unnecessary container-to-
container driving times when one or more drop-offs were required. To ensure that we
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only account for the necessary driving time, Θ
(c&d)Simulation

d,w should be reduced by these
excess driving times. Therefore, we use the equation presented below to determine the

value of Θ
(c&d)Simulation

d,w based on ΘrouteSimulation

d,w and the driving times resulting from the

optimization phase. ΘrouteSimulation

d,w contains the driving times for a trip to and from the
drop-off (K → drop-off → K + 1), but not the driving time for the unnecessary trip

K → K + 1, while
∑

t∈T
∑

r∈R λr,d,wΘdriving
t,r xt,d,w does contain the driving time for the

unnecessary trip K → K+1. Hence, enhancing Θ
(c&d)δ

d,w based on Θ
(c&d)Simulation

d,w and using
it in Constraint (10) ensures that we only account for the necessary driving time:

Θ
(c&d)Simulation

d,w = ΘrouteSimulation

d,w -
∑

t∈T
∑

r∈R λr,d,wΘdriving
t,r xt,d,w.

4.5. Sensors and flexible routes

Until now, we only focused on a fixed weekly schedule that determines for each driver the
collection route and the shift schedule. Hence, every week, the same collection routes are
executed and the same containers are visited on the same day. Using a fixed schedule
will often result in visiting a container while it was not necessary (i.e., when none of its
compartments is filled for at least the collection threshold). In order to avoid wasting
time, we can construct a flexible schedule where we avoid such useless trips using sensor
information about the fill level of each container on each day.

A flexible schedule is based on sensor information about the fill level of each container on
each day. Using sensor information, we assume that we know the exact amount of glass
that each compartment of each container holds. Using historical data, we also assume that
we know the amount of glass that will be added during the following days. This way, we
can determine the set of containers that should be emptied today in order to avoid that a
container will overflow.

Containers that should be emptied today are referred to as Must Gos (MUGOs). All
other containers are referred to as May Gos (MAGOs). While MUGOs must be emptied
today in order to avoid overflow, MAGOs may or may not be emptied. From Monday
to Wednesday, we define each container that will overflow during the next two days as
a MUGO. Hence, we assume a buffer of one day. On Friday, each container that will
overflow during the next three days is defined as a MUGO because no collections can take
place during the weekend. Because Friday would become very busy in this case, a buffer
of two days is assumed to define MUGOs on Thursday. Recall that each glass container
is located on a site and that a site can hold one or more glass containers. Hence, when a
certain container is getting full, people can continue to drop glass in the other containers
located on the same site. In such cases, these containers are not assumed to overflow and
are therefore not regarded as MUGOs.
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Figure 5: Schematic overview of the rolling horizon procedure

For each day:
Update fill level of glass 

containers

Determine MUGO’s

Construct MUGO routes

yes

Optimize routes

Execute collection routes

no

Is the day a 
working day?

yes

MUGO’s exist?
no

Add MAGO’s to the routes

 

Step 1 

Step 2 

Step 3 

In order to determine the required number of truck days in order to empty all critical
containers, a rolling horizon approach is used that is similar to the simulation approach
outlined in Section 4.3. However, instead of using fixed routes, we will now build collection
routes on a daily basis based on sensor information. The rolling horizon procedure is
presented in Figure 5. Just as in Section 4.3, the fill level of all glass containers is only
updated at the beginning of each day. During the rest of the day, no glass is added to the
container. When the current day in the simulation is a working day (i.e., not a weekend
day), we loop through three steps to build the collection routes. Finally, the collection
routes are executed. The execution of the collection routes is simulated by letting a truck
with a certain capacity follow the route. Recall that the initial fill level of the truck
depends on the final fill level during the previous shift of that truck. The difference with
the collection procedure from Section 4.3 is that each visited container will always be
emptied in this case. When the truck is full (which depends on the judgment of the driver
as is explained in Section 3.3), the collection route is interrupted by a trip to the drop-off
location.

To build the collection routes, we start by determining the set of MUGOs at the beginning
of each work day. When there are no MUGOs that day, no collection routes will be
constructed. When there are some MUGOs, we first construct one or more collection
routes such that all MUGOs are included in a route. Second, the most urgent MAGOs are
added to these routes. Finally, the resulting routes are optimized to reduce the driving
time. These three steps are discussed below.

Step 1: Constructing MUGO routes
When constructing the routes in a flexible schedule scenario, we have to ensure that
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at least all MUGO containers can be emptied every day. The first step is therefore to
construct collection routes only for the MUGO containers. This is done based on the
nearest neighbor heuristic. It is during this first step that the minimal number of trucks
(taking into account the number of available trucks) is determined that is required on this
day to empty all MUGOs. Hence, a truck will only be used when there is at least one
MUGO container to empty. When one truck can empty all MUGO containers on a given
day, no extra truck is required.

Step 2: Adding MAGOs to the collection routes
Based on the sensor information, we know exactly how long each route will take (taking
into account the required drop-offs). Therefore, we can now add MAGOs to the routes as
long as we do not exceed ΘMax working hours. MAGOs are added to the route of a certain
truck at a certain position using the cheapest insertion heuristic. MAGOs are inserted in
the routes according to a sorted list (sorted by the number of days until the container will
overflow) such that the most urgent MAGO is added first. Hence, we define the urgency
of a container based on the number of days until one of the compartments of the container
will overflow. Again, we take into account the required drop-off time during each insertion
and keep filling up the routes until no more MAGOs can be added without exceeding
ΘMax working hours. Using this procedure, each of the visited containers will be quite
full. Therefore, we do not use the same collection threshold as in the fixed schedule but
assume that each visited container will also be emptied.

Note that during the second step, we insert MAGOs based on a sorted list where we
give priority to the most urgent MAGOs without taking into account the location of the
MAGO container. Only when two MAGOs are equally urgent, is the additional driving
distance taken into account. Adding the most urgent MAGO to the route can therefore
drastically increase the total driving time of the collection route. However, since the most
urgent MAGO of today can become the MUGO of tomorrow, we increase the chance to
reduce the number of MUGOs to zero during the next day, potentially decreasing the
required number of truck days. As this rolling horizon procedure only minimizes the
number of MUGOs and, consequently, the required number of truck days on the next day,
it lacks a long-term optimization vision. A different MAGO selection decision could, for
example, lead to fewer MUGOs and fewer truck days in the long run. Without resorting
to a long-term optimization model in combination with the rolling horizon procedure,
different MAGO selection rules can be considered. According to Mes (2012), two different
possibilities are usually used in an IRP setting to determine which customers should be
visited first. The most common way is to use the ratio of the fill level to the additional
travel time required to visit this container (Francis et al., 2008; Golden et al., 1984).
Another frequently used technique is to look at the ratio of urgency to the additional
travel time (Campbell et al., 1998). The last three columns in Table 1 show a comparison
of our MAGO selection technique (urgency) with the latter two techniques based on the
resulting number of truck days. The three techniques are investigated under six different
test settings representing the entire planning period (one year), a particular busy period
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and a more calm period in two different intermunicipal authorities (IA1 and IA2). The
results show that our selection technique prevails as the resulting number of truck days
(and, hence, the resulting labor costs) found with the other techniques is never lower than
for our technique.

Table 1: Comparison of three MAGO selection techniques based on the resulting number
of truck days

test setting urgency fill level
extra distance

urgency
extra distance

IA1: 1 year period 6.40 6.51 6.42

IA2: 1 year period 5.75 6.06 5.93

IA1: busy period 7.75 7.75 8.00

IA2: busy period 6.00 6.50 6.50

IA1: calm period 6.19 6.27 6.19

IA2: calm period 5.69 5.97 5.88

Average 6.30 6.51 6.49

Note: The test settings are constructed using data from two different intermunicipal authorities (IA1 and IA2).

Step 3: Optimizing the collection routes
After the collection routes are constructed, the routes are optimized in order to reduce
the total driving distance (directly related to the fuel costs) without the intention of
adding more MAGOs. Instead, the time made available by the optimization is used as a
buffer against uncertainty. In order to optimize the route, three types of swap moves are
consecutively applied within a fastest descent framework.

1. Internal swap moves: Containers are swapped within the route of the same truck.

2. External swap moves: Containers are swapped between the routes of different trucks.

3. Two-opt moves: Arcs are swapped within the route of the same truck.

Figure 6 shows an example of each of the three moves. The internal swap move swaps two
containers in the route of the same truck. The external swap move swaps two containers
between the routes of two trucks. The two-opt move swaps two arcs within the route of
the same truck. Two-opt moves are a classic heuristic optimization technique for routing
problems. First, the two respective arcs are removed from the route such that the route is
divided into two parts. Next, the direction of all the arcs is reversed in one of these parts.
Finally, the two parts are joined again with two different arcs.

26



Figure 6: Example of the three moves during the route optimization

Truck 1

Truck 2

Internal swap move

External swap move

Two-opt move

 

5. Results and discussion

In order to analyze the possible savings for the glass collection process at Fost Plus,
we focus on one specific IA that charges Fost Plus with the collection costs. The IA
under focus is selected based on the availability of data, the reliability of the available
data and the geographic location of the IA (a fairly urbanized and busy area). Because
of confidentiality reasons, we cannot give the name of the IA under study, but we can
present some of its key properties. In the IA under study, two trucks are available each
day for glass collection. Each truck can hold 13 m3 of white glass and 17 m3 of colored
glass. Furthermore, two truck drivers are employed that cannot work in the weekend. In
total, there are more than 300 containers in the IA, located on more than 200 different
sites. Most of the containers are duo containers, while only a small fraction consists
of standard containers. We assume that duo containers take 6 minutes to empty and
can hold 1.675 m3 glass in each of its compartments, while standard containers take 12
minutes and can hold 4 m3 glass. At the drop-off site, loading and unloading is assumed
to take 20 minutes. Finally, we assume a collection threshold of 40%, meaning that visited
containers are only emptied when one of its compartments is filled for at least 40%. This
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percentage is based on a trade-off between overtime and glass overflow volume. Using
the right collection threshold percentage is critical in the fixed scheduling problem. As
the same schedule is repeated every week, each container must be scheduled at least once
in the weekly schedule. Therefore, each container will be visited at least once a week.
However, in most cases, it is not necessary to empty each container every week. When
each visited container would also be emptied (i.e., a collection threshold of 0%), the glass
overflow will be minimal. But as the resulting working time will increase because of the
increased number of emptyings and drop-offs, the overtime will also increase. Therefore,
it is better to wait until the containers are filled with more glass before emptying them.
This can be observed in Figure 7 which shows the trade-off between the total overtime and
the glass overflow volume for different collection thresholds. At a fill level of more than
40%, the glass overflow volume will increase very fast, while the total overtime almost
reaches its minimum at 40%. Hence, 40% seems to be a good trade-off between overtime
and glass overflow volume. The results in Figure 7 are obtained by simulating a fixed
weekly schedule with only P shifts during one year. While this figure shows the results
for only one schedule and one IA, the same trend can also be observed for other schedules
and even other IAs. This analysis, however, goes beyond the scope of this paper.

Figure 7: Collection threshold analysis
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Based on real-life collection data of one year, the daily fill rate of each compartment of
each container is calculated according to the procedure described in Section 3.2. Figure
8 shows a graphical representation of the aggregated daily fill rate (in m3) for white and
colored glass for two IAs, where IA1 is the IA under study. The fill rate shows a similar
trend for both IAs and shows large peaks during the New Year period. The ratio between
white and colored glass is also very similar in both IAs.
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Figure 8: Aggregated daily fill rate during one year
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5.1. Theoretical results

Before we apply the ME model to the real-life setting, we first analyze the performance of
the model regarding feasibility and solution quality. To get a good view on the performance
of the proposed solution technique, we create a set of test cases that are based on the first
4 weeks of the year. Recall that this considered time frame falls within the peak period for
glass collection. Therefore, we can assume that the fill rate during the rest of the year will
not be higher than during these four weeks. Hence, finding a good feasible schedule for
this period is more challenging which makes the considered time frame very interesting.

The proposed ME procedure (developed in C++) allows to solve model 1 in order to
analyze the possible advantages of introducing a second shift type. Recall that two different
shift types are considered: a P shift containing the peak traffic hours with a standard shift
cost and an N shift not containing the peak traffic hours with a higher cost. While the N
shift is more expensive than the P shift, the average driving speed is higher during the N
shift compared to the P shift. We further assume that there are two trucks and two truck
drivers available to work each day. To allow for a thorough analysis, five different scenarios
are constructed regarding the average driving speed during an N shift compared to a P
shift. For each of the different speed-up scenarios, six different scenarios are constructed
regarding the cost premium for an N shift compared to a P shift. The results of the ME
algorithm for these 30 different test cases are presented in Table 2 using the following
definitions:
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σ: factor (≤ 1) that is used to multiply the driving times in a P shift to
obtain the driving times in an N shift.

CN : cost of an N shift. The cost of a P shift (CP ) is always assumed to be
1.

θestimatew = Avgd∈D

{
Θroute
d,w

}
= estimate in model 2 of the average working hours

for truck w over all active truck days for truck w.

θsimulationw = Avgd∈D

{
ΘrouteSimulation

d,w

}
= average working hours for truck w over

all active truck days for truck w according to the simulation.

We test the model for five different σ values ranging from 0.9 to 0.5 and six different CN
values ranging from 1.1 to 1.6. Columns 2 and 3 of Table 2 show the value of σ and CN
respectively. The index of each of the 30 test cases is shown in Column 1. The results
presented in columns 4 to 9 are obtained by running the ME algorithm for 100 iterations.
This takes on average 10 minutes for each test case. Columns 4 to 6 show the required
number of truck days, the required number of P and N shifts and the resulting weekly
costs of the shift schedule. Columns 8 to 9 show for each of the 2 trucks (indexed in
column 7) the average estimated working hours and the average simulated working hours.
At the bottom of Table 2, we show the average and the standard deviation of columns 8
and 9.

5.1.1. Feasibility

The first criterion for a good solution is of course the feasibility of the solution with
respect to all the constraints in model 1 (i.e., Constraints (2) to (7)). In this section
we only focus on the feasibility with respect to Constraints (6) and (7) as these are the
constraints that are approximated by constraint 10 in model 2 with the aid of ME. All
other constraints in model 1 are also present in model 2 and will therefore be satisfied by
definition. Hence, we want the real (i.e., simulated over the four weeks in our considered
time frame) total average working hours of the obtained solutions to be less than or equal
to 7.5 hours (ΘMax) on each day for each truck. The convergence of Θc&d

d,w (possibly, but not

necessarily to Θ
(c&d)Simulation

d,w ) which is aimed at during the enhancement phase in the ME

procedure, should ensure that Constraints (6) and (7) in model 1 are satisfied. When Θc&d
d,w

converges to Θ
(c&d)Simulation

d,w , Constraint 10 is a good approximation of Constraints (6) and
(7). Hence, when Constraint 10 is satisfied, Constraints (6) and (7) are also satisfied. As

we have shown in Section 4.4, Θc&d
d,w will not always converge to Θ

(c&d)Simulation

d,w . If it does

not converge, Θc&d
d,w will be greater than Θ

(c&d)Simulation

d,w . Therefore, Constraints (6) and
(7) are satisfied when Constraint (10) is satisfied.

While the tabu search algorithm during the optimization phase in the ME procedure
ensures that Constraint (10) in model 2 is never violated, it is the enhancement phase
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that has to make sure that Constraints (6) and (7) are satisfied. We found that our ME
procedure is able to find a feasible result for each test case (satisfying Constraints (6) and
(7)). Column 9 of Table 2 then also shows that the real (simulated) average total working
time (over all active truck days) θsimulationw is less than or equal to 7.5 hours for each test
case. As can be observed in these two tables, θestimatew and θsimulationw always lie fairly close
to each other. Furthermore, there is no statistically significant difference between these
two averages (two sided p value of 0.2994).

5.1.2. Solution quality

The second criterion of a good solution is the solution quality in terms of the obtained
objective value (the weekly costs). The obtained objective value for each of the test cases
can be found in column 6 of Table 2. In this section we first analyze the quality of the
obtained solutions based on the properties of an optimal solution (see Sections 5.1.2.1
and 5.1.2.2). Second, we analyze the quality based on a comparison with the results of a
flexible schedule (see Section 5.1.2.3).

31



Table 2: Theoretical results Fost Plus

Case σ CN Truck days Shifts Weekly

costs

Truck w θestimatew θsimulationw

1 0.9 1.1 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

2 0.9 1.2 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

3 0.9 1.3 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

4 0.9 1.4 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

5 0.9 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

6 0.9 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

7 0.8 1.1 7 0P + 7N 7.70 1 7.38 7.33

2 6.54 6.39

8 0.8 1.2 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

9 0.8 1.3 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

10 0.8 1.4 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

11 0.8 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

12 0.8 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

13 0.7 1.1 7 5P + 2N 7.20 1 7.39 7.39

2 7.40 7.38

14 0.7 1.2 7 5P + 2N 7.40 1 7.39 7.39

2 7.40 7.38

15 0.7 1.3 7 5P + 2N 7.60 1 7.39 7.39

2 7.40 7.38
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Theoretical results Fost Plus Cont.

Case σ CN Truck days Shifts Weekly

costs

Truck w θestimatew θsimulationw

16 0.7 1.4 7 5P + 2N 7.80 1 7.39 7.39

2 7.40 7.38

17 0.7 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

18 0.7 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

19 0.6 1.1 6 1P + 5N 6.50 1 7.34 7.33

2 7.20 7.21

20 0.6 1.2 6 1P + 5N 7.00 1 7.34 7.33

2 7.20 7.21

21 0.6 1.3 6 1P + 5N 7.50 1 7.34 7.33

2 7.20 7.21

22 0.6 1.4 7 5P + 2N 7.80 1 7.33 7.33

2 7.33 7.12

23 0.6 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

24 0.6 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

25 0.5 1.1 6 2P + 4N 6.40 1 7.36 7.36

2 6.98 6.98

26 0.5 1.2 6 2P + 4N 6.80 1 7.36 7.36

2 6.98 6.98

27 0.5 1.3 6 2P + 4N 7.20 1 7.36 7.36

2 6.98 6.98

28 0.5 1.4 6 2P + 4N 7.60 1 7.36 7.36

2 6.98 6.98

29 0.5 1.5 6 2P + 4N 8.00 1 7.36 7.36

2 6.98 6.98

30 0.5 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

Average: 7.20 7.16

St.dev.: 0.22 0.20

33



5.1.2.1. Properties of an optimal solution

In Table 2, we see that only P shifts are used to construct the shift schedule when CN is
very high (i.e., 1.6 in our case). In such cases, the benefit of using an N shift (i.e., faster
driving times) does not outweigh the higher costs. Define Λopt.t as the minimal number
of truck days required to obtain a feasible solution with only shifts of type t. Hence,
Λopt.P is the minimal number of truck days required to find a feasible solution with only P

shifts. Starting from Λopt.P , we can now ask ourselves if it is possible to reduce the total
weekly costs by reducing the number of truck days by using a certain number of N shifts.
To analyze this possibility, we first determine the value of Λopt.N . When Λopt.N < Λopt.P ,
we propose that it is possible to reduce the weekly costs by combining N and P shifts,
depending on the value of CN . Hence, starting from Λopt.P , we can also ask ourselves if is
possible to reduce the weekly costs by using a certain number of N shifts for each value of
CN . We propose that when CN decreases, we can find lower weekly costs by decreasing
the number of truck days by using more N shifts. Defining ∆opt.

CN
as the minimal number

of truck days required to find a feasible solution with CN defined as the cost of an N shift,
the previous statements can be translated in Proposition 1 and Proposition 2. With C1

N

and C2
N defined as two values for CN , we state Proposition 1 as follows:

Proposition 1:

∀ C1
N , C

2
N | (CP < C1

N < C2
N ): ∆opt.

C1
N
≤ ∆opt.

C2
N

.

Proposition 1 states that the optimal number of truck days increases or remains the same
when the cost of an N shift increases. Hence, the optimal number of truck days cannot
decrease when the cost of an N shift increases. To prove Proposition 1 (and Proposition
2), we first state and prove Lemma 1 and Lemma 2 based on the previous definitions as
follows:

Lemma 1:

∀ ∆opt.
CN
| (CN > CP ): ∃! ρopt. | (ρopt. =

∑
d∈D

∑
w∈W Xopt.

N,d,w).

Proof Lemma 1:
Lemma 1 shows that for each optimal number of truck days ∆opt.

CN
(with CN > CP ), there

exists exactly one minimal number of N shifts (ρopt.) that is required to obtain ∆opt.
CN

truck

days. We prove Lemma 1 by contradiction. When there would exist a second, larger ρopt.

together with the same ∆opt.
CN

, it means that the second solution contains more N shifts,
resulting in higher costs. The second solution can, therefore, not be an optimal solution.
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When there would exist a second, smaller ρopt. together with the same ∆opt.
CN

, it means that
the first solution contains more N shifts, resulting in higher costs. The first solution can,
therefore, not be an optimal solution. Hence, only one minimal number of N shifts exists
for each optimal number of truck days ∆opt.

CN
. �

This does, however, not mean that there can only be one optimal number of truck days for
each given value of CN . Based on Lemma 1 and using the same kind of proof, we can also
state that for each minimal number of N shifts, there exists exactly one optimal number
of truck days. Since there exists exactly one ρopt. for each ∆opt.

CN
, we can rewrite ρopt. as

ρopt.
∆opt.
CN

. With ρopt.
∆opt.
CN

defined as the minimal number of N shifts that is required to obtain

∆opt.
CN

truck days, we can state Lemma 2 as follows:

Lemma 2:
∀ ∆opt.

C1
N
,∆opt.

C2
N
| (∆opt.

C1
N

= ∆opt.
C2
N

)&(C1
N > CP ): ρopt.

∆opt.

C1
N

= ρopt.
∆opt.

C2
N

∀ ∆opt.
C1
N
,∆opt.

C2
N
| (∆opt.

C1
N
< ∆opt.

C2
N

)&(C1
N > CP ): ρopt.

∆opt.

C1
N

> ρopt.
∆opt.

C2
N

Hence: ∀ ∆opt.
C1
N
,∆opt.

C2
N
| (∆opt.

C1
N
≤ ∆opt.

C2
N

)&(C1
N > CP ): ρopt.

∆opt.

C1
N

≥ ρopt.
∆opt.

C2
N

.

Proof Lemma 2:
Lemma 2 first states that the minimal number of required N shifts remains unchanged
when the optimal number of truck days also stays the same. This is a direct consequence
of Lemma 1. Hence, there can only be one optimal number of required N shifts for each
optimal number of truck days. Second, Lemma 2 states that the minimal number of
required N shifts decreases when the optimal number of truck days increases. This can be
proven by contradiction. Consider a scenario with two solutions where the second solution
contains more truck days and more N shifts compared to the first solution. We prove
that the second solution can never be optimal in this case. Note that we do not have to
incorporate the case where the number of N shifts is equal in both solutions because this
is impossible for optimal solutions when the optimal number of truck days is different (see
Lemma 1). When the number of P shifts in the second solution is also greater than or equal
to the number of P shifts in the first solution, it is easy to see that the second solution
can never be optimal. When the first solution with fewer or the same number of P shifts
and fewer N shifts is feasible, it is also feasible for other values of CN . Furthermore, this
first solution will always result in lower costs compared to the second solution containing
more N shifts and more or the same number of P shifts.

When the second solution with more truck days contains more N shifts, but fewer P
shifts, we can give a similar proof to show that the second solution can never be optimal
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in this case. Note that each P shift in a feasible shift schedule can be replaced by an N
shift without rendering the schedule infeasible. An N shift can, of course, not always be
replaced by a P shift because the average driving speed in a P shift is lower than in an
N shift. In our scenario, we can therefore replace the P shifts in the first solution with N
shifts until the number of P shifts in the first solution matches the number of P shifts in
the second solution. Since the second solution contains more truck days, the number of
N shifts in the adjusted first solution (containing the same number of P shifts as in the
second solution) will always be smaller than in the second solution. As the adjusted first
solution is still feasible for all values of CN , it will always result in a smaller cost than
the second solution which contains the same number of P shifts, but has more N shifts.
Hence, the second solution can never be optimal.

Third, Lemma 2 states that from the first two statements it follows that when the optimal
number of truck days increases or stays the same, the minimal number of required N shifts
decreases or stays the same. �

Note that Lemma 2 is only concerned with the optimal number of truck days for a certain
value of CN and not with all possible numbers of truck days. Hence, not all possible
integer numbers of truck days between Λopt.N and Λopt.P are necessarily part of the set of
optimal numbers of truck days.

Proposition 2:

∀ C1
N , C

2
N | (CP < C1

N < C2
N ): ρopt.

∆opt.

C1
N

≥ ρopt.
∆opt.

C2
N

.

Conditional proof Proposition 2:
Proposition 2 states that the minimal number of N shifts required in order to obtain a
given optimal number of truck days will decrease (or stay constant) when the cost of an
N shift increases. Hence, under the assumption that Proposition 1 is valid, Proposition 2
is also valid because of Lemma 2.

Proof Propositions 1 and 2:
In order to prove Propositions 1 and 2, we first give a formal definition of the function
describing the optimal weekly costs. We can write the optimal weekly costs in function of
the cost of an N shift as in Expression (12). Note that we now use the function variable c
instead of CN to model the cost of an N shift. This is explained in the next paragraph.

Weekly costsopt.(c) = ρopt.
∆opt.
c
c+ (∆opt.

c − ρopt.
∆opt.
c

)CP (12)

From the definition of the optimal weekly cost function in Expression (12), we see that
the function will be linear in c as long as ∆opt.

c stays constant. The results in Table 2
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show that the number of truck days makes discrete increments when the cost of an N shift
increases (for a constant value of σ). Only for the case where σ = 0.9, the number of truck
days stays constant when the cost of an N shift changes. This illustrates that the optimal
weekly cost function is composed of different linear partial cost functions with breakpoints
for each change in the optimal number of truck days. This means that the optimal weekly
cost function is a piecewise linear function formed by connecting the intersections of at
most Λopt.P − Λopt.N consecutive (sorted according to the respective number of truck days)

partial cost functions and confined by the horizontal line Λopt.P ·CP . Hence, for each optimal
number of truck days, a unique partial cost function exists, describing the weekly costs
in function of c. As the optimal number of truck days depends on the cost of an N shift,
while the optimal number of truck days is fixed for each partial cost function, we cannot
use ∆opt.

c in the definition of the partial cost functions. Therefore, we make a difference
between CN (constant) and c (function variable) to fix the optimal number of truck days
as ∆opt.

CN
. This way, the partial cost functions can be defined as in Expression (13).

Weekly costsopt.
∆
opt.
CN (c) = ρopt.

∆opt.
CN

c+ (∆opt.
CN
− ρopt.

∆opt.
CN

)CP (13)

Without making assumptions with respect to the value of the cost of an N shift, we can
now describe the general properties of the optimal weekly cost function (see Expression
(12)) in order to prove Propositions 1 and 2. For the range of possible c values (with
c > CP ), a set of (unique) optimal truck days exists such that the elements of this set can
be ordered by increasing value. Defining these ordered elements as ∆opt.

C1
N

, ∆opt.
C2
N

, ∆opt.
C3
N

, ...,

we can make the following general statement based on Lemma 2.

If ∆opt.
C1
N
< ∆opt.

C2
N
< ∆opt.

C3
N
< ... , then ρopt.

∆opt.

C1
N

> ρopt.
∆opt.

C2
N

> ρopt.
∆opt.

C3
N

> ... .

As each optimal number of truck days corresponds with a partial cost function, the re-
spective partial cost functions can be defined as follows:

Weekly costsopt.
∆
opt.

C1
N (c) = ρopt.

∆opt.

C1
N

c+ (∆opt.
C1
N
− ρopt.

∆opt.

C1
N

)CP

Weekly costsopt.
∆
opt.

C2
N (c) = ρopt.

∆opt.

C2
N

c+ (∆opt.
C2
N
− ρopt.

∆opt.

C2
N

)CP .

Weekly costsopt.
∆
opt.

C3
N (c) = ρopt.

∆opt.

C3
N

c+ (∆opt.
C3
N
− ρopt.

∆opt.

C3
N

)CP .

...
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Figure 9 shows the relationship between the optimal weekly cost function (represented
by a solid line) and the partial cost functions (represented by the dashed lines). As the
optimal weekly cost function resembles the part of a wall that encloses the end of a pitched
roof, it is further referred to as the gable function. None of the partial cost functions lie
below this gable function. The partial cost functions are further referred to as the beam
functions as they resemble the beams of the roof. As can be observed in Figure 9, the gable
function features a breakpoint at each intersection of two consecutive (sorted according to
the respective number of truck days) beam functions, indicating a change in the optimal
number of truck days. The remainder of this section seeks to describe the properties of the
gable and beam functions in order to prove the generality of Figure 9 and, consequently,
prove Propositions 1 and 2.

Figure 9: General representation of three partial cost functions (beam functions)
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Δ
𝐶𝑁

1
𝑜𝑝𝑡.

(𝑐) 𝑊𝑒𝑒𝑘𝑙𝑦 𝑐𝑜𝑠𝑡𝑠𝑜𝑝𝑡.
Δ
𝐶𝑁

2
𝑜𝑝𝑡.

(𝑐) 

𝑊𝑒𝑒𝑘𝑙𝑦 𝑐𝑜𝑠𝑡𝑠𝑜𝑝𝑡.
Δ
𝐶𝑁

3
𝑜𝑝𝑡.

(𝑐) 𝑊𝑒𝑒𝑘𝑙𝑦 𝑐𝑜𝑠𝑡𝑠𝑜𝑝𝑡.(𝑐) 

𝐶𝑁
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡.  1,2 𝐶𝑁

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡.  2,3 𝐶𝑃 

We first investigate the intercept and slope of the beam functions. In general, the following
inequalities are valid for the beam functions:

∀ Weekly costsopt.
∆
opt.

C1
N (c), Weekly costsopt.

∆
opt.

C2
N (c), Weekly costsopt.

∆
opt.

C3
N (c),

... | (∆opt.
C1
N
< ∆opt.

C2
N
< ∆opt.

C3
N
< ...)&(ρopt.

∆opt.

C1
N

> ρopt.
∆opt.

C2
N

> ρopt.
∆opt.

C3
N

> ...):

∆opt.
C1
N

- ρopt.
∆opt.

C1
N

< ∆opt.
C2
N

- ρopt.
∆opt.

C2
N

< ∆opt.
C3
N

- ρopt.
∆opt.

C3
N

< ... .
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As ∆opt.−ρopt. corresponds with the intercept of a beam function, the following statements
are valid:

intercept of Weekly costsopt.
∆
opt.

C1
N (c) <

intercept of Weekly costsopt.
∆
opt.

C2
N (c) <

intercept of Weekly costsopt.
∆
opt.

C3
N (c) < ... .

Moreover, the following is also valid:

intercept of Weekly costsopt.
∆
opt.

C1
N (c) with c = CP <

intercept of Weekly costsopt.
∆
opt.

C2
N (c) with c = CP <

intercept of Weekly costsopt.
∆
opt.

C3
N (c) with c = CP < ... .

The latter statement is true because the intercept with c = CP equals ∆opt.
C1
N

, ∆opt.
C2
N

, ∆opt.
C3
N

,

... respectively and ∆opt.
C1
N
< ∆opt.

C2
N
< ∆opt.

C3
N
< ... . Therefore, none of the beam functions

will intersect before c = CP . As ρopt.
∆opt.

C1
N

, ρopt.
∆opt.

C2
N

, ρopt.
∆opt.

C3
N

, ... corresponds with the slope of the

respective beam function, we see that:

slope of Weekly costsopt.
∆
opt.

C1
N (c) >

slope of Weekly costsopt.
∆
opt.

C2
N (c) >

slope of Weekly costsopt.
∆
opt.

C3
N (c) > ... .

Based on the former properties, we can now prove Propositions 1 and 2 by analyzing the
general graphical representation of these beam functions in Figure 9. For each beam func-
tion to be optimal for its respective number of truck days (∆opt.

CN
), the following statement

must be valid:

intersection of Weekly costsopt.
∆
opt.

C1
N (c) with Weekly costsopt.

∆
opt.

C2
N (c) ≤

intersection of Weekly costsopt.
∆
opt.

C2
N (c) with Weekly costsopt.

∆
opt.

C3
N (c) ≤ ...

Using the formulation used in Figure 9, we can therefore state that:
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CP < Cintersect.1,2N ≤ Cintersect.2,3N ≤ ... .

In a scenario where the latter statement would not be true, some of the beam functions
can never be optimal. If, for example, Cintersect.1,2N > Cintersect.2,3N , then Cintersect.1,3N <

Cintersect.1,2N because of the slope of the beam functions. In this case, and for the same rea-

son, Weekly costsopt.
∆
opt.

C2
N (c) can never lead to an optimal solution because either Weekly

costsopt.
∆
opt.

C1
N (c) or Weekly costsopt.

∆
opt.

C3
N (c) will always lie below Weekly costsopt.

∆
opt.

C2
N (c).

As Figure 9 gives a general representation (based on the properties of the intercepts,
intersects and slopes) of the beam functions and the gable function, we make the following
observations:

∀c | (CP < c ≤ Cintersect.1,2N ):

Weekly costsopt.
∆
opt.

C1
N (c) results in the optimal weekly costs;

∀c | (Cintersect.1,2N ≤ c ≤ Cintersect.2,3N ):

Weekly costsopt.
∆
opt.

C2
N (c) results in the optimal weekly costs;

∀c | (Cintersect.2,3N ≤ c ≤ the next intersect):

Weekly costsopt.
∆
opt.

C3
N (c) results in the optimal weekly costs;

... .

Furthermore, as Weekly costsopt.
∆
opt.
Cx
N (c) is defined as the function that results in the

optimal weekly costs when the cost of an N shift equals CxN (i.e., when c = CxN ), the
following statement must be true based on the definition of the beam functions shown in
Figure 9:

CP < C1
N ≤ C

intersect.1,2
N ≤ C2

N ≤ C
intersect.2,3
N ≤ C3

N ≤ ... .

Based on the properties of these beam functions with respect to the number of truck days
and the required number of N shifts, it follows that:



∀ C1
N , C

2
N , C

3
N , ... | (CP < C1

N ≤ C
intersect.1,2
N ≤ C2

N ≤ C
intersect.2,3
N ≤ C3

N ≤ ...):
∆opt.

C1
N
≤ ∆opt.

C2
N
≤ ∆opt.

C3
N
≤ ...

∀ C1
N , C

2
N , C

3
N , ... | (CP < C1

N ≤ C
intersect.1,2
N ≤ C2

N ≤ C
intersect.2,3
N ≤ C3

N ≤ ...):
ρopt.

∆opt.

C1
N

≥ ρopt.
∆opt.

C2
N

≥ ρopt.
∆opt.

C3
N

≥ ...
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and that:



∀ C1
N , C

2
N , C

3
N , ... | (CP < C1

N < Cintersect.1,2
N < C2

N < Cintersect.2,3
N < C3

N < ...):

∆opt.
C1

N
< ∆opt.

C2
N
< ∆opt.

C3
N
< ...

∀ C1
N , C

2
N , C

3
N , ... | (CP < C1

N < Cintersect.1,2
N < C2

N < Cintersect.2,3
N < C3

N < ...):

ρopt.
∆opt.

C1
N

> ρopt.
∆opt.

C2
N

> ρopt.
∆opt.

C3
N

> ...

Hence, at each intersection of two consecutive (sorted according to the respective number
of truck days) beam functions, the gable function features a breakpoint, indicating a
change in the optimal number of truck days and the minimal required number of N shifts.
Furthermore, the observations prove that for an increasing cost c, the optimal number
of truck days increases and the minimal required number of N shifts decreases at each
breakpoint. As none of the beam functions lie below the gable function, the following
statement holds true with respect to each global optimum:

{
∀ Ca

N , C
b
N , C

c
N , ... | (CP < Ca

N < Cb
N < Cc

N < ...): ∆opt.
Ca

N
≤ ∆opt.

Cb
N

≤ ∆opt.
Cc

N
≤ ...

∀ Ca
N , C

b
N , C

c
N , ... | (CP < Ca

N < Cb
N < Cc

N < ...): ρopt.
∆opt.

Ca
N

≥ ρopt.
∆opt.

Cb
N

≥ ρopt.
∆opt.

Cc
N

≥ ...

Note that we use the notation CaN , C
b
N , C

c
N instead of C1

N , C
2
N , C

3
N to further emphasize

that the latter statement is concerned with the gable function (represented by the solid
line in Figure 9) instead of the beam functions. Hence, for increasing costs c, the optimal
number of truck days will never decrease and the minimal required number of N shifts will
never increase. �

5.1.2.2. Evaluating results based on the properties of an optimal solution

Based on the previous lemmas and proven propositions, we can now evaluate the results in
Table 2. Therefore, a gable function is constructed as a function of CN for each of the five
different σ values in our test cases (see Table 2). Figure 10 summarizes these five weekly
cost functions that can be constructed for the results in Table 2 for each σ value. The line
graphs in Figure 10 represent the gable functions for the respective σ values. The markers
represent the weekly costs for each single solution in Table 2. To check the possibility that
the obtained solutions in Table 2 are optimal, certain conditions should be met. Based on
the lemmas and propositions stated before, the following four conditions should be met
for each of the solutions within the same σ case:

1. The number of truck days can never decrease for increasing CN ;
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2. The minimal required number of N shifts can never increase for increasing CN ;

3. A breakpoint must be observed in the gable function for each change in the number
of truck days; Moreover, the slope of the gable function should decrease at each
breakpoint;

4. Each solution with the same number of truck days must contain the same number
of N shifts. Hence, each solution should lie on its respective gable function.

Figure 10: Gable functions of the obtained results for different σ cases
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The results in column 4 in Table 2 satisfy condition 1 and condition 2 as for the obtained
results the number of truck days will never decrease and the number of required N shifts
will never increase with increasing CN . The gable functions in Figure 10 also satisfy
condition 3 as a breakpoint is observed in the gable function for each change in the
number of truck days and the slope of each function will never increase at any breakpoint.
Finally, condition 4 is also met since each solution (represented by a marker in Figure 10)
lies on its respective gable function. Hence, the structure of the obtained solutions (for
different values of CN ) satisfies all optimality conditions. This means that the structure
of the obtained set of solutions resembles an optimal structure. Satisfying these four
optimality conditions has two important implications. First, it indicates that we cannot
reject the hypothesis of optimality of the individual solutions. It does, however, not prove
the optimality of the individual solutions. Second, it proves that there is some consistency
in the obtained solution quality for each single instance. In other words, our solution
approach does not seem to arbitrarily perform better or worse for some problem instances
as the structure of the obtained set of solutions resembles an optimal structure.

42



Hence, satisfying all optimality conditions outlined above does not mean that we can prove
the optimality of the individual solutions. However, we can assume that this is very likely.

5.1.2.3. Benchmarking

While Section 5.1.2.2 only aims at confirming that our results satisfy the conditions re-
quired for an optimal solution, this section focuses on comparing the results with the results
of a flexible schedule (see Section 4.5). Recall that in a fixed schedule, each container must
be visited at least once a week. However, visiting a container does not necessarily mean
that it will also be emptied. A container is only emptied when one of its compartments
is filled for at least 40%. When a container is visited while it was not necessary (i.e.,
when none of its compartments is filled for at least the collection threshold), time was
wasted. Based on sensor information, MUGO and MAGO containers can be defined. This
allows to construct only the necessary collection routes, eliminating these useless trips.
This means, however, that we have to abandon a fixed schedule and use a flexible schedule
which can be different for each truck on each day in each week.

It is very likely that the obtained flexible schedule will result in fewer truck days since
we only construct a collection route if necessary. However, the average weekly number
of truck days of the flexible schedule cannot be seen as a theoretical lower bound (LB)
since the rolling horizon approach does not take into account the long-term effects of the
MUGO and MAGO selection decisions (see Section 4.5). Hence, it cannot be proven that
the flexible schedule will always perform better than the fixed schedule. However, we
argue that the results of the flexible schedule can be seen as a practical lower bound for
the minimal effort (in terms of truck days) that is required to make sure that the glass
overflow (glass placed next to the containers) is minimal. Johansson (2006), for example,
concludes that with relative large systems (more than 100 containers), dynamic scheduling
(i.e., constructing a flexible schedule) performs best. Johansson (2006) further concludes
that the highest savings of this dynamic policy are achieved in environments with high
demand fluctuation. Also Mes (2012) states that with seasonal patterns and huge random
variations from day to day, a flexible schedule outperforms a fixed schedule. Both authors
compare their flexible scheduling results to a fixed schedule and conclude that a flexible
schedule can save on average 10% in working time or costs. As we also face a very large
system (over 300 containers) and an environment with seasonal patterns and high glass
disposal fluctuations, similar savings are expected.

Table 3 shows a comparison of the ME results with the results of the flexible schedule
(LB) in terms of the minimal average required number of truck days. Again, we focus on
the same four weeks as previously to produce the results and we make this comparison
for the same five σ cases. Columns 2 and 3 of Table 3 give the results for the scenario
where we only consider N shifts. Columns 4 and 5 give the results for the scenario where
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we only consider P shifts. It is impossible to test the scenarios where we allow for a mix
of P and N shifts since this is impossible within the framework of a flexible schedule. The
procedure to obtain a flexible schedule (as outlined in Section 4.5) makes decisions on a
daily basis and is therefore not designed to produce a good (or optimal) overall (over all
days) mix of N and P shifts which satisfies the shift succession constraints. Therefore,
only N or only P shifts are considered to analyze the LB.

As Table 3 shows, the LB is always smaller than the ME result. Note that the LB is an
average calculated by dividing the total number of required truck days over the considered
planning horizon by the number of weeks in the considered time horizon. Since each week
can be different in a flexible schedule, the LB can therefore have a fractional value. This
is of course impossible for the fixed schedule scenario. Hence, rounding the LB to the
next integer also results in an even stronger (practical) lower bound for the fixed schedule
scenario. Comparing the (rounded) LB and the ME results shows that the ME procedure
produces the best possible solution for a fixed schedule, compared to a flexible schedule
(at least for the cases where we consider only N or only P shifts). Along with the results
in Section 5.1.2.2, this strongly suggests that our ME method is capable of finding good
(even possibly optimal) solutions for the fixed schedule scenario.

Table 3: Comparison of the weekly average required number of truck days

Only N shifts Only P shifts

Case LB ME LB ME

σ = 0.9 7.25 8.00 7.75 8.00

σ = 0.8 6.50 7.00 7.75 8.00

σ = 0.7 6.25 7.00 7.75 8.00

σ = 0.6 5.75 6.00 7.75 8.00

σ = 0.5 5.50 6.00 7.75 8.00

Note: LB (Lower Bound) refers to the average number of truck days resulting from the flexible schedule.

ME (Model Enhancement) refers to the average number of truck days resulting from the fixed schedule.

5.2. Application to a real-life problem

In this section we present the results of the ME procedure for the entire year based on
real-life data. The goal is to provide Fost Plus with an evaluation of the possibility
to introduce N shifts in combination with the current P shifts. Furthermore, a flexible
schedule is constructed to allow for an evaluation of the proposed results and the evaluation
of installing sensors.

Table 4 presents the results of the ME procedure for the four most realistic σ scenarios
with CP = 1. Solving the ME procedure for one year instead of 4 weeks for 100 iterations
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increases the required computation time from on average 10 minutes to on average 70
minutes. The results show that we always find a solution where θsimulationw is less than
or equal to 7.5 hours. Just as for the results in Section 5.1.1, we can again observe that
θestimatew and θsimulationw lie very close to each other. Furthermore, the four conditions for
an optimal solution as defined in Section 5.1.2.2 are also met, which indicates that the
ME procedure consistently results in a good solution which could be optimal.

As in Section 5.1.2.3, Table 5 shows the results of the flexible schedule (LB) compared to
the results of the ME procedure. Note that the LB is now the average required number
of truck days over the entire year. Comparing the (rounded) (practical) LB and the
ME results shows that the ME procedure produces the best possible solution for a fixed
schedule compared to a flexible schedule (at least for those two cases). Along with the
results in Table 4, this again suggests that our ME method is capable of finding good
(even possibly optimal) solutions for the fixed schedule scenario.

Regardless of the optimality of the obtained results, the improvement with respect to
the current schedule in use at the IA under study is at least as important in order to
evaluate the quality of the proposed solutions. At this time, the IA under study uses a
fixed schedule with only P shifts employing two full time drivers. Since one collection
route is assigned to each driver on each day, 10 truck days are required every week in the
current schedule. Even without the inclusion of an N shift, Table 4 shows that our model
already results in a saving of at least three truck days per week. Apparently, there is
quite some room for improvement regarding the current routes. Since a reduction of three
truck days corresponds with a saving of 30% in labor costs, this can result in significant
monetary savings. Table 4 shows that even more savings are possible when N shifts are
used in combination with P shifts depending on the premium of an N shift and the value
of σ. These results allow Fost Plus to evaluate different cost possibilities under different
σ assumptions.

To assure realistic results, we use the driving times provided by Google Maps. Hence,
the driving times take into account speed limits, congestion, traffic lights and even the
driving direction (A to B is different from B to A). To obtain the driving times from and
to each of the more than 200 sites, the Google Maps API is used to automatically query
the driving times. The Google Maps API also allows to obtain the driving directions for
each collection route which can be graphically represented in the Graphical User Interface
(GUI) designed for Fost Plus. Appendix 11 shows this GUI and all of its components.
The GUI presents the user with the information of the fill level of each glass container
(right), the composition of the collection routes for each truck (bottom) and of course a
graphical representation of the collection route for each truck. It also allows the user to
analyze a fixed or flexible schedule under different parameter settings such as driving time
(e.g., highways or no highways), overtime, and drop-off rules. For instance, the user can
analyze the possible effects of allowing a truck to go to the drop-off site at the end of the
day without it being completely full.
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Table 4: Real case results Fost Plus

Case σ CN Truck

days

Shifts Weekly

costs

Truck w θestimatew θsimulationw

1 - 6 0.9 1.1 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

7 - 12 0.8 1.1 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

13 0.75 1.1 6 1P + 5N 6.50 1 7.295 7.295

2 7.125 7.125

14 0.75 1.2 6 1P + 5N 7.00 1 7.295 7.295

2 7.125 7.125

15 - 18 0.75 1.3 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

19 0.7 1.1 6 2P + 4N 6.40 1 7.375 7.375

2 7.045 7.020

20 0.7 1.2 6 2P + 4N 6.80 1 7.375 7.375

2 7.045 7.020

21 - 24 0.7 1.3 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

Average: 7.165 7.164

St.dev.: 0.245 0.246

Table 5: Comparison of the minimal average required number of truck days

Only N shifts Only P shifts

Case LB ME LB ME

σ = 0.9 6.37 7.00 6.40 7.00

σ = 0.8 6.10 7.00 6.40 7.00

σ = 0.75 5.70 6.00 6.40 7.00

σ = 0.70 5.34 6.00 6.40 7.00

Note: LB (Lower Bound) refers to the average number of truck days resulting from the flexible schedule.

ME (Model Enhancement) refers to the average number of truck days resulting from the fixed schedule.
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6. Conclusion and future research

In this paper we successfully showed how our model enhancement approach can be used to
integrate the difficult vehicle routing problem (VRP) with the personnel planning problem
at a company named Fost Plus. Our focus in this paper is on the glass collection process
that is coordinated by this company. The glass collection is not performed by Fost Plus
itself, but is decentralized to different IAs. These IAs collect the glass and charge Fost Plus
with the collection costs. In this paper we analyze and compare two different possibilities
that were proposed by Fost Plus in order to optimize the current collection process that
is based on a fixed weekly workforce schedule.

First, we consider a second shift type (N shifts) on top of the single current shift type (P
shifts). While the P shifts (containing the peak traffic hours) are cheaper than the N shifts
(not containing the peak traffic hours), the driving times during the P shifts are on average
higher than those during the N shifts. This difference creates a trade-off between higher
costs and faster driving times which possibly results in a better workforce schedule with
lower weekly labor costs. While this problem is related to the Periodic Vehicle Routing
Problem (PVRP), our problem features several complicating elements that are absent in
the standard PVRP such as shift scheduling and intermediate facilities. Furthermore, we
assume that the load of each vehicle at the end of a day needs to be equal to the load of that
vehicle at the start of the following day and that the daily fill rate of each compartment of
each container is not constant over time. In order to deal with the increased complexity
caused by these elements, we propose a simplified model as an approximation of the real
model. We use a technique called model enhancement (ME) to ensure the quality and
realism of this approximation by iteratively enhancing the assumptions of the simplified
model based on simulation results. During each iteration, the simplified model is solved
with a tabu search heuristic.

Second, Fost Plus wants to analyze the possible benefits of installing and using sensors in
all glass containers in order to obtain a real-time view of the fill level of each container.
Using this information, collection routes can be constructed on a daily basis in order to
avoid wasting driving time to containers with sufficient capacity left (which is unavoidable
in the case of a fixed weekly schedule). This means, however, that we have to abandon
a fixed schedule and must use a flexible schedule that can be different for each truck on
each day. Following a similar approach as Mes (2012) and Johansson (2006), we propose
a rolling horizon technique where we define Must Go (MUGO) and May Go (MAGO)
containers based on daily sensor information. Containers that should be emptied today in
order to avoid overflow are referred to as MUGOs. MAGO containers are selected based
on their level of urgency. In order to test the rolling horizon procedure, a simulation model
is used.

Both solution approaches are applied to several test cases and to the real-life data from a
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particular IA. In order to evaluate the performance of the ME model, both the feasibility
and the solution quality of the obtained results are analyzed. The feasibility of the obtained
result is an important performance indicator of the ME approach as it shows how good
the simplified model approximates the real model. The results show that each obtained
solution (for all test cases as well as the real-life case) is feasible in both the simplified
and the real model. Hence, the enhanced assumptions of the simplified model are a good
approximation of reality. Analyzing the quality of the objective values (i.e., the total
weekly labor costs) of the obtained ME results is less straightforward.

First, a rather unconventional strategy is employed to prove that the obtained set of so-
lutions satisfies the properties of a set of optimal solutions. As the results indeed meet
all optimality conditions for all test cases, we first explained that the hypothesis of op-
timality of the individual solutions cannot be rejected. That does, however, not prove
the optimality of the individual solutions. Second, we showed that our solution approach
can deliver consistent results and does not seem to arbitrarily perform better or worse for
some problem instances. Hence, while we cannot prove that our solution approach always
results in the optimal solution, we can assume that this is very likely.

Second, the quality of the obtained ME results is evaluated based on a practical lower
bound (LB). This lower bound is calculated based on the obtained results for a flexible
schedule. In the flexible scheduling model, useless trips are eliminated since only the most
urgent containers are visited. Therefore, the obtained simulation results for a flexible
schedule can be seen as a good lower bound for the minimal effort that is required for
glass collection in order to minimize glass overflow (glass placed next to the containers).
As the ME results are equal to the rounded LB results for the tested scenarios, this strongly
suggests that the proposed ME method is capable of finding good (even possibly optimal)
solutions.

Regardless of the optimality of the obtained results for the test cases, the improvement
with respect to the schedule used in reality is at least as important in order to evaluate
the quality of the proposed techniques. We show that even without the inclusion of an
N shift, the ME model results in significant monetary savings (30%). Even more savings
are possible when N shifts are used in combination with P shifts depending on the cost
premium of an N shift. Furthermore, the results presented in this paper also allow Fost
Plus to evaluate the costs and benefits of installing sensors in each container. This analysis
goes, however, beyond the scope of this paper.

Finally, we propose some interesting topics for future research. In this paper we assume to
know the exact fill level of the containers based on historical fill rate data. However, some
stochasticity can be expected in the fill rate. Hence, incorporating a stochastic fill rate
can contribute to the construction of a more realistic and applicable model. Furthermore,
stochasticity can also be introduced in the driving times, collection times, loading and
unloading times, etc. However, while stochasticity is an interesting additional element,
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we rather prefer to emphasize the lack of research related to the combination of personnel
and vehicle shift scheduling in the waste management literature. This lack was already
pointed out by Ernst et al. in 2004 and still exists today according to the literature review
of Ghiani et al. (2014).
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G. Ghiani, D. Laganá, E. Manni, R. Musmanno and D. Vigo. Operations research in solid
waste management: A survey of strategic and tactical issues. Computers & Operations
Research, 44:22–32, 2014.

G. Ghiani, E. Guerriero, A. Manni, E. Manni and A. Potenza. Simultaneous personnel
and vehicle shift scheduling in the waste management sector. Waste Management, 33
(7):1589–1594, 2013.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

B. Golden, A. Assad and R. Dahl. Analysis of a large scale vehicle routing problem with
an inventory component. Large Scale Systems, 7(2):181–190, 1984.

R. Hansmann and U. Zimmermann. Integrated vehicle routing and crew scheduling in
waste management (part i). In C. Barnhart, U. Clausen, U. Lauther and R. H. Mohring,
editors, Models and Algorithms for Optimization in Logistics. Number 09261 in Dagstuhl
Seminar Proceedings, 2009.

P. Jaillet, L. Huang, J. F. Bard and M. Dror. A rolling horizon framework for the inventory
routing problem. Research paper, University of Texas, 1:1–32, 1997.

O. M. Johansson. The effect of dynamic scheduling and routing in a solid waste manage-
ment system. Waste Management, 26(8):875–885, 2006.

B.-I. Kim, S. Kim and S. Sahoo. Waste collection vehicle routing problem with time
windows. Computers & Operations Research, 33(12):3624–3642, 2006.

G. F. List, B. Wood, M. A. Turnquist, L. K. Nozick, D. A. Jones and C. R. Lawton.
Logistics planning under uncertainty for disposition of radioactive wastes. Computers
& Operations Research, 33(3):701–723, 2006.

M. Mes. Using simulation to assess the opportunities of dynamic waste collection. In
S. Bangsow, editor, Use Cases of Discrete Event Simulation, pages 277–307. Springer
Berlin Heidelberg, 2012.

E. Shamshiry, B. Nadi and A. R. Mahmud. Optimization of municipal solid waste man-
agement. In: Proceedings of the 2010 international conference on biology, environment
and chemistry, 1:19–21, 2011.

50



8. Appendix

Figure 11: Graphical User Interface
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