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Critical illness represents a life-threatening condition necessitating recruitment of defense mechanisms 

for survival. Herein, the hypothalamus-pituitary-adrenal axis is essential. However, the relevance of a 

‘relative’ insufficiency of the hypothalamus-pituitary-adrenal axis in critical illness, currently diagnosed by 

a suppressed cortisol response to exogenous ACTH irrespective of the plasma cortisol level, remains 

controversial.  

Several recent studies provided insights that clarify at least part of the controversy.  Rather than an 

activated hypothalamus-pituitary-adrenal axis, ACTH-independent regulators were found to contribute to 

increased cortisol availability during critical illness. One of these is reduced cortisol breakdown, mediated 

by suppressed expression and activity of cortisol metabolizing enzymes in liver and kidney. This 

downstream mechanism elevates plasma cortisol concentrations but the ensuing feedback-inhibited 

ACTH release, when sustained beyond one week, was shown to negatively affect adrenocortical 

integrity/function. Reduced adrenocortical ACTH signaling could explain reduced cortisol responses to 

exogenous ACTH. Whether such reduced cortisol responses in the presence of elevated plasma 

(free)cortisol always identify adrenal failure requiring treatment is less likely. Also, reduced cortisol 

breakdown affects the optimal dosing of hydrocortisone treatment during critical illness.  

In conclusion, identification of patients with an insufficient hypothalamus-pituitary-adrenal axis response 

and the optimal treatment for this disorder clearly require more well-designed (pre)clinical studies.  
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INTRODUCTION 

The human organism is constantly exposed to variable levels of stress exerted by external and internal 

stimuli.1 Critical illness is defined as any life-threatening condition that requires support of vital organ 

function without which death would be imminent.  It thus represents physical stress of such a severity and 

magnitude that it imposes a major challenge to the human body. Coping with such severe stress is 

mediated by complex endocrine responses. Herein, the hypothalamus-pituitary-adrenal axis (HPA) plays 

a key role as increased exposure to cortisol is essential to acutely provide energy, to retain fluid, increase 

cardiac output and blood pressure and to induce an appropriate immune response while protecting 

against excessive inflammation.2,3 Failing of this stress response can have rapid and lethal 

consequences, as is the case for patients with pre-existing adrenal failure who develop an Addisonian 

crisis when undergoing surgery for example without adequate coverage with hydrocortisone. Absolute 

and ‘relative’ adrenal failure also occur during critical illness, most often reported in patients suffering from 

sepsis.4 However, the relevance of such a ‘relative’ adrenal insufficiency during critical illness, currently 

defined as a suppressed cortisol response to an ACTH injection irrespective of the level of plasma 

cortisol,4 remains highly controversial.  

Several recent studies provided new insights that clarify part of this controversy.  These studies indicated 

that the HPA-axis stress response to critical illness may differ in several aspects from that to less severe 

stressors, which may have major consequences for the function of the adrenal glands. In the light of 

previous understandings, these novel insights will be reviewed. In addition, new research questions will 

be formulated to redirect future research and to investigate novel treatments for improving outcome of 

this life-threatening condition.  

 

SEARCH STRATEGY AND SELECTION CRITERIA  

For this review a search was performed in the pubmed database where the terms “HPA-axis”, “adrenal 

gland” “ACTH” and “cortisol” were used in combination with “critical illness” or “sepsis” or “trauma”.  
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The focus was on papers published in the last 5 years. However, since recent papers challenged a 

classical dogma, a more extensive search of earlier literature was also performed.  

Human studies were preferred to animal studies, the latter only included to strengthen human 

observations or to speculate on future experiments. The reference lists of articles identified by this search 

strategy were also evaluated for selection of other papers when considered relevant. Review articles and 

book chapters are cited to guide readers to more detailed information than this review can contain.  

 

 

HPA-AXIS ACTIVATION TO ACUTE AND CHRONIC STRESS CONDITIONS: TRADITIONAL 

CONCEPT  

The adrenal gland, a key organ to cope with stress, unites steroid-producing adrenocortical cells and 

catecholamine-producing chromaffin cells. Stress-induced activation of the HPA-axis starts by the release 

of corticotrophin-releasing hormone (CRH) from the hypothalamus which, via the hypophyseal portal 

system, reaches the anterior pituitary corticotrophs to induce ACTH secretion (Panel 1 – background 

information). ACTH is the main controller of adrenal glucocorticoid production, stimulating steroidogenesis 

by binding to the melanocortin 2 receptor (MC2R) (Figure 1). The responses within the different 

components of the HPA axis to several stressors have been studied in the context of major surgery, acute 

infections, but also chronic infections, autoimmune diseases, the metabolic syndrome and affective and 

mood disorders.  A few older studies measured plasma ACTH concentrations during and shortly after 

surgery and indeed observed a transiently elevated plasma ACTH concentration that normalized on the 

first post-operative day.5, 6 Elevation of the circulating levels of ACTH is thus the typical clinically 

measurable response to such stressors, which within the adrenal cortex dose-dependently activates 

MC2R-mediated post-receptor effects.(Figure 1) The adrenal gland is characterized by a remarkable 

capacity to adapt to acute or chronic stressors. Beside an immediate effect on glucocorticoid production, 

ACTH also increases the longer-term steroidogenic capacity of the adrenal cells by upregulating proteins 
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important for steroidogenesis. Furthermore, in vitro and in vivo animal studies observed structural 

changes in the adrenal gland such as hyper-vascularization of the already highly vascularized adrenal 

glands and cellular adrenocortical hypertrophy/hyperplasia.7 This may in part explain increased vascular 

vulnerability of the adrenal tissue during acute stress conditions which, when extreme such as with 

meningococcal sepsis, can evoke adrenal hemorrhage and failure.8 In addition, as evidenced by CRH 

injection in rats, HPA axis activation evokes important ultra-structural changes in adrenocortical cells with 

an increased number of mitochondria and expansion of the smooth endoplasmic reticulum as well as 

filopodia, and decreased liposomes that are known to store cholesterol, the substrate for glucocorticoid 

biosynthesis.9 Furthermore, the adrenal gland has the highest anti-oxidative capacity of all tissues in the 

human body which appears necessary to cope with the increased production of ROS due to 

steroidogenesis since mutations in antioxidant defense genes lead to glucocorticoid deficiency.10  

In conditions of chronic stress, a continued stimulation of the adrenal gland and hereby adrenal 

hypertrophy can be considered to be an adaptive response essential for the continued provision of cortisol 

in proportion to the sustained higher requirements of glucocorticoid effects. Inferentially, hyperplasia and 

nodular transformation of adrenal cortical tissue could result from such chronic hyperstimulation of the 

adrenal cortex. In this context, it is of interest that patients who suffer from the metabolic syndrome, in 

particular the form with inflammatory vascular complications, and also patients suffering from depression 

were shown to have hyperplastic adrenal glands.11 Patients with metabolic syndrome also present with 

an increased incidence of adrenal nodules or incidentally discovered adrenal masses.11 In turn, such 

adrenal hyperplasia and/or adenomas with manifest or subclinical production of excess steroids, 

especially cortisol and aldosterone, can contribute to the symptoms and complications of the metabolic 

syndrome, diabetes, obesity and depression.11  

In analogy, sustained elevated plasma ACTH and cortisol concentrations could inferrentially result in 

adrenal hypertrophy and hyperplasia in other conditions of sustained and severe stress, such as 

prolonged critical illness.  
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HPA-AXIS RESPONSE TO CRITICAL ILLNESS : ACTIVATED OR NOT? 

As critical illness indeed is an extreme example of sustained and severe physicial stress, one would 

expect that the elevated plasma concentrations of cortisol are also accompanied by high plasma ACTH 

concentrations that mediate several-fold increased adrenocortical cortisol production. However, there are 

only few studies that report plasma concentrations of ACTH during critical illnes. Most of these studies 

only reported ACTH measured at one single time point, which holds limited information given the pulsatile 

secretory pattern and the circadian rhythm of the hormone.4,12-14 Vermes et al. reported daily plasma 

ACTH and cortisol concentrations measured during the first week of critical illness in patients suffering 

from trauma or sepsis.  Acutely elevated plasma ACTH and cortisol concentrations were documented, 

followed by a steep fall in plasma ACTH after 3 days of critical illness whereas plasma cortisol 

concentrations remained high.15 More recently it was shown in a more heterogeneous critically ill patient 

population that plasma ACTH concentrations were uniformly low, much lower than normal, already from 

the first day of ICU stay onward, and remained below the lower limit of normality throughout the first week 

of critical illness.16,17 This “ACTH-cortisol dissociation” of critical illness is not what one would expect in 

the context of an activated HPA axis in response to such a high and sustained level of physical stress. 

Also, it remains unclear what is driving the low ACTH levels in the face of high plasma cortisol. 

Interestingly, a small study by Polito et al. reported reduced ACTH mRNA levels in  

9 human pituitary glands harvested postmortem from patients who died after septic shock as compared 

with patients who died suddenly from other diseases, in the absence of a compensatory rise in the 

expression of CRH or vasopressin in the hypothalamus.18 Also in experimental models of sepsis, it was 

recently shown that pituitary ACTH expression levels were suppressed in the more chronic phase of 

critical illness,19 which could be evoked by nitric oxide or by suppressed orexin.18, 19 However, if such 

sepsis-induced suppression of pituitary ACTH expression were a primary manifestation of organ damage 

due to shock, this would inferrentially cause abnormally low plasma cortisol concentrations, which in 
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patients is usually not the case. Another possible explanation could be increased adrenocortical sensitivity 

to ACTH.20 However, the adrenocortical cortisol secretory response to any given endogenous plasma 

ACTH level is normal during critical illness,21 and in response to exogenous ACTH often low as illustrated 

by the ACTH stimulation test. Furthermore, a recent study of human adrenal glands showed that ACTH 

signalling was unaltered during the first week of critical illness, but was severely suppressed in the 

prolonged phase.22 Another explanation for the observed high plasma cortisol concentrations, the 

concomitantly low plasma ACTH levels and subsequently low ACTH-regulated gene expression in the 

adrenal cortex during critical illness could be negative feedback inhibition exerted by elevated plasma 

cortisol, in turn evoked by alternative, non-ACTH driven, pathways.  

 

ALTERNATIVE ACTIVATORS OF THE ADRENAL CORTEX DURING CRITICAL ILLNESS  

The dissociation of plasma ACTH and cortisol levels may indeed suggest other ACTH-independent 

activators of adrenal cortisol production, comprising the sympatico-adrenergic system, the immune 

system and adipokines.21,23,24  

The adrenal gland provides a complex microenvironment of close cellular interactions between the two 

endocrine stress systems, the sympatho-adrenomedullary system and the adrenal cortex.7 Furthermore, 

the splanchnic nervous system can directly activate the neuro-adrenocortical axis. In addition, there is a 

close interaction between adrenocortical cells and resident macrophages, blood immune cells and the 

vasculature.(Figure 2) It has been previously shown that CRH can activate the sympatho-

adrenomedullary system explaining its ability to prevent adrenocortical atrophy in animals with 

hypophysectomy.25 The chromaffin cells may play a key role as it was shown in co-culture systems that 

the addition of chromaffin cells to adrenocortical cells increase the release of cortisol up to 10-times.26, 27 

Vice versa, intra-adrenal glucocorticoids are known to induce expression of catecholaminergic enzymes, 

particularly phenylethanolamine N-methyltransferase, and to stimulate catecholamine release from 

chromaffin cells.7 Exogenous glucocorticoids can induce adrenal atrophy through negative feedback 
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inhibition of ACTH, inducing low levels of intra-adrenal cortisol which, in turn, can lead to a decline in 

adrenal catecholamine release. This is further supported by patients with Addison’s disease or congenital 

adrenal hyperplasia, who present with low circulating adrenaline. Adrenomedullary dysfunction in these 

patients was shown to correlate with cardiovascular instability and hypoglycemia.28, 29 This close 

functional interdependence of the two endocrine systems within the adrenal gland is further corroborated 

by the in vivo phenotype of knock-out animals with specific defects in either system and of patients with 

defects either in the function of the adrenal cortex or medulla.29,30 In patients with mental diseases such 

as depression, who present with hypercortisolism, it was recently shown that classical feed-forward 

overdrive and impaired feedback theories of hypercortisolemia may not apply and that the 

hypercortisolemia of depression may result from alternative mechanisms involving irregular basal 

hypersecretion of cortisol possibly driven by splanchnic sympathetic activation.31,32  

In models of inflammatory bowel disease and viral infection, immune mediators such as interleukin-6 and 

other ACTH-independent immune-adrenal pathways have been identified to account for a chronic 

hyperstimulation of the adrenal cortex in the absence of an elevated pituitary ACTH secretion. Hence, 

numerous studies have reported a “dissociation” between ACTH and cortisol release, both in physiological 

stress responses and in pathophysiology. These include fetal and early postnatal life stress, aging, 

inflammation and infection, mental disorders, Alzheimer’s disease, chronic pulmonary disease, bone 

fractures, alcoholism and metabolic diseases.24 It was further shown recently that not only cytokines and 

immune mediators released from macrophages, monocytes or other immune cells may directly stimulate 

(or block) cortisol release from human adrenocortical cells, but that also a direct interaction exists between 

viral or bacterial pathogens and the adrenocortical cells.33 Adrenocortical cells express toll-like receptors 

(TLR) which can directly respond to the presence of gram-negative or gram-positive bacterial pathogens. 

However, a detailed analysis of the mechanisms of hypothalamic-pituitary and immune-dependent 

adrenal regulation during systemic inflammation in genetically modified mice models suggested that the 

primary activation of the HPA axis in such conditions seems to occur via immune cells.34 Indeed, it was 
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shown that TLR signaling in immune cells, but not in adrenocortical cells, mediates LPS-induced adrenal 

inflammation and HPA axis stimulation.35  

Finally, adipokines released from adipose tissue as well as neuropeptides and immune mediators 

secreted from endothelial cells, including the production of local morphogens, such as sonic hedgehog 

and WNT, have been implicated in an ACTH-independent activation of adrenal cortisol regulation.35-37 

Whatever the driver during life-threatening critical illnesses in patients, cortisol production is inferred to 

be substantially increased.  

 

CORTISOL PRODUCTION AND METABOLISM DURING CRITICAL ILLNESS 

Although it is indeed generally accepted that cortisol production rate is at least several-fold increased to 

generate and maintain hypercortisolemia during critical illness, it was never quantified in patients until 

recently. Boonen et al. documented that morning cortisol production rate, quantified by the stable isotope 

infusion technique, was only moderately increased, less than doubled (Figure 3-A), in critically ill patients 

suffering from the systemic inflammation response syndrome (SIRS) and unchanged in critically ill 

patients without SIRS as compared with the cortisol production rates of healthy matched control subjects, 

in the face of several-fold higher plasma total and free cortisol levels in all patients.16 This finding was 

quite unexpected. The stable isotope technique also allowed to quantify cortisol plasma clearance, which 

was found to be suppressed to less than half in all patients, irrespective of the inflammation status (Figure 

3-B).  With 3 subsequent studies this finding was further explored.16 Cortisol half-life and plasma clearance 

during critical illness was also quantified after the administration of a 100 mg bolus of hydrocortisone. 

Similar results were obtained: plasma cortisol clearance reduced to 40% of that in matched control 

subjects, and a cortisol half-life that was a median 5-fold longer in patients. This reduced cortisol 

breakdown was explained by reduced expression and activity of the cortisol metabolizing enzymes, 

predominantly the A-ring reductases in liver and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) in 

kidney, as suggested by urinary steroid ratios, tracer kinetics and assessment of human liver-biopsy 
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samples.  Importantly, the reduced cortisol clearance was robustly observed in all tested critically ill 

patients, irrespective of type and severity of illness and irrespective of ICU stay and prognosis.16  This 

suggested that a pronounced suppression of cortisol breakdown may be a key mechanism which, together 

with the ongoing normal or slightly elevated cortisol production, contributes to increased plasma cortisol 

in the sustained severe stress condition of critical illness. Interestingly, a reduced cortisol breakdown was 

also described in patients with anorexia nervosa, posttraumatic stress disorders and depression,38-40 

suggesting that it could be a more fundamental part of the general stress response. 

With the knowledge that cortisol half-life and plasma clearance is uniformly reduced during critical illness, 

further study of ACTH and cortisol secretion rates and the interaction between ACTH concentrations and 

cortisol secretion was performed by constructing time series of plasma concentrations measured every 

10 minutes over 9 nocturnal hours in critically ill patients and in healthy control subjects.21 Such plasma 

concentration time series can be transformed into hormonal secretion profiles with use of deconvolution 

analysis, that takes into account elimination half-life of the hormone, and which allows to quantify pulsatile 

and non-pulsatile (basal) secretion of the hormone.41 Two older studies had previously evaluated repeated 

blood samples of ACTH and cortisol to assess pulsatile secretion during surgery and critical illness, but 

these did not apply deconvolution analysis and did not take into account the fact that cortisol half-life is 

much longer than normal.6,42  

The recent study revealed that both nocturnal ACTH and cortisol pulsatile and total secretion rates were 

reduced in critically ill patients, explained by reduction of the hormonal pulse masses while pulse 

frequencies were unaltered.21 Interestingly, the dose-response between a given ACTH concentration and 

cortisol secretory response was preserved normal, which suggested that the term ‘ACTH-cortisol 

dissociation’ may not be entirely correct. Indeed, the cortisol secretion was still “connected” to the amount 

of circulating ACTH, but both were suppressed, not increased, in the critically ill patients in the presence 

of high total and free plasma cortisol concentrations. Hence, beyond the very acute phase of critical 

illness, high nocturnal plasma cortisol concentrations seem to be predominantly maintained by reduced 
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cortisol breakdown, a conclusion that was further strengthened by the increased markers of irregularity 

for both ACTH and cortisol time series in this study.  Together, the results of the nocturnal deconvolved 

ACTH and cortisol secretion study and the results from the stable isotope study, which had shown that 

daytime cortisol secretion is ACTH-independent and not even double that of healthy subjects, it appears 

that overall 24h cortisol production rates during critical illness may not be, or at best only moderately, 

higher than during health.   

 

CORTISOL EFFECT AT TISSUE LEVEL DURING CRITICAL ILLNESS  

Elevated plasma cortisol concentrations during critical illness do not necessarily mean that there is 

increased cortisol receptor activation at the level of the many tissues that express these receptors. Indeed, 

90% of the total cortisol concentration in circulation is bound to corticosteroid binding globulin (CBG). 

Therefore, changes in binding of cortisol to CBG may influence availability of free cortisol, the form that is 

responsible for the biological and clinical effect of the endogenous hormone. In previous work it has been 

demonstrated that CBG levels are significantly decreased in patients in the early stage of septic shock 

and multiple trauma.43 This results in much higher free than total circulating cortisol levels and suggests 

that CBG plays an important role in the regulation of cortisol availability to the target tissues during the 

severe stress of critical illness.43 Furthermore, CBG in plasma occurs in two forms, the intact CBG and 

CBG which is cleaved by neutrophil elastase. The latter has a lower affinity for cortisol. Cleavage by 

neutrophil elastase increases the concentration of free cortisol at the site of neutrophil action, which may 

target an increased cortisol bioavailability to sites of interest during critical illness.44,45 Furthermore, CBG 

binding affinity is decreased by high body temperature.46  

Free cortisol has been proposed to be a better parameter for assessing hypercortisolemia in critical 

illness, particularly in patients with systemic infection, since it provides a better correlation with the severity 

of disease.47 Salivary cortisol levels have been proposed as a possible surrogate of the circulating free 

cortisol levels in patients with septic shock.48 However, difficulties to adequately sample enough saliva 
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without contamination via the local conversion of cortisol to cortisone through expression of 11β-HSD2 in 

the salivary gland, limit the use of this technique.  

The real meaning of any form of measurable cortisol in the circulation during critical illness should be 

evaluated in the light of regulated glucocorticoid receptor (GR) expression and signaling. Increasing 

evidence from both animal and human experiments suggests that alternative splicing of the GR mRNA, 

GR expression, GR affinity and GR translocation are regulated and could be tissue specific during critical 

illness.49-56 Children with critical illness due to sepsis and traumatic brain injury have shown to exhibit 

lower total and cytoplasmatic GR levels in white blood cells than healthy controls.51 Other suggested 

mechanisms of corticosteroid resistance during critical illness involve an increased expression of 

glucocorticoid receptor β, the dominant negative isoform of the receptor 51 and by downregulation of 

glucocorticoid receptor α, mediated by micro RNA124.52 Also reduced translocation to the nucleus or the 

presence of less functional polymorphisms may play a role. However, the expression of GR in different 

tissues warrants more research in critically ill patients and the clinical relevance of these cellular changes 

remains to be further elucidated.  

 

WHEN THE ADRENAL GLAND FAILS TO RESPOND ADEQUATELY TO CRITICAL ILLNESS  

Absolute Adrenal failure during critical illness 

During critical illness, “absolute” adrenal failure can be present for 2 reasons: 1) known primary or 

secondary adrenocortical insufficiency for example due to autoimmune Addison’s disease, pituitary 

tumors or trauma and 2) critical illness-associated acquired loss of adrenal function.  For patients suffering 

from either of these conditions, appropriate and immediate diagnosis and treatment is essential to prevent 

life threatening shock. 

The acquired loss of adrenal function during critical illness may have several causes. It may be due to 

hemorrhage within the adrenal gland, to adrenocortical ischemia or apoptosis, or to the effect of certain 
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drugs that interfere with and impair cortisol production. Alternatively, the ACTH suppression observed 

beyond the very acute phase of critical illness appears to have important negative consequences on 

integrity and function of the adrenal gland of critically ill patients, predominantly in the prolonged phase of 

illness where these ACTH-effects within the adrenal cortex were found to be reduced.22 Furthermore, 

increasing evidence emphasizes the importance of hormonal pulsatility in maintaining normal cellular 

function in both the adrenal gland and the target tissues of cortisol, by preventing desensitization of 

transcriptional responses. Both pulsatile ACTH secretion and cortisol secretion are shown to be reduced 

in critical illness.21 One could speculate that this may further contribute to loss of the trophic ACTH impact 

on the adrenal gland and to tissue specific cortisol resistance. This should be further investigated. It is 

equally essential to look for other predisposing factors for adrenal dysfunction in intensive care patients.57 

There is a growing number of patients who may have underlying disorders or use medication that cause 

a subclinical form of adrenocortical impairment that can become clinically relevant during the severe 

stress of critical illness. For example, the number of individuals in the aging population who are receiving 

some forms of chronic exogenous glucocorticoid treatment is rising, which may lead to hypotrophy of the 

adrenal cortex. In addition there are congenital abnormalities, polyglandular autoimmune disorders, 

trauma, infectious diseases, coagulation disorders, liver diseases, mental disorders, certain non-steroid 

medications and addictions that need to be considered in relation to potential predisposing factors for 

adrenal insufficiency in patients with critical illness.58,59 Clinicians should thus be aware of these 

underlying conditions or disorders and predisposing factors to rapidly identify patients at risk for 

developing life-threatening adrenal failure during critical illness.  

Relative adrenal failure during critical illness 

Already in 1946, Hans Selye suggested that ‘exhaustion’ of the adrenal cortex may occur in certain stress 

conditions. ”Relative adrenal failure” is a term that was proposed to describe such a state during critical 

illness, in which plasma cortisol concentrations, although still higher than during health, are insufficiently 

high to cope with the stress level of the disease.60  In this concept, the adrenal gland is functionally normal 
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and maximally activated which still does not suffice to face the challenge. More recently the term 'critical 

illness-related corticosteroid insufficiency' (CIRCI) 61 was introduced to comprise ‘relative failure’ which 

may occur at any level of the HPA-axis.61,62  

Despite the extensive literature on this topic, the presence of this condition and the underlying 

mechanisms of such failure still remain debated. Pro-inflammatory cytokines are suggested to play an 

important role by inducing tissue resistance or competing with ACTH at the receptor level. Target tissue 

resistance during critical illness can also be explained by decreased glucocorticoid delivery or decreased 

glucocorticoid action due to an altered function of CBG or to altered glucocorticoid receptor levels and 

affinity. Furthermore, impaired blood supply to the pituitary can induce subtle levels of pituitary ischemia, 

which is followed by the accumulation of nitric oxide or central neuropeptides, leading to decreased 

hormone secretion.63 Additionally, since every adrenal cell is in direct contact with an endothelial cell, the 

adrenal cortex is susceptible to hemorrhage during severe stress or sepsis, which can result in full blown 

Addisonian like crisis, but also more subtle changes that could cause a “relatively” impaired cortisol 

production. Finally, different neuropeptides, oxidative stress, substrate deficiency due to low circulating 

cholesterol 64 or interfering medications are also suggested to play a role in reducing the ability to produce 

cortisol.57  

Diagnostic criteria 

Given the controversy about the underlying mechanisms of this ‘relative’ adrenal insufficiency, the 

appropriate diagnostic criteria and treatment have also not been settled. Suggested diagnostic criteria 

were based on findings from a landmark study by Annane et al. who identified a plasma cortisol 

incremental response of <9 µg/dl after injection of 250 µg ACTH and a high baseline cortisol level (>34 

µg/dl) as most discriminative to identify patients at high risk of death.60 Hence, relative adrenal failure 

during critical illness was from then on diagnosed by a subnormal plasma cortisol incremental response 

to exogenous ACTH, irrespective of the level of plasma cortisol.4 However, other investigators have not 

all been able to replicate the original observations by Annane and thus there is currently no consensus 
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on how to diagnose adrenal failure in the ICU. Intriguingly, the non-ACTH drivers of cortisol production 

and alterations in cortisol breakdown could explain reduced cortisol responses to ACTH injection, but do 

not support the exclusive interpretation of adrenal failure, as long as plasma (free) cortisol is several-fold 

higher than normal.16 This is in line with recent guidelines on the topic, which no longer advise to use the 

ACTH test to guide treatment with hydrocortisone.65 Also, a dose of 250 µg of ACTH leads to supra-

physiologic ACTH levels and could therefore overcome any ACTH resistance. As an alternative, a 1 µg 

stimulation dose was suggested, but has not been extensively studied in critically ill patients and results 

have been conflicting. A random total cortisol of <10 µg/dl during critical illness has also been suggested 

for the diagnosis of CIRCI.61 However, total plasma cortisol concentration is the net result of adrenal 

production and secretion, distribution, binding and elimination of cortisol. Also, as cortisol is secreted in a 

pulsatile manner20 it could be problematic to judge the adequacy of the adrenal cortisol production in 

response to critical illness merely by a single measurement of total plasma cortisol. Furthermore, as 

mentioned, total plasma cortisol concentrations do not quite reflect glucocorticoid signaling.  Taken 

together, and given that all the changes that occur during critical illness could in part be adaptive or instead 

maladaptive, it remains difficult to conclude on ‘adequacy’ of cortisol availability during illness based on 

any of these tests.  

Therapeutic consequences 

Patients with an established diagnosis of primary or secondary adrenal failure or patients on chronic 

treatment with systemic glucocorticoids prior to critical illness should receive additional coverage to cope 

with the acute stress.66,67 Today, such patients in the ICU receive quite high doses of glucocorticoids, 

based on the assumption that cortisol production is several-fold increased in critical illness. This 

assumption may not be correct. The current treatment strategy consists of the administration of a bolus 

of 100 mg of hydrocortisone followed by 50 to 100 mg every 6 hours on the first day, 50 mg every 6 hours 

on the second day, and 25 mg every 6 hours on the third day, tapering to a maintenance dose by the 
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fourth to fifth day.66,67 This dosing regimen could be too high, in the light of the now documented reduced 

cortisol breakdown during critical illness.16  

Whether or not ‘relative’ adrenal failure should be treated with exogenous glucocorticoid ‘substitution’ 

therapy and in that case, with which doses, remains even less clear. In current practice, some intensivists 

may use hydrocortisone in septic patients who fail to respond adequately to vasopressors and/or volume 

loading.65 However, a recent systematic review that could only withhold six high quality RCTs concluded 

that hydrocortisone therapy does not reduce mortality of severe sepsis.68 This is mainly because the two 

largest randomized controlled studies generated conflicting results.69,70 Currently, another well-powered 

study is recruiting patients and aims to investigate the effect on 90-day mortality of 200 mg hydrocortisone 

therapy per day for maximum 7days in 3800 patients.71  

However, since it is now known that cortisol production is at most only moderately increased in critically 

ill patients with a well-functioning HPA axis, and as cortisol breakdown is substantially and robustly 

reduced in those patients, the therapeutic doses of 200 mg hitherto used for these trials may have been 

too high, which could have induced side effects that could abrogate any potential benefit. Therefore, future 

studies should evaluate whether lower doses can be used to raise plasma cortisol to levels that are 

sufficient to obtain the targeted effects while minimizing adverse effects of excessive doses. A dose of 

approximately 60 mg of hydrocortisone, equivalent to about a doubling of the normal daily cortisol 

production as quantified with stable isotopes might be an interesting alternative for further investigation.  

Furthermore, the novel insight that cortisol half-life is so much longer during critical illness than during 

health also has implications for treatment of ICU-patients with steroids for other indications.  In general a 

tapering down as soon as possible should be advised to limit the adverse effects of excessive amounts 

of glucocorticoids during critical illness. 

 

FUTURE RESEARCH 
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More research is clearly needed to investigate appropriate diagnosis and optimal substitution therapy for 

adrenal failure based on the recent novel insights. The impact of sustained high cortisol concentrations, 

endogenous or iatrogenically induced, at the level of hypothalamus, pituitary and cortical brain functions, 

both in relation to acute delirium and to long-term sequellae of critical illness, warrants further 

investigation. Furthermore, the HPA axis response to sepsis and inflammation will have to be studied in 

appropriate preclinical models allowing a tissue-specific dissection of the role of the immune system, 

vasculature and endocrine cells. Also identifying the underlying mechanisms of the reduced expression 

and activity of the cortisol metabolizing enzymes in liver and kidney is of high priority.  

 

CONCLUSION 

Recent new evidence suggests that, beyond the first hours after onset of critical illness, an activated HPA 

axis is not the main driver of the essential increase in cortisol availability (Figure 4, Panel 2 – key 

messages). Although non-ACTH drivers of cortisol production may be involved, increased cortisol 

exposure during critical illness does not appear to be regulated primarily by cortisol production. Instead, 

reduced cortisol metabolism during critical illness substantially contributes to elevated cortisol availability. 

Elevated plasma cortisol via reduced cortisol breakdown is comparable to the condition of exogenous 

treatment with (high dose) hydrocortisone.  In both these conditions, the suppressed endogenous ACTH 

signaling could explain reduced cortisol responses to exogenous ACTH. These reduced cortisol 

responses to ACTH thus do not necessarily indicate (relative) adrenal failure requiring treatment, as long 

as plasma (free) cortisol is several-fold higher than normal. The reduced cortisol breakdown should also 

be taken into account for adequate dosing of hydrocortisone for any indication during critical illness.  

More well-designed (pre)clinical studies are needed to better identify patients with critical illness-induced 

adrenal failure and to define the optimal treatment for this disorder.  
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Panel 1 - ADDITIONAL BACKGROUND  

 

Whenever stress occurs, the stress signal activates the hypothalamus to release corticotropin releasing 

hormone (CRH). CRH reaches via the hypophyseal portal system the anterior pituitary corticotrophs to 

induce secretion of ACTH. Consequently, the release of ACTH causes cortisol production in the adrenal 

gland. ACTH is the main controller of adrenal glucocorticoid production and release; it stimulates 

steroidogenesis by binding to its receptor, the melanocortin 2 receptor (MC2R) present in the cell 

membrane of the adrenocortical cells and which, when activated, stimulates adenylate cyclase. ACTH 

upregulates the expression of its own receptor, mediates the release of cholesterol from the lipid droplets 

while increasing the expression of genes encoding the proteins for cholesterol uptake [such as the LDL-

receptor (LDLR) and scavenger-receptor class B member 1 (SCARB1)] and for cholesterol synthesis [via 

3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)]. ACTH also increases expression of genes 

encoding key steroidogenic enzymes, such as steroidogenic acute regulatory protein (STAR) and 

cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1). Besides this feed-forward 

activation of cortisol secretion, feed-back inhibition of CRH and ACTH by cortisol regulates its own 

release. This negative feedback inhibition occurs both at the pituitary and the hypothalamic level and 

involves fast and delayed forms of inhibition circuits. Under healthy resting conditions, ACTH and cortisol 

are released in a tightly coupled pulsatile fashion following a characteristic circadian rhythm. The normal 

patterns in the early morning and afternoon hours display quite some inter-individual variation, which is 

further modified by sleep, any shift in light-dark responses, feeding, and by physical as well as mental 

stress or illnesses.  

In the circulation, cortisol is predominantly transported bound to cortisol binding globulin. Only free cortisol 

can enter the cell.  In certains cells, cortisol can be inactivated into cortisone via 11β-hydroxysteroid 

dehydrogenase 2 (11β-HSD2), which can be again activated via 11β-HSD1 into cortisol. Cortisol and 

cortisone are metabolized via A-ring reductases predominantly in the liver.  
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Only cortisol can bind to the glucocorticoid receptor (GR) or the mineralocorticoid receptor (MR) to exert 

its function by binding in the nucleus to DNA or exert non-genomics effects. The molecular basis of cell-

specific glucocorticoid responsiveness is not fully understood, but involves a differential expression of the 

receptor isoforms, co-receptor proteins functioning as co-activators and co-repressors of transcription.  

 

Panel 2 - KEY MESSAGES 

• Instead of hypercortisolism driven by elevated ACTH release, several ACTH-independent 

regulators have been identified to contribute to increased cortisol availability during critical illness. 

• The amount of cortisol that is produced during critical illness was shown to be much less that 

previously assumed: often less than normal or normal and at the most twice that of healthy 

subjects. 

• Cortisol breakdown was shown to immediately and substantially suppressed during critical illness, 

mediated by reduced expression and activity of the cortisol metabolizing enzymes in liver and 

kidney. These altered pharmacokinetics have implications for dosing of corticosteroid treatment 

during critical illness.  

• Elevated plasma cortisol driven by reduced breakdown suppresses plasma ACTH levels through 

feedback-inhibition.  Such low plasma ACTH levels have shown to persist for weeks in the ICU, 

which was associated with abnormal adrenal structure and with impaired adrenocortical ACTH 

signaling and reduced expression of key steroidogenetic enzymes.  

• Reduced adrenocortical ACTH signaling could mediate reduced adrenocortical cortisol 

production as well as explain reduced cortisol responses to exogenous ACTH injection.  However, 

in the presence of elevated plasma cortisol and suppressed cortisol breakdown, such reduced 

cortisol responses to exogenous ACTH may be adaptive. When plasma cortisol concentration is 

not elevated or low during prolonged critical illness, low cortisol responses to ACTH could be 

indicative of adrenal failure requiring treatment.  
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• More well-designed (pre)clinical studies are needed to better identify patients with a failing 

hypothalamus-pituitary-adrenal axis response and to refine optimal treatment modalities 
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FIGURE LEGENDS  

Figure 1 - Overview of the ACTH effect on the adrenal gland 

ACTH is the main controller of adrenal glucocorticoid production and release; it stimulates steroidogenesis 

by binding to its receptor, the melanocortin 2 receptor (MC2R) present in the cell membrane of the 

adrenocortical cells and which stimulates adenylate cyclase. ACTH upregulates the expression of its own 

receptor, mediates the release of cholesterol from the lipid droplets while increasing the expression of 

genes encoding the proteins for cholesterol uptake [such as the LDL-receptor (LDLR) and scavenger-

receptor class B member 1 (SCARB1)] and for cholesterol synthesis [via 3-hydroxy-3-methylglutaryl-CoA 

reductase (HMGCR)]. ACTH also increases expression of genes encoding key steroidogenic enzymes, 

such as steroidogenic acute regulatory protein (STAR) and cytochrome P450 cholesterol side-chain 

cleavage enzyme (CYP11A1).72-77  

 

Figure 2 - Current concepts of alternative activators of adrenal stress response during critical 

illness 

Anti-inflammatory as well as pro-inflammatory cytokines derived from immune cells differentially regulate 

adrenal cortisol secretion during critical illness especially critical illness induced by sepsis. Bacterial and 

viral toxins mediated by toll-like receptors modify pituitary-adrenal hormone synthesis and glucocorticoid 

tissue sensitivity and activation of peripheral cortisol metabolism indirectly via the immune system and 

directly through an action on the adrenocortical cell itself. Adipokines such as leptin, IL6, TNFα released 

from subcutaneous, visceral or peri- and intra-adrenal adipocytes, modify directly adrenal 

steroidogenesis. Similarly HPA-axis function is influenced by blood flow, endothelial derived factors, 

neurotransmitters and neuropeptides.  

 

Figure 3 – Cortisol production in critically ill patients 
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Panel A depicts cortisol production calculated via a continuous infusion of deuterated cortisol tracer in the 

morning (from 10:00 -13:00) in 11 patients and 9 healthy control subjects.(16) Bar charts represent means 

and standard errors. Panel B depicts pulsatile cortisol secretion calculated from time concentration profile 

series, sampled every 10 minutes from 21:00-06:00 in 40 patients and 8 healthy control subjects, by 

deconvolution analysis.(21) Bar charts represent means and standard errors. Together, these data indicate 

that the 24h cortisol production rate is not different from that in healthy matched control subjects.  

 

 

Figure 4 – Overview of the HPA-axis regulation in health and during critical illness 

During health, CRH controls the pulsatile and tonic release of ACTH and cortisol, which both follow a 

diurnal pattern. During critical illness, ACTH release is only briefly increased in the very acute plase, after 

which it is suppressed.  Beyond the very acute phase of critical illness, elevated plasma concentrations 

of cortisol are predominantly brought about via reduced plasma clearance of cortisol. (16, 21) With time, the 

low plasma ACTH concentrations may negatively affect adrenocortical structure and function and hereby 

contribute to the increased risk of adrenal failure observed in prolonged critically ill patients.(22)  
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