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Abstract

This paper presents a two-stage mixed integer programming approach for op-

timizing the skill mix and training schedule at the aircraft maintenance company

Sabena Technics. Of course, when all workers are trained for all skills, cheaper work-

force schedules are possible. However, the training that is required to acquire all

those skills can become very expensive. In the first stage of our two-staged approach,

we therefore make a trade-off between the training costs and the resulting cheaper

workforce schedule. As we assume that workers are unavailable to work during their

training, the obtained result is only applicable in practice if the required training

can be performed without endangering the current maintenance operations. In the

second stage, we therefore want to find an optimal and feasible training schedule in

order to obtain the desired skill mix with minimal costs. We illustrate our models

with a computational experiment based on real-life data of Sabena Technics.

Keywords: Aircraft maintenance, skills, training, mixed integer programming

1 Introduction

In service industries, labor is often the largest expenditure for a company. An efficient

scheduling of the workforce is therefore very important. This paper presents a two-

stage mixed integer programming approach for optimizing the skill mix and training

schedule at an aircraft maintenance company. In this study, we only focus on the line

maintenance which takes place at the gate or parking ramp between the arrival and

departure of an aircraft. Line maintenance consists of on-call assistance and routine

checks of the engines, the landing gear, etc. Since different aircraft have different features

and can show different problems, only adequately skilled workers should be assigned to

maintain certain flights. In fact, according to aviation legislation, each type of aircraft

requires its own maintenance license. Only workers that acquired the required license

are allowed to maintain that aircraft. Hence, with skills we actually mean licenses in

this case. As we assume that there is no hierarchical structure between the licenses,

we deal with categorical skills (De Bruecker, Van den Bergh, Beliën & Demeulemeester,

2015). In accordance to the categorisation of De Bruecker et al. (2015), we also see that

we consider individual skills instead of group skills as each worker that is assigned to

maintain a certain aircraft must be licensed for that aircraft.

A good personnel schedule should make sure that all flights can be maintained with the

available workers and their respective skills. Schedules based on the current (limited)

skill pool can however be very expensive. Therefore, as a first step, we follow an in-

tegrated approach to build inexpensive personnel schedules and to design the optimal

skill mix at the same time. The second step is to build the lowest cost training schedule

that leads to this optimal skill mix. We illustrate our procedure using real-life data from

Sabena Technics.
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2 Literature review

Personnel scheduling has already been studied many times in the operations research lit-

erature. Several review articles exist that focus on general workforce planning problems

(Alfares, 2004; Burke, De Causmaecker, Vanden Berghe & Van Landeghem, 2004; Ernst,

Jiang, Krishnamoorthy & Sier, 2004; Kohl & Karisch, 2004; Bergh, Beliën, De Bruecker,

Demeulemeester & De Boeck, 2013), but none go into detail regarding skills. To the

best of our knowledge, the problem presented in this paper is unique in the literature

since we integrate shift construction, skill constraints and training. Several solution

approaches have already been proposed in the literature to build personnel schedules

incorporating skills. Many models take into account flexible shifts or training, but none

of them incorporates both.

Scheduling the workforce in shifts is usually much harder than without shifts. On top

of the usual coverage constraints, shift planning adds extra constraints about the start

time and duration of shifts, shift successions, team sizes, etc. Only a limited number of

papers consider shift planning in combination with skills. While most papers consider

shifts that are predefined (with a fixed start and end time, a fixed team size,...), only

a few incorporate decisions about the composition of shifts in their model (Cai & Li,

2000; Aickelin & White, 2004; Bard & Purnomo, 2005a, 2005b; Aickelin & Dowsland,

2004; Bard & Wan, 2008; Aickelin, Burke & Jingpeng, 2009; Detienne, Péridy, Pinson &

Rivreau, 2009; Avramidis, Chan, Gendreau, L’Ecuyer & Pisacane, 2010; Brunner, Bard

& Kolisch, 2011; Brunner & Edenharter, 2011). To incorporate shifts in a workforce

planning problem, the set covering formulation developed by Dantzig (1954) is most

often used (Bard, Binici & deSilva, 2003). The number of possible shift patterns will

increase dramatically in real-life problems when (lunch) breaks, flexible start times, etc.

are considered (Bergh et al., 2013). Therefore, when solving optimization problems

that include shifts, researchers often tend to use heuristics instead of exact solution

techniques.

Incorporating skills and shifts into a personnel scheduling problem often involves assign-

ing workers with appropriate skills to different shifts. Therefore, one must start from

the current pool of workers and their current skills. Aickelin and Dowsland (2004) and

Aickelin and White (2004), for example, assign nurses from the current pool of workers

to shifts using a genetic algorithm. Also Cai and Li (2000) use a genetic algorithm to

solve a personnel scheduling problem at a transportation company. Aickelin et al. (2009)

use an evolutionary squeaky wheel optimization approach to solve the nurse scheduling

problem. As in our case, Brucker, Burke, Curtois, Qu and Vanden Berghe (2010) con-

sider a personnel scheduling problem with cyclic schedules. While we want to construct

shifts and assign workers at the same time, Brucker et al. (2010) propose to use a two

phased approach. They use a greedy algorithm to solve the optimization model.

Besides some popular meta-heuristics, linear programming also remains attractive to
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solve complex workforce scheduling problems. Bard and Purnomo (2005a, 2005b) tackle

the same kind of problem as Aickelin et al. (2009), Aickelin and Dowsland (2004) and

Aickelin and White (2004) and use column generation to solve the optimization model.

Brunner et al. (2011) and Brunner and Edenharter (2011) also use column generation

to solve the staff scheduling problem of physicians. Bard and Wan (2008) even use pure

integer linear programming to assign workers to machines and shifts.

To the best of our knowledge, studies that incorporate training and shift construction

do not exist in the personnel scheduling literature. Training is a straightforward way

to enhance the skills of a person in order to increase his performance (quality, speed

of work and efficiency) or to allow the worker to perform a different task. The latter

is referred to as cross-training. A trade-off must be made between the training cost

(loss of available working time and/or monetary costs) and the possible benefits (the

increased flexibility or performance). While learning happens automatically, training

must be planned. Hence, decisions must be made by the workforce planning model to

determine who should receive training and when this should take place.

In the work of Li and Li (2000), Huang, Lee, Song and Eck (2009), Song and Huang

(2008), Marentette, Johnson and Mills (2009) and Fowler, Wirojanagud and Gel (2008),

the planning decision for cross-training the workforce is incorporated in the model. The

model decides on how many employees should be trained to acquire certain skills. Li

and Li (2000), Song and Huang (2008) and Fowler et al. (2008) make these decisions on

a weekly or monthly basis. Huang et al. (2009) and Marentette et al. (2009) only make

the training decision on a yearly basis and therefore fail to provide the exact timing of

the training. Tiwari, Patterson and Mabert (2009) and Zülch, Rottinger and Vollstedt

(2004) neglect the training decision during the workforce planning optimization problem

and analyze the bottleneck skills only afterwards. In a second phase, they provide an

advice to the management about what skills should be trained. The personnel scheduling

literature regarding skills apparently also lacks studies that include the precise timing

of training.

To the best of our knowledge, the reduced availability or even total absence of the

worker during his training period has never been incorporated in a mathematical model

with skills. Training can take place on the job or externally. Training on the job is

preferred in most cases because of the direct link with the company and the lower costs.

However, according to Boulay and Medway (1999), training on the job is very difficult

these days. For some tasks for example, it is prohibited by law to involve people without

the necessary skills or qualifications. Therefore, G. Beddoe, Petrovic and Li (2009) and

G. R. Beddoe and Petrovic (2006) talk about eye-training instead of on the job training.

Because of high work pressure, it might also be impossible to involve people that slow

down the work process.
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3 Problem definition

Aviation industries are often characterized by a highly seasonal demand. Hence, the

demand for aircraft maintenance also follows a seasonal pattern. Typically, aircraft

maintenance companies have to build new workforce schedules twice a year, i.e., before

the start of the winter as well as the summer season. A special feature of the aircraft

maintenance business is the fact that every week the same set of flights must be main-

tained. These flight schedules are known months in advance of the start of a new season

and contain information such as the STA (Scheduled Time of Arrival), the STD (Sched-

uled Time of Departure) and the workload. In this paper we also assume that the flight

schedule specifies the required skill for each flight. An example of such a weekly flight

schedule with skill requirements is shown in Table 1.

Table 1: Example of a weekly flight schedule

Flight Company STA STD Workload (man-hours) Skill

1 AA Monday 22:05 Tuesday 07:45 4.00 A

... ... ... ... ...

56 BA Thursday 07:30 Thursday 11:40 6.00 A

... ... ... ... ...

100 SN33 Saturday 05:30 Saturday 10:45 4.25 B

Once the demand for maintenance is known for the next season, the construction of

an optimal workforce schedule for the next season can start. Figure 1 visualizes this

process. For a detailed description of the problem details and the specifics about the

cycles, shifts and teams in the workforce configuration, we refer to the paper of Beliën,

Demeulemeester, De Bruecker, Van den Bergh and Cardoen (2013).

In the example shown in Figure 1, the company is currently operating based on the

winter flight schedules and the winter workforce schedule. When the summer flight

schedules become known, the company has to construct the summer workforce sched-

ule. We distinguish between two important tasks in constructing an optimal summer

workforce schedule.

The first task is to build an efficient schedule to make sure that all flights can be

maintained with the available workers and their respective skills. We therefore have

to make two major decisions. First, we have to decide on the scheduling of the shifts,

and second, we have to assign the available workers to these shifts to make sure that

all flights can be maintained in time with the available skills. These two decisions are

integrated in the optimization model to build optimal workforce schedules.
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The second task is to find the optimal skill mix. When the number of skills per worker

is relatively small, too many workers would be needed to construct a feasible workforce

configuration leading to very high costs. Using the current available workers and their

current skills to construct the summer workforce schedule therefore only leads to a

suboptimal result. Cheaper schedules can be obtained by training some of the workers.

These higher skilled workers can then do some of the work for which they were not

certified earlier. This can decrease the required number of staff and hence decrease

costs. The workers that are not needed anymore to do the line maintenance can then

be used somewhere else in the company such as in the heavy maintenance.

Because training can be very expensive, a trade-off must be made between cheaper

rosters that require higher skilled workers and the training costs to obtain this higher

skilled workforce. Therefore, these two tasks are incorporated in the same optimization

model to build optimal workforce schedules. This model is presented in Section 4.1 and

is referred to as the workforce scheduling model.

Figure 1: Overview of the seasons

While the workforce scheduling model results in a decision about the optimal skill mix

and the skills that must be trained, it does not specify when this training should take

place. To build the lowest cost training schedule that results in the optimal skill mix,

another optimization model is constructed in Section 4.3. This model takes into account

that workers are unavailable to work during their training. The goal of this model is to

schedule the training during the training horizon (see Figure 1). Based on the current

winter workforce schedule, this model decides who will be trained on each day in each

week for each skill.

4 Methodology

4.1 Workforce scheduling model

The workforce scheduling model presented in this paper is based on the MILP formu-

lation from Beliën et al. (2013). However, as we now incorporate skills, the model
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formulation is quite different. In this section we therefore present the complete mathe-

matical formulation of the workforce scheduling optimization model with skills. We first

list the sets, along with their associated indices:

d ∈ {1, ..., 7} : days in the week

p ∈ P : time periods in one week

f ∈ F : flights to be serviced

p ∈ Pf : time periods during which flight f can be serviced

s ∈ S : skill types

c ∈ C : cycles in the workforce configuration

ω ∈ Ω : available workers

η ∈ {1, 2, ...,Mc} : workers in a team in cycle c, with Mc the team size in cycle c

i ∈ I : feasible shifts

t ∈ T : shift types {M,D,E,N}
i ∈ It : feasible shifts of shift type t

The coefficients and right hand side constants are presented below:

Lfs : the workload (in man-hours) of flight f of skill type s

Aidp : = 1 if period p is included in shift i on day d, = 0 otherwise

Bidp : the fraction of workers available to work in shift i on period p on day

d

Hi : the duration of shift i (in hours)

αωs : = 1 if worker ω has skill s, = 0 otherwise

Ktraining
s > 0 : the training cost (for one worker) to acquire skill type s

Kid > 0 : the total cost (for one worker) of shift i on day d

W l : the minimum number of weeks (= teams) in a cycle

W u : the maximum number of weeks (= teams) in a cycle

W planning : the number of weeks in the planning horizon

H l : the minimum average number of working hours per week

Hu : the maximum average number of working hours per week

R : the maximum fraction of working weekends; i.e., weekends during

which at least one shift is scheduled. R = (number of working week-

ends)/(number of weeks in the cycle)

Θmax
ω : the maximum training (in skills) worker ω can receive

M : Big M, a large positive number

Mc: the team size in cycle c

6



The decision variables are:

aωcη ≥ 0 : > 0 if worker ω is assigned as the η-th worker of the team in

cycle c, = 0 otherwise

a′ωcηs ∈ {0, 1} : = 1 if worker ω with skill s is assigned as the η-th worker of

the team in cycle c, = 0 otherwise

qsηcp ≥ 0 : the capacity of skill type s made available by worker η in cycle

c on time period p

xidc ≥ 0 : the number of shifts i that is scheduled during day d in cycle

c

gfps ≥ 0 : capacity of skill type s assigned to maintain flight f during

time period p

zskillηcs ∈ {0, 1} : = 1 if worker η in cycle c requires skill s, = 0 otherwise

zic ∈ {0, 1} : = 1 if shift i is used in cycle c, = 0 otherwise

τωs ∈ {0, 1} : = 1 if worker ω is trained to acquire skill s, = 0 otherwise

nc ∈ {W l, ...,W u} : the number of weeks (= teams) in cycle c

e+tdc ∈ {0, 1, ...,W
u} : the number of extra weeks needed in cycle c for day d caused

by shifts of type t (with t ∈ {E,N}) on the preceding day

e−Ndc ∈ {0, 1, ...,W
u} : the number of extra weeks needed in cycle c for day d caused

by E shifts that can be compensated by an excess in N shifts

on the preceding day

The workforce scheduling optimization model can be formulated as follows:

Minimize
∑
c∈C

∑
i∈I

7∑
d=1

Kid ·Mc · xidc ·W planning +
∑
ω∈Ω

∑
s∈S

Ktraining
s · τωs (1)

Subject to:

∑
s∈S

qsηcp ≤
∑
i∈I

7∑
d=1

Bidpxidc, ∀c ∈ C, ∀η ∈ {1, 2, ...,Mc},∀p ∈ P (2)∑
f∈F

gfps ≤
∑
c∈C

∑
η∈{1,2,...,Mc}

qsηcp, ∀p ∈ P,∀s ∈ S (3)

∑
p∈Pf

gfps = Lfs ∗
|P |

24 ∗ 7
, ∀f ∈ F,∀s ∈ S (4)

qsηcp ≤M · zskillηcs , ∀c ∈ C,∀η ∈ {1, 2, ...,Mc},∀s ∈ S,

∀p ∈ P (5)

zskillηcs ≤
∑
ω∈Ω

a′ωcηs − (nc − 1)

+Wu ·
(
1− zskillηcs

)
, ∀c ∈ C, ∀η ∈ {1, 2, ...,Mc},∀s ∈ S (6)
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a′ωcηs ≤ aωcη, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc},∀s ∈ S,

∀ω ∈ Ω (7)∑
c∈C

∑
η∈{1,2,...,Mc}

aωcη ≤ 1, ∀ω ∈ Ω (8)

∑
c∈C

∑
η∈{1,2,...,Mc}

a′ωcηs ≤ αωs + τωs, ∀ω ∈ Ω,∀s ∈ S (9)

∑
s∈S

τωs ≤ Θmax
ω , ∀ω ∈ Ω (10)∑

ω∈Ω

aωcη = nc, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc} (11)

nc ≥ d1/Re ·
∑
i∈I

xi6c, ∀c ∈ C

(12)

nc ≥ d1/Re ·

(∑
i∈I

xi7c + e+
N7c + e+

E7c

)
, ∀c ∈ C

(13)∑
i∈I

7∑
d=1

Hixidc ≥ H l · nc, ∀c ∈ C

(14)∑
i∈I

7∑
d=1

Hixidc ≤ Hu · nc, ∀c ∈ C

(15)

xidc ≤Wu · zic, ∀i ∈ I, ∀d = 1, ..., 7,∀c ∈ C (16)∑
i∈It

zic ≤ 1, ∀t ∈ T, ∀c ∈ C (17)

∑
i∈I

7∑
d=1

∑
c∈C

Aidpxidc ≥ 1, ∀p ∈ P (18)

nc ≥
∑
i∈I

xidc + e+
Ndc + e+

Edc, ∀d ∈ {1, ..., 7},∀c ∈ C (19)

e+
N(d+1)c ≥

∑
i∈IN

xidc −
∑
i∈IN

xi(d+1)c, ∀d ∈ {1, ..., 6},∀c ∈ C (20)

e+
E(d+1)c ≥

∑
i∈IE

xidc −
∑
i∈IE

xi(d+1)c − e−N(d+1)c, ∀d ∈ {1, ..., 6},∀c ∈ C (21)

e−N(d+1)c ≤
∑
i∈IN

xi(d+1)c −
∑
i∈IN

xidc + e+
N(d+1)c, ∀d ∈ {1, ..., 6},∀c ∈ C (22)

e+
N1c ≥

∑
i∈IN

xi7c −
∑
i∈IN

xi1c, ∀c ∈ C (23)

e+
E1c ≥

∑
i∈IE

xi7c −
∑
i∈IE

xi1c − e−N1c, ∀c ∈ C (24)

e−N1c ≤
∑
i∈IN

xi1c −
∑
i∈IN

xi7c + e+
N1c, ∀c ∈ C (25)
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xidc ∈ {0, 1, ...,Wu}, ∀i ∈ I, ∀d ∈ {1, ..., 7},∀c ∈ C (26)

gfps ≥ 0, ∀f ∈ F,∀p ∈ P,∀s ∈ S (27)

zic ∈ {0, 1}, ∀i ∈ I, ∀c ∈ C (28)

nc ∈ {W l,W l + 1, ...,Wu}, ∀c ∈ C (29)

qsηcp ≥ 0, ∀c ∈ C,∀s ∈ S,∀η ∈ {1, 2, ...,Mc},∀p ∈ P (30)

e+
tdc ∈ {0, 1, ...,W

u}, ∀t ∈ {E,N},∀d ∈ {1, ..., 7},∀c ∈ C (31)

e−Ndc ∈ {0, 1, ...,W
u}, ∀d ∈ {1, ..., 7},∀c ∈ C (32)

aωcη ≥ 0, ∀ω ∈ Ω,∀c ∈ C, ∀η ∈ {1, 2, ...,Mc} (33)

a′ωcηs ∈ {0, 1}, ∀ω ∈ Ω,∀c ∈ C,∀η ∈ {1, 2, ...,Mc},∀s ∈ S (34)

zskillηcs ∈ {0, 1}, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc},∀s ∈ S (35)

τωs ≥ 0, ∀ω ∈ Ω,∀s ∈ S (36)

The model presented above is an extension of the MILP model presented by Beliën et

al. (2013) as it incorporates skills and training. Constraints (2) to (11) can be seen

as the extension, while constraints (12) to (25) can be found in the original model.

The extension presented above takes into account the skills of the available workers

and the skill restrictions for the maintenance jobs. The extended model allows to do

two different things. First, it can be used to build personnel schedules based on the

available skill pool. Second, the model allows to investigate the possible benefits of

training. Therefore, when we assume a sufficient number of workers with all possible

skills, the extended model will result in the same solutions as those found by the original

model of Beliën et al. (2013).

Note that the extended model presented above features the same technique as the orig-

inal model to avoid the non-linearity caused by the team size decision. As the team size

is incorporated into the model as a parameter (Mc) instead of a decision variable, the

same enumeration technique with bounding can be used to solve the model as in the

paper of Beliën et al. (2013). Moreover, we also follow the same technique as Beliën

et al. (2013) to reduce the computation time by replacing the binary variable xidwc by

the integer variable xidc. Thus, instead of assigning each shift to a particular day in a

particular week, we now limit our decision to the number of shifts on a particular day.

Because of this simplification, we omit the index for the week (team) in our model and

assume that each team in a cycle consists of the same number and type of workers.

The assignment of shifts to weeks (teams) can be done afterwards. It should be clear

that it is therefore not possible in the model presented above to distinguish between the

workers of different teams in a cycle. With the index η ∈ {1, 2, ...,Mc}, we can only

make a distinction between the workers in the same team. All other teams in the cycle

are duplicates of this team. Hence, the variable qsηcp must be seen as the sum of the

capacity over all teams in cycle c of skill type s made available by worker η on time
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period p with η ∈ {1, 2, ...,Mc}. With this in mind, we can now explain the model.

The objective function (1) minimizes the total labor costs over the entire planning

horizon plus the total training costs. As we assume a planning horizon of one season

with 24 weeks, the weekly labor costs are multiplied by 24 (W planning = 24). A trade-

off is made between cheaper rosters that require higher skilled workers and the training

costs to obtain this higher skilled workforce.

Constraint (2) distributes the capacity made available by the shifts over the different

workers and their skills. Hence, it determines the capacity of skill type s made available

by worker η in cycle c on time period p. Summing over s makes sure that the capacity

over all skills is not larger than what is available. Constraint (3) ensures that the

assigned capacity to maintain the flights is less than the available capacity. Constraint

(4) then checks that there is sufficient capacity of the required skill assigned to a flight

in order to be maintained in time. In Constraint (4), |P |
24∗7 is a conversion factor such

that the units of the RHS match the units of the LHS.

While constraints (2) to (4) determine the shifts, the required capacity and the skills,

constraints (5) to (11) make sure that this can be achieved with the current available

workforce and skills. According to constraint (5), zskillηcs will flip to 1 when worker η in

cycle c requires skill s. Constraints (6) and (11) make sure that the assigned workers

to cycle c have all the skills that are required according to constraint (5). Recall that

we assumed that all teams in a cycle consist of the same workers and skills. Therefore,

when skill s is required for worker η in cycle c, there should be exactly nc workers with

skill s assigned to cycle c as the η-th worker of a team. Take for example the situation

where skill A is required for worker η in cycle c. Since the LHS of constraint (6) is 1 for

skill A, the RHS should also be at least 1. Also assume that there are 6 teams in cycle

c. This means that we also need 6 workers in cycle c to work as the η-th worker of a

team in order to satisfy constraints (6) and (11).

Constraints (7) and (8) make sure that a worker (ω) can only be assigned once as a

team member. Therefore, we introduced the variable aωcη. This variable is introduced

to check if the worker is assigned as the η-th worker of the team in cycle c. While it

is defined as a continuous variable (for efficiency reasons), it can only be zero or one

because of constraints (8) and (11).

To know whether or not we need to train a certain worker, constraint (9) is used to

determine the value of τωs. Constraint (10) then limits the amount of training a worker

can receive. Recall that workers that are not needed this season in the line maintenance

are assigned to the heavy maintenance division of the company. This makes that many

of the heavy maintenance workers are actually also qualified for the line maintenance.

Therefore, when constructing the line maintenance workforce for the next season, the

company cannot only choose from the workers that are currently active in the line
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maintenance, but it can also consider to use some qualified workers that are currently

active in the heavy maintenance division. However, as there is less idle capacity in the

heavy maintenance division as compared to the line maintenance, we assume that only

the workers that are currently working in the line maintenance can receive training.

Therefore, Θmax
ω will be 0 for all workers currently not working in the line maintenance.

For a thorough discussion of constraints (12) to (25) we refer to the paper of Beliën et

al. (2013), as they concern the same set of constraints as in the original model.

The model presented above first results in the assignment of the available workers to

cycles and arbitrary teams. In a second step, we should decide on an optimal training

scheme for each worker. Since we assumed that all teams are equal in one cycle, the

skill requirements (and training requirements) for all teams are also equal. When skill

A is required in one team, it is required in each teams of that cycle. This assumption

can result in a suboptimal situation. Take the following example where there are two

time periods during one week and four flights that require maintenance. Flight 1, 2 and

3 arrive and leave during the first time period. Flight 4 arrives and leaves during the

second time period. Flight 1 requires one period of work of skill A, flight 2 requires one

period of work of skill B, flight 3 requires two periods of work of skill C and flight 4

requires one period of work of skill C. Assume that the duration of a shift must be one

time period and that we can have no more than two teams. Assuming that all skills

have the same cost (1 Euro for one period), an optimal schedule is to schedule two shifts

during the first time period and one shift during the second. This optimal solution has

two unequal teams (i.e., with a different skill mix) of two workers and a total labor cost

of 6 Euro. This solution requires that we assign one worker with skill A and one worker

with skill C to the first team and one worker with skill B and one worker with skill C

to the second team. There is no cheaper option that involves equal teams (i.e., with the

same skill mix). Even if we only schedule one team with one worker with skill A, one

worker with skill B and two workers with skill C during the two time periods, the total

costs are 8 Euro.

From the previous example, we conclude that the assumption of equal teams (i.e., with

the same skill mix) can lead to suboptimal solutions. Therefore, we need to refine

the solution found by the workforce scheduling model before constructing the training

schedule. This is the task of the intermediate model in Section 4.2. This is shown in

Figure 2, which presents an overview of the three models that constitute the solution

approach. Recall that the assumption of equal teams is the result of omitting the

assignment of shifts to weeks because of efficiency issues (see the research of Beliën et al.

(2013)). So the first step after solving the workforce scheduling model is to reconstruct

a solution with weeks and, hence, with teams. Based on the value of aωcη, each worker

ω is assigned to the η-th worker of an arbitrary team n. This way, the resulting value

of the decision variable aωcη from the workforce scheduling model is transformed into

input parameter Xηncs from the intermediate model based on the value of αωs. Xηncs
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has value 1 if worker η in team n in cycle c has skill s, and has value 0 otherwise.

Figure 2: Overview of the models that constitute the solution approach
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4.2 Optimize training requirements: Intermediate optimization model

As the skill requirements are not necessarily equal for all teams in an optimal solution,

we use a second, intermediate mixed integer programming model to reduce the training

requirements resulting from the workforce scheduling model. The most important dif-

ference with the workforce scheduling model is that the intermediate model does feature

the week (team) decision which is absent in the workforce scheduling model. The use

of a week (team) index in this model does not cause the same efficiency problems as in

the workforce scheduling model because the most difficult decision, the shift scheduling

decision, is already made. Hence, we will see that the decision variable xidc from the

workforce scheduling model is absent in the intermediate model. In Section 4.1 we al-

ready explained how the decision variable aωcη from the previous model is transformed

into input parameter Xηncs for this model with the help of the satisfaction Tabu Search.

Moreover, based on the output of the satisfaction Tabu Search, the decision variable xidc

from the previous model is transformed into input parameter Qncp for this model. This

can also be observed in Figure 2. Furthermore, the decision variable nc from the previ-

ous model is now used as the input parameter |Nc|, which equals |Wc|. Of course, the

team size Mc is also fixed at this time because it was optimized during the enumeration

technique for solving the workforce scheduling model.

As the shift decision is already made during the workforce scheduling model, whereby

the decision variable xidc is transformed into input parameter Qncp for this model, we

know how much capacity there is available in each week, in each cycle, on each period.

In the intermediate model presented below, we neglect the skill and training decisions

that have been made during the workforce scheduling model as we will now reinvestigate
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the skill and training requirements. The idea is that we can now make better decisions

about the skill and training requirements because we can now make decisions for each

team separately. As we can now make decisions for each team separately, this eliminates

the need for equal skill requirements for each team in the cycle.

In the remainder of this section, we define the intermediate model. We first list the sets,

along with their associated indices:

d ∈ {1, ..., 7} : days in the week

p ∈ P : time periods in one week

f, f ′ ∈ F : flights to be serviced

f ′ ∈ δ(f) : set of all flights that overlap at least during one period with

flight f , with f ∈ δ(f)

p ∈ Pf : time periods during which flight f can be serviced

s ∈ S : skill types

c ∈ C : cycles in the workforce configuration

n ∈ Nc : teams in cycle c, with |Nc| = |Wc| = the number of teams

(=weeks) in cycle c

w ∈Wc : weeks in cycle c, with |Wc| = |Nc| = the number of weeks

(=teams) in cycle c

η ∈ {1, 2, ...,Mc} : workers in a team in cycle c, with Mc the team size in cycle c

The coefficients and right hand side constants are presented below:

Xηncs ∈ {0, 1}: = 1 if worker η in team n in cycle c has skill s, = 0 otherwise

W lcm ≥ 0 : least common multiplier of |Wc| for all c ∈ C
Lfs : workload (in time periods p) of flight f of skill type s

Qncp ≥ 0 : capacity made available by team n in cycle c on time period p

Ktraining
s > 0 : training cost for skill type s per worker

Θmax
ηnc : maximum training (in skills) that worker η in team n in cycle c can

receive

Mc: the team size in cycle c
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The decision variables are:

qsηncpw ≥ 0 : capacity of skill type s made available by worker η in team n in cycle

c on time period p in week w

τηncs ∈ {0, 1} : = 1 if worker η in team n in cycle c must be trained for skill s, = 0

otherwise

gfpsw ≥ 0 : capacity of skill type s assigned to maintain flight f during time

period p in week w

mfs ≥ 0 : minimum capacity (over all weeks w = 0, ...,W lcm − 1) of skill type

s that is available between the STA and STD of flight f

The intermediate optimization model can be formulated as follows:

Minimize
∑
c∈C

∑
s∈S

∑
n∈Nc

∑
η∈{1,2,...,Mc}

τηncs ·Ktraining
s (37)

Subject to:

qsηncpw ≤
Xηncs + τηncs

Mc
·Q((n+w)mod(|Wc|))cp, ∀c ∈ C,∀s ∈ S,

∀p ∈ P,∀w ∈Wc,

∀n ∈ Nc,∀η ∈ {1, 2, ...,Mc} (38)∑
s∈S

qsηncpw ≤
Q((n+w)mod(|Wc|))cp

Mc
, ∀c ∈ C,∀p ∈ P,∀w ∈Wc,

∀n ∈ Nc,∀η ∈ {1, 2, ...,Mc} (39)∑
s∈S

τηncs ≤ Θmax
ηnc , ∀c ∈ C, ∀n ∈ Nc,

∀η ∈ {1, 2, ...,Mc} (40)

τηncs +Xηncs ≤ 1, ∀c ∈ C, ∀n ∈ Nc,

∀η ∈ {1, 2, ...,Mc},∀s ∈ S (41)∑
f∈F

gfpsw ≤
∑
c∈C

∑
n∈Nc

∑
η∈{1,...,Mc}

qsηncpw, ∀p ∈ P,∀s ∈ S,w = 0 (42)

∑
p∈Pf

gfpsw = Lfs ∗
|P |

24 ∗ 7
, ∀f ∈ F,∀s ∈ S,w = 0 (43)

∑
f ′∈δ(f)

∑
p∈[Pf∩Pf′ ]

gf ′psw ≤ mfs, ∀f ∈ F,∀s ∈ S,w = 0 (44)

mfs ≤
∑
p∈Pf

∑
c∈C

∑
η∈{1,...,Mc}

∑
n∈Nc

qsηncp((w)mod(|Wc|)), ∀f ∈ F,∀s ∈ S,

∀w ∈ {0, 1, ...,W lcm − 1} (45)
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qsηncpw ≥ 0, ∀c ∈ C,∀s ∈ S,∀p ∈ P,∀w ∈Wc,∀n ∈ Nc,∀η ∈ {1, 2, ...,Mc} (46)

τηncs ∈ {0, 1}, ∀c ∈ C,∀s ∈ S, ∀n ∈ Nc,∀η ∈ {1, 2, ...,Mc} (47)

gfpsw ≥ 0, ∀f ∈ F,∀p ∈ P,∀s ∈ S,w = 0 (48)

mfs ≥ 0, ∀f ∈ F,∀s ∈ S (49)

Since the workforce scheduling model assumed that all teams are equal in one cycle, the

training requirements are also equal for all teams in the cycle. It is however not always

necessary to train all teams for the same skill. The intermediate model therefore looks

to each worker in each team individually and only assigns the necessary training to a

worker. With the objective function (37), the model tries to find the minimal training

costs in order to execute the rosters found by the workforce scheduling model.

Constraint (38) distributes the available capacity on each time period in each week over

the different workers and their skills. Hence, it determines the capacity of skill type

s made available by worker η in team n in cycle c on time period p in week w. The

capacity made available by team n in cycle c on time period p is therefore multiplied

by the sum of the parameter Xηncs and the decision variable τηncs. When worker η in

team n in cycle c has skill s, or when this worker is trained for skill s, this sum equals 1.

Because the capacity is also distributed over the different skills, constraint (39) makes

sure that the capacity over all skills is not larger than what is available. Recall that Qncp

is a combination of the results of the workforce scheduling model and the reconstructed

weekly schedule.

Constraint (40) then makes sure that a worker cannot be trained for more than Θmax
ηnc

skills and constraint (41) ensures that a worker can only be trained for skill s when he

lacks this skill.

Constraints (42) and (43) are similar to constraints (3) and (4) and make sure that all

flights can be maintained in time with the available skills and workers. Since all teams

in a cycle can be different in this model, the capacity that is available of a certain skill

type on a certain time period can be different for each week. Therefore, the coverage

constraints (42) and (43) should be satisfied for all weeks w ∈ {0, 1, ...,W lcm − 1}.
Since every cycle can have a different number of teams (weeks), the total available

capacity (over all cycles) follows a cyclic pattern that is repeated after W lcm weeks. To

avoid the large number of constraints and variables to check the coverage for all weeks

w ∈ {0, 1, ...,W lcm− 1}, constraints (44) and (45) are used. Constraint (44) makes sure

that the assigned capacity to maintain flights is not larger than the minimum capacity

over all weeks that is available to maintain each flight. Constraint (45) calculates this

minimum.

Suppose that a flight arrives at the beginning of time period 1 and leaves at the end of
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time period 3. Also assume that in the first week, one team with one worker with skill

A is scheduled to work a shift during the first period and one team with one worker

with skill B is scheduled during the next two time periods. Next week, the first team

will work the shift of the second team and the second team will work the shift of the

first team. During the first week, the available capacity to maintain the flight is only

one time period of skill type A and two time periods of skill type B. During the second

week, there is only one time period of skill type B and two time periods of skill type

A. This means that the minimum available capacity over all weeks of each skill type is

only one time period. Hence, in a workforce schedule that is feasible for each week, the

assigned work of each skill type should be no more than one time period. Note that

constraint (44) checks the coverage constraint for all f time intervals, while constraint

(42) checks the coverage for all p time periods. Using time intervals instead of time

periods is necessary because we want to compare the assigned work gfpsw during a flight

interval with the minimum capacity mfs that is available in this flight interval.

The model presented above results in a certain number of training goals equal to the

number of workers that are required to maintain all flights in time for the next season.

A training goal is defined as a collection of skills. Assume we would need two workers

with four skills and that both workers already have skills A, B and C. Suppose that,

according to the model, worker 1 should acquire skill D and worker 2 should acquire

skill E. This results in two training goals where the first goal consists of skills A, B, C,

and D, and the second goal of skills A, B, C, and E.

The next and final model uses these training goals as its input and determines the

training schedule in order to obtain these goals. We refer to this model as the training

model.

4.3 Finding the best training schedule: The training model

While the first two models (the workforce scheduling model and the intermediate model)

are concerned with constructing and optimizing the workforce schedule of the next sea-

son, the training model is only concerned with constructing a feasible training schedule

during the current season (see Figure 2). Hence, this model assumes a fixed workforce

schedule which defines the capacity of each skill, for each worker, in each team, in each

cycle, on each time period. This information is contained in the input parameters Qncp

and Xηncs. Of course, the number of weeks and teams in each cycle (|Wc| = |Nc|) and

the team size in each cycle (Mc) is also known in advance.

Furthermore, the training model assumes a set of training goals (Γ). The number of

training goals contained in the set Γ equals the number of workers that are required

to maintain all flights in time during the next season. This set is composed based on

the result of the intermediate model (see Section 4.2). The goal of the training model
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is to find a training schedule that satisfies three different criteria. First, the training

schedule should not interfere with the current operations. Hence, all flights should still

be maintained in time. Second, all training goals in set Γ should be satisfied at the end

of the current season. Third, the right worker should be trained for the right skills such

that the training costs are minimized.

In the remainder of this section, we define the training model. We first list the sets,

along with their associated indices:

d ∈ {1, ..., 7} : days in the week

d ∈ Dtraining : training days

p ∈ P : time periods in one week

f, f ′ ∈ F : flights to be serviced

f ′ ∈ δ(f) : set of all flights that overlap at least during one period with flight

f , with f ∈ δ(f)

p ∈ Pf : time periods during which flight f can be serviced

s ∈ S : skill types

c ∈ C : cycles in the workforce configuration

n ∈ Nc : teams in cycle c, with |Nc| = |Wc| = the number of teams

(=weeks) in cycle c

w ∈Wc : weeks in cycle c, with |Wc| = |Nc| = the number of weeks

(=teams) in cycle c

w ∈W training : weeks in the training horizon

η ∈ {1, 2, ...,Mc} : workers in a team in cycle c, with Mc the team size in cycle c

γ ∈ Γ : training goals

The coefficients and right hand side constants are presented below:

Lfs : workload (in time periods p) of flight f of skill type s

αdp ∈ {0, 1} : = 1 if training is possible on period p on day d, = 0 otherwise

λγηnc ∈ {0, 1} : = 1 if worker η in team n in cycle c already has all the skills needed

for goal γ, = 0 otherwise

Qncp ≥ 0 : the capacity made available by team n in cycle c on time period p

Ktraining
γηnc > 0 : training cost to train worker η in team n in cycle c for goal γ

Xηncs ∈ {0, 1}: = 1 if worker η in team n in cycle c has skill s, = 0 otherwise

Dγηnc ≥ 0 : duration (in days) to train worker η in team n in cycle c to reach

goal γ

∆γ ≥ 0 : number of workers that should reach goal γ

Mc: the team size in cycle c
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The decision variables are:

τγηncdw ∈ {0, 1} : = 1 if worker η in team n in cycle c is trained for goal γ on day d

in week w, = 0 otherwise

qsηncpw ≥ 0 : capacity of skill type s made available by worker η in team n in

cycle c on time period p in week w

gfpsw ≥ 0 : capacity of skill type s assigned to maintain flight f during time

period p in week w

mfs ≥ 0 : minimum capacity (over all weeks w ∈ W training in the training

horizon) of skill type s that is available between the STA and STD

of flight f

zchoiceγηnc ∈ {0, 1} : = 1 if goal γ is chosen for worker η in team n in cycle c, = 0

otherwise

The training model can be formulated as follows:

Minimize
∑
c∈C

∑
γ∈Γ

∑
n∈Nc

∑
η∈{1,2,...,Mc}

zchoiceγηnc ·Ktraining
γηnc (50)

Subject to:

qsηncpw ≤
Xηncs

Mc
·Q((n+w)mod(|Wc|))cp

·

1−
∑

d∈Dtraining

∑
γ∈Γ

[τγηncdw · αdp]

, ∀c ∈ C, ∀s ∈ S, ∀p ∈ P,

∀w ∈W training,∀n ∈ Nc,

∀η ∈ {1, 2, ...,Mc} (51)∑
s∈S

qsηncpw ≤
Q((n+w)mod(|Wc|))cp

Mc
, ∀c ∈ C,∀p ∈ P,∀n ∈ Nc,

∀w ∈W training,

∀η ∈ {1, 2, ...,Mc} (52)∑
f∈F

gfpsw ≤
∑
c∈C

∑
n∈Nc

∑
η∈{1,2,...,Mc}

qsηncpw, ∀p ∈ P,∀s ∈ S,w = 0 (53)

∑
p∈Pf

gfpsw = Lfs ∗
|P |

24 ∗ 7
, ∀f ∈ F,∀s ∈ S,w = 0 (54)

∑
f ′∈δ(f)

∑
p∈[Pf∩Pf′ ]

gf ′psw ≤ mfs, ∀f ∈ F,∀s ∈ S,w = 0 (55)

mfs ≤
∑
p∈Pf

∑
c∈C

∑
η∈{1,2,...,Mc}

∑
n∈Nc

qsηncpw, ∀f ∈ F,∀s ∈ S,

∀w ∈W training (56)
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∑
d∈Dtraining

∑
w∈W training

τγηncdw = Dγηnc · zchoiceγηnc · (1− λγηnc) , ∀c ∈ C,

∀γ ∈ Γ,

∀η ∈ {1, 2, ...,Mc},

∀n ∈ Nc (57)

∑
γ∈Γ

zchoiceγηnc ≤ 1, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc (58)

∑
c∈C

∑
n∈Nc

∑
η∈{1,2,...,Mc}

zchoiceγηnc = ∆γ , ∀γ ∈ Γ (59)

τγηncdw ∈ {0, 1}, ∀c ∈ C, ∀γ ∈ Γ,∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc,∀d ∈ {1, ..., 7},

∀w ∈W training (60)

qsηncpw ≥ 0, ∀c ∈ C,∀s ∈ S,∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc,∀p ∈ P,

∀w ∈W training (61)

gfpsw ≥ 0, ∀f ∈ F,∀p ∈ P,∀s ∈ S,w = 0 (62)

mfs ≥ 0, ∀f ∈ F,∀s ∈ S (63)

zchoiceγηnc ∈ {0, 1}, ∀c ∈ C, ∀γ ∈ Γ,∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc (64)

The objective function (50) tries to decrease the total training costs. While the training

goals are predefined by the workforce scheduling model and the intermediate model,

the decision to train who, when and how is still to be made. The goal is to finish the

required training during the weeks in the training horizon defined by the set W training

with minimal costs. Recall that the training horizon is the time between the construction

of the new schedule and the start of the next season (see Figure 1).

In this model, constraints (51) to (56) replace constraints (38) to (39) and constraints

(42) to (45) in the intermediate model. They make sure that flights can be maintained

in time with the available skills and workers. Constraint (51) is however very different

from constraint (38) in the intermediate model. The capacity that is available of skill

type s on time period p of team n in cycle c is multiplied by a factor that is zero or one.

This factor is 0 when training takes place during that time period and is 1 otherwise.

This way, the capacity decreases because a certain worker is trained at that moment. To

model training on the job, the parameter αdp can be fixed to a value between 0 and 1.

This way, the model can account for a certain decrease in capacity due to the training

on the job. Because we want to decide on the training for each week in the training

horizon, we have to build constraints for all weeks w ∈ W training instead of just the

weeks w ∈ Wc. This is also true for constraint (52) and (56). Constraints (53) to (55)

are exactly the same as constraints (42) to (44).

Constraints (57) to (59) are specific constraints to solve the training problem. The
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decision variable zchoiceγηnc can be found in all three training constraints. zchoiceγηnc is 1 when

we decide that worker η in team n in cycle c will be used for goal γ and is 0 otherwise.

When zchoiceγηnc is 1, it means that this worker already has all the skills for goal γ or that

he will be trained to reach that goal. When a worker does not have all the skills for goal

γ, and when zchoiceγηnc is 1 for this worker, he must be fully trained. This is ensured by

constraint (57). When a worker should be trained for too many skills in order to reach

a certain goal , zchoiceγηnc is fixed to 0. This way we can limit the number of skills a worker

can be trained for.

Constraint (58) makes sure that one can only choose one goal for each worker. When the

left hand side of constraint (58) is 0, the worker is not needed anymore. Of course, this

worker is not just fired, but he is relocated to another division of the company (usually

to the heavy maintenance division). Constraint (59) makes sure makes that the number

of workers that are chosen for goal γ is equal to the required number of workers that

should reach this goal.

The model presented above returns a feasible training schedule to reach all goals with

minimal training costs. Recall that these costs are less than or equal to the training

costs resulting from the workforce scheduling model because of the intermediate model.

According to the current formulation of the training model, the model can freely decide

when to schedule the training as long as there is enough capacity left to maintain all

flights in time. It has however not a single incentive to finish the training as soon as

possible. When the total training duration is part of the decision problem, constraint

(65) can be used to define the earliest finishing time of all training. The decision variable

φ ≥ 0 is thus defined as the earliest finishing time (in weeks) of all training required to

reach all goals. The finishing time could, for instance, be minimized in the objective

function.

τγηncdw · (w + 1) ≤ φ, ∀c ∈ C,∀γ ∈ Γ, ∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc, (65)

∀d ∈ {1, ..., 7},∀w ∈W training

5 Results and discussion

5.1 Test instances

The performance of the three proposed models is tested on 20 test instances. These

instances are created randomly based on real-life data dimensions from Sabena Tech-

nics. Table 2 shows the results of the workforce scheduling model without training,

the workforce scheduling model with training, the intermediate model and the training

model. We solved the models with IBM optimization software CPLEX 12.4. All models

were given 1500 seconds of computation time on an AMD FX 8120 eight-core processor
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with a clock speed of 3.10GHz and 8GB RAM.

The first column of Table 2 shows the name of the test set. We refer to Beliën et al.

(2013) for a detailed description of the test instances. The next three columns show the

results of the scheduling model without training. In this model, Θmax
ω is set to 0 and the

model only tries to cover the demand with the available workers and their current skills.

The weekly costs are the weekly incurred labor costs to operate the workforce schedule.

Next to the costs, Table 2 also lists the number of workers that are required in the

schedule as well as the optimality gap. This gap is the relative difference between the

obtained solution (after 1500 seconds) and the lower bound obtained by the optimization

software.

The next four columns show the results of the scheduling model with training. We

assumed that each worker can be trained for at most two skills. Hence, Θmax
ω is set

to 2. Again, Table 2 shows the weekly costs incurred by the company, but this time,

these costs are the sum of the weekly labor costs and the total training costs divided

by 24. Recall that we assumed a planning horizon of one season with 24 weeks. The

total training costs are shown in the next column, followed by the required number of

workers and the optimality gap.

Table 2 also shows the savings resulting from the training. We make a difference between

the pure monetary savings and the workforce reduction. The monetary savings are the

differences between the weekly costs of the scheduling model without training and the

weekly costs of the scheduling model with training, multiplied by 24. The reduction of

the workforce can be expressed as the difference between the required number of workers

in both models.

The last three columns of Table 2 present the results of the intermediate model and

the training model. While the workforce scheduling models did not return an optimal

solution after 1500 seconds of computation time, the intermediate model and training

model did solve the problem to optimality in the allowed computation time. Therefore,

the CPU times are shown instead of the optimality gaps for these two models.

The average values of each column are shown at the bottom of Table 2.
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Table 2: Results of the three different skills and training models

Scheduling model without training Scheduling model with training Savings Intermediate model Training model

Test Set Weekly costs Workers Gap (%) Weekly costs Training costs Workers Gap (%) Money Workers Training costs Time (s) Time (s)

1 1 1 1 17450 24 23.71 15154 5400 20 11.56 55105 4 4900 1.28 4.37

1 1 1 2 20869 30 15.55 19517 8000 28 9.57 32440 2 6400 3.99 5.14

1 1 1 3 17160 24 21.84 16584 3000 22 19.22 13819 2 3000 3.62 2.96

1 1 1 4 17706 26 21.49 17135 4700 24 13.15 13706 2 3900 2.54 3.48

1 1 1 5 20804 30 21.41 17569 6000 24 6.92 77656 6 6000 1.07 2.14

1 1 2 1 15651 24 27.12 13661 2000 20 16.50 47766 4 2000 1.09 3.44

1 1 2 2 19547 30 45.24 14546 10000 20 26.62 120016 10 9500 2.37 4.07

1 1 2 3 20592 30 10.74 20296 3000 30 9.44 7110 0 3000 2.03 3.50

1 1 2 4 18393 26 19.76 16483 4000 24 10.71 45844 2 4000 2.89 3.26

1 1 2 5 18267 28 22.73 16432 4000 24 14.08 44038 4 4000 0.87 3.92

1 2 1 1 13707 20 11.58 13600 0 20 10.97 2556 0 0 0.00 0.00

1 2 1 2 18759 28 21.20 16424 3000 24 9.95 56032 4 3000 0.73 2.40

1 2 1 3 11645 16 10.98 11296 1000 16 8.42 8377 0 500 0.61 2.79

1 2 1 4 13107 18 22.09 12063 3700 16 15.31 25069 2 3700 0.58 3.15

1 2 1 5 16274 22 20.91 14861 7600 20 13.39 33904 2 6800 0.69 2.36

1 2 2 1 10854 16 17.63 10837 0 16 17.50 408 0 0 0.00 0.00

1 2 2 2 11387 16 6.21 11386 0 16 6.22 26 0 0 0.71 0.00

1 2 2 3 13043 20 3.20 13004 0 20 2.88 945 0 0 0.00 0.00

1 2 2 4 10966 16 16.84 10929 0 16 16.56 888 0 0 0.00 0.00

1 2 2 5 10797 16 11.90 10797 0 16 11.87 0 0 0 1.03 0.00

Average 15849 23 18.61 14629 3270 21 12.54 29285 2 3035 1.31 2.35
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5.2 The workforce scheduling model: Discussion

5.2.1 Assumptions

To test the performance of the workforce scheduling model, we designed a pool of 30

workers with three arbitrarily chosen skills. We assume that there are five different

skill types and that each aircraft requires exactly one skill type. The skill required to

maintain each aircraft is arbitrarily chosen such that 2% of all flights require skill A,

2% require skill B, 4% require skill C, 10% require skill D and 82% require skill E. We

further assume that a week is divided in 672 periods of 15 minutes and that we only

consider two cycles with at most eight teams in each cycle. The minimum team size is

fixed to two workers.

As we fix Θmax
ω to 2 in the workforce scheduling model with training, the number of

skills a worker can be trained for is limited to 2. We also assume that there are two

training days in each week. On these days, the training takes place between 10AM and

2PM. In order to acquire skill A, five training days are required, skills B, C and D take

eight days of training and skill E takes ten days. The costs to acquire each skill type are

2000, 800, 1200, 500 and 800 Euro respectively. All assumptions are based on real-life

observations.

5.2.2 Making the optimal trade-off

The workforce scheduling model is solved with CPLEX 12.4 using the enumeration

approach outlined in Beliën et al. (2013) to incorporate the decision about the optimal

team size. During the enumeration MILP approach, each MILP was provided with a

computation time limit of 60 seconds, which is extended by another 60 seconds every

time the node is revisited. To study the impact of training on the costs of the workforce

schedule for the next season, we solve the model with and without training. The results

are shown in Table 2.

Recall that the workforce scheduling model with training makes a trade-off between

cheaper rosters that require higher skilled workers and the training costs to obtain this

higher skilled workforce. This way, an optimal amount of training will be determined in

order to minimize the total costs for the next season. Workers will only be trained as long

as the training costs can be compensated by a decrease in the labor costs. Therefore,

it is possible that the workforce scheduling model will decide that no training should

take place because the potential training costs cannot be compensated by a decrease in

labor costs. This is for example the case for test set 1 2 1 1 and sets 1 2 2 1 to 1 2 2 5

in Table 2. For these six test sets, no savings can be obtained by training some of the

workers. Therefore, the weekly costs and the required number of workers are equal in the
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model without training and the model with training. However, some small differences

can be observed in Table 2 because of the slightly lower optimality gaps in the model

with training.

5.2.3 The benefits of training

While training is not always beneficial, it results in substantial savings for most instances

in Table 2. As shown in columns 9 and 10 in Table 2, these savings are twofold. First,

the company can save money with cheaper personnel schedules. Second, some of the

workers can become redundant and can be used somewhere else in the company such as

in the heavy maintenance department. On average, 29285 Euro can be saved over the

whole season with training. Moreover, applying the workforce scheduling model with

training always results in lower (or equal) costs compared to the model without training.

While there is a strong linear relation between the monetary savings and the reduction

of workers (R2 = 0.95), training can also decrease costs without a reduction of work-

ers. This is true for test sets 1 1 2 3 and 1 2 1 3 in Table 2. In these two cases, the

higher skilled workforce makes it possible to reorganize the current workforce schedule

and decrease the labor costs. Furthermore, a higher skilled workforce cannot only be

beneficial for the next season, but it will also increase the possibility of building better

and cheaper workforce schedules in the future.

5.2.4 Performance of the workforce scheduling model

While the workforce scheduling model is the most important model to minimize the

costs, it is also the most time consuming of all three models. Therefore, Table 2 shows

the optimality gaps instead of the required computation time. An interesting observation

is made when the gaps of the scheduling model without training and the scheduling

model with training are compared.

According to Table 2, the gaps of the first model are much larger than those of the

second model (18.61% versus 12.54%). Furthermore, the gaps of the second model

are much more similar to those of the respective MILP model presented by Beliën et

al. (2013) (12.54% versus 11.01%). This means that finding a good solution without

training appears to be much more difficult than finding a good solution with training.

However, this statement is not true when only little training (or even no training at all)

is required to find a good solution. For these cases, the gaps (and solution values) of the

first model are much closer to the gaps (and solution values) of the second model. There

appears to be a relatively strong linear relation between the gaps of the model without

training (column 4) and the monetary savings (column 9) resulting from training (R2

= 0.70). This relation is absent for the model with training (R2 = 0.16). Hence, this
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relation suggests that the large gaps belonging to the model without training must be

seen as an indication of the possible savings that can be made when the workforce would

be trained instead of an indication of poor solutions.

5.3 The intermediate model: Results and performance

Since the workforce scheduling model assumes that all teams are equal in one cycle, the

training requirements are equal for all teams. It is however not always necessary to train

all teams for the same skill. Therefore, the goal of the intermediate model is to find the

minimal training requirements in order to perform all maintenance in time. The results

are shown in columns 11 and 12 of Table 2.

Because the intermediate model minimizes the training requirements, the training costs

are also minimized. The comparison of columns 6 and 11 in Table 2 reveals that the

intermediate model always results in less or equal training costs. On average, the dif-

ference between the training costs found by the workforce scheduling model and those

found by the intermediate model is less than 6%. However, the maximum reduction of

training costs is 50%. Hence, the application of the intermediate model can be beneficial

in some cases. Furthermore, solving the model always returns an optimal solution in

only 1.31 seconds (on average). This makes the intermediate model an easy and possibly

very beneficial model to use.

As the intermediate model results in the optimal skill requirements, it can be used (with

or without the workforce scheduling model) to assess the impact of an extra maintenance

contract. Tests showed that the addition of just one new flight with a new skill type

already requires a lot of new training. Even if the shift schedules can remain unchanged,

many workers should be trained to acquire this new skill type because of the cyclic work

pattern. In a cyclic workforce schedule it is very likely that all teams in a cycle will

be assigned to the same flights at least once. Therefore, when a new flight with a new

skill is introduced, many workers should acquire this new skill. Hence, one must be very

cautious to accept a new maintenance contract that involves training the workforce for

a new skill.

5.4 Performance of the training model

The training model is very important to decide when and who will be trained in order

to reach all training goals without disrupting the maintenance work. Table 2 shows the

required computation time to solve the training model for each of the test instances to

optimality. The objective value (the training costs) are not shown in the table because

they are equal to the training costs found by the intermediate model.
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Recall from Section 4.3 that as the length of the training horizon (W training) increases,

the number of decision variables in the training model also increases. Therefore, the

length of the training horizon has an impact on the performance of the training model.

We used a training horizon of eight weeks to solve the test sets in Table 2. While

the average computation time of the training model is larger than for the intermediate

model (2.35s versus 1.31s), the time required to solve the problem to optimality is still

relatively small.

6 Conclusion and future research

In this paper, we present a two-stage mixed integer programming approach for optimiz-

ing the skill mix and training schedule at an aircraft maintenance company. In the first

stage, a trade-off is made between cheaper rosters that require higher skilled workers and

the training costs to obtain this higher skilled workforce. Finding this optimal trade-off

is the goal of the workforce scheduling model.

In a second stage, the training model is used to find an optimal training schedule. This

model determines the exact timing of the training for each worker and takes into account

that a worker is unavailable to work during his training periods. The goal is to finish

the required training during the weeks in the training horizon with minimal costs.

We successfully applied our approach to 20 different test sets based on real-life data from

Sabena Technics. Experiments first demonstrate that our models succeed in finding good

solutions in reasonable computation times. Second, we illustrate the benefits of training

by comparing a scenario without training to a scenario with training. The results show

how our approach can make a good trade-off between cheaper rosters that require higher

skilled workers and the training costs to obtain this higher skilled workforce.

For future research regarding the proposed skills and training model, one can focus on

the constraint that defines the earliest finishing time of all training required to reach all

training goals. When the required training cannot be finished in the predefined training

horizon, training costs will increase or the training model will not find a feasible result at

all. A special approach can be proposed that confines the training possibilities in order

to obtain a feasible training schedule. Furthermore, it can be interesting to investigate

the implications of a continuous training program. Instead of a short training program

dedicated to the next season, one can choose to train the workforce on a continuous

basis with a long term vision.
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De Bruecker, P., Van den Bergh, J., Beliën, J. & Demeulemeester, E. (2015). Work-

force planning incorporating skills: State of the art. European Journal of Opera-

tional Research, 243 (1), 1 - 16. Retrieved from http://www.sciencedirect.com/

science/article/pii/S0377221714008601
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