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Preface

To be honest, documenting and writing are some of those few things that I
cannot enjoy. Analysis, problem solving and discussions of the technical details,
those are the things I always liked, but when it came to writing I would always
spend hours and hours struggling to find the right introductory sentence and
this doctoral thesis was not an exception. That is why it was very much to my
surprise that I managed to write such a long text and even did it in a foreign
language. Such an undertaking would not have been possible were it not for
many many people who shaped me as a researcher and as a person I am now,
and contributed to a successful completion of my efforts. I made both positive
and negative experiences during these relatively short academic period of my
life, but those made me grow not only as a scientist but more importantly as a
human. Thank you very much everyone!

First of all, it is worth to mention that as a person coming from a different
cultural background where there is a clear line between a student and a professor,
I was lucky to have great personalities on my supervisory board. Most of them
were not only open to scientific discussions, but also had often time to share
a cup of coffee, wine and many mugs of beer with Schnitzel or spareribs in a
German ‘Brauhaus’(brewery).

Everything started when I came to study to Germany in 2004. I enrolled at
the master’s program in Autonomous Systems at the University of Applied
Sciences Bonn-Rhein-Sieg. After graduating the program in early 2007, I was
lucky to get a job offer from Prof. Erwin Prassler, who later co-supervised my
doctoral studies, in EU FP6 project RoSta on Robot Standards and Reference
Architectures. In the RoSta project, I got involved in research on robot software
frameworks and architectures. In this context I got to know another member
of my current doctoral examination committee, Prof. Klas Nilsson from the
University of Lund. I visited Lund multiple times to have small technical
workshops on control architectures with a clear goal of bringing high level
concepts like ontologies closer to a low level robot control. It is already then,
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some of the ideas researched in this thesis started evolving. During one of
such workshops I met Prof. Herman Bruyninckx, who later would become my
supervisor.

After the RoSta project, I continued my research on robot control software in
the context of EU FP7 project BRICS. It was a great chance, because I got an
opportunity to work in a team led by Prof. Gerhard Kraetzschmar and Herman
was representing University of Leuven in this project. This constellation made
future collaborations possible. Gerhard was not only a leader to distribute
commands, but he was also very supportive on a personal level. If you had
any kind of trouble, he would stop doing his own work and focus on solving
your problems. He was also very supportive in coping with German and Uzbek
bureaucratic machinery by always writing some official letters, whenever those
were needed to extend my visa or passport.

During the BRICS project, I visited Leuven very often and had short meetings
and discussions with Herman. The discussions often focused on how robot
programming can be improved and how multiple sub-domains involved can be
systematically integrated into coherently working software and robot control
architecture. After one of such meetings, we ended up in a traditional Belgian
restaurant over a plate of Vlaams Stoofvlees and talked about whether I should
pursue a PhD. I was warned that my naive enthusiasm might turn into a
frustration pretty quickly and that is how I officially started my doctoral studies
in December 2010.

Indeed, it was a bumpy road since then. I had to change my research topic
several times and tried searching what might be useful and interesting at the
same time. Eventually, I got into the domain of the robot dynamics, constrained
motion control and software support for them. Being able to speak Russian
also helped in this choice, because Herman had re-discovered some constrained
dynamics algorithm that was developed by Russian roboticist in 1970’s and was
ahead of its time, but never realized and released to a bigger community. So, I
started working on this topic and tried to extend and improve it with semantic
models, in order to simplify its integration in larger robotic applications and to
enable a development of model driven engineering tools that rely on such models.
It was awesome to work with Herman. Sometimes he would discuss some totally
‘meta stuff’ that probably only he himself understood, and sometimes he would
dig into the source code with you. I was positively forced to swot, in order to
keep up with his vision.

I would also like to thank Prof. Joris De Schutter and Prof. Tinne De Laet for
their critical but always constructively helpful inputs during the few discussions
we had. I also thank you and Dr. Erwin Aertbeliën for providing useful feedback
that helped me to improve this doctoral thesis.
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I must also say, this PhD endeavor was truly international experience. I come
from a foreign country, lived in Germany for almost ten years, commuted
between Germany and Belgium for five years. During this time I studied
and worked at two sites, University of Applied Sciences Bonn-Rhein-Sieg and
University of Leuven, and had a chance to do research and make friends with
many great people, whom I would like to acknowledge as well.

During all these years, I shared an office with Nico Hochgeschwender and it was
awesome. Once, I remember asking him to help me to carry a huge mattress
across the town on his second day at the new job. He was surprised but agreed
to help, which is unheard of for a German Schwabe who did not even know me.
Since then we made good friend. We always had very good discussions related
to our research and soccer. Nico, you are the best FF!

The other colleagues at Bonn-Rhein-Sieg who became good friends and I would
like to thank are Mike Reckhaus for being a good friend and sharing time with
our families, Fredderik Hegger for doing all the stuff that nobody else wanted
to do and being a good friend, Sven Schneider for providing valuable feedback
on my research and software, Jan Paulus for showing how to be a pragmatic
German. The colleagues at the University of Leuven that I would like to
acknowledge are Lin Zhang for his discussions on FPGA and embedded systems,
Enea Scioni for discussions on JSON, Enrico Di Lello for coffee and giving tips on
doctoral studies, Markus Klotzbücher for Lua and compositionality discussions,
Dominick Vanthienen for sharing his thoughts about task solvers, Ruben Smits
for an introduction to KDL software, Peter Soetens for his discussions on
component-software for robots.

I am also grateful to Allison Williams and Nico’s wife Nicole Goebel who proof
read parts of this thesis. Also, many thanks to a close friend and my martial
arts master Dr. Andrea Raccanelli and his family for his understanding, support
and never-ending storage of Italian wine.

Finally, I am wholeheartedly grateful to my wife, Madina Mukhamedova who
supported and bore with me and my stubborn personality till the end. I also
sincerely thank my parents and parents-in-law who had faith in us and were
there for us, whenever we and our children needed them the most. Last but not
least, thank you my children Nigina and Rustam for cheering me up all this
time.

Azamat Shakhimardanov,
Leuven, November 2015.
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Abstract

Over the last 50 years, the controlled motion of robots has become a very
mature domain of expertise. It can deal with all sorts of topologies and types
of joints and actuators, with kinematic as well as dynamic models of devices,
and with one or several tools or sensors attached to the mechanical structure.
Nevertheless, the domain has not succeeded in standardizing the modelling of
robot devices (including such fundamental entities as “reference frames”!), let
alone the semantics of their motion specification and control.

This thesis aims to solve this long-standing problem, from three different sides:
semantic models for robot kinematics and dynamics, semantic models of all
possible motion specification and control problems, and software that can
support the latter while being configured by a systematic use of the former.

The diversity of robot motion tasks has led to the development of (constrained)
task control methodologies with origins in force control, humanoid robot control,
mobile manipulator control, visual servoing, etc. This has influenced the
way these methodologies formulate and compute constrained task control
problems, and how software was developed and documented. Hence, the
task programming approaches advocated by each framework often build upon
the (most often only implicitly specified) semantics of the models and the
assumptions of that specific domain. As a result, the semantics and the behaviors
of the relationships of the task constituents, “target objects, constraints on
object relations, controlled actions, solvers, and cost functions”, that seemingly
represent the same primitives across the frameworks have become ambiguous.
This impedes a deterministic composition of the models and the software
implementations of these task constituents and a compositionality of the
resultant tasks.

In order to address this problem, this doctoral thesis introduces a systematic
constrained motion task control specification and programming approach. The
approach first explicitly and formally defines the relationships between the
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viii ABSTRACT

abstractions of the motion task programming stack and the components of
the constrained motion task control architecture. It introduces the concept of
semantic models and exemplifies their role in the modelling and the realization
of task control applications. This research is presented in the form of two
contributions.

• Firstly, this thesis develops composable semantic models to describe
kinematic chain structures and associated computations. These models
allow decoupling of physical primitives from their coordinate-specific
representations. Additionally, they enable specifications of complex
computations on the kinematic chains by composing simpler modelling
primitives. The compositions take into account the constraints that each
primitive needs to satisfy when used with other primitives. This feature is
achieved by explicitly separating structural and behavioral aspects of the
models and follows the Model Driven Engineering (MDE) methodology.
MDE proposes decoupling of the domain specific models, their instances,
and their implementations from the generic domain independent meta-
models. MDE methodology allowed to programmatically formulate
semantic models in the form of a Domain Specific Language (DSL) and
its related tool-chain infrastructure.

• Secondly, this thesis expresses each task control problem as a constrained
optimization problem; such constrained optimization and optimal
control formulations are already at the basis of many of the existing
task control and software frameworks. This research focuses on
complete and systematic (re-)configurability of such Whole Body Control
Architecture (WBCA) and in particular, the solver component that plays
a central role in the implementations of the constrained motion control
tasks. The solver used in the simulations and the experiments is the Popov-
Vereshchagin constrained hybrid dynamics solver, which is extended to
account for different constraint-controller configurations. The research
also exemplifies the relations between the components of WBCA and
their software representations in the form of the DSLs in the motion
programming stack. Furthermore, it shows that every component of the
WBCA and respectively its software counterpart should comply with
their associated semantic models. This is imperative in order to allow a
systematic and a physically-valid constrained task specification and its
computation.

Finally, every contribution is accompanied by a number of examples that
showcase how various semantic models, architectures, and their software
implementation should be used in the context of larger applications. All
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semantic models and software contributions are provided with open source
licenses.





Beknopte samenvatting

Gedurende de laatste 50 jaar is bewegingscontrole van robots een volwassen
onderzoeksdomein geworden, dat weet om te gaan met alle soorten van
kinematische topologieën, gewrichten en aandrijvingen, met kinematische
en dynamische eigenschappen, en met meer dan één werktuig per robot.
Desalniettemin bestaat er nog altijd geen standaard-voorstelling voor robots
(zelfs niet voor het allereenvoudigste onderdeel, een referentie-assenstelsel!), en
al zeker niet voor de semantische modellen van robots en hun bewegingscontrole.

Deze thesis probeert een oplossing aan te leveren, vanuit drie verschillende
invalshoeken: semantische modellen voor de kinematica en dynamica van robots,
semantische modellen voor alle mogelijke bewegingsspecificaties en controle-
problemen, en software ter ondersteuning van deze laatste soort modellen, op
basis van een systematisch gebruik van de eerte soort modellen.

De variëteit in bewegingstaken voor robots heeft geleid tot de ontwikkeling
van methodologieën vanuit verschillende toepassingsgebieden: krachtcontrole,
humanoide robots, mobiele manipulatoren, visuele volgtaken, enz. De
toepassingsgebieden hebben een een heel sterke en zichtbare invloed gehad
op hoe de bewegingstaken zijn beschreven en opgelost, en op de soort van
software-ondersteuning die is ontwikkeld. Met name zijn de specifieke taken uit
de verschillende toepassingsgebieden nog heel erg zichtbaar in de software en
documentatie, en zijn een aantal zaken met elkaar gekoppeld geraakt die enkel
zin hebben voor een welbepaald toepassingsgebied. Om dezelfde reden is er
dubbelzinnigheid ingeslopen in de gebruikte terminologie, omdat verschillende
termen worden gebruikt om dezelfde concepten voor te stellen rond taakobjecten,
beperkingen op de relaties tussen die objecten, de beschrijving van de controle-
acties, de oplossingsalgoritmes, en de objectieffuncties die men in bepaalde taken
wil optimiseren. Dit alles heeft geresulteerd in slechts heel beperkt hergebruik
van inspanningen en software, bij het samenstellen van complexe robotsystemen
en -taken.
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Om dit probleem te verhelpen introduceert deze thesis een systematische en
sterk ontkoppelde aanpak voor het hele probleem, met expliciete formele
voorstellingen van alle concepten in bewegingsmodellering en -specificatie,
controle en toepassingen. Hiervoor worden “semantische modellen” geformuleerd,
wiens nut en impact worden aangetoond via allerhande concrete voorbeelden.
Meer bepaald brengt dit werk bijdragen aan in twee domeinen:

• Ten eerste worden “samenstelbare” (Eng.: “composable”) semantische
modellen voorgesteld, voor de kinematische structuren van robots, en
alle bijhorende berekeningen. De modellen zorgen voor een systematische
scheiding tussen de fysische primitieven enerzijds, en hun voorstelling
in concrete gegevensstructuren en functies anderzijds. De modellen
zijn zo ontworpen dat ze met slechts een minimum aan primitieven
toch alle mogelijke complexe robotsystemen kunnen voorstellen, via
systematische compositie-functies. Deze composities laten toe om fysische
en kunstmatige beperkingen expliciet te modelleren, en om structuur en
gedrag netjes van elkaar te scheiden. De inspiratie van de voorgestelde
aanpak komt uit het domein vanModel Driven Engineering (MDE); hieruit
ontlenen we de concepten van meta model, model en instantie, waarbij
het eerste volledig onafhankelijk is van het concrete toepassingsdomein,
terwijl de laatste twee daar de eigenschappen van het toepassingsdomein
aan toevoegen. De MDE methodologie maakt het mogelijk om een formele
taal te creëren, een zogenaamde Domain Specific Language (DSL), om
programmatorisch om te gaan met de semantische concepten.

• Ten tweede ontwikkelt deze thesis uitdrukkingen om alle robot-taken te
formuleren als optimisatieproblemen met beperkingen (Eng: constrained
optimization problems). Deze aanpak is niet nieuw op zich, maar de
bijdrage ligt bij het systematisch gebruik van de semantische modellen
(de hogergenoemde “DSLs”) bij het samenstellen en configureren van
zogenaamde “Whole Body Control Architectures”, d.w.z., software
systemen die een taakspecificatie omzetten naar concrete controle-software
voor de specifieke kinematische ketting van specifieke robots.

Tenslotte worden al deze bijdragen geillustreerd aan de hand van een aantal
voorbeelden over hoe deze semantische modellen, architecturen en hun software
implementaties kunnen gebruikt worden om grote toepassingen te maken. Al
de gerealiseerde bijdragen zijn beschikbaar onder open source licenties.

Gedurende de laatste 50 jaar is bewegingscontrole van robots een volwassen
onderzoeksdomein geworden, dat weet om te gaan met alle soorten van
kinematische topologieën, gewrichten en aandrijvingen, met kinematische
en dynamische eigenschappen, en met meer dan één werktuig per robot.
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Desalniettemin bestaat er nog altijd geen standaard-voorstelling voor robots
(zelfs niet voor het allereenvoudigste onderdeel, een referentie-assenstelsel!), en
al zeker niet voor de semantische modellen van robots en hun bewegingscontrole.

Deze thesis probeert een oplossing aan te leveren, vanuit drie verschillende
invalshoeken: semantische modellen voor de kinematica en dynamica van robots,
semantische modellen voor alle mogelijke bewegingsspecificaties en controle-
problemen, en software ter ondersteuning van deze laatste soort modellen, op
basis van een systematisch gebruik van de eerte soort modellen.

De variëteit in bewegingstaken voor robots heeft geleid tot de ontwikkeling
van methodologieën vanuit verschillende toepassingsgebieden: krachtcontrole,
humanoide robots, mobiele manipulatoren, visuele volgtaken, enz. De
toepassingsgebieden hebben een een heel sterke en zichtbare invloed gehad
op hoe de bewegingstaken zijn beschreven en opgelost, en op de soort van
software-ondersteuning die is ontwikkeld. Met name zijn de specifieke taken uit
de verschillende toepassingsgebieden nog heel erg zichtbaar in de software en
documentatie, en zijn een aantal zaken met elkaar gekoppeld geraakt die enkel
zin hebben voor een welbepaald toepassingsgebied. Om dezelfde reden is er
dubbelzinnigheid ingeslopen in de gebruikte terminologie, omdat verschillende
termen worden gebruikt om dezelfde concepten voor te stellen rond taakobjecten,
beperkingen op de relaties tussen die objecten, de beschrijving van de controle-
acties, de oplossingsalgoritmes, en de objectieffuncties die men in bepaalde taken
wil optimiseren. Dit alles heeft geresulteerd in slechts heel beperkt herbebruik
van inspanningen en software, bij het samenstellen van complexe robotsystemen
en -taken.

Om dit probleem te verhelpen introduceert deze thesis een systematische en
sterk ontkoppelde aanpak voor het hele probleem, met expliciete formele
voorstellingen van alle concepten in bewegingsmodellering en -specificatie,
controle en toepassingen. Hiervoor worden “semantische modellen” geformuleerd,
wiens nut en impact worden aangetoond via allerhande concrete voorbeelden.
Meer bepaald brengt dit werk bijdragen aan in twee domeinen:

• Ten eerste worden “samenstelbare” (Eng.„‘composable”) semantische
modellen voorgesteld, voor de kinematische structuren van robots, en
alle bijhorende berekeningen. De modellen zorgen voor een systematische
scheiding tussen de fysische primitieven enerzijds, en hun voorstelling
in concrete gegevensstructuren en functies anderzijds. De modellen
zijn zo ontworpen dat ze met slechts een minimum aan primitieven
toch alle mogelijke complexe robotsystemen kunnen voorstellen, via
systematische compositie-functies. Deze composities laten toe om fysische
en kunstmatige beperkingen expliciet te modelleren, en om structuur en
gedrag netjes van elkaar te scheiden. De inspiratie van de voorgestelde
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aanpak komt uit het domein vanModel Driven Engineering (MDE); hieruit
ontlenen we de concepten van meta model, model en instantie, waarbij
het eerste volledig onafhankelijk is van het concrete toepassingsdomein,
terwijl de laatste twee daar de eigenschappen van het toepassingsdomein
aan toevoegen. De MDE methodologie maakt het mogelijk om een
formele taal te creëren, een zogenaamde Domain Specific Model (DSL),
om programmatorisch om te gaan met de semantische concepten.

• Ten tweede ontwikkelt dezee thesis uitdrukkingen om alle robot-taken te
formuleren als optimisatieproblemen met beperkingen (Eng: constrained
optimization problems). Deze aanpak is niet nieuw op zich, maar de
bijdrage ligt bij het systematisch gebruik van de semantische modellen
(de hogergenoemde “DSLs”) bij het samenstellen en configureren van
zogenaamde “Whole Body Control Architectures”, d.w.z., software
systemen die een taakspecificatie omzetten naar concrete controle-software
voor de specifieke kinematische ketting van specifieke robots.

Tenslotte worden al deze bijdragen geillustreerd aan de hand van een aantal
voorbeelden over hoe deze semantische modellen, architecturen en hun software
implementaties kunnen gebruikt worden om grote toepassingen te maken. Al
de gerealiseerde bijdragen zijn beschikbaar onder industrie-vriendelijke open
source licenties.



Abbreviations

Notation Description
ACADO Automatic Control and Dynamic Optimization 19
ADL Architecture Description Language 22
AIST National Institute of Advanced Industrial Science

and Technology
1

API Application Programming Interface 14
ARM Acorn RISC Machine 19
AST Abstract Syntax Tree 26
AutomationML Automation Markup Language 38

BFS Breadth First Search 58
BRICS Best Practice in Robotics 5
BVP Boundary Value Problem 27

CAL CAL Actor Language 24
CasADi Symbolic Framework for Algorithmic Differenti-

ation and Numeric Optimization
19

COLLADA COLLAborative Design Activity 38
COP Component Oriented Programming 22
CORBA Common Object Request Broker Architecture 22

DARPA Defense Advanced Research Projects Agency 1
DE Differential Equation 27
DFS Depth First Search 58
DH Denavit-Hartenberg 20
DLR Deutsches Zentrum für Luft- und Raumfahrt 1
DoF Degree of Freedom 39
DP Dynamic Programming 27
DSL Domain Specific Language 12
DTD Document Type Definition 38

xv



xvi Abbreviations

Notation Description

EJB Enterprise Java Beans 22

FODA Feature Oriented Domain Analysis 20
FPGA Field-Programmable Gate Array 19

HQP Hierarchical Quadratic Programming 31

ICE Internet Communications Engine 22
IDL Interface Description Language 22
iTaSC Instantaneous Task Specification using Con-

straints
1

IVP Initial Value Problem 27

JSON JavaScript Object Notation 54
JSON-LD JavaScript Object Notation for Linked Data 67

KDL Kinematics Dynamics Library 7
KUKA Industrie-Werke Karlsruhe Augsburg Aktienge-

sellschaft
5

LWR Leight Weight Robot 14

MDA Model Driven Architecture 24
MDE Model Driven Engineering 12
MOC Model Of Computation 23
MPC Model Predictive Control 20
MPS Meta Programming System 26

NLP Nonlinear Programming Problem 27
NOK Not OK 63

OCP Optimal Control Problem 27
ODE Ordinary Differential Equation 27
OROCOS Open RObot Control Software 19

PD Proportional Derivative 133
PID Proportional Integral Derivative 133

QNX QNX Real-Time Operating System 19



ABBREVIATIONS xvii

Notation Description
qpOASES Quadratic Programming with Online Active Set

Strategy
19

rFSM Reduced Finite State Machine 19
ROS Robot Operating System 19
ROSETTA RObot control for Skilled ExecuTion of Tasks

in natural interaction with humans based on
Autonomy

5

RoSta Robot Standards and Reference Architectures 5
RTT Real-Time Toolkit 19

SoT Stack of Tasks 1
SRDF Semantic Robot Description Format 38
SWBC Stanford Whole Body Control Framework 1

TFF Task Frame Formalism 1

UML Unified Modelling Language 39
URDF Universal Robot Description Format 38

ViSP Visual Servoing Platform 9

WBC whole-body control 19
WBCA whole-body control architecture 19

XML Extensible Markup Language 38





List of Symbols

Chapter 1

C a model of a controller in a control block diagram

f disturbances on plant P

f̂ an estimate of disturbance f

g disturbances on controller C

M + E a model updater and estimator in a control block diagram
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Chapter 1

Introduction

In the past several years, there has been a large growth in the development of
robotics systems, both in numbers as in the variety and complexity of their tasks.
However, no progress at all has been made in giving the software driving these
systems explicit formal models, with automatically verifiable and validatable
semantics. Hence, all of the mentioned efforts typically remain limited to closely
cooperating development teams, who have the opportunity to bypass formal
validation via informal interactions between developers, and via lots of studying
of the internals of the source code. This is not a sustainable development
approach, if complex robotics systems should ever enter real-world markets,
with long maintenance and update lifetimes, and third-party integrations of
ever more complex systems-of-systems. Bringing a fundamental change in this
unfortunate lack of formalization and standardization is the major motivation
behind this PhD research.

A good example of the above-mentioned systems and demonstrations that
were shown in the recent past are the DARPA Grand and Urban Chal-
lenges [DARPA, 2004a, DARPA, 2005, DARPA, 2004b], DARPA Robotic Chal-
lenges [DARPA, 2013], RoboCup@Home [RoboCup, 2015a], RoboCup@Work
[RoboCup, 2015b]. These demonstrations focus on the development of
autonomous capabilities for a range of different platforms, such as wheeled
autonomous robotic cars that could traverse different terrains, or humanoid
platforms that could assist or re-place a human in dangerous and routine
everyday activities. These robots usually have a quite capable hardware with
many sensors, actuated degrees of freedom, and a sophisticated software platform.
Figure 1.1 shows examples of such complex robot hardware.

The challenging conditions under which the robots should operate require

1
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(a) (b)

Figure 1.1: Complex robotic systems: (a) HRP-4C humanoid robot developed
for the entertainment industry [Humanoid Research Group, AIST, 2009]. (b)
DLR Rolling Justin platform [Fuchs et al., 2009] is developed to assist with
tasks in space.

the hardware to be accompanied by an equally capable software platform
that allows the realization of various complex tasks. The dynamic nature
of the interactions with the environment and more and more with humans,
unavoidably leads to the development of complex models and programming
approaches for these platforms. Moreover, the variety of these interactions,
i.e., pure motion, or contact and motion, that need to be addressed by
the programming approaches impose further requirements on the systems’
design and development. This led to the development of many task
control and programming methods, which had their origins in different robot
application domains. Some of the well-known frameworks include: Task
Frame Formalism (TFF) [Bruyninckx and De Schutter, 1996] with the initial
foci on force-controlled robot applications and later extended to the Instanta-
neous Task Specification using Constraints (iTaSC) [De Schutter et al., 2007,
Rutgeerts, 2007, Vanthienen et al., 2011b], the Stanford Whole-Body Control
Framework(SWBC) [Khatib, 1983, Khatib, 1985] with its origins in (mobile)
manipulator control in operational space and the Stack of Tasks (SoT)
[Mansard and Chaumette, 2007] with the origins in the Task Function paradigm
[Samson et al., 1991] and the extensions to visual servoing [Espiau et al., 1992]
and humanoid robot control [Mansard et al., 2009] applications.

From a functional point of view, all these frameworks compute some form of
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constrained task control. A constrained task control problem is complex and
involves multiple other sub-problems that need to be addressed too, such as
vision-based estimation, control, and scheduling. Therefore, many task control
and programming frameworks strive for some symbolical representation that
describes what the task problem is, rather than how its concrete realization looks
like. Figure 1.2(a) shows one possible form of such a symbolic representation of
the task. Often, this representation is also referred to as a task specification.

The task specification focuses on the definitions of the relations among the
objects in a scene and the actions that satisfy these relations. Hence, it is
also referred to as object and action centric specification [Smits, 2010]. As it
is seen in Figure 1.2(a)–(b), in addition to objects (e.g., robots, environment
objects) and controlled actions, there are two further components that are
part of the task, task or application constraints on the object relations and
a schedule/coordination of the controlled actions. Each of these components
belongs to a domain of its own and complies with models and constraints in that
domain’s context. For instance, the task constraints are imposed on the physical
relations, such as time, pose, twist, or wrench. They follow either from motions
or interactions of the robot with its environment. Figure 1.2(c) depicts a visual
servoing application where the constraints are imposed on various feature frames
involved in the tasks, e.g., a relative pose of the robot base in the world, a pose
of the object in the camera space. In order to complete the task successfully,
every constraint need to be controlled accordingly. Figure 1.3(c)–(d) summarize
various constraints and the ways to control them. Depending on the task that
the robot is to perform, the constraints and the controllers are defined on the
physical quantities that are either in joint, Cartesian, or sensor spaces. The
integration of multiple such constraints and controllers allows realizations of
different complex tasks.

Furthermore, the symbolic task specifications are attractive because they are
independent of the application being developed and the type of robot platform
used. This may lead to the assumption that if a set of basic recurring modelling
primitives for the constraints, the controllers and the other task constituents were
identified, one could develop correct-by-construction complex robot applications
by composing the individual tasks according to some well defined set of rules,
Definition 1. This is a vision of any task control and programming framework.�
�

�
�

Definition 1. Composition refers to the systematic construction of applica-
tions from components that implement abstractions pertaining to a particular
problem domain [Nierstrasz and Meijler, 1995, Sanatnama et al., 2008].

It is in an analogy to a superposition principle in linear-time dynamical systems,
where the behavioral semantics of the constituting dynamical components, and
the composition rules to integrate them are widely accepted. An equivalent of
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this principle in the context of software for physical systems is compositionality,
Definition 2. On the other hand, for the programming of robotic systems no
similarly clean, structured and unambiguous semantics has been defined yet.
Therefore, the integration of the pieces of the robotic application still remains
an artisanal practice.

Move the arm to object pose along the path, 
when the object is in the reach.

Controlled
action

Object 
relations

Constraints

Schedule &
Coordination

(a)

Controlled
action

Task

Coordination

Constraints

Robot Object

(b)

h

g

f

c

b

w

(c)

Figure 1.2: Many task control and programming frameworks strive to describe
tasks in a symbolic form. This abstract specification allows to focus on what
the task is, rather than how this task is concretely implemented. Often, such
symbolic formulations contain knowledge about the objects in the scene that
are part of the task, the constraints on the objects’ relations, the controlled
interactions between the objects and the scheduling or the coordination of these
interactions.
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�

�

�

�

Definition 2. Compositionality refers to a condition of
any system, where the system’s behavior or property can be
inferred from the behaviors or the properties of its constituting
components [Chakrabarti et al., 2003, Doyen et al., 2008,
de Alfaro and Henzinger, 2001, Goessler and Sifakis, 2005].

The concept of domain semantics or semantic models is at the basis of the
modelling approach and all hypotheses put forward in this doctoral thesis.
Therefore, any following use of this concept complies with Definition 3.�
�

�
�

Definition 3. Semantics of a domain is defined in terms of a necessary
minimum number of structural primitives, their operations and the
constraints they need to satisfy to unambiguously define all models in the
domain.

This thesis sets out to research the factors that influence a correct-by-
construction composition of components in task specification and programming.
In particular, it will look into the definition of coordinate-independent semantic
models for the specification of the robot kinematic structures and algorithms.
It will also analyze and extend these semantic models in the broader scope of
motion task control architectures.

1.1 Motivation

Recently, the robotics research community has been flooded with interesting
robotic platforms such as Willow Garage’s PR2 [Wyrobek et al., 2008],
KUKA youBot [KUKA, 2010], Baxter [Rethink Robotics, 2012], and Care-O-
bot [Fraunhofer IPA, 2015]. Many of these platforms come with different degrees
of software support. One of the main aims during the development of these
platforms was to reuse some of the existing software functionalities across
these platforms or port mature technologies onto the industrial applications.
In order to support these activities, there have been a number of large
funded projects such as RoboHow [RoboHow, 2015], RoSta [Hägele, 2011],
BRICS [Bischoff et al., 2010], ROSETTA [ROSETTA, 2015], SMERobotics
[Hägele and Hans, 2005], etc. Even though these projects advanced progress in
developing software for robot applications to some extent, they still fell short of
delivering the promised results.

For instance, the youBot platform, which was developed as a promising
educational platform in the context of BRICS project, comes as bare-bone
system without any software support for the motion control primitives. As
a consequence, it requires an engineer with expertise in multiple domains to
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Figure 1.3: (a)Various geometric relations that are associated with joints and
links of a kinematic chain; (b) notations and specific physical representations
that are used to define the geometric relations; (c) a possible combination of
task constraints. The nature of these constraints vary, e.g., geometric, contact,
physical constraints of a platform, etc., and they can be applied at the same
time. All constraints build upon geometric relations; (d) variety in the ways
constraints can be controlled.

build and understand complete functional motion control applications. The
PR2 platform has all the software functionalities for motion and interaction
programming, but it requires a lot of effort to configure and to adapt this
software to the different application setups. In the context of the Robo-
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1 class JTask : public opspace :: Task
2 {
3 public :
4 JTask () : opspace :: Task(" application :: JTask ") {}
5 virtual jspace :: Status update ( jspace :: Model const & model )
6 {
7 // Update the state of our task.
8 actual = model . getState (). position ;
9 // Compute PD control torques and store them in command_

for
10 // later retrieval .
11 command = kp * (goal - actual ) - kd * model . getState ().

velocity ;
12 jspace :: Status ok;
13 return ok;
14 }
15 double kp , kd;
16 jspace :: Vector goal;
17 };

Listing 1.1: An example of joint space task specification and control in one of
the Whole-Body Control (WBC) task control frameworks. This is an excerpt of
code from [Stanford Robotics and AI Lab, 2011, Philippsen et al., 2011].

How [RoboHow, 2015] project, it was a real challenge to integrate constraint
solvers from the SoT [Escande et al., 2010, Mansard and Chaumette, 2007]
task programming framework in another task programming framework
iTaSC [De Schutter et al., 2007, Vanthienen et al., 2011b], though both of the
frameworks had the same type of components and target the same types of
applications. So, why is it difficult to prototype a robot application, in spite of
so much progress in robotics research and multitude of robot task programming
and control frameworks? In order to exemplify some of the issues, take a look
at two following examples.

Example 1: Code listing 1.1 shows an excerpt of a joint space task control
program for the two branched robot in Figure 1.3 and implemented in the Stan-
ford Whole-Body Control (WBC) software framework [Philippsen et al., 2011].
Here, on line 5 jspace::Model contains data on the robot’s geometrical and
dynamical properties such as a link’s length, a joint’s type, a link’s mass and
inertia, a joint’s inertia, etc. Line 8 gets an update of a position vector from
the model and this is used together with a velocity vector of the joints to define
a control command on line 11. The joint’s geometric quantities that are used in
the controller are depicted in Figure 1.3(b) and associated torque controller in
Figure 1.3(d).

Now assume that the desired robot model is not available in the form that
SWBC framework needs, but is present in another library implementation, e.g.,
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1 // The vector v_base_AB is expressed in the same base as the
twist

2 // The vector v_base_AB is a vector from the old point to the
new point .

3

4 joint . twist . RefPoint ( const Vector & v_base_AB ) = Twist (vel+rot*
v_base_AB ,rot)

5 segment . twist = joint . twist (qdot). RefPoint ( joint .pose(q).M *
f_tip .p)

Listing 1.2: A common form of representation in conventional kinematics and
dynamics libraries. It requires a lot of effort to check semantic validity and the
results of such expressions. This is an excerpt of code from [Smits et al., 2001].

KDL [Smits et al., 2001]. One is still interested in joint positions and velocities
for the controller. But, as is seen on the lines 4-5 of listing 1.2, the joint
uses different representations, i.e., pose and a twist instead, where pose seems
to consist of an orientation matrix and a position vector. This is a problem,
because the implications of these primitives on the models are not explicit.
Further, in order to use the implementation of a given robot model, the physical
quantities in KDL model need to be converted to their WBC counterparts.
In order to implement this correctly, the physical constraints associated with
those quantities need to be made explicit, while one single invalid conversion
might easily be overlooked and cause various unpredictable problems across the
system, as well as logging debugging times.

Such problems are very common in robotics, because every functional library
opts for its own specific representation to describe the same physical (geometric)
quantities. Additionally, every representation may impose extra representation-
specific constraints on computations which need to be accounted for. For
instance, minimal orientation representations as Euler angles always have
singularities, while non-minimal representations as orientation matrices do
not. The problem of representation can also be elaborated with the help of
figures 1.3(a) and 1.3(b). In 1.3(a), the physical quantities (e.g., wrench, pose)
do not have any coordinate or representation specific data associated, whereas
in 1.3(b) the notation already implies that the pose of an end-effector point is
using a frame primitive and joint values q, q̇, q̈ are vectors.

Example 2: another problem, which is complementary to the representation
problem in example 1, is described by Figure 1.4. It shows a generic layered
view on the structural organization of contemporary robot task programming
software. The view distinguishes three tiers of specification.

• Task layer specifications (programs) are generic representations of the
task model primitives, i.e., controlled actions, constraints among objects,
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etc. They describe what needs to be done. Figure 1.2 depicts an example
of such a task specification program.

• Motion layer specifications describe how task models are realized
using constrained motion programming approaches. It represents a
transformation of controlled actions, constraints on object relations,
schedule and coordination into their concrete counterparts, e.g., minimum
time third-order polynomial trajectory tracking defined between robot’s
end-effector pose frame and some object’s center of geometry pose frame,
where the tracking controller is acceleration-resolved.

• Robot layer specifications implement concrete constrained motion control
approaches using software architectures on some specific computational
hardware platform. On this layer robot-specific constraints such as
geometric and inertial data, physical constraints on joints, etc., are taken
into account.

Most of the contemporary constrained task control frameworks, such as
iTaSC [De Schutter et al., 2007, Smits et al., 2008, Vanthienen et al., 2011a,
Vanthienen et al., 2011b], SWBC [Khatib et al., 1999, Khatib et al., 2004b,
Khatib et al., 2003, Khatib et al., 2008], SoT [Mansard and Chaumette, 2007,
Mansard et al., 2009] and Visual Servoing Platform (ViSP) [Chaumette, 1998,
Chaumette and Hutchinson, 2006, Chaumette and Hutchinson, 2007] implement
motion, robot, and to some extent task layer specifications.

The main problem here is that, even though these task control approaches
address the same set of problems and applications, they originated in different
application domains and had different research foci. This legacy is reflected in
their software realizations that often adopt a specifically tailored combination
of representations, approaches, and components. This is shown in Figure 1.4
with examples of hypothetical frameworks A, B, and C, which represent some
task programming frameworks. Such a situation inadvertently leads to the
fact that the same constrained task specification problem cannot be or difficult
to implement by the different frameworks. This is directly related to the
composability of the task framework’s components, Definition 4.�

�

�

�
Definition 4. Composability refers to a condition of a system,
where system properties will remain valid under some local condi-
tions after it is composed [Chakrabarti et al., 2003, Doyen et al., 2008,
de Alfaro and Henzinger, 2001, Goessler and Sifakis, 2005].

Thus, one can deduce that if the semantics and constraints of the modelling
or programming primitives are coupled with their specific representations and
constraints, the result of a new configuration of the same primitives is often
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Task level
specification

Motion level
specification

Robot level
specification

A B C

Figure 1.4: The layers in task control frameworks may represent the model
abstractions, interacting library implementations or the direction of information
flow. For instance, a path planner on the task layer can interact with a Cartesian
velocity controller on the motion layer. The issue here is that every framework
uses its own specific combination of representations and methods for the same
functional components. For instance, the velocity output of the controller can
be a screw twist or a pose twist.

unpredictable [Goessler and Sifakis, 2005]. This statement relates to many
traditional task programming frameworks and it can concretely be exemplified
with the following set of questions with respect to the setup in Figure 1.3.

• How would the task control program using a concrete representation
behave, if some of the constraints on two-branched kinematic chain were
removed or modified?

• How would the constraint controllers react, if an additional number of
branches were added to the kinematic chain?

• What would the relevance of the previous two actions be, if the controlled
motion were either velocity or acceleration-resolved?

Each of these questions touches different aspects of the robot’s and task’s
models at different levels of detail. The more detailed is the model, the more
conditions and as a result, the more composition constraints need to be defined
and satisfied. It also implies that the composition process needs to take place
across all layers of task control and programming.
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This thesis focuses on some of the issues of the composition and composability of
the task components in the context of motion layer and robot layer specifications
(Fig. 1.4) for the applications using robot manipulators. In order to identify
the motion primitives and to define the associated composition constraints,
this research will specifically look into various configurations of the whole-body
motion control architecture and motion task programming primitives.

1.2 Problem Statement

This PhD thesis addresses the following complementary research problems in
the broader context of constrained (motion) task programming and control:

• Semantic consistency in kinematic chain models:
Problem - Current approaches to kinematic chain modelling are frequently
created with a specific set of use cases in mind. These are pragmatic
solutions that are meant to work with some concrete set of libraries and
tools. Therefore, many of these modelling approaches are locked into, on
one hand, a specific representation language semantics and syntax, and
on the other hand, a specific coordinate representation.
Implications - The absence, in kinematic chain specifications, of explicit
semantic/physical models, which are invariant to specific coordinate
representations, can lead to the design of incorrect computational
algorithms and control architectures around these kinematic chains. Some
common questions that arise in this respect are: which coordinate-specific
constraints do external wrenches applied to the tip of each segment
introduce? How do these constraints influence the design of impedance
controllers? In what coordinates should the joint pose and twist errors be
expressed in computed-torque controllers?
A solution to this problem is presented in Chapter 2.

• Composability of computational algorithms for kinematic chains:
Problem - Most of the constituting components of the constrained task
control applications, e.g., the controlled action, the solver, are not
composable. This is because they often hide implicit knowledge about the
conditions under which they are valid and should interact with each other.
Furthermore, the models and the realizations of these task components
couple the structural aspects, e.g state information, with the behavioral
aspects, e.g., state update computations.
Implications - The absence of the explicit constraints on the structure
and the behavior of the task components hinders their incremental and
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deterministic composition. Some common questions that arise in this
respect are: how can a hybrid dynamics algorithm for a complex kinematic
chain be correctly constructed from the available pose, twist and wrench
computations on a single segment? Here, the kinematic chain is the
composition of multiple segments and joints. Another example is the
composition of the complex computations from the simpler ones. Is it
possible and meaningful to compute an acceleration twist of the end-
effector before its pose and velocity twists are computed?
A solution to this problem is presented in Chapters 2 and 3.

• Variability in whole-body control architecture:
Problem - Many task control frameworks are often presented as monolithic
architectures that implement some form of whole-body control and
specialize on a particular application domain, e.g., a visual servoing.
This implies that they stick to a specific set of choices of components
and architectures, which frequently couple the task specification problem
with its context specific realization. This is the result of the failure
to recognize variability points in the implementation of the whole-
body control architecture, i.e., which task control components and their
parameters should be configurable, in order to satisfy the requirements of
different applications?
Implications - This limits not only a diversity of the tasks that the
framework can implement, but also future extensions of its constituting
components. This can also lead to the situations, where the same
problem specification can not be realized in the frameworks with the
same underlying paradigm.
A solution to such problems is presented in Chapter 5.

1.3 Approach

The approach follows two hypotheses that will help to address the problems in
Section 1.2.

• First, it is assumed that there are two aspects of any model: its
semantics in some application context and its concrete implementa-
tion. Thus, the approach focuses on decoupling these two aspects,
in order to compose them in a systematic way. It relies on a
Model Driven Engineering (MDE)-based methodology to realize this
procedure [Bézivin, 2005]. In this context, the identified semantic models
and constraints are allocated on the appropriate levels of abstractions in
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MDE. Further, these models are encoded in the form of Domain Specific
Languages (DSLs) [Voelter et al., 2013, Fowler, 2010]. A composition of
multiple these DSLs defines either functional or non-functional aspects
of the task control application. These DSL programs can then be
translated by the modelling and code generations tool-chains into concrete
implementations.

• Second, it is assumed that the principle of separation of concerns allows
a decomposition of the models into their structural and their behavioral
constituents. This is particularly important on the implementation level,
because it allows a predictable composition of concrete implementations
of the models. This is achieved by employing metaprogramming
techniques [Abrahams and Gurtovoy, 2004, Alexandrescu, 2001] in com-
bination with MDE.

The following sections provide detailed information on how to apply these
hypotheses in the context of constrained task programming and control.

1.3.1 MDE in Task Programming

MDE is a software development approach with an emphasis on creating and
using domain specific models to develop applications. It identifies recurring
patterns and primitives of the domain. These are at the core of the domain
specific tool-chains, which can be utilized to implement further applications or
models. Often, an integral part of such a tool-chain is a code-generation process.
The output of the code-generation is a programming language specific code
that implements modelled applications. Such an approach to an application
development focuses on the design of the system architectures, rather than
their specific implementations. Therefore, it improves the productivity and
avoids language specific common programming problems [Kleppe et al., 2003,
Kent, 2002, Bézivin, 2005]. There can be as many layers of modelling as desired,
though the usefulness of higher layer models is questionable. Therefore, there are
usually four [Atkinson and Kühne, 2003] of these modelling layers as depicted
in Figure 1.5. The descriptions below are not strict one-to-one interpretation of
the (meta) metamodelling and domain modelling as it is defined in MDE, but
adapted in the context of this research.

• M3: Domain independent models, also known as meta meta model
layer covers generic models that are invariant of the domain specific
concepts and relations. A common example of such models are graphs.
In the context of the robotics, the graph can represent a connectivity
structure of a kinematic mechanism. Most of the real world robots can be
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modelled as a specialized directed graphs. These are serially connected
nodes and edges with either single child (a serial robot) or multiple
children (branching humanoid robots) as depicted in Figure 1.3. Parallel
robots or loop mechanisms can also be modelled by the graph primitives.
Another prominent use of the graph models is an automaton model for a
coordination.

• M2: Domain specific models, also known as meta model layer adds
domain semantics onto the M3 layer models. For instance, in relation to
our example of the kinematic structures, a joint primitive is a node in the
graph model. It is the node with additional domain specific properties
attached to it, e.g joint inertia, offset, pose, twist, axis of rotation, etc.
These properties can themselves be modelled as the graph, e.g a graph of
the physical states of the robot’s joints or links.

• M1: Application specific models are specific instances of the M2 models
tailored with respect to some application. Going back to our example in the
previous item, a concrete robot’s structural description, e.g., KUKA Light
Weight Robot (LWR) [Albu-Schäffer et al., 2007a] or Universal Robot’s
UR10 [Universal Robot, 2015] robot, using M2 layer modelling primitives
such as joints, segments, transmissions, etc., fall under this category.

• M0: Implementation layer is a concrete computer language representation
of the modelling primitives on the layers above. Conventionally, it is
created by the code generation tools that are developed using the domain
independent and specific models.

It also needs to be noted that the research in this dissertation is not a
pioneer in applying MDE to robot software. There have been others who
have done it [Schlegel et al., 2012, Steck and Schlegel, 2010, Vanthienen, 2015,
Vanthienen et al., 2014]. But the focus of those efforts were on the structural
descriptions of the software components and architectures, whereas this
PhD research applies the MDE methodology to the specification and the
implementation of the functional algorithms and data, i.e., kinematic chains
and dynamics algorithms.

1.3.2 Task Programming Stack as a Composition of DSLs

The applications and their models are often realized by the developers
directly in the form of the functional libraries. The main issue with such
an approach is that the domain specific semantics barely show in application
programming interfaces (APIs) and are mostly hidden in the implementations.
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Figure 1.5: MDE metamodelling and modelling layers and their relationships.
Moving down from M3 to M0 modelling and the resulting models become more
concrete and constrained.

A representative example of such a situation was discussed in Section 1.1. The
applications that rely on these functional APIs are bound to use some specific
representations or algorithmic constraints that are imposed by the library. This
can also affect the applicability context of that library. One approach to resolve
this problem is to put as much domain specific semantics as possible into
the APIs [Biggs and Makarenko, 2010]. Because of the limited expressivity of
the interface signatures, such a solution can quickly become cumbersome ∗.
Another, more elegant approach is to define separate computer representations,
i.e., languages, for the semantics and its specific implementations as the MDE
approach recommends. This leads to a collection of DSLs that are used to
model each aspect, i.e., coordination, solver, robot structure, of the application
independently of its specific realization. This approach is also completely
orthogonal to the conceptual layered organization of the contemporary task
control architectures. Figure 1.6 shows a group of DSLs across the conceptual
∗The specific semantic information can also be put into interface contracts with pre- and

post-conditions. But not many language infrastructures support them. Therefore, in many
cases they are documented textually.
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Figure 1.6: A constrained task control problem involves multiple sub-problems.
Each of these sub-problems belongs to its own domain. This suggests that
every aspect of these sub-problems can be described in its own DSL and the
constrained task control be expressed as the composition of these DSLs. The
conceptual stacked model groups a number of such DSLs together, in order to
show that they contribute to the semantic description of the larger domain,
such as Task, Motion and Robot. This stack of loosely coupled modelling and
software components is required to turn task commands into motions for the
robot tools, and further down to concrete actuator motions.

layers of the task programming stack. Each of the DSL blocks is responsible
for the specification of one sub-problem of the task and the associated tool-
chain generates its concrete implementation. Ideally, this loosely coupled stack
of DSLs should allow generation of concrete software implementation of the
constrained task control application by defining explicit transformations from
task commands into motions for the robot tools, and further down to concrete
actuator motions. The organization of task layers in the form of the stack
reflects this transformation flow as well.

A decision on where a specific DSL block belongs to is based on the analysis of
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the existing implementations of the task specification frameworks and control
architectures. An affiliation of the DSL with one of the layers does not exclude
another DSL with the same functionality on the others. For instance, the
monitoring functionality is not exclusive to the task layer, but can also appear
at different levels of detail on the motion control and robot layers. Then, these
DSLs of the same functionality need to explicitly interact with each other and
with other DSLs on the same level. Such detailed relationships between the
various DSLs across the layers are complex and impossible to convey by the
conceptual models as in Figure 1.6. It requires a decomposition of every single
model according to the MDE discussed in Section 1.3.1.

This is partially presented in Figure 1.7, which extends the conceptual stacked
model in Figure 1.6 with the knowledge of the semantics and implementation
of the DSLs as defined in MDE. It shows that for the robot and motion
layers, the semantic models for the rigid and articulated body motions can be
decomposed into the geometric and the coordinate-specific models. Since the
semantics in kinematics and dynamics of kinematic chains is often reflected
in their topology, the figure introduces topological models instead. It shows
a one-to-many relationship between meta layer models and the lower layer
concrete models. These relationships support the transformation process in
MDE, where the (meta) meta models are refined to concrete models by the
additional domain specific knowledge. This is valid for all the components
that are part of the motion task specification, e.g., controllers, constraint
solvers. For the motion models, there are 1 − to − N and 1 − to − M
relationships between the topological–to–geometric and geometric–to–coordinate-
specific models, respectively. Considering the number of DSLs on each layer,
one can deduce how complex the relationships between DSL models can become.
Chapter 2 provides insights on how to transition from the top level conceptual
models as in Figures 1.6 and 1.7 to the more detailed complex models which
can also express complex inter-DSL relations.

Thus, identifying the domain specific semantics of each task constituent, as
well as making the relationships between their semantic models explicit allows
to develop a systematic approach to address a correct-by-construction of the
task specification by composing DSLs. For instance, a robot is modelled as
connected rigid and flexible bodies. If the robot’s joint is flexible, then an
appropriate transmission type and actuator control need to be implemented.
The specifications of the rigid bodies and the actuator control primitives
are modelled by the separate DSLs [Ott, 2008, Modelica Association, 2015,
Consortium, 2008], which are then composed. The physical correctness of this
composition is only ensured, if the semantic models of each DSL are done
correctly, and not because DSLs use the same syntactic form.
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After each component in the motion stack† gets its coordinate or method specific
representations, they are realized in software architecture while taking into
account other imposed constraints. For example, let a constrained motion task
be specified and controlled in an iTaSC framework. Then, according to the
DSL-based approach, the whole application can be composed using a set of the
DSLs such as

• a DSL for the coordination and the scheduling of the tasks - rFSM
[Klotzbüecher, 2013].

• a DSL for the robot and the object structural models - KDL extensions with
geometric relations semantics [Smits et al., 2001, De Laet and Bellens, 2012].

• a DSL for the constraint specification - expression trees
[Aertbeliën and Schutter, 2014].

†Motion stack refers to a layered organization of the DSLs, software libraries, and
architectures that are relevant to the motion specification.

Operating systems
e.g. Unix, QNX

Computational platform
e.g. FPGA, ARM

Robot platform
e.g. Frida, LWR, UR5

Motion specification languages

Task specification languages

Robot

Motion

Task
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e.g. OROCOS, ROS
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Figure 1.7: The diagram shows the orthogonal relationship between the task
programming stack of DSLs and their models in MDE. Each layer in the
stack has its own set of DSLs and tool-chains, which are realized using MDE
methodology. This figure shows the separation of topological, geometric and
coordinates models that are relevant for the realization of Motion and Robot
layer DSLs.
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• a DSL for the constraint solver - ACADO toolkit [Houska et al., 2009] or
CasADi [Andersson, 2013] frameworks with qpOASES [Ferreau et al., 2014]
solver.

• a DSL for the software components - OROCOS RTT deployment
script [Soetens, 2006] and ROS launch and interface definition files
[Quigley et al., 2009].

Almost all components in the list represent a combination of the DSLs and the
tool-chains that can interpret them. But not all frameworks and components
listed above have a clear separation of semantics and their implementation.
This is especially the case for the models and implementations of the kinematic
chains and computations.

1.4 Contributions

The thesis distinguishes two tracks of contributions:

Contributions to the modelling

• A definition of semantics for kinematic chain and computation modelling
primitives. These semantic models build upon existing geometric relations
semantics (Chapter 2).

• A modelling of task control applications using the MDE approach. The
model decouples the specification problem from the specific representations
of robot structures, geometric relations, solvers and controllers (Chapter 5).

• A determination of the variabilities in the whole-body control architecture
(WBCA) and its realization through the MDE-based task programming
approach (Chapter 5).

Contributions to the software implementation

• An implementation of the C++ templates-based DSL for the modelling and
semantic checking of the kinematic chains and the associated computations
(Chapter 2).

• An implementation, an analysis, and a validation of Popov-Vereshchagin’s
linear-time constrained hybrid dynamics solver using geometric relations
semantics (Chapter 3).
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• An implementation of the WBCA scheme for different application setups
on KUKA youBot robot platform (Chapter 5).

• An implementation and an integration of a controller, which uses an
MPC-like prediction algorithm to adapt its gains, with the linear-time
constrained hybrid dynamics solver on youBot robot platform (Chapter 5).

1.5 Related Work

This section provides a top-level overview of the existing related work which has
influenced and been taken into account in this PhD thesis. Later, each chapter
performs a detailed analysis of the state of the art related to the material
explained in that chapter.

1.5.1 Variability of Robot Models

Let’s take the symbolic task representation given in Figure 1.2. Here, a set of
motion primitives as a path, a path controller or a geometric constraint were
identified. An application developer should have a necessary domain knowledge
(robot control, constraint optimization, planning, dynamics, etc.) and be able
to ground the symbolic representation onto the concrete piece of the executable
software. There are a number of possibilities to implement each task primitive
and to formalize its interactions with the other components in the task.

Let’s take the path primitive, for instance. It has a geometric property. This
geometry could be modelled as a set of straight lines with via-points or a
spline. Further, each line may have its own representation. It could use
Denavit-Hartenberg (DH) parameters or Plücker coordinates. Finally, for
control purposes one might be interested in the poses of the points on the lines.
The pose relations may have geometric models of their own. Each configuration
of the model implies its own semantic and coordinate constraints. The similar
procedure holds for the other components of the task, i.e., controllers, kinematic
structures, etc. In software engineering, a family of such model configurations is
often referred to as a variability of the model [Czarnecki and Eisenecker, 2000].
The identification and modelling of the variations of the models can become
a daunting activity, because choosing the right level of modelling and model
representations requires a detailed domain analysis and knowledge of experts.

There has been a lot of research in software engineering related to this
topic. In [Kang et al., 1990], the authors introduce a feature oriented domain
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Figure 1.8: A variability space of a robot application is defined by three modelling
dimensions: development process phases [Reiser, 2014], architectural con-
cerns [Radestock and Eisenbach, 1996, Radestock and Eisenbach, 2003] and
model driven engineering layers [Kent, 2002, Bruyninckx et al., 2013]. These
dimensions also represent various modelling views or approaches on the same
application during its life-time. For example during the deployment phase, a
software architecture of some distributed application is commonly modelled
or viewed as a composition of software components with specific roles and
interaction options. The same application can be viewed in terms of the
functionalities of each component and the programming languages they are
realized in during the design phase.

analysis (FODA) methodology. FODA allows to reuse functionalities and
architecture of the applications in the specific domain. It is achieved
by creating their generic and widely applicable models, which are refined
for the specific use cases. FODA relies on three modelling concepts:
aggregation/decomposition, generalization/specialization and parametrization.
Further, a number of variability modelling languages have been developed, in
order to facilitate and automate the process of the variability modelling and its
resolution for the specific applications in the domain. In [Berger et al., 2013,
Chen et al., 2009], and [Eichelberger and Schmid, 2013], the authors provide a
survey of features of such modelling languages and the methods they implement.
In [Voelter et al., 2007] and [Voelter and Groher, 2007], the authors discuss how
the model variabilities expressed in variability modelling languages is handled
in model transformation and generation tools.

In robotics the concept of model variability has barely been expressed explicitly.
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Some of the few examples are [Inglés-Romero et al., 2012, Gherardi, 2013], and
[Hochgeschwender et al., 2013]. The latter two have been conducted in the
context of the BRICS project [Bischoff et al., 2010]. In both efforts, the authors
identify the variabilities in the deployment of the robot software architecture.
These variations of the deployment model are taken into account in the
transformation and code generation process. One of the general outcomes
of the BRICS project with respect to the variability modelling is depicted in
Figure 1.8. It depicts a relation between three modelling views on a robot
application. Each of the views has its own models with their own constraints
and variations. Here, of a particular interest is the dimension of MDE, because
most implementations and methods in robot motion planning, specification, and
control implicitly follow this layered organization [Hägele, 2011]. The models
and approaches that are relevant in this thesis are marked in bold red color.

1.5.2 Software Composition and Physical Systems

A holy grail of software engineering is the process of software composition.
Its main goal is to define and to implement software components that
are used to build complex applications with deterministic behavior. The
software composition is complementary to the topic of variability. The
latter is needed to identify and explicitly model multiple configurations of
the models and implementations involved in the composition. The authors
in [Nierstrasz and Meijler, 1995] identify three major items to be related to
software composition:

• Languages - address how to specify components and connectors
[Mehta et al., 2000, Taylor et al., 2009]. They should be able to de-
scribe not only basic structural elements but also specific application
architectures and generic architectures and component frameworks
that those applications can comply with. A related work in this
area is Architecture Description Languages (ADL) [Bass et al., 2003,
Medvidovic and Taylor, 1997, Clements et al., 2002].

• Tools - address a possibility of requirement specifications, a software
management in component frameworks and support for the application
construction and maintenance.

• Methods - address technologies and methodologies that are useful to the
development and maintenance of the component frameworks.
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In [Lau and Wang, 2007, Lau et al., 2006], the authors analyze various forms
of composition in component oriented programming (COP). They identify three
concepts that are used to implement component software:

• Semantics - what they are meant to be, e.g., an object or an architectural
unit.

• Syntax - how they are defined, constructed, and represented. For instance,
the authors refer to component syntax as the syntax of component
definition language, which is different from component implementation
language. In ‘object’ components this definition language coincides with
the implementation language, e.g in EJB it is Java. In a framework,
the role of the definition language may coincide with that of an interface
definition language which may provide mappings to different programming
languages, e.g in CORBA it is an IDL language, in ICE it is Slice language.

• Composition - how they are composed or assembled.

The authors summarize that one needs at least three different language classes,
i.e., an implementation, a definition, and a composition, to construct component-
based software application. They also state that the composition can take place
during the design, the deployment, and the run-time stages of the development.

In the software engineering community most of the research on composition
is on structural aspects. That is, they focus on the types of component, port, and
connector models and implementations. In embedded systems which includes
also robotics, the situation is different. Here, the component behavior or
coordination, aka model of computation (MOC), shift into the focus in addition
to structural aspects [Eker et al., 2003a]. This domain researches how the
components with different models of computation interact and are composed in
a deterministic way to create a compositional system [Goessler and Sifakis, 2005,
de Alfaro and Henzinger, 2001]. The research on composition for the embedded
systems tries to solve a number of questions related to the development of
software for discrete and continuous control systems. For instance, in relation to
the control block diagram model depicted in Figure 1.9, the following research
questions need to be addressed by the composition mechanism:

• What is the order of the initialization, start and execution of the software
components that implement the blocks in this control diagram?

• Should the disturbances g and f on the controller C and plant P models
be processed before their respective inputs, yd and u?

• Should the sensor measurements y be estimated before or after the desired
inputs yd?
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• How does an external decision block, e.g., planner, will interact with the
components in the control loop?

Many of the above listed questions are modelled and solved based on
actor paradigm to describe the composition mechanism [Lee et al., 2003,
Eker et al., 2003b, Hewitt and Baker, 1978]. In an actor-oriented approach
time and concurrency become key parts of the programming model. In [Lee, 2004,
Lee, 2006], the author discusses a family of actor-oriented DSLs and tool-
chains for the engineering systems. He discusses the composition mechanisms,
type systems, and MOCs they support. He also discusses how actor-oriented
DSLs are implemented using conventional programming languages. Some
examples of such actor oriented composition languages that have recently
been developed include Ptalon [Cataldo, 2006], Giotto [Matic, 2008], and
CAL [Eker and Janneck, 2003].

Some of the language design decisions in Section 2 and the implementations
of the control architectures of the example applications in Section 5 have been
influenced by the state of art presented in this section.
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Figure 1.9: A control block diagram implementation of some task. Here the
blocks and arrows represent models of a robot/plant P , a controller C, model
update and estimation M + E, control input u, desired controlled variable yd,
measured controlled variable y, observed system state z, disturbances on the
controller g , disturbances on the robot f , estimates of the controlled variables
and disturbances ŷ and f̂ , respectively.
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1.5.3 Design and development of DSLs in robotics

A concept of Domain Specific Languages has been well known and researched
for quite some time already in the software engineering and the programming
language communities [Hudak, 1996, van Deursen et al., 2000, Bentley, 1986,
Scott, 2009]. Recently, the introduction of the Model Driven Architecture
(MDA) [Kleppe et al., 2003] and MDE [Kent, 2002] methodologies reinforced
the attention for the DSLs again. Most of this research often focused on
tool-chains and implementation methodologies of the DSLs. There is good
amount of the published research that performs an exhaustive and comparative
analysis of the features and shortcomings of these DSL tool-chains and the way
they are implemented [Fowler, 2005, Merkle, 2010, Voelter and Groher, 2007,
Ghosh, 2010, Parr, 2007].

As in general purpose programming languages, the DSLs can have their own
syntax and semantics, but unlike the general languages the semantics of the
DSLs are based on the abstractions of a concrete domain they are developed for.
These domains can vary from the text processing to the modelling of complex
dynamical systems. In general programming languages and their tool-chains,
the knowledge of the operating system and the hardware platform defines what
the domain knowledge is and based on it a machine-optimized specific code
is generated. This is the case, regardless whether the language is compiled
or interpreted. In the latter case there is another level of abstraction in the
form of virtual machines that themselves are operating system and hardware
specific. The same principle of the knowledge abstraction holds for the DSLs
with the exception for the additional domain specific knowledge. This concrete
knowledge of the specific models is added by the DSL compiler tools, which
instantiate generic DSL programs in the form of the concrete programming
language code. This process can be achieved in two ways: as an external DSL
or an internal DSL [Fowler, 2010, Ghosh, 2010].

The internal DSL is built on top of the host programming language that the
application is implemented in. The internal DSLs usually rely on already existing
features of the host language and its tool-chain infrastructure. Therefore, one
can consider the internal DSL to be designed as a library of generic language
primitives. The DSL code can be then instantiated to a specific output by
the host language’s infrastructure [Ghosh, 2010]. Many internal DSLs use
interpreted host languages such as Ruby, Lua, CLisp, etc. In [Ghosh, 2010],
the author classifies the internal DSLs based on their implementation patterns
into two main classes: generative and embedded. In the generative internal
DSLs domain specific abstractions are transformed to generate concrete code
through some form of metaprogramming, e.g., through macros, preprocessors
and other metaprogramming mechanisms. In the embedded internal DSLs,
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the domain abstractions that are part of the DSL type system are embedded
within the type system of the host language. Here the author distinguishes a
number of implementation patterns such as method chaining also known as
fluent APIs [Fowler, 2010], typed embedding, reflective metaprogramming, etc.
This classification is particularly interesting with respect to the design of the
functional APIs and libraries. Since both domain specific functional libraries as
well as embedded DSLs rely mainly on the type system of the host language to
express the domain specific abstractions, the differences and advantages of one
over the other become ambiguous.

Unlike the internal DSLs, the external DSLs are designed ground-up as stand-
alone languages with their own tool-chain infrastructures. They require a lexical
and a semantic analysis and a necessary lexer and a parser need to be imple-
mented. A few years ago that would have been a big undertaking and one would
have used such tools as flex/lex [Levine, 2009] and bison/yacc [Levine, 2009].
Recently, efforts to implement a programming language, the external DSL
in particular, have been minimized with the help of the tool-chains known
as Language Workbenches [Fowler, 2005, Merkle, 2010, Erdweg et al., 2013].
Some of the well known workbenches are Xtext [Foundation, 2015], IntelliJ
MPS meta-programming system [JetBRAINS, 2015], ANTLR [Parr, 2007].
In [Ghosh, 2010] the author provides a classification of the external DSLs based
on their implementation patterns. Here, he recognizes DSL workbenches, DSLs
with embedded foreign code, DSLs based on context-based string manipulation
and parser combinators. But regardless of the implementation pattern used,
the principle always stems from the fact that the domain specific abstractions,
i.e., domain’s semantic model, are transformed into the concrete code. This
multitude of the implementation methods gives flexibility to a DSL developer.
That is, as long as one has a valid semantic model of the domain and an
appropriate Abstract Syntax Tree (AST) that represents this model, the DSL
of any syntactic flavor can be implemented.

In robotics, most of the DSL research was related to such sub-domains as
planning, reasoning, coordination and perception. In [Nordmann et al., 2014]
the authors provide a good overview of the DSL trend in robotics, they
analyze existing resources on DSLs based on the DSLs’ application domains.
They identify eight robotics relevant sub-domains in which DSL developments
have been going on: coordination, perception, planning, manipulation,
etc. In [Dantam and Stilman, 2012, Dantam et al., 2010], the authors develop
a Motion Grammar tool, which can be used to design and to analyze
robot controllers using a formal language. The authors claim that the
research results from the language and automata theory and can directly
be applied on an application to prove its correctness and completeness. In
[Ragan-Kelley et al., 2013], the authors develop a new programming language,
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Halide, for image processing and computational photography. Another domain
that is relevant to the robot task programming is optimization. There is a lot
of research to express optimization-based problems using the DSLs. A good
overview of the existing modelling languages and tool-chains in this domain is
given in [Kallrath, 2004, Fragniere and Gondzio, 2002, Andersson, 2013].

1.5.4 Robot Control and Optimization

So far, the discussions focused on different modelling and implementation
approaches for the software components and their architectural variations
that influence the development of task control frameworks. Function-
ally, these software components and architectures implement some form
of the (online) constrained optimization problem. In particular, Op-
timal Control Problem (OCP) [Betts, 2010] and Model Predictive Con-
trol (MPC) [Richalet et al., 1978] approaches that are based on the constrained
optimization methods have recently been gaining popularity in robotics.
Mathematically, OCP and MPC solve the equations as in

min
x(•),u(•),T

T∫
0

L(x, u)dt+ Ē(x(T ))

subject to

x(0)− x0 = 0, r(x(T )) = 0

ẋ(t)− f̄(x, u) = 0, t ∈ [0, T ]

h̄(x, u) ≥ 0, t ∈ [0, T ].

(1.1)

In the context of robot motion task control, the integral term is a
cost function that represents some physical quantities that need to be
optimized, x0 and r(x(T )) are initial and terminal constraints (robot states),
ẋ(t)− f(x, u) = 0 is the differential equation (DE) model of the robot motion,
i.e., forward/inverse kinematic or dynamics, and h is often a geometric path or
a trajectory constraint in joint or Cartesian spaces [Diehl et al., 2006].

Even though most optimization-based control approaches solve for the same
formulation in Equation (1.1), they differ in the concrete numerical techniques
they use. Furthermore, the choice of the numerical technique is influenced
by the form of the cost function. The former also defines the type of the
control problem, i.e., linear quadratic, time optimal, etc. In [Diehl et al., 2006,
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Diehl, 2001, Andersson, 2013], the authors identify three groups of methods to
solve optimal control problems:

• Dynamic programming (DP) [Bellman, 1957] - uses a principle of
optimality to recursively compute the solution of the optimal control
problem. Here, either Bellman’s equation for discrete time models or
Hamilton-Jacobi-Bellman’s equation for continuous time models need
to be solved. Their outcome defines a necessary (and sufficient for the
global optimum) condition of the optimality. DP suffers from the curse of
dimensionality, thus restricted to small search spaces.

• Indirect methods [Diehl, 2001] - formulate the optimal control problem as
a boundary value problem (BVP) in ordinary differential equations (ODE).
Then, these ODEs are solved using numerical integration methods. The
indirect methods are also referred to as first optimize and then discretize.
Common BVP problems that are relevant in robot control are initial value
problem (IVP) and two-point boundary value problems. For example,
forward dynamics control problem is an IVP problem that can be solved
using recursive domain specific Newton-Euler method.

• Direct methods [Diehl, 2001, Bock and Plitt, 1984] - are the converse of
the indirect methods. Because of this they are also referred to as first
discretize and then optimize method. Here BVP is converted to a nonlinear
programming problem (NLP). The NLP can then be solved using one of
the root searching methods [Betts, 2010].

In robotics, in addition to the least square optimization (Jacobian pseudo inverse
methods), summarized in Section 3.2, there has been a considerable amount of
research on the optimal path control problems. [Verscheure, 2009] provides an
excellent overview of the state of the art on optimization-based path planning
and control. The research in [Verscheure, 2009] is further extended to task
programming in [Decré et al., 2010], and [Debrouwere et al., 2013] introduces
the sequential quadratic programming approach to solve optimal path control
problem with acceleration and jerk constraints. [Martin and Bobrow, 1995]
and [Sohl and Bobrow, 2001] apply optimal control to minimize actuator
efforts for serial kinematic chain motions with end-effector constraints.
In [Erez and Todorov, 2012], the authors extend this to trajectory optimization
for domains with contacts.

In MPC, the model of the process is used to predict future process behavior,
outputs and inputs w.r.t to some cost function [Diehl, 2001, Ferreau et al., 2008].
MPC can be viewed as the OCP being solved during some period of time
[t0, t0 + T ] with T the prediction period. The outcome of the OCP problem,
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i.e., optimal control inputs for that prediction period, is applied for some short
time δ to this system. Then at the interval [t0 + δ, t0 + δ + T ] a new OCP is
solved. This is repeated continuously until the terminal state is reached. Because
of this forward moving nature of computations, MPC is also known as the
receding horizon control. Most of the MPC realizations use direct simultaneous
methods like multiple shooting or collocation. Some of the applications of
the MPC in robotics are presented in [Erez et al., 2011, Erez et al., 2013], and
[Van den Broeck et al., 2011].

In general, a software realization of one of the numerical techniques that is used
to solve OCP is referred to as a solver. A review of the state of art shows that
the solvers can be distinguished into two categories: those that use domain
specific knowledge and are only applicable in that context and those that use
mathematical optimization techniques and are applicable in any domain. The
advantage of having a domain specific solver is that it can utilize the structural,
the behavioral models and patterns in the domain. Example, Newton-Euler
inverse dynamics solver applies Newton’s second law recursively or iteratively
to a kinematic chain. The recursion is defined by the topology of the kinematic
chain. Such domain knowledge can allow on one hand, efficient implementations
and on the other hand, the semantic validation of the task control problem. The
latter is virtually non-existent for mathematical optimization solvers. In domain
independent solvers the OCP problem is solved in batch using the numerical
integration and differentiation techniques. This is unlike in the domain specific
solvers, where each component of the control loop is usually treated separately.
OCP for the motion tasks are defined either on the kinematic level, position and
velocity-resolved schema, or on the dynamic level, acceleration-resolved scheme.
This choice of the constraint resolution scheme determines, the differential
equation model of the robot’s motion. For instance, if the task control uses the
velocity-resolved scheme, the motion model becomes

Jr(q)q̇ = Ẋ. (1.2)

Here, Jr(q) is a robot Jacobian that defines a mapping between joint space
velocities q̇ and Cartesian space velocities Ẋ. The type of the kinematic solver
used in the task control loop and a respective desired input set-point constraint
are defined depending on whether an inverse or a forward velocity kinematics
problem is being solved. For instance, if the desired input set-point is the
velocity twist of the end-effector, then it is the inverse problem and task control
loop is built around inverse kinematics solver and computed joint space velocity
vector is sent to the robot.

In case the task control uses the acceleration-resolved scheme and involves robot
dynamics, the motion model takes the form of

M(q)q̈ = τ (q, q̇). (1.3)
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In this acceleration-resolved scheme M(q) is an inertia matrix that defines
a mapping between joint space accelerations q̈ and the forces τ (q, q̇). The
complete specification of the constrained motion using the expanded dynamic
motion model of the robot is given as in

M(q)q̈ = τa(q)− τc(q)− C(q, q̇)︸ ︷︷ ︸
τ(q,q̇)

,

h(q) = 0,

(1.4)

with h(q) = 0, τc(q), τa(q), C(q, q̇) being the holonomic position constraints,
constraint forces, input forces and bias forces, respectively. Note that the
solution of the constrained system in Equation (1.4) is neither optimal nor
stable (controlled) as OCP formulation implies. These components need to be
addressed, accordingly.

Again, as in the case of the kinematics problem one can define the inverse and
forward dynamics problems. In the inverse problem the desired input set-point
constraint to the task control loop is joint space acceleration vector and the
control loop is built around inverse dynamics solver and computed joint space
torque vector is sent to the robot. For the forward problem the input is joint
space torque vector.

Chapter 3 introduces a domain specific constrained hybrid dynamics solver that
computes the solution of Equation (1.4) using domain specific computational
sweeps on the kinematic chain of a robot. Additionally, the chapter will discuss
where a constrained optimization solver fits in a bigger picture of the constrained
robot motion task control and programming framework.

1.6 Overview of the Thesis

In addition to introductory material in Chapter 1 the rest of the thesis is
organized as follows.

Chapter 2 introduces semantic models to describe robot kinematic chains and
operations on geometric primitives associated with the chains. The semantics
of the models is based on the semantics of the geometric relations for rigid
bodies as defined in [De Laet et al., 2013b]. The models are formulated as the
composition of the models of the geometric primitives and take into account
constraints imposed by the articulated rigid bodies. The chapter also covers a
design and an implementation of the DSL using the defined semantic models.
It discusses the state of the art on DSL design approaches and how the concept
of functional composition is used to implement composable semantic models.
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It provides some examples on how the DSL is used to construct and validate
kinematic chains and algorithms. The chapter concludes with discussions on
future possible extensions of the DSL and how the approach can be applied to
other components of the task control application, e.g., specification of controllers,
constraints, etc.

Chapter 3 introduces the linear-time constrained hybrid dynamics algo-
rithm. This algorithm was developed by Russian scientists in the 70’s but
was never got prominence outside Russia [Popov, 1974, Popov et al., 1978,
Vereshchagin, 1989]. The chapter explains the details of the algorithm and
discusses it in retrospect to other robot dynamics algorithms. The chapter also
presents the extensions of the algorithm to task prioritization and constraint
weighting. Furthermore, it discusses some numerical considerations that need
to be accounted for during the computation of constraint forces.

Chapter 4 presents the results of the validation of the algorithm from Chapter 3
on a number of simulation setups with multiple existing robot kinematic chains,
e.g., Baxter [Rethink Robotics, 2012], KUKA youBot[KUKA, 2010] and virtual
planar mechanisms. The chapter also discusses the role of the solver in control
applications and how a different set of constraints can be stabilized using
existing control approaches. The simulations are conducted with a different set
of constraints both in Cartesian space and joint space. The setups involved
over-constrained constraint configurations with the conflicting Cartesian and
joint space constraints, as well as non-conflicting configurations.

Chapter 5 discusses how the contributions from the previous chapters are
integrated to implement various robot skills in the context of WBCA. The
chapter discusses that most constrained task specification frameworks comply
to the same layered programming model and implement WBCA. In WBCA,
the degrees of freedom available to the system are allocated to resolve the
constraints of the task. The constraints are imposed in any space and need
to be controlled in that space. The chapter presents a number of application
setups that use different kinematic chains, e.g., a fixed serial robot or a mobile
manipulator, and constraint controllers. The purpose of these setups is to show
that as long as variabilities of the control architecture model are identified, any
combination of constraints, controllers and solvers can be deployed. One of
the setups uses a combination of the linear-time constrained hybrid dynamics
solver with a receding horizon gain prediction algorithm. The algorithm does
not generate optimal control inputs to the solver but modifies controller gains
according to some objective function. The chapter analyzes and shows how
such an architecture is implemented and deployed on a software architecture
using the OROCOS RTT framework.

Chapter 6 summarizes the contributions and the results of the research
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presented in the thesis. It discusses what further extensions and developments
are required to improve robot task control and programming.



Chapter 2

Semantic Modelling for
Composable DSLs ∗

2.1 Introduction

In Chapter 1 it was shown that a task specification has commonly four
constituents: objects (including robots), constraints on object relations,
controlled actions and a schedule. Each of them can be implemented as a
DSL, in order to facilitate the task specification problem. These DSLs should
comply with the semantic models, as in Definition 3, of each task component,
thus making them invariant to a concrete (coordinate) representation used in an
application. The invariance property of task primitives also fosters model and
implementation re-use across different applications and task control frameworks,
thus, making it a necessary condition for the re-usability.�

�

�

�
Definition 5. A semantic model of a geometric relation is a set of minimum
geometric primitives, i.e., point, frame, body, their operations, and the
geometric constraints they need to satisfy, that unambiguously define this
relation [De Laet et al., 2013b].

This chapter develops the semantic model and a compliant DSL to describe robot
kinematic structures and robot motion models, i.e., kinematics and dynamics
algorithms (Fig. 2.1). The semantic model and its implementation allow one to
specify and validate a construction of robot kinematic structures and motion
∗The content of this chapter is based on the research presented

in [Shakhimardanov and Bruyninckx, 2015]
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Figure 2.1: Target object and robot specification DSLs and their position in
the task programming stack.

algorithms. The primitives of the models and the DSL are designed in such a
way that their compositions define other complex primitives. These semantic
models are based on coordinate invariant geometric relation semantics presented
by De Laet et al. in [De Laet et al., 2013b] and defined as in Definition 5.

Before diving into the design and the development of the models and their
computer language implementation, A concrete example motivates the need for
the representation invariant models and programming tool-chains. The example
is based on the tutorials by Roy Featherstone presented in [Featherstone, 2010a,
Featherstone, 2010b].

2.2 Example

Figure 2.2 depicts an articulated system consisting of two rigid bodies. Both
Figure 2.2(a) and Figure 2.2(b) show the same system with both bodies initially
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at rest. An effort is applied only on the left body B1. This effort contributes to
the motions of both bodies. In Figure (a) the effort on the B1 and its resultant
motions use two 3D vectors, i.e., a net linear force f and a net moment n for
the effort and a linear acceleration ai and an angular acceleration ω̇i for the
motions. In Figure (b) the net effort on B1 is the single 6D spatial force vector
F and the resultant motion is the single 6D spatial acceleration Ẍ. The goal is
to express each body’s motion in terms of the net effort on B1, the masses and
the inertias of the bodies.

The summary of some of the resultant equations is given in Table 2.1. In
particular, one is to note the number of the equations and the constraints each
representation prescribes. In 3D vector representation, each quantity should
explicitly indicate the coordinate frame it is expressed in, before performing
any computations. It also requires careful analysis of the lines of action of
the linear forces to identify the components that contribute to the motions.

x

x(m2,I2)

cm2

x

f, n

ω̇1

a1cm1

(m1,I1) r1 r2
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B2
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(a)

F

Ẍ

H1
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B2
s

H2
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Figure 2.2: The motion of two-body articulated system can be described using
3D vectors for the linear and angular motions and efforts as in (a) or using 6D
spatial vectors as in (b). Even though these two representations describe the
same physical motion, the constraints they impose are different. This leads to
two different ways of computing the same quantity. In (a) cmi, mi, Ii, ai, ω̇i, fi,
ni, ri, s, O are a center of mass, a mass, a rotational inertia about the center of
mass, a linear acceleration of the center of mass point, an angular acceleration
of the body, a linear force with the line of action passing through the center of
mass point, a moment on each body Bi at the center of mass, a direction of
the axis of rotation and a point through which the axis passes, respectively. In
(b) F, Ẍ, Hi, Fj are a spatial force, a spatial acceleration, a spatial inertia of
one of the bodies and the portion of the spatial force transmitted over the joint
connecting the bodies, respectively.
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3D vector formulation 6D vector formulation

Oa1 = cm1a1 − r1 × cm1 ω̇1 F − Fj = H1 · Ẍ1
Oa2 = cm1a2 − r2 × cm2 ω̇2 Fj = H2 · Ẍ2
cm1f2 = Of2 = cm1f2 , cm1f1 = f − cm1f2 Ẍ2 = Ẍ1 + sα
cm1n2 = cm2n2 + (r1 − r2)× cm2f2 sT (F − Fj) = 0
On2 = cm2n2 − r2 × cm2f2
cm1n1 = n− cm1n2
sT · On2 = 0

Table 2.1: Summary of the motion and effort vector relations using two 3D
vectors and one 6D vector representations [Featherstone, 2010a]. Here, the last
equations in each column are the constraints prescribed by the joint coupling.
Superscripts O, cm1, cm2 denote the origin points of the coordinate frames in
which the quantities are expressed in. Action lines of the linear forces on each
body pass through their centers of mass.

The component-wise, for the linear and the angular components separately,
Newton-Euler formulation increases the number of involved equations. In 6D
vector formulation neither of the above is the case. Furthermore, spatial (one
6D vector) and conventional (two 3D vectors) acceleration describe the same
physical phenomenon, but in different coordinate systems! The former represents
the change in the velocity vector of the vector field at a point that coincides
with the reference point which is fixed in space [Featherstone, 2001].

The example shows the complexity and the semantic differences involved, when
using different representations for the same phenomenon even in a simple
mechanism. This complexity increases manifold with the number of degrees of
the robot. This may inevitably lead to an incorrect result, or worse an invalid
computation, if not done carefully. If this happens it is very difficult to track
such bugs, because of their snowball effect on the whole system.

In order to resolve this problem, one of the aspects to consider is to
include explicit semantics to all the primitives and operations involved in
the specification process. It can be achieved by identifying and decoupling
general semantics of the coordinate specific geometric models and by encoding
the semantics in DSL. This DSL can then be used to instantiate the same robot
structural and computational models using concrete coordinate representations.
Additionally, such an approach ensures correct-by-construction implementations
and helps to avoid code duplication when implementing new algorithms.
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1 // vector v_base_AB is expressed in the same base as the twist
2 // vector v_base_AB is a vector from the old to the new point
3 joint . twist . RefPoint ( const Vector & v_base_AB ) = Twist (vel+rot*

v_base_AB ,rot)
4 segment . twist = joint . twist (qdot). RefPoint ( joint .pose(q).M *

f_tip .p)

Listing 2.1: A common form of representation in conventional kinematics and
dynamics libraries. It requires a lot of effort to check semantic validity and the
results of such expressions [Smits et al., 2001].

Contributions. The goal of this chapter is to show how the semantic models can
be used to describe kinematic chain structures and their operations. Specifically,
the chapter develops (i) semantic models and constraints to specify: (a)
structural primitives (Section 2.4), e.g., a segment, a joint, a kinematic chain
and (b) operational primitives (Section 2.4) that work on the structural semantic
models above, e.g., pose, twist or wrench operations on the segments; (ii) a
C++ library that can be used to construct and check semantic validity of the
kinematic structures and the algorithms (Section 2.6). For instance, it can be
used to construct, compute and check inverse dynamics algorithm for a tree
structured robot with a set of named tool-tips.

2.3 Related work

Despite being used in robotics for the past several decades, with the exception
of the recent research by De Laet et al. [De Laet et al., 2013b] and to some
extent by Featherstone [Featherstone, 2008], there have been few efforts to
standardize the semantics of the geometric primitives, the kinematic models and
computations they are used in. As a result, there have been a proliferation of
various kinematics and dynamics libraries [Rickert, 2015, Smits et al., 2001,
Felis, 2011], which rely on different sets of representations and implicit
constraints. This rendered them incompatible, as well as tedious to debug.
This problem can be well observed in Listing 2.1, which encodes a lot of such
implicit knowledge. The listing shows a computation of the segment twist from
the joint twist in a kinematic chain. The issue here is that there is no explicit
information on the points at which the twist is measured or on the coordinates
in which the measured twists are expressed. This knowledge should be deduced
based on the limited code documentation or even worse by implementing a test
application and analyzing its numerical output. This state of matters is common
to many existing libraries and frameworks. The community has implicitly been
aware of such problems and realized that they can be addressed by decoupling
general domain semantics from the concrete implementations. Recently, it led to
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the proliferation of various DSL and tool-chains. But before the DSLs became
popular, this problem was usually addressed by developing class hierarchies
using public inheritance (inherit functionalities or interfaces which are exposed
for users of the class). In this approach, the most generic(base) class is chosen
as the root parent of the hierarchy and represents the general semantics of the
domain [Shakhimardanov et al., 2010]. The children of the base class would
then specialize concrete situations with additional constraints. But many
robotics software implementations misused the inheritance-based approaches to
create unmanageable hierarchies of classes [Shakhimardanov et al., 2010]. The
utilization of the DSLs does not guarantee that the similar problems can be
avoided, on the contrary the misuse of DSLs can lead to the problem of DSL
cacophony [Fowler, 2010]. In this case, many DSLs are created to model every
tiny bit of the problem, which is not necessarily a productive approach and very
similar to the issue of the unmanageable inheritance hierarchies.

The advantage of the DSLs and tool-chains over that of the public inheritance†-
based approach is that the concrete domain knowledge is modeled as the specific
transformations from the generic semantic model into the specific instances of
that model. These transformations take into account all the constraints of the
specific models, are validated and are not meant to be meddled with.

Few resources are available with respect to semantic models and DSLs in the
context of rigid body applications in robotics. Most content in this context is
developed in computer graphics and simulation applications. In these domains,
most of the DSLs are based on XML language and are limited to the validation
approach prescribed by XML infrastructure, e.g., DTD, XML Schema-based val-
idation. Some of the examples include AutomationML [AutomationML, 2008],
COLLADA [Barnes and Finch, 2008], X3D [Web3D Consortium, 2008] and
SRDF [Kunze et al., 2011], URDF [Willow Garage, 2009] in robotics.

In other sources the models for relations of the geometric primitives in the form of
scene graphs [Strauss and Carey, 1992, Foote et al., 2011a, Foote et al., 2011b]
have been widely discussed. But their focus did not lie on the semantics and
constraints of connected nodes. [Featherstone, 2008] provides a guideline on
modeling rigid-body systems. It describes the construction process of complex
kinematic structures and algorithms starting with the geometric model of
the primitives, e.g., a joint and a link. It also introduces multiple frames to
describe the locations of the joints on each body. These are analogues to the
concept of joint attachment pose frames presented in this chapter with the
exception for not being formalized in terms of the geometric primitives of a
point, a body and a frame. In [Featherstone, 2010a] and [Featherstone, 2006],
the author explains differences between two 3D Euclidean and 6D screw or
†This is the form of the inheritance usually used in robotics software.
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spatial vector representations of the motions (as twist screws) and the efforts
(as wrench screws). He propounds that 6D spatial vectors convey complete
geometric information of the rigid body motions and efforts in coordinate-free
form and states that there is no need for a reference point to define them.
A similar discussion with the focus on the acceleration twists is presented
in [Featherstone, 2001]. On the other hand, he uses Plücker coordinates to
ground the ideas, which refutes the statement on the coordinate-free semantics
of the motions and efforts.

In [Frigerio et al., 2011, Frigerio et al., 2012] Frigerio et al. define a DSL to
describe the kinematic structures. They express the semantic model that the
language uses in the form of a UML class diagram. Though their method is
promising, it also has some shortcomings: first, the limited expressiveness of
the UML which can not convey semantic constraints in the model completely;
second, the model binds itself to implicit semantic constraints such as the
number of motion DoFs of the joints, the co-location of joint reference and
target frame origins to name some.

The content developed in this chapter makes use of the existing work by De Laet
et al. presented in [De Laet et al., 2013b, De Laet et al., 2013a]. The research
provides complete semantics of the geometric primitives relations, including
pose, twist and wrench, and their coordinate semantics. They expose semantic
constraints imposed by the specific coordinate representations used with these
relations, as well as common errors made during the specification process. In
[De Laet et al., 2013c], the approach is extended to the specification of rigid
body pose and twist scene graphs. This enables one to query various geometric
quantities associated with rigid bodies without relying on the specific coordinate
representation and resolve the necessary semantic constraints. Table 2.2
summarizes how the different semantics and coordinates contribute to the
complete specification of the geometric relations. Based on the information
provided, one can conclude that the concrete and the complete specification
of the geometric relation is obtained by composing its coordinate invariant
semantics and its context specific coordinate representation, i.e., numerical
aspect.

Notation. In the following discussions on the models, most of the examples
will be using geometric semantics notation given in Table 2.2. Here, lower case
letters f , l represent point names, upper case letters in square brackets [F ], [L]
represent orientation frame names, lower case letters in curly braces {f}, {l}
represent pose frame names (frame origin point and orientation frame), upper
case letters in boldface A, C represent body names. In order not to overload
the figures, sometimes only one of the above is used. Also, in order to simplify
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Figure 2.3: There is a one-to-many relationship between a physical primitive and
its representation using a specific geometric model and in a specific coordinate
representation.

the written form of the geometric expressions of Pose, Twist, Acceleration Twist
and Wrench, the symbols X, Ẋ, Ẍ and F are used whenever the semantics is
involved and their boldface versions X, Ẋ, Ẍ and F are used whenever both
the semantics and coordinates are represented in the expressions.

2.4 Semantic models for the kinematic structures

In order to define the specification semantics for the domain, first, one is
required to identify the smallest conceptual primitives of the domain that
are physically valid, and then formalize their meaning and possible semantic
constraints. It allows to formally reason on the models and to check whether
all semantic constraints of the domain are satisfied in a concrete combination
of the primitives, as well as, the geometric and the coordinate models that are
chosen for an application.

The Figure 2.3 shows a simplified relationship between different modeling classes
(representations). The models discussed in this chapter build upon the geometric
and the coordinate models that have been presented in [De Laet et al., 2013b].
Therefore, the main effort in defining the primitives for the kinematic chain
models is to establish relationships among these three model classes. This
mapping process is not achieved by a one-to-one relation among the primitives.
It requires an effort into the complete formal specification of the constraints
that need to be resolved across the chosen models. This is partially depicted
in the Figure 2.3 as a one-to-many relationship. A more elaborate example of
this matter is given in the Figure 2.4. Here, the structural primitive, Segment
is defined in two ways, both of which are semantically valid. On the top, the
pose frame of the proximal end is defined with respect to the pose frame of the
distal end, which is then defined with respect to some reference body and a
reference pose frame attached to it. Whereas, in the bottom, the pose frames
of the proximal end and the distal end of the link body are defined with respect
to the same reference body and a pose frame attached to it. Also, geometrically
the pose frames can be expressed either as a position and an orientation or
as a pose. The view of the coordinate models gives a rough idea on how each
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distal
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Figure 2.4: There is a one-to-many relationship between a physical primitive
(both a structural and a operational) and its representation using a specific
geometric model and in a specific coordinate representation.

of the mappings can be configured using a specific coordinate representation.
Each configuration has its own constraints, the valid resolution of which may
depend on the concrete application context. In general, a complete semantics
of the modeling primitive is defined through its structural representation (i.e.,
data) and operations that work with/on this structure. In order to create a
semantically valid model, both of the aspects will have the constraints that
need to be satisfied. Here, it is necessary to emphasize that the semantics of
the kinematics (and dynamics) modeling primitives are not new definitions,
but are built by composing the existing semantics in geometric and coordinate
models, but with additional constraints. Therefore, the full specification requires
composition rules to create complex model primitives from the combination
of the structural representations and their operations. The following sections
introduce the details of the semantics and constraints associated with the
modeling primitives.

2.4.1 Models of the structural primitives

While defining the basic structural primitives to describe kinematic mechanisms,
one can distinguish between two types of properties they may possess: geometric
or kinematic and dynamic properties. The former includes geometric and
kinematic relations between points, frames and bodies, whereas the latter
address physical properties as a mass, an inertia, an elasticity, a damping and
so on of the body. For instance, in the context of a kinematic chain a segment
is defined as a geometric constraint between two pose frames. On another
hand, an ideal rigid body model (in this text an equivalent term is link), which
is a part of the segment has a mass, an inertia and a shape. The following
paragraphs describe each primitive and give examples on how to use them.
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{cm}

[r]
B

{o}

{f}

A

{s}

Figure 2.5: From a geometrical point of view, a minimal semantics of a link
is given as an ideal rigid body with any fixed pose frame, {f} on it. In case
the dynamics and shape geometry are required, additional two pose frames are
defined, {cm} at which the center of mass and moment of inertia are defined
and {s} where the shape is attached. In the nominal case the inertia attachment
pose frame is assumed to coincide with {cm}. In a general case, the inertia can
be defined in any other pose frame.

Link is an ideal rigid body, Figure 2.5. Geometrically, it is defined as the
body with an attached pose frame, {f}. This is a minimal semantics of the link
and can be used in the contexts where only the knowledge on the geometric
relations is required, e.g., in kinematics computations. For the contexts, where
also dynamic and shape properties are required the knowledge on the mass,
inertia and shape of the link is added. In order to define these, the link requires
two additional pose frames: a shape attachment pose frame, {s} and {cm} pose
frame where the center of the mass and the moment of inertia, Icm are defined‡.
Furthermore, if the moment of inertia of the body is measured at any other
pose frame with the reference point at its origin, then that pose frame is an
inertia attachment pose frame. In order to uniquely distinguish among multiple
pose frames on the link, each pose frame is given an attachment semantics. In
addition to the inertia and shape attachment semantics, there are pose frames
with the feature attachment semantics that are used to specify locations of
sensors, tool-tips or features relevant to the task computations. The attachment
semantics is a semantic tag added to the pose description.

AttachmentSemantics ∈ {Type::Inertia, Type::Shape, Type::Feature}

AttachmentPoseFrame ≡ (Pose,AttachmentSemantics)

∈ {Posefeature,Poseinertia,Poseshape}
‡The semantics of the inertia is defined in Section 2.4.2.
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{f}
{j0}

{j1}

[r]
B

{o}

A

Figure 2.6: Segment is a Link with additional attachment pose frames for joints
(frames {j0}, {j1}). Here {f} is the feature pose frame that is available through
the specification of the link.

Link ≡
(
Xfeature({f}|A, {o}|B), Xinertia({cm}|A, {f}|A),

Xshape({s}|A, {f}|A),mass,moment of inertia
)

Constraints: (i) every attachment pose frame should have attachment
semantics and be uniquely identifiable, (ii) the link can have one shape and one
center of mass attachment pose frames and more than one feature attachment
pose frames, (iii) one body fixed feature pose frame is chosen as a reference
and all the other attachment pose frames are defined with respect to this pose
frame, {f} in Figure 2.5.

Segment is a link with additional attachment pose frames in the context of
the kinematic chain construction, Figure 2.6. There is one additional type of
attachment semantics: joint attachment. The pose frames that are used to
specify relative constrained motion between two segments in the kinematic
chain have joint attachment semantics.

AttachmentSemantics ∈ {Type::Joint,Type::Feature}

AttachmentPoseFrame ≡ (Pose,AttachmentSemantics)

∈ {Posefeature,Posejoint}

Segment ≡
(
Link, Xjoint({j0}|A, {f}|A), Xjoint({j1}|A, {f}|A)

)
From the separately defined attachment semantics in the context of the link,
only the feature attachment semantics is accessible to the segment, i.e., one
cannot define the pose frames with the inertia or shape semantics in the context
of the segment. These are available to the segment through the definition of
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Figure 2.7: Joint is a kinematic constraint relation between two unique joint
attachment pose frames of the segment. There can be more than one joint
attachment pose frames on the segment. In case of the 1-DoF joint, the relative
motion of the joint frames takes place about a directed line.

the link. If the link does not have any dynamic or shape properties, then the
segment will also have only the geometric semantics. The addition of further
feature pose frames for the sensors and tasks is possible.

Constraints: (i) the link is the part of the segment specification and its
constraints are also valid in this context, (ii) all the joint pose frames are
defined with respect to the reference feature pose frame defined on the link, {f}
in Figure 2.6, (iii) the pose relations between the reference feature pose frame
and the joint attachment pose frames are constant, (iv) the segment can have
more than one joint pose frames.

Joint is a kinematic primitive, Figure 2.7. It represents a relative constrained
motion of two segments. In particular, the motion takes place between two
pose frames with joint attachment semantics, which can be anywhere on the
segments. The motion of the joint is constrained in the subspace ŜM of 6-DoF
motion space M̄6, ŜM ⊆ M̄6. The subspace ŜM can be represented as a range
of 6× nf matrix S with dim(ŜM ) = nf being number of free motion degrees,
ranging from 1-DoF for prismatic and rotational joints to a 6-DoF for a free
floating joint [Featherstone, 2008]. In the special case of the 1-DoF rotational
and prismatic joints, S is 6× 1 column vector with all the row elements except
for one being zero and the motion takes place about a directed line. Depending
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on the line representation used, the joint attachment pose frames need to satisfy
a set of constraints imposed by these representations. For instance, a minimal
Denavit-Hartenberg line representation (uses four parameters), when adapted
to the frame notation, implies that the Z-axis of the frame can be freely chosen,
but not the position of the frame’s origin along the line, nor the orientation
of the frame about the line [Denavit and Hartenberg, 1955]. Such minimal
representations will always have singularity issues.

The joint also has a set of properties that help to further refine the relative
constrained motion between the segments. The coordinate representation
invariant geometric property is a polarity. The polarity of the joint specifies
which of the two involved joint pose frames is a reference pose frame for the
constrained motion. When the reference is set, the remaining pose frame becomes
the target. The coordinate specific geometric properties include direction of the
motion, limits on the motion and an offset distance.

Joint ≡
(
Xjoint({j0}|A, {f}|A), Xjoint({j′1}|C, {f ′}|C), ŜM ,polarity

)
ŜM ⊆ M̄6, polarity ∈ {{j0}|A, {j′1}|C}

Constraints: (i) the joint can only be specified between two joint attachment
pose frames, (ii) the joint attachment pose frames cannot be on the same
segment, (iii) for the joint using a concrete coordinate representation, S6×nf

is defined in the coordinates of the target joint attachment pose frame.

Transmission represents all dynamic properties associated with the joint.
Semantically, the joint is a kinematic primitive constraining the relative motion
of the bodies and does not have dynamic properties such as backlash, friction or
impedance, determined by the inertia, stiffness and damping. These properties
are part of the transmission system that connects the joint and the motor that
drives it [Albu-Schäffer et al., 2007b]. These properties are not considered in
this research, except for the simple case used in the computation of the dynamics
algorithm presented in Chapter 3.

Kinematic chain§ is defined as an ordered set of joints, Ljoints, where the first
element in the set is a base/root of the chain, Figure 2.8. Physically, any given
set of joints can form a kinematic chain with multiple loops. In this research
focuses on the kinematic chains with a spanning tree topology. The difference
between the latter and the former is determined by the constraints on the
§The term kinematic chain does not imply that segments and joints are serially connected.
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Figure 2.8: A KinematicChain is a kinematic primitive and defined as a collection
of joints with additional constraints on this collection.

connectivity of the joint attachment pose frames and bodies.

KinematicChain ≡ Ljoints, where Ljoints ⊆ ∀joints

The constraints are also the cause that not every ordered set of the joints
creates a semantically valid kinematic chain. That is, the existence of a list of
valid joints is a necessary, but not a sufficient condition. The next paragraph
describes a number of constraints that need to be satisfied in order to construct
the semantically valid kinematic chain with the spanning tree topology from
the existing set of the semantically valid joints.

Constraints: (i) a joint attachment pose frame on the segment that is used
to define a joint connection cannot be reused to define another joint connection.
That is, a single unique joint requires a single unique joint attachment on each
segment it connects. This ensures that multiple joints are not accidentally
co-located; (ii) if the joint has been set as the root joint of the kinematic
chain, its reference joint attachment pose frame cannot be used as a target joint
attachment pose frame in any other joint and its reference body becomes the
base/root body of the chain; (iii) after the root joint of the kinematic tree
has been chosen, the polarity property of all joints in the chain should hold.
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Example, in Figure 2.8, let

Joint1 ≡
(
Xjoint({j

′

1}|C, {f ′}|C), Xjoint({j0}|A, {f}|A), ŜM1,

polarity︷ ︸︸ ︷
{j0}|A

)
.

and be set as the root joint of the kinematic chain. Then

Joint2 ≡
(
Xjoint({j

′′′

0 }|E, {f
′′′}|E), Xjoint({j3}|A, {f}|A), ŜM2,

polarity︷ ︸︸ ︷
{j′′′

0 }|E
)
.

cannot be part of this kinematic chain, because the constraint (ii) is not satisfied.

It is important to note that the structural model primitives do not carry
completely new semantics, but rather are built upon semantics of the simpler
primitives by composition of their semantics and extension of additional
constraints. This also makes them self-contained. For instance, in order
to specify a kinematic chain one requires only a list of joints, which already
contain necessary data to construct the chain. But such an approach is only
possible if all the constraints and their validity contexts are identified and made
explicit. It should be achieved across all levels of modeling, starting from the
specification of rigid body’s pose semantics and coordinate representation and
ending with the addition of the joints into the existing kinematic chain. The
difficulty of the problem lies in identifying the scope of the context in which a
set of the constraints can become (in)valid. Table 2.3 summarizes the semantic
constraints on the structural models.

2.4.2 Models of the operational primitives

The goal of the operational primitives for the kinematics and dynamics is not
to manipulate the structural models from Section 2.4.1 per se, but rather to
operate on the physical (geometric, kinematic, dynamic) relations that are
associated with them. As with the structural models, the semantics of and
the constraints on the operations also build upon those associated with the
(geometric) relations on points, frames and bodies. Table 2.4 shows a summary
of the relevant operations. These operations are also valid with respect to the
poses, twists and wrenches of the structural primitives of kinematic mechanisms.
For instance, in Figure 2.13 one could query for the pose of the Segment3
measured in terms of the pose frame {l3} with respect to the robot’s base pose
frame {f0} through the composition of the other intermediate pose relations.
In another example also in Figure 2.13, one could query for the twist of the
segment Segment3 measured at the point l3 and expressed in the coordinate
frame [L3] through the composition of all twists from the supporting joints.
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But unlike full six DoF geometric relations of free rigid bodies, the relations
in kinematic mechanisms are constrained by the DoF of the joints determined
by the motion subspace ŜM ⊆ M̄6 that can be represented as the range of the
matrix S6×nf

. These constraints need also be reflected in the operations.

Geometric relation Semantic operations

Pose change(Ref)Point
change(Ref)OrientationFrame
compose, inverse

Twist change(Ref)Point
compose, inverse

Wrench change(Ref)Point
compose, inverse

Table 2.4: The geometric relations and a list of semantically valid operations
that can be applied. An excerpt from [De Laet et al., 2013b].

Pose operations: can consist of any combination of pose operations from
Table 2.4 and are collectively referred to as transformations.

Constraints: no further constraints are present on the pose semantic operations
in the context of the kinematic chains. The motion subspace matrix S introduces
changes on the coordinate level, e.g., in 1-DoF prismatic joint all coordinate
values in the constrained degrees of freedom remain constant, except for the
DoF indicated in S. That is why, predefining the complete pose specification
with the concrete choice of the coordinate representation based on S simplifies
the computations.

Velocity operations: can consist of any combination of twist operations from
Table 2.4 are collectively referred to as transformations. The relative twist
relation between two freely moving bodies is given as in

Ẋrelative = Ẋbodyi+1 − Ẋbodyi
,with Ẋ(·) ∈ M̄6, i ∈ N.

The same relationship holds for the relative motion of two segments in the
kinematic chain, except for the ‘free’ motion of the segments is constrained by
the connecting joint’s ŜM . The joint is defined as the relationship between two
unique joint attachment pose frames, Section 2.4.1, hence the relative motion
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of two segments is given as the difference of the twists of two bodies that are
measured at the points which are at the origins of the joint attachment pose
frames. That is, in Figure 2.7 with the polarity set to {j0|A}

Ẋrelative(j′|C,A) =
(
Ẋsegmenti+1(j′|C,B)− Ẋsegmenti(j0|A,B)

)
,

with Ẋ(·) ∈ ŜM .

One can also express the relation above using the semantic operation on twists
from Table 2.4

Ẋrelative(j′|C,A) = compose
(
Ẋsegmenti+1(j′|C,B), inverse(Ẋsegmenti(j0|A,B))

)
.

Even though this semantic model is sufficient to describe the operations on
the kinematic chains, many algorithms rely on the joint model that uses the
concrete matrix representation of the motion subspace, S6×nf

and the vector of
joint variables, (qnf×1, q̇nf×1) ∈ R that are expressed in target joint attachment
pose frame coordinates. Thus, for the example above an equivalent model using
motion subspace matrix representation in concrete coordinates is given as

Ẋrelative(j′|C,A, [J ′]) = Ẋjoint = S(q) · q̇.

There are also other time dependent terms in this relationship that are not
considered in this context [Featherstone, 2008].

Constraints: (i) the twist operations require the pose operations be updated
beforehand, i.e., the pose relation between target and reference joint attachment
frames is required.

Acceleration operations: the acceleration twists have a lot in common with
the velocity twists and share most of the semantic operations. Therefore,
acceleration twist operations can consist of any combination of twist operations
from Table 2.4. For Figure 2.7, semantics of the acceleration twist relations is
given as

Ẍrelative(j′|C,A) =
(
Ẍsegmenti+1(j′|C,B)− Ẍsegmenti(j0|A,B)

)
,

Ẍrelative(j′|C,A) = compose
(
Ẍsegmenti+1(j′|C,B), inverse(Ẍsegmenti(j0|A,B))

)
,

with Ẍ(·) ∈ ŜM .

As with the velocity twist using 6D spatial vector representation, the acceleration
twist 6D vector is not part of the Euclidean vector space. These non-Euclidean
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velocity and acceleration twists are often referred to as the spatial or motor
twists. Euclidean (conventional) and the spatial twists describe the same
motion of the body, albeit with different reference frames [Featherstone, 2001,
Stramigioli and Bruyninckx, 2001]. The acceleration twist of the connected
mechanism is also influenced by the joint’s geometric model. As in the case
of the coordinate specific velocity twists, the acceleration twist in concrete
coordinates uses motion subspace matrix, S and is obtained by differentiating
joint twist expression given in the previous paragraph, where q̈nf×1 ∈ R:

Ẍrelative(j′|C,A, [J ′]) = Ẋjoint = S · q̈ + Ṡ · q̇.

Here, the derivative of the time dependent terms were dropped [Featherstone, 2008].

Constraints: (i) the acceleration twist operations require the velocity twist
be updated before.

Wrench operations : The wrench, also known as the spatial force or screw
wrench, is the dual of the spatial twists, therefore they have the same set of
the base operations and operation semantics as given in Table 2.4. Assume
there is a wrench Fsegmenti(j0|A,B) Because of the motion constraint imposed
by the joint, only part of this wrench is transmitted across the joint to the
next connected segment and is given as Fsegmenti+1(j′|C,B) . The transmitted
wrench is determined by

τ (j′|C,B, [J ′]) = ST · F (j′|C,B, [J ′]),with τnf×1 ∈ R.

Here τ is a joint force variable. The above expression also follows from the fact
that all constraint forces Fc resulting from the constrained motion of the joint act
in a subspace Ŝc and is a reciprocal complement of ŜM , Ŝc ⊥ ŜM [Duffy, 1990].
Thus, ST · Fc = 0

Constraints: (i) the wrench operations require pose and twists operations be
updated beforehand.

Inertia operations : Spatial inertia, H of a rigid body defines a linear mapping
relation between its velocity twist and spatial momentum. The spatial inertia
depends on a point and an orientation frame on the rigid body. For Figure 2.5,
the semantics of the spatial inertia expressed in terms of the geometric primitives
is given as

p(cm|A,B) = H
(
X({cm}|A, {f}|A)

)
· Ẋ(cm|A,B),with p ∈ F̄ 6, Ẋ ∈ M̄6.
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The following are the semantic operations that are defined on the spatial inertia:

H
(
X((cm′, [CM ])|A, (f, [F ])|A)

)
= H

(
X((cm, [CM ])|A, (f, [F ]|A))

)
.

.changePoint
(
Position(cm′, |A, cm|A)

)
;

H
(

(cm, [CM ′])|A
)

= H
(

(cm, [CM ])|A
)
.changeOrientFrame(

Orientation([CM ′], |A, [CM ]|A)
)

;

H({cm}|A) =compose
(
H({cm′}|A′), H({cm′′}|A′′)

)
.

The coordinate semantics of the spatial inertia depends on how the coordinate
semantics of the motion and the momentum are defined. For example, if the
linear components are before the angular components in the representations
of the motion, i.e., (v, ω) vs (ω, v) and momentum then the spatial inertia’s
matrix representation is given as

H =
(
m · 13×3 03×3

0 Icm3×3

)
.

The coordinate transformation of the inertia follows from the fact that it is a
linear mapping operator between the motion and force spaces:

p{cm} = H{cm} · Ẋ{cm} and p{cm′} = H{cm′} · Ẋ{cm′};

Ẋ{cm′} =
(
{cm′}Tv{cm}

)
Ẋ{cm} and p{cm′} =

(
({cm

′}Tf{cm})
)
p{cm};(

({cm
′}Tv{cm})−T

)
︸ ︷︷ ︸(

({cm′}Tf{cm})
) p{cm} = H{cm′}

(
{cm′}Tv{cm}

)
Ẋ{cm} ⇒

p{cm} =
(

({cm
′}Tv{cm})T

)
H{cm′}

(
{cm′}Tv{cm}

)
︸ ︷︷ ︸

H{cm}

Ẋ{cm}.

Here
(

({cm′}Tf{cm})
)
and

(
({cm′}Tv{cm})

)
are the coordinate transformations

for the force and motion spaces.
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Constraints: (i) the total spatial inertia of the two-body system is determined
by how these rigid bodies are ‘connected’ [Featherstone, 2008]. This constraint
is expressed by

HA = HA′ +HA′′ −HA′′S
(
STHA′′S

)−1
STHA′′ . (2.1)

This equation is derived explicitly in Chapter 3, Equation (3.13). If the bodies
are rigidly connected, S = 06×nf

, then the negative term in the equation
disappears and the total spatial inertia of the two-body system is the sum of
the inertias of the constituting bodies. If the rigid bodies are not connected
to each other, i.e., ‘free’, S = 16×nf

, then the complete terms involving HA′′

disappear which physically means that the total inertia of each body is equal to
its spatial rigid body inertia.

2.5 Software design

This section reports on the details of the DSL implementation that uses the
semantic models described above. The DSL enables programmatic construction
of robot models and algorithms with semantic checking capabilities. The
concrete knowledge of the specific coordinates is added by the compiler tools,
which instantiate generic DSL program in the form of the specific programming
language code. As discussed in Section 1.5.3, it can be achieved in two ways:
as an external DSL or an internal DSL.

From a programming language point of view, the procedure to process the
models and to generate a specific code is conceptually the same for both
types of the DSLs. Figure 2.9 shows a simplified view on this model-to-code
transformation process. The blocks in the enclosing red area are a part of the
internal DSL processing phase. If one encodes the semantic models and their
instances directly in a host programming language, here represented as the
rectangle with the rounded corners in the red area, the language infrastructure
takes care of the most of the validation process. Additionally, the constraint
checking partially relies on the type checking, resolution of the scopes and the
order of the function calls as implemented by the host language’s infrastructure.
For instance, in a C++ template-metaprogramming-based implementation
the model checking procedure relies on the type checking, partial instantiation
and overload resolution features of the language infrastructure. Examples:
to check whether a complex operations such as a forward velocity twist is
correctly composed from the simpler operations of the pose and the twist;
a semantically correct compose operation is invoked depending on the type
of the inputs it receives, i.e., the composition of poses vs the composition
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Figure 2.9: Model-to-code transformation process for models represented in
JavaScript Object Notation(JSON) [Crockford, 2006, Zyp et al., 2013] and C++
languages. When the modeling language is implemented as the internal DSL,
only the steps in the enclosing dashed area are carried out. The rectangles with
the rounded corners represent data, i.e., the models to be processed and their
concrete instances, the other blocks represent the transformation procedure
performed by the compiler tool-chain.

of twists. The current implementation of the internal DSL is based on the
template-metaprogramming features of theC++ host language. This choice was
partially influenced by the fact that the original geometric relations semantics
library [De Laet et al., 2013a, De Laet and Bellens, 2012] is also implemented
using C++ templates. Furthermore, a template instantiation mechanism
creates a new type with every new template parameter. This approach of the
type enforcement and checking facilitates the implementation of some of the
DSL validation mechanisms. When the modeling language is implemented as the
external DSL, all necessary infrastructure is developed ground up as in any other
programming language. Hence, it requires an implementation of both a front-
end, including a lexical analysis, a definition of the syntax, a parser to transform
the input into something meaningful based on the given syntax (a syntax
analysis), and a semantic analysis and a back-end that is responsible for a target
code generation [Scott, 2009]. In the context of this work, the external DSL uses
JSON representation as the basis for its syntax, thus it relies on the lexical and
the syntax analysis capabilities of the existing JSON parsers [Zyp et al., 2013].
Taking this into account, the model-to-code transformation process in Figure 2.9
for the external DSL using JSON representation includes the rest of the blocks
in addition to the ones in the red area. Furthermore, the use of JSON allows
to perform partial semantic analysis, where the semantics of the models, i.e.,
meta-models, are encoded in JSON schema. So, the schema together with the
parser and validator software form a simplified front-end of the DSL tool-chain
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"@jointtype": {
    "properties": {
        "name": {
            "type":"string",
            "enum":[
                "RotX"
            ]
        },
        "@constraint":{
        },
        "target":{
        },
        "reference":{
        }
    },
    "required":[
        "@constraint",
        "name",
        "target",
        "reference"
    ]
}

"pose": {
    "properties": {
        "@geomtype": {
            "type":"string",
            "enum": [
                "Pose"
            ]
        },
       "semantics": {
        },

        "coordinates": {
        }
    },
    "required": [
        "semantics", 
        "@geomtype", 
        "coordinates"
    ]    
}

Figure 2.10: A model composition using JSON schema. A joint is defined as a
constrained relative motion between two bodies. The relative constrained pose
of the bodies is determined by the pose relationship of the pose frames (a frame
and a point at its origin) fixed on the bodies: the target and the reference. Each
pose frame specification in joint scheme (on the left) references to and complies
with the pose scheme (on the right). Any modifications to the latter does not
affect the rest of the former.

(the blocks outside of the red area). One of the main advantages of using JSON
schema is that a scheme can reference any other already existing schema. This
allows for the re-usability of the existing models in JSON and the resulting
new schema are modular, i.e., any changes in the referenced schema are local
and affect only the models in the referencing schema that need to comply
with the referent. Figure 2.10 illustrates this situation on the basis of the
JSON scheme for the semantic model of the joint. The scheme shows that the
constrained motion of two bodies connected by the joint is determined by the
constrained geometric relationships of two pose frames (a frame and a point at
its origin) fixed on the bodies: a target and a reference. The complete model
of these two pose frames is defined in another scheme somewhere else and is
only being referenced. This complete semantic model of the pose, shown on
the right side has two parts: a coordinate semantics and a concrete coordinate,
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1 " posesemantics ": {
2 "type": " object ",
3 " properties ": {
4 " target ": {
5 "$ref": "#/ definitions / pointframeonbody "
6 },
7

8 " reference ": {
9 "$ref": "#/ definitions / pointframeonbody "

10 }
11 },
12 " required ":[
13 " target ",
14 " reference "
15 ]
16 }

Listing 2.2: Pose semantics in JSON representation as defined in terms of a point,
a frame and a body modeling primitives.

where the coordinate semantics is the composition of the coordinate invariant
semantics and a reference coordinate frame as given in Table 2.2. The JSON
representation of the coordinate invariant semantics is given in Listing 2.2
and the list of the possible concrete coordinates that can be used with these
semantics is given in Listing 2.3. As it can be seen from these listings, both
of the models refer to other schema representing the semantics of the different
required sub-models. During the parsing process these references are resolved to
the complete schema representing respective semantic models, which are then
used during the validation. Since any modifications are local to the schema, in
Listing 2.3 one could add further concrete coordinate representations that need
to be supported without the joint scheme being aware of these. An example
showing an excerpt of the valid input model instance which compiles with the
schema above is provided in Listing A.1 in Appendix A.

As stated, JSON schema enable partial semantic analysis, but a set of the
semantic rules are still a part of the validator software and are often implemented
in the same programming language as the target output of the code-generation
process. For example, if one requires C code as the target output, it is often
simpler to adopt the parser/validator implemented in the same language. This
is a pragmatic approach to the external DSL implementation and requires a
different parser/validator library for every new target. This research combines
the efforts of developing the internal and the external DSLs by choosing C++
as the target language. This allows to integrate the existing legacy code from
the geometric relations semantics C++ template library [De Laet et al., 2013a,
De Laet and Bellens, 2012]. The semantics models presented in Section 2.4 are
encoded both in JSON schema and C++. Furthermore, the semantic models of
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1 " geometric_coordinates ": {
2 "type":" object ",
3 " items ":
4 {
5 " oneOf ":[
6 {
7 "$ref": "#/ definitions / vector3DKDL "
8 },
9

10 {
11 "$ref": "#/ definitions / vector6DKDL "
12 },
13

14 {
15 "$ref": "#/ definitions / matrix4x4KDL "
16 },
17

18 {
19 "$ref": "#/ definitions / quaternionKDL "
20 }
21 ]
22 }
23 }

Listing 2.3: A list of coordinate representations in JSON that can be used with
a geometric relation, e.g Pose relation as in Listing 2.2.

geometric relations semantics need also be encoded in JSON schema as shown
in the examples so far. As depicted in Figure 2.9, the C++ implementation of
the models and transformation rules are part of the parser/validator block that
parses input JSON model instances and validates whether the input complies
with the JSON schema. When the validation step is passed, a matching and a
correct C++ instance of the input model is generated. The correctness and
validity of the C++ models relies on the fact that the transformation rules are
implemented correctly and that need to be ensured beforehand.

Figure 2.11 shows a simplified class diagram of the class library that models
C++ representation of the semantic models for the kinematic chains, which
have been presented in Section 2.4. The implementation that complies with
this diagram realizes the same set of semantic constraints encoded in JSON
representation. A more interesting aspect of the C++ implementation is
depicted in Figure 2.12. From the computational point of view, any operation
associated with the manipulation of the chain’s computational state, e.g., poses,
twists of the segments and joints, can be expressed as an iterative or a recursive
operation on a connected directed graph, in this context a tree, and a set
of operations that are carried out on each node or edge of the graph. In a
graph terminology such an iteration is often called a walk on or a traversal
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kdle::Link kdle::Segment

grs::Pose

kdle::Joint kdle::Chain

kdle::TraversalOP

«use»

Figure 2.11: The class diagram describes the relationships between the structural
model primitives. Here kdle and grs are namespaces. The Pose class carries
part of the semantic information which will be used by the other structural
classes. The complete semantic and structural information is carried by the
Chain class. The Chain class is related to the operation models through the
TraversalOP class.

of the graph. This traversal can be performed in multiple ways also referred
to as a traversal policy, e.g., a depth first traversal/search (DFS), a breadth
first traversal/search (BFS), that also affects the outcome of the traversal.
The implementation of the operation classes in Figure 2.12 complies with
these graph concepts. Each class in the diagram is realized as a functor class
that has no or very little state of its own. The kdle::TraversalOP class
is the top level class that brings all other classes together. The function of
kdle::TraversalOP is to traverse a kinematic chain, kdle::Chain using some
traversal policy, kdle::TraversalPolicy, while applying a set of operations,
composition of Pose, Twist and Wrench operations ComputationOP to update
the state, kdle::StateGraph associated with the chain. Each applied operation
is checked for the semantic validity using the semantic data in the chain. The
chain semantic data is defined in JSON models for the case of the external DSL
or directly encoded using the classes in Figure 2.11 at the construction time for
the case of the internal DSL using C++.

A simplified example that shows a use of the library as the internal DSL is given
in Listing 2.4. The listing exempts some of the specifications, e.g., definitions of
the pose semantics, coordinates and state graphs, and focuses on the definition
of the kinematic chain primitives. Lines 1–13 show the specification of the
pose frames with joint attachment semantics. The attachment semantics is
determined by a tag that indicates the purpose of the pose frame. In this
listing the tag used is PoseFrameType::Joint. There exist other tags such as
PoseFrameType::Inertia or PoseFrameType::Feature. After the constructed
joint pose frames are attached to two segments, one per segment on Lines 14–17,
Line 20 defines the joint in terms of the joint attachment pose frames and joint
properties that include the motion subspace, polarity, shaft inertia and joint
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kdle::ComputationOP

kdle::TraversalPolicy «use»«use»

«use»

grs::Wrench::ComputationOP

kdle::StateGraphkdle::TraversalOP

grs::Pose::ComputationOP grs::Twist::ComputationOP

Figure 2.12: The class diagram describes the relationships between the
operational model primitives. Here OP suffix stands for an operation.
The operations in the context of the geometric relations represent the
semantic operations associated with each relation. Examples include
changeReferencePoint, changeCoordinate, compose and their combinations.
The full list of the semantic operations is presented in [De Laet et al., 2013b].

limits, Lines 18–19. Note how the motion subspace matrix that represents
motion subspace ŜM of the joint is specified as a symbolic representation
JointTypes::REVOLUTE_Z, which defines a constrained pose relation between
the target and the reference joint attachment pose frames. The polarity of the
joint is specified by the order of the arguments at the joint construction time,
where the attachment pose frame specified at the latest is the reference. The
current implementation provides only a place holder for the most of the joint
properties as a tuple type. This will be made explicit in the future releases.
On Lines 21–23 the specified joint becomes part of the joint list, which is used
in the specification of the kinematic chain. Lines 25–26 specify a policy that
defines how the constructed chain is traversed by the traverseGraph operation
on Line 28. Algorithm 2.1 summarizes this procedure for the example presented
in the next section.

2.6 Example

This section gives an example of how the models from Section 2.4 and their
implementation can be used in an application. First, it describes the algorithmic
procedure to create a kinematic chain and define the operations with semantic
information. The kinematic chain to be constructed is depicted in Figure 2.13.
In order to avoid overloading the figure with the frame notation, the following
convention is assumed: each segment (except for the first and the last) in the
figure has two joint attachment pose frames which are in use and coincide with
the segment proximal end frames (a frame with a point at its origin). This allows
the mechanism topology to be serial, which is a familiar topology of the majority
of robot manipulators. Segment proximal end frames retain the index number
of the segment in their names. That is, Segment0 has {f0} and {l0} frames,
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1 // Segment1 JOINT AttachmentFrames
2 // JointFrame1
3 grs :: Pose <KDL :: Vector , KDL :: Rotation > seg1Joint1FramePose (

seg1Joint1FramePosition , seg1Joint1FrameOrientation );
4 // Add the JointFrame1 to the AttachmentFrames of the Segment
5 AttachmentFrames frameList1 ;
6 frameList1 . push_back (kdle :: createAttachmentFrame (

seg1Joint1FramePose , kdle :: PoseFrameType :: JOINT ));
7

8 // Segment2 JOINT AttachmentFrames
9 // JointFrame1

10 grs :: Pose <KDL :: Vector , KDL :: Rotation > seg2Joint1FramePose (
seg2Joint1FramePosition , seg2Joint1FrameOrientation );

11 AttachmentFrames frameList2 ;
12 frameList2 . push_back (kdle :: createAttachmentFrame (

seg2Joint1FramePose , kdle :: PoseFrameType :: JOINT ));
13

14 // Segment specification with two argument Pose
15 kdle :: Segment < grs :: Pose <KDL :: Vector , KDL :: Rotation > > segment1

(" Segment1 ", link1 , frameList1 );
16 kdle :: Segment < grs :: Pose <KDL :: Vector , KDL :: Rotation > > segment2

(" Segment2 ", link2 , frameList2 );
17 // Joint specification
18 kdle :: JointProperties joint1_props ;
19 joint1_props = std :: make_tuple (kdle :: JointTypes :: REVOLUTE_Z ,

0.025 , 145.0 , -135.0);
20 kdle :: Joint < grs :: Pose <KDL :: Vector , KDL :: Rotation > > joint1 ("

Joint1 ", segment2 . getAttachmentFrames () [0] , segment2 ,
segment1 . getAttachmentFrames () [0] , segment1 , joint1_props );

21 // Chain specification
22 std :: vector < kdle :: Joint < grs :: Pose <KDL :: Vector , KDL :: Rotation >

> > jointlist ( joint1 );
23 kdle :: KinematicChain < grs :: Pose <KDL :: Vector , KDL :: Rotation > >

mychain (" MyKinematicChain ", jointlist );
24

25 // Traversal policy
26 kdle :: DFSPolicy < kdle :: KinematicChain < grs :: Pose <KDL :: Vector ,

KDL :: Rotation > > > mypolicy ;
27 // Chain traversal operation
28 kdle :: traverseGraph (mychain , forwardPoseKinematics , mypolicy )(

jstate , lstateIn , lstateOut );

Listing 2.4: Specification of a kinematic chain using the C++ template-based
internal DSL. Here kdle::JointProperties are represented as a tuple type, whose
elements contain the values for the motion subspace matrix, joint shaft inertia
and joint limits in this particular example. The listing is associated with the
setup in Figure 2.13.

Segment1 has {f1} and {l1} frames and so on. Joint attachment pose frames
are numbered sequentially, starting with {j0} on Segment0, {j1} and {j2} on
Segment1 and so on. Additionally, the chain has a camera and a gripper attached
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Figure 2.13: A serial kinematic mechanism and its segment and joint frames.
Jointi(Pose({j2i+1}|Segmenti+1, {j2i}|Segmenti), ŜMi,polarityi), i ∈ {0, 1, 2}.

to it at pose frames {lC} and {l3} respectively. The Algorithm 2.1 shows a
general procedure to construct a semantically valid chain and compute its
kinematics or dynamics. The algorithm focuses on the steps to take to compute
the kinematics with the semantic data, rather than the specification of the
complete list of the arguments, their names and types that the operations at each
step should take. A concrete application of this procedure using C++ internal
DSL is shown in Listing 2.4 that also includes type and name information.

The general procedure consists of the following steps: first, one is to create
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the complete pose data of the frames of interest by choosing among available
geometric and coordinate models, Lines 2-5 and 7-10. For instance, the pose
can be described by a position of a point and an orientation frame. Then, the
defined complete pose semantics are composed to specify the link primitive,
Line 6 and get added extra attachment semantics to determine their other uses.
That is, whether the poses are used to define attachment locations for the joints,
inertia, task or any other feature, e.g., locations of the sensors, Line 11 defines
joint attachment poses. The constructed link primitives and attachment pose
frames with special purpose get composed into the segment primitives, Lines
12-13. They are then used to define a relative motion using the joint, Lines
14-15, which are collected into the kinematic chain, Line 16. The constructed
chain is then traversed by applying operations at each joint and segment, to
obtain the requested result, Lines 17-20.

Listing 2.5 shows an excerpt of the output of the operations on the serial chain.
The output follows the same notational convention which is described in the
Table 2.2. Here, to enable unique naming convention, the names of the geometric
primitives are concatenated from the names of the primitives they are part of.
For instance, the Twist primitive on the Line 17 relates the velocity twist of
body Segment2 relative to body Segment1 measured at point l2 and expressed in
[L2] coordinate frame on body Segment2. As can be seen from the listing, each
geometric primitive which was involved in the operations carries semantic data
with itself. When the program is executed it parses the semantic description of
the robot structure and applies pose and twist operations where necessary. The
semantic knowledge in operations is matched with that in the robot structure
to check whether the outcome is valid. The output of the program can be
redirected to other analysis tools. This allows to check whether the results of the
algorithm are correct not only on the basis of the numerical data but also the
semantic data during all the stages of the program. This explicit knowledge of
each data primitive and action also facilitates understanding of the written code.
This is unlike the example in Listing 2.1 with a lot of implicit assumptions.

In case the models constructed do not conform to all the semantic constraints
in the DSL, the language and its toolchain infrastructure provides data on
the source of the problems. Such “notifications” on the semantically invalid
constructs are provided on two levels: on the geometric, e.g on Pose, Twist,
Wrench transformations, and the kinematic level, e.g. on the construction of
Joints and KinematicChains. Listing 2.6 shows an excerpt from the output of the
computation of the relative velocity twist of the segment Segment2 with respect
to the previous segment Segment1 measured at the point l2 and expressed in
the coordinate frame L2. But the computation of changeCoordinateFrame
returned with NOK, because the coordinate frames did not match. This level
of the geometric diagnostics is provided by the geometric relations semantics
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Algorithm 2.1: Definition of the kinematic chain with semantic data.
Input : N number of segments, M number of joints

Names and coordinates of points, frames and bodies
1 begin
2 for i← 0 to 2N − 1 do
3 define PoseSemantics ;
4 define PoseCoordinates ;
5 compose Pose from semantics and coordinates;
6 compose Link from proximal and distal Pose data ;
7 for i← 0 to 2M − 1 do
8 define PoseSemantics ;
9 define PoseCoordinates ;

10 compose Pose from semantics and coordinate;
11 define JointAttachmentFrame from Pose data;
12 for i← 0 to N − 1 do
13 compose Segments from Links and JointAttachmentFrames ;
14 for i← 0 to M − 1 do
15 compose Joints from

JointPose[i]|Segment[j]

JointPose[i+ 1]|Segment[j+1]

JointProperties

16 compose KinematicChain from Joints ;
17 define PoseTransformation operation;
18 define TwistTransformation operation;
19 define Composite operation;
20 compose (TwistTransformation,PoseTransformation)

traverse(KinematicChain,Composite)

library that the DSLs use [De Laet and Bellens, 2012]. The other problem
indicated on Line 7 is that the relative joint frame pose can not be computed,
because the joint constructured is invalid. From here one can deduce that there
is a problem with the joint attachment frames. This kinematic diagnostics
comes from the kinematics and dynamics DSL type system itself.
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1 Composite operation is created
2 Traverse operation is created
3 3 argument traverse call
4 3 argument composition call
5 JOINT NAME Joint1
6

7 Inside Joint Pose Impl
8 Pose (( j3. Segment2 .Link2 ,[ J3. Segment2 . Link2 ])| Segment2 .Link2 ,( j2

. Segment1 .Link1 ,[ J2. Segment1 . Link1 ])| Segment1 .Link1 ,[ J2.
Segment1 . Link1 ]) with position coordinates :[ 0,

0, 0] and orientation coordinates : [
0.707107 , -0.707107 , 0;

9 0.707107 , 0.707107 , 0;
10 0, 0, 1]
11 Inside Distal to Predecessor Joint Pose Impl
12 Pose (( l2. Segment2 .Link2 ,[ L2. Segment2 . Link2 ])| Segment2 .Link2 ,( j2

. Segment1 .Link1 ,[ J2. Segment1 . Link1 ])| Segment1 .Link1 ,[ J2.
Segment1 . Link1 ]) with position coordinates :[ 0.247487 ,

0.247487 , 0] and orientation coordinates : [
0.707107 , -0.707107 , 0;

13 0.707107 , 0.707107 , 0;
14 0, 0, 1]
15 Inside Joint Twist Impl
16 Twist (j3. Segment2 . Link2 | Segment2 .Link2 , Segment1 .Link1 ,[ J2.

Segment1 . Link1 ]) with linearVelocity coordinates :[
0, 0, 0] and angularVelocity

coordinates : [ 0, 0, 0.8555]
17 Inside Joint DistalToRefJoint Twist Impl
18 Twist (l2. Segment2 . Link2 | Segment2 .Link2 , Segment1 .Link1 ,[ L2.

Segment2 . Link2 ]) with linearVelocity coordinates :[ -3.87602e
-18 , 0.299425 , 0] and angularVelocity
coordinates : [ 0, 0, 0.8555]

Listing 2.5: An excerpt from an output of a program in Listing 2.4 that
shows the semantics of the geometric relations associated with the structural
primitives, their numerical values and operations performed on them. The listing
is associated with the setup in Figure 2.13.

2.7 Discussions and conclusions

This chapter presented the semantic models that describe kinematic chains in
a coordinate-free form. These models make use of the semantic models of the
geometric relations. Specifically, the structural models of the kinematic chain
are built on the geometric modeling primitives of a point, a frame and a body
and the pose relationship that uses these primitives. The distinguishing feature
of the semantic models developed from the other similar efforts discussed in
Section 2.3 is that the geometric primitives and their relationships are assigned
different roles based on their functions in the kinematic chain. These roles
are referred to as the attachment semantics. The addition of the attachment
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1 JOINT NAME Joint1
2

3 Inside Joint Twist Impl
4 Twist (j3. Segment2 . Link2 | Segment2 .Link2 , Segment1 .Link1 ,[ J2.

Segment1 . Link1 ]) with linearVelocity coordinates :[
0, 0, 0] and angularVelocity coordinates :
[ 0, 0, 0.8555]

5

6 Inside Joint DistalToDistal Twist Impl
7 LinearVelocity (l2. Segment2 . Link2 | Segment2 .Link2 , Segment1 .Link1 ,[

J2. Segment1 . Link1 ]). changeCoordinateFrame ( Orientation ([ L1.
Segment1 . Link1 ]| Segment1 .Link1 ,[ L2. Segment2 . Link2 ]| Segment2 .
Link2 ,[ L2. Segment2 . Link2 ])) is NOK since :

8 * Coordinate Frame of LinearVelocity (l2. Segment2 . Link2 | Segment2 .
Link2 , Segment1 .Link1 ,[ J2. Segment1 . Link1 ]) != orientation frame

of Orientation ([ L1. Segment1 . Link1 ]| Segment1 .Link1 ,[ L2.
Segment2 . Link2 ]| Segment2 .Link2 ,[ L2. Segment2 . Link2 ])

9

10 Twist (l2. Segment2 . Link2 | Segment2 .Link2 , Segment1 .Link1 ,[ J2.
Segment1 . Link1 ]) with linearVelocity coordinates :[ -3.87602e
-18 , 0.299425 , 0] and angularVelocity coordinates
: [ 0, 0, 0.8555]

11

12

13 Warning : can not return pose data. Check whether the joint is
correctly constructed

Listing 2.6: An excerpt of error/warning output of the program in case
constructed models are not semantically valid. In this case, on the geometric
level the coordinate frames for the twist transformation do not much and on the
kinematic level one of the joint construction constraints is not satisfied.

semantics to the available geometric relations semantics enables an extension of
the semantic constraints that the geometric relations should satisfy in a specific
application context, Table 2.3. Consequently, this enables creation of more
concise models of the kinematic chains and better tailor them to the context of
the applications they are used in. The chapter also introduces the semantics
and coordinate semantics of inertia of the ideal rigid body. It shows that the
inertia serves as a mapping operator between the motion quantities and the
force quantities associated with the rigid body. Furthermore, it shows that the
net inertial property of the connected rigid bodies is defined by the constraining
joint model and is given as in Equation (2.1). The joint model also affects the
amount of the force transmitted from one body to the other.

The chapter also presented semantic operations on the geometric relations that
are associated with the kinematic chains. There are two points with respect to
the constraints on the geometric relations that are to note here. First, geometric
relations that describe the relative motions and dynamic interactions of the
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segments are constrained to some motion subspace Ŝ. This physical constraint
needs to be accounted for in the respective operations of the geometric relations
in the kinematic chain. Second, the fact that the segments are connected and
part of the single kinematic structure makes the dependencies of the geometric
relations on each other more obvious. That is, semantic operations on geometric
relations need to be strictly ordered, e.g. the pose operations are performed
before the twist operations.

The chapter also introduced the software implementation, which complies
with the developed semantic models. The software is implemented both as
the internal and the external DSL. Particularly, JSON-based external DSL
implementation allows modular and extensible specifications. These are possible
because of the modular organization of JSON representations. It allows to
separately encode models of various semantic detail in the form of schema that
can be composed with each other. Any modifications to the schema are local,
the fact that enables updates to the functions of the parser that cope with
those schema changes only. Another advantage that comes with the use of
JSON representation is the possibility to integrate the semantic models of the
other domains that are part of the robot application into a single linked data
model. This is attained by the use of JSON-LD, JSON for the linked data
representations [Sporny et al., 2013]. This lets to develop a graph of model of
the robot application with explicit relations and constraints among coordinate-
free semantics and concrete coordinates, their values and physical units. This
graph can then be queried for specific quantities. Furthermore, these models
can be developed independently and just reference each other as it is shown
in example Listing A.2. This is a completely new approach, building on very
recent developments in knowledge representation and the “semantic web”, with
potentially very high impact in robotics. Section 5.6 provides more details on
the linked data modelling of the robot applications.

The necessity of the semantic models for the implementations is strengthened by
the existence and use of the closely related concept of an AST in a programming
language design [Scott, 2009]. The AST of the language is used during the
semantic analysis of the program, i.e. to verify whether the primitives of the
program are used correctly according to some set of predefined rules. This is
also what happens in the implementations presented in this chapter. Based on
the semantic models of the DSL, the compiler automatically resolves constraints
imposed by the different geometric and coordinate models, when the robot
structure and the operations are instantiated using specific representations.
One can also state that there are two ASTs in this context: one for the
encoding language (JSON, C++) and one for the domain specific semantic
models. Each is responsible for its own semantic analysis. This also implies
that one can design a DSL with the domain specific semantic models as
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the single and main AST. This also allows implementation of the languages
and toolchains of different syntactic flavor, for example using the language
workbenches or the compiler-compiler tools such as JastAdd [Hedin, 2011].
The developed semantic models and their software implementations are
available at the following locations [Shakhimardanov and Bruyninckx, 2014b,
Shakhimardanov and Bruyninckx, 2014a]. The latest implementation can
only generate C++ models and code from JSON semantic models that
use KDL [Smits et al., 2001] coordinate representations. It also allows the
coordinate specific implementations of the tree traversal policies, as well as
composition of the operations that allow formulation of the computational
sweeps in the dynamics algorithms. Furthermore, even though the physical
quantities, their dimensions and units are part of the JSON models, their
validation is not implemented yet.

Additionally, as it has been discussed in the paragraph on the semantics of the
kinematic chain primitive in Section 2.4.1, the presented semantic models do
not support the specification of the kinematic chains with the loop structures.
On the other hand, this support can be attained by modifying the existing
constraints on the connectivity of the joint attachment pose frames for the
structural primitives. But for the operations, one is required to account for the
additional constraints imposed by the loop joints on the motion, acceleration
level constraints, and the wrench across the loop joint. A rough procedure on
how to do this is presented in Chapter 8 in [Featherstone, 2008].



Chapter 3

Popov-Vereshchagin Hybrid
Dynamics Solver

3.1 Introduction

This chapter introduces a solver component that builds upon the models and
implementations presented in Chapter 2. The position of the solver component
with respect to the other components in the constrained motion task stack is
depicted in Figure 3.1. At the basis of the constrained motion task control is the
determination of the control inputs that can stabilize/control the constraints
on the geometric relations between the target objects. The functionality of
the solver is to compute these stabilizing control inputs from the given set of
target object constraints, the robot motion model (platform constraints) and the
cost function (Figure 3.1). A general mathematical formulation of this problem
and the techniques that can be used to realize it have been summarized in
Section 1.5.4.

This chapter presents a constrained robot hybrid dynamics solver that computes
the solution of [

M(q) JTc (q)
Jc(q) 0

] [
q̈
λ

]
=
[
τa(q)− C(q, q̇)

b̂(q, q̇)

]
(3.1)

This dynamics algorithm was first introduced by Popov et al. [Vereshchagin, 1989].
Equation (3.1) is the expanded matrix form of the formulation in Equation (1.4),

69
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where Jcq̈ = b̂(q, q̇) is the second order derivative of the holonomic∗ path
constraint h(q) = 0 in (1.4) with Jc being the constraint matrix, λ is the
vector of Lagrange multipliers with the relation to the constraint forces being
τc = JTc λ, C(q, q̇) and τa are bias forces and joint space input forces,
respectively [Featherstone, 2008]. The interesting feature of the solver is that it
can cope with Cartesian space acceleration constraints during computational
sweeps. The chapter also develops extensions to this solver that allow its
implementation and integration with various types of controllers.
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Target objects

Constraints

Constraint solver

Constraint control

Actuator/Power
transmission control

Articulated body
(segment, joint, chain)

Cost function
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Figure 3.1: Solver specification DSL and its position in the (motion)task
programming stack. For a domain specific solver, the robot (algorithm)
specification DSL such as the one from the previous chapter can be used.

∗There is no difference between holonomic and non-holonomic constraints on the
acceleration level.
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3.2 Related work

A hybrid dynamics algorithm solves the combined forward/inverse dynamics
problem [Featherstone, 2008]: given some actual and desired joint motions and
forces, some actual and desired segment motions and forces, as well as the
mass distribution of each segment, find the resulting motion of the complete
kinematic chain. Hybrid dynamics is the major algorithm for the posture control
[Khatib et al., 1999] of mobile manipulators and humanoid robots, since such
tasks typically require specifications of motion and/or force constraints on the
end-effectors and other segments, but also specifications on the posture that
keeps the robot close to a “most comfortable” configuration (for itself, its task,
or its environment) via additional internal joint motions, forces or constraints,
or (possibly virtual) external forces or constraints on intermediate segments.

The literature on robot dynamics is extremely rich, from the historical
and general dynamics work by [Newton, 1871, Euler, 1776, Lagrange, 1867,
Gauss, 1829] (the latter’s minimum principle being further developed by
[Gibbs, 1879, Hertz, 1894] and [Appell, 1899]), to general multi-body dynam-
ics [Gantmacher, 1975, Roberson and Schwertassek, 1988, Wittenburg, 1977],
and to robot-specific dynamics, first as “order N3” (O(N3)) algorithms
[Hooker and Margulies, 1965, Lilov and Wittenburg, 1977, Luh et al., 1980a,
Roberson and Wittenburg, 1966], and later as O(N) (“order N”) algorithms
[Vereshchagin, 1974, Popov et al., 1978, Featherstone, 1983], where N is the
number of degrees of freedom in the kinematic chain of the robot.

The Western robotics community has largely been unaware of the groundbreak-
ing work by Popov et al. on linear-time dynamics algorithms for redundant
serial robots with (partial) acceleration equality constraints [Vereshchagin, 1974,
Popov et al., 1978]. The the linear-time hybrid dynamics algorithm by Popov et
al. allows to deal with the motion constraints on the segments at the acceleration
level, and the specification of each constraint can be only partial, i.e., allowing
one or more degrees of constraint to be left unspecified [Vereshchagin, 1989].
It computes the magnitudes of the constraint forces that are caused by the
imposed Cartesian acceleration constraints based on the Gauss principle of least
action [Gauss, 1829] as the function(cost) to optimize.

The chapter first sets the terminology of recursive kinematics and dynamics
algorithms and explains already existing inverse, forward and hybrid dynamics
algorithms in terms of computational sweeps that use coordinate free form of the
operation, Section 3.3. Section 3.4 then introduces Popov-Vereshchagin’s original
algorithm in this context and compares its differences to the other dynamics
algorithms. Section 3.5 extends Popov-Vereshchagin’s algorithm with (i) tree-
structured chains, (ii) the weighting of (weighted and prioritized) acceleration
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equality constraints on the end-effectors, (iii) taking maximum joint torque
constraints into account.

Contributions. First, the constrained hybrid dynamics solver is explicitly
decomposed into its structural and behavioral parts. These are subsequently
composed in various configurable computations. This contribution does not lead
to new functionalities, but it does offer new ways to integrate extra control
approaches. This approach allows for all the extensions to be integrated, in any
combination, into the linear-time recursions, without the need to construct an
explicit Jacobian matrix, or to compute any Jacobian-based pseudo-inverses,
explicitly. The latter methods are the cornerstone of all cited references, and
they introduce, respectively, extra O(n2) and O(n3) computational complexity,
which are avoided in the algorithm implementation presented in this chapter.

Second, chapter also presents extensions of the algorithm to cope with resolution
of over-constrained situations, Section 3.5. In this case, a policy is needed to
decide for the use of, either, priorities between, or weighing of, the conflicting
constraints in the joint and Cartesian spaces. The resolution of the conflicting
constraints through the prioritization is achieved through the configuration
of the computational sweeps of the hybrid dynamics solver. The resolution
of the conflicting constraints through the weighing is achieved through the
decomposition of the acceleration energy generated during the motion. A subset
of these extensions are already described by, for example, [Khatib et al., 2004a,
Khatib et al., 2008, Nakanishi et al., 2008, Saab et al., 2013].

3.3 Segment-to-segment recursive dynamics

This Section contains no new material, but summarizes the well-known domain
specific solvers for kinematic chains of generic types, for the sake of defining
notations and terminology [Featherstone, 2008]. Those solvers have linear-time
computational complexity, and use outward segment-to-segment recursion to
propagate pose, velocity and acceleration from the root to the leafs, Section 3.3.1,
or inward recursion for force and spatial inertia, Section 3.3.2. These recursive
operations are also known as an outward and inward computational sweeps
on the kinematic chain. A step-by-step introduction of these solvers also serves
as a reference for the presentation of the constrained hybrid dynamics solver.

Tree-structured kinematic chains are only slightly more complex than serial
chains, because trees are nothing but just a connected set of serial chains:
only the bookkeeping of the kinematic and dynamic data structures requires
more attention from the programmer, while the recursive segment-by-segment
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Figure 3.2: Reference attachment pose frames and notation for segments in a
tree-structured kinematic chain. “pi” is the proximal joint attachment pose
frame of segment i, and di is the segment’s distal joint attachment pose frame.
The frames’ Z axes lie along the (single degree of freedom) axes of the joints
connected to the segment.

computations remain the same. Figure 3.2 shows the notational conventions of
this chapter: (i) joint i+ 1 connects segments i and i+ 1, between the “distal”
(i.e., more remote from the reference feature pose frame on a segment) joint
attachment pose frame {di} of segment i and the “proximal” joint attachment
pose frame {pi+1} of segment i+ 1, i.e. {di} is the reference and {pi+1} is the
target; (ii) these pose frames {di} and {pi+1} coincide when joint i+ 1 is in its
zero position. Each joint’s motion is constrained to motion subspace Ŝ which
can be represented by the matrix S. For a 1-DoF joint, this is equivalent to a
directed line along some axis. e.g., Z, that can be represented by a unit vector
Z. The position vector ri,j connects the origin of the joint attachment pose
frame {i} to the origin of the joint attachment pose frame {j}. All physical
properties are expressed with respect to the reference point at the origin of the
target joint attachment pose frame {pi} of the segment over which the recursion
runs.

In the dynamic motion model of the robot in generalized coordinates as in

M(q)q̈ + C(q, q̇) = τa(q) (3.2)

HẌ + Fbias = F (3.3)

depending whether the motions, q̈ are computed from the forces or the forces,
τa from the motions, one can distinguish between the forward and inverse
dynamics, respectively. Here, there are no additional constraints on the model,
except for those incurred by the joint connections whose net effective work
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Figure 3.3: In a domain specific dynamics solver computations consist of the
outward and the inward sweeps during which the relevant physical quantities of
the kinematic tree are computed. In Popov-Vereshchagin’s solver the sweeps
also take into account the acceleration constraints on the segments. Here Ai is
a constraint (unit force) matrix and bi is a bias acceleration (energy) term.

is zero. These dynamics computations consist of a number of computational
sweeps on the kinematic chain as depicted in Figure 3.3. In these sweeps, the
variables q, q̇, q̈, τa at each joint are associated with their spatial counterparts
X, Ẋ, Ẍ,F at each segment. Regardless of the type of the dynamics computed
the structure of the sweeps, i.e. the semantic operations performed, remains
mostly the same. The differences in the computational sweeps will be discussed
in the following sections. Without loss of generality and in order not to overload
the notation, the semantic operations drop the complete specification of points,
frames and bodies in the operation arguments whenever possible. Furthermore,
since the algorithms mostly involve pose frames with the joint attachment
semantics, these are called simply pose frames without the qualifying semantics.
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3.3.1 Outward position, velocity and acceleration recursions

An outward recursion from segment i to segment i+ 1 involves the following
operations:

1. segment i: a change in reference point from the proximal pose
frame {pi} of segment i to this segment’s distal pose frame {di}. This
changes the vector representation of the physical entity being transformed
(pose, velocity, acceleration, force), and the matrix representation of the
segment’s inertia.

2. joint i+1: the incorporation of the physical contribution (position, velocity,
acceleration, force, joint axis inertia) at joint qi+1.

The pose of the proximal pose frame on segment i+1 with respect to the proximal
pose frame on segment i is a function of the intermediate pose relations, where
the pose relation between joint’s target and reference attachment pose frames
is dependent on joint position variable qi:

pi+1
pi
X = compose

(
di
pi
X

pi+1
di
X(qi)

)
, (3.4)

with di
pi
X between the i th segment’s distal and proximal frames being defined

given the reference feature pose frame of the segment, Section 2.4.1. The
branching that occurs in a tree-structured topology at segments from which
two or more serial chains emerge, does not complicate the motion recursion at
all: each outward recursion path remains exactly equivalent to a serial robot,
since there is no interaction between two branches.

The velocity twist recursion finds Ẋi+1 = (ωTi+1,v
T
i+1)T of segment i+ 1 with

the origin of the proximal frame {pi+1} as velocity reference point, given the
twist Ẋi of segment i with the origin of the proximal frame {pi} as velocity
reference point, and given the joint twist contribution Ẋj that depends on
position qi+1 and the joint rate q̇i+1. The coordinate-free expression for the
twists does not differ from the one presented in in Section 2.4.2. The following
expression uses twist transformation matrix Tv and the motion subspace matrix
S:

Ẋi+1 = (i+1Tvi)Ẋi + Si+1q̇i+1︸ ︷︷ ︸
Ẋjoint

. (3.5)

The acceleration recursion calculates the linear and angular components of
acceleration Ẍi+1 with the origin of the proximal frame {pi+1} as velocity
reference point, given the linear and angular acceleration components of Ẍi
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with the origin of the proximal frame {pi} as velocity reference point), and given
the joint angle qi+1, the joint angle speed q̇i+1, and the joint acceleration q̈i+1.
The result is similar to the velocity recursion, except for the gyroscopic “bias
acceleration” Ẍbias,i+1 of the moving frame {pi+1} due to the non-vanishing
angular velocity ωi of segment i:

Ẍi+1 = (i+1Tvi)Ẍi + Si+1q̈i+1︸ ︷︷ ︸
Ẍjoint

+ (

time dependent
often zero︷ ︸︸ ︷

ˆ̇Si+1 +Ẋi+1 × Si+1)q̇i+1︸ ︷︷ ︸
Ẍbias,i+1

(3.6)

This uses the property that Ẋ × S is the time derivative of S in a coordinate
moving with the body. Ẋ× is a spatial cross product operator and has the
following 6× 6 matrix representation:

Ẋ× =
(
ω× 0
v× ω×

)
, ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (3.7)

The computation of Equation (3.6) is possible, when a joint acceleration variable
q̈ is known. This is true for the inverse dynamics algorithm, where given the
desired motions of the segments, one is to compute the desired forces that
cause that motion, M̄6 7→ F̄ 6. But for the forward dynamics, the input-output
causality is reversed and one is to compute the desired motion of the segments,
when the desired forces are given, F̄ 6 7→ M̄6. Therefore, the outward sweep in
forward dynamics computes only bias acceleration component of the complete
acceleration twist. This difference is underlined in Algorithms 3.1 and 3.2.

3.3.2 Inward force and inertia recursions

The kinematic expression for the acceleration recursions in the paragraphs
above deal with the calculation of the acceleration of segment i+ 1 if the pose,
velocity and acceleration of the previous segment i are given, together with the
acceleration generated at the joint between both segments. The acceleration
recursion in the paragraphs below deals with inertia-dependent acceleration
generated by torques on the joint axes, or external forces, represented by the
ordered vector pair F = (τ ,f), applied to the segments. Here, τ and f are an
angular moment and a linear force vectors. According to Hamiltonian mechanics,
one can express the net force acting on the body as an instantaneous rate of
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change of momentum

F b = d(

p︷ ︸︸ ︷
H · Ẋ)
dt

= HẌ + Ẋ ×∗HẊ︸ ︷︷ ︸
Fb

bias

with Ẋ×∗ = −(Ẋ×)T . (3.8)

The left most expression arises because of the fact that the differentiation is
done in a moving coordinate frame and p ∈ F̄ 6 and frequently referred to as
a bias force, F bbias. This Equation (3.8) computes the forces on each segment
that result in accelerations Ẍi+1 in Equation (3.6). This computation is often
performed during outward sweep, since all required quantities are already
available during each recursion. The equations so far defined relationships
between the motion and force space quantities in a kinematic chain and do not
account for the outside influences on the motion, such as external forces, F ext
and forces from the neighbouring connected bodies. Thus, the balance equation
of the net forces on the segment is given as

F i+1 + (i+1Tf0)F ext0︸ ︷︷ ︸
external
forces

= F bi+1 +
∑

(i+1Tfk)F k︸ ︷︷ ︸
forces transmitted

to children segments

(3.9)

Equation (3.9) follows from the fact that a body in a kinematic chain has a
single parent and may have multiple children segments. Because of the joint
connections some of forces from these segments are transmitted over the joints to
this body. The joint efforts are compensating the net force on each body, a fact
that is used in defining the balance equation in inward sweep. Equations (3.8)
and (3.9) are valid for the computations of M̄6 7→ F̄ 6. Furthermore, they
follow from the fact that the instantaneous change in rigid body’s momentum is
caused by the net forces on this body and its spatial inertia matrix H defines
the mapping between the motion domain quantity Ẋ (spatial velocity) and
force domain quantity p (spatial momentum). Forward dynamics computes
F̄ 6 7→ M̄6. Since the body motions in the form Ẍ are not given, F bi cannot be
computed. The following briefly describes how the motions are computed from
the given segment forces. The complete derivation can be found in Chapter 7
of [Featherstone, 2008].

The formulas below assume that the acceleration starts from standstill of the
segments. Both components of the acceleration have to be added to find the
real physical acceleration of joints and segments. The indices “1” and “2” are
used instead of “i” and “i+ 1”, just for the sake of reducing the space required
to write down some long equations.

The relationship between the acceleration Ẍ1 and the force F of segment 1 for
an unconstrained segment 1 is given by the segment’s spatial inertia matrix
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H1. However, if segment 1 is connected to segment 2 by means of an ideal, non-
actuated joint, the force F is not completely available to accelerate segment 1
because it has also to accelerate segment 2, through the connecting joint
constraint. This is depicted in Figure 2.2(b) and Table 2.1. Here segment 1 is
the reference or parent segment and segment 2 is the target or child segment.
When F is applied on segment 1, part of it F 1 accelerates segment 1 by an
amount Ẍ1 and the rest is transmitted over the connecting joint to segment 2
and accelerates it by Ẍ2.

Semantically, a relative motion of two segments expressed in terms of their
accelerations is as described in Section 2.4.2. But expressed using motion
subspace matrix S and inertia of the segments is given by

Ẍ2 =
(

1− S
(
STH2S

)−1
STH2

)
︸ ︷︷ ︸

PT
2

Ẍ1 + S2q̈2 +

Equation (3.6)︷ ︸︸ ︷
Ẍbias,2 , (3.10)

with P 2 = 1−H2S
(
STH2S

)−1
ST , (3.11)

and 1 the 6× 6 unit matrix. Since P 2P 2 = P 2, this matrix is a projection, and,
hence, positive semi-definite. The forces on each segment are given as

F 1 = H1Ẍ1 + F bias,1 and F 2 = H2Ẍ2 + F bias,2

F = F 1 + F 2 = HAẌ1 + FAbias
(3.12)

HA = H1 +H2 −H2S
(
STH2S

)−1
STH2︸ ︷︷ ︸

Ha
2 =P 2H2

. (3.13)

HA is the so-called articulated body inertia and Ha
2 is apparent inertia of a

handle connected to segment 1 and supporting segment 2 [Featherstone, 2008].
The articulated body inertia is the same as spatial inertia, if the articulated
body consists of a single rigid body. Thus, without loss of generality and
considering that each segment is itself an articulated body Equation (3.13) can
be re-written in body coordinates as

Ha
i+1 =

(
HA

i+1 −HA
i+1Si+1

(
STi+1H

A
i+1Si+1

)−1
STi+1H

A
i+1︸ ︷︷ ︸

PA
i+1H

A
i+1

)
(3.14)

HA
i = HA

i +
∑

(iTvi+1)THa
i+1(iTvi+1)︸ ︷︷ ︸

apparent inertia
of child handles

. (3.15)
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Here, it is important to emphasize that

Spatial inertia of a body: (Ẋ ∈ M̄6) H7−→ (p ∈ F̄ 6)

Articulated body inertia: (Ẍ ∈ M̄6) HA

7−−→ (F ∈ F̄ 6)

The net bias force F bias on the articulated system in terms of bias forces on
each segment is:

FAbias = F bias,1 + F bias,2 −H2S(STH2S)−1STF bias,2︸ ︷︷ ︸
P2Fbias,2

+H2S(STH2S)−1τ 2 +Ha
2Ẍbias,2

(3.16)

Here F bias,2 =

Equation (3.8)︷ ︸︸ ︷
F bbias,2 −F ext2 . The term involving a joint torque variable τ

in Equation (3.16) follows from the fact that τ2 = ST2 F2. So, by dropping ‘bias’
term in indices the total recursion of articulated body bias forces FAi ← FAi+1
in matrix form is defined by the balance equation for the net forces on the
segment:

F ai+1 = PA
i+1F

A
i+1 +HA

i+1Si+1(STi+1H
A
i+1Si+1)−1τ i+1 +Ha

i+1Ẍbias,i+1
(3.17)

FAi = FAi +
∑

(iTf i+1)F ai+i︸ ︷︷ ︸
apparent forces

from child handles

(3.18)

with F ai+1 apparent bias force applied by a handle connecting segment i with
an articulated body/segment i+ 1 [Featherstone, 2008].

From a computational point of view, the matrix inverses (STHS)−1 in
Equations (3.11), (3.14) and (3.17) reduce, in practice, most often to the
inversion of just a scalar α—at least under the assumption that every joint has
only one degree of freedom—so that an appropriate choice of reference joint
attachment pose frame {i + 1} results in the 6 × 1 vector Si+1 to have only
one “1” and zeros everywhere else. Hence, also the matrix-vector products
HSα−1ST = α−1HSST can then be found without computations, since it
reduces to the selection and scaling of one number from the matrix H.

3.3.3 Tree-structured chains

The outward recursions require no changes with respect to serial chains, since
every segment and joint is on only one serial path from the root/base of the
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tree. When segment i is a branching node in a tree, one must consider the sum
over all apparent inertias Ha

i+1 of the child articulated segments connected to
segment i. This derives to Equation (3.15) that uses apparent inertias expressed
in parent segment i coordinates (without the transformations the composition
semantics of inertias is as presented in Section 2.4.2). The same procedure holds
for the apparent bias forces Equation (3.17) that becomes Equation (3.18). By
comparing Line 9 with substituted Ẍ from Line 6 in Algorithm 3.1 and Line
12 in Algorithm 3.2, it can be observed that their structure is the same, but for
different inertias and missing components of Ẍ in Algorithm 3.2.

3.3.4 Outward recursion of control torques and segment
accelerations

The relationship between the force τ i+1 delivered at a joint and the acceleration
q̈i+1 of that joint is given by:

τ i+1 = (STi+1H
A
i+1Si+1)q̈i+1+STi+1

(
FAi+1+HA

i+1((i+1Tvi)Ẍi+Ẍbias,i+1)
)
.

(3.19)
The factor in front of the joint acceleration q̈i+1 is the component on the joint
axis of the articulated inertia HA

i+1 of all connected child articulated segments
of i+ 1. The joint also feels (the component on the joint axis of) the external
and Coriolis forces, articulated body bias forces FAi+1 from these child segments,
and the inertia force HA

i+1Ẍi of its own segment’s motion. For the forward
dynamics, the joint torques τ i+1 are given, and the acceleration at joint i+ 1
follows straightforwardly from Equation ((3.19)):

q̈i+1 = (STi+1H
A
i+1Si+1)−1

(
τ i+1 − STi+1

(
FAi+1 +HA

i+1((i+1Tvi)Ẍi

+ Ẍbias,i+1)
))

.

(3.20)

For the inverse dynamics, the joint accelerations q̈i+1 are calculated from the
(previously computed) inward recursions of the (desired and actual) external
forces at the end-effector (FN ) and other segments (F i). Gravity is taken
into account by initializing the recursion with the gravitational acceleration:
Ẍ0 = g. Once q̈i+1 is known, the total acceleration of the i+ 1th segment can
be found:

Ẍi+1 = (i+1Tvi)Ẍi + q̈i+1Si+1 + Ẍbias,i+1, (3.21)

with Ẍbias,i+1 the bias acceleration due to the non-vanishing angular velocities
of the proximal segment. Now, the joint acceleration calculation of the next
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joint q̈i+1 can be done, so, the motion of all segments are calculated when this
outward recursion reaches the end-effector segments.

Summaries of the algorithms that solve the inverse and forward problems of
Equation (3.2) are listed in Algorithm 3.1 and 3.2, respectively. A line by
line comparison of the computational sweeps in these listings shows which
components of the motions (accelerations are underlined) and forces are
computed in particular sweeps. Semantically, both algorithms use the same set
of balance equations that define (F̄ 6 H−1

−−−⇀↽−−−
H

M̄6), except for how the dynamic
effects of joint constraints are accounted for. Once the inverse and forward
problems are solved, a hybrid dynamics problem can be addressed. The hybrid
dynamics problem is a general case of both inverse and forward problems and
computes either motions or forces of a kinematic chain depending on the input-
output causality at a particular joint constraint. It still computes a solution of
Equation (3.2) and the kinematic chain is constrained only by the constraint
forces internal to the system, i.e. at joint connection.

The next section presents the hybrid dynamics algorithm that can compute
motions and forces of a kinematic chain that is under other external constraints in
addition to the internal constraints at the joints, i.e. it computes Equation (3.1).

3.4 Popov-Vereshchagin’s acceleration-contrained
dynamics algorithm

This section introduces the extensions by Popov and Vereshchagin, to the
previous computations of the dynamics of a kinematic chain, and applied to the
case that (equality) constraints are imposed on the acceleration of one or more
segments in the chain [Popov et al., 1978, Vereshchagin, 1989]. The constraints
can be physical (e.g., contacts with the environment) or virtual (e.g., desired
motion of (part of) a frame attached to a segment). The constraint can be
partial, i.e., not fully constraining all six degrees of freedom of a segment; for
example, only an acceleration constraint in one or two directions of a frame on
the segment.

Assume that the segment “N” in a kinematic chain is not allowed to accelerate
arbitrarily, but must satisfy the following linear constraints:

AT
NẌN = bN . (3.22)

If there are m constraints, AN is a 6 × m matrix, and each of its columns
can be interpreted as a direction of constraint force that must act on
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Algorithm 3.1: Inverse Dynamics
Input : Robot geometric, inertial data, qi, q̇i, q̈i, Ẍ0, F

ext
i

Output : Robot force, Fi, τi
1 begin

// Outward sweep of pose, twist and acceleration
2 for i← 0 to N − 1 do
3

i+1
i X =

(
di
i X

i+1
di
X(qi)

)
;

4 Ẋi+1 = (i+1Tvi)Ẋi + Si+1q̇i+1;
5 Ẍbias,i+1 = Ẋi+1 × Si+1q̇i+1;

// full acceleration twist is computed
6 Ẍi+1 = (i+1Tvi)Ẍi + Si+1q̈i+1 + Ẍbias,i+1;
7 F bbias,i+1 = Ẋi+1 ×∗Hi+1Ẋi+1;
8 F̄

b

bias,i+1 = F bbias,i+1 − (i+1Tf0)i+1F ext0 ;
9 F̄

b

i+1 = Hi+1Ẍi+1 + F̄ bbias,i+1;
10 Fi+1 = F̄

b

i+1;
// Inward sweep of force

11 for i← (N − 1) to 0 do
12 τ i+1 = STi+1Fi+1;
13 F i = F i +

∑
(iTf i+1)F i+1;

the segment in order to make the chain dynamics satisfy the constraint.
The right-hand side m × 1 vector bN represents the so-called “acceleration
energy” [Saint Germain, 1900] generated in the constraint; bN has the physical
dimensions of force times acceleration. [Gauss, 1829] introduced this product
of a force with an acceleration into classical mechanics, and it was applied
by [Gibbs, 1879, Hertz, 1894], and [Appell, 1899] to derive the equations of
motions of point masses; [Vereshchagin, 1974] extended it to serial kinematic
chains of ideal revolute or prismatic joints. Virtual constraints can represent
desired accelerations imposed on the segment by the human programmer; for
example:
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Algorithm 3.2: Forward Dynamics
Input : Robot geometric, inertial data, qi, q̇i, τi, Ẍ0, F

ext
i

Output : Robot motion, q̈i, Ẍi

1 begin
// Outward sweep of pose, twist and bias component

2 for i← 0 to N − 1 do
3

i+1
i X =

(
di
i X

i+1
di
X(qi)

)
;

4 Ẋi+1 = (i+1Tvi)Ẋi + Si+1q̇i+1;
5 Ẍbias,i+1 = Ẋi+1 × Si+1q̇i+1;
6 F bbias,i+1 = Ẋi+1 ×∗Hi+1Ẋi+1;
7 F̄

b

bias,i+1 = F bbias,i+1 − (i+1Tf0)i+1F ext0 ;
8 HA

i+1 = Hi+1;
9 FAi+1 = F̄

b

bias,i+1;
// Inward sweep of inertia and force

10 for i← (N − 1) to 0 do
11 Di+1 = STi+1H

A
i+1Si+1; PA

i+1 = 1−HA
i+1Si+1D

−1STi+1 ;
12 Ha

i+1 = PA
i+1H

A
i+1;

13 HA
i = HA

i +
∑

(iTvi+1)THa
i+1(iTvi+1);

14 F ai+1 = PA
i+1F

A
i+1 +HA

i+1Si+1D
−1τ i+1 +Ha

i+1Ẍbias,i+1;
15 FAi = FAi +

∑
(iTf i+1)F ai+i;

// Outward sweep of accelerations
16 for i← 0 to N − 1 do
17 q̈i+1 =

D−1
{
τ i+1 − STi+1

(
F i+1 +HA

i+1
(
(i+1Tvi)Ẍi + Ẍbias,i+1

))}
;

18 Ẍi+1 = (i+1Tvi)Ẍi + q̈i+1Si+1 + Ẍbias,i+1;

• To constrain the motion of a reference point on the segment partially in
the vertical direction, the constraint matrices can be chosen as follows:

AN =


0 0
0 0
0 0
1 0
0 1
0 0

 , bN =
(

0
0

)
. (3.23)

The columns of AN are the directions of constraint forces in the horizontal
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X and Y directions, that must keep the acceleration in those directions to
zero; the three rows of zeros on the top indicate the absence of acceleration
constraints on the rotational degrees of freedom.

• To move the segment vertically without allowing rotations, the constraint
matrices represent five constraints:

AN =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , bN =


0
0
0
0
0

 . (3.24)

That means that the constraining forces and moments are allowed to work
in all directions, except the vertical Z direction.

• Here is the traditional case of giving the segment a desired acceleration
ẌN in full 6D:

AN = 16×6, bN = ẌN . (3.25)

Remember that the physical dimensions of bN are not those of 6D acceleration,
but of acceleration times force. In the last case, the constraint specification
is non-conservative (i.e., the constraint forces do produce work (acceleration
energy) against the constraints), by giving an acceleration energy setpoint via a
non-zero bN The m real constraint forces are not known in advance, but are
computed by an extension to the hybrid dynamics algorithm. The formulation
of the constrained dynamics problem that is computed by the constrained hybrid
dynamics solver is given as

HẌ + Fbias + Fc = F

AT
NẌN = bN ,

with F c = ANν

(3.26)

This is equivalent to Equation (3.1) expressed in generalized coordinates.

3.4.1 Integrating acceleration constraint into the dynamics
recursions

From the acceleration constraint specification presented in the previous Section,
the working directions of all constraint forces are known (these are the
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“unit” forces contained in the matrices AN ), but not their m × 1 vector of
magnitudes ν. So, the real constraint forces will be ANν. The introduction of
segment acceleration constraints leads to the Popov-Vereshchagin extensions
to the traditional recursive formulas of Section 3.3.4, [Vereshchagin, 1989]. The
approach is based on dynamic programming that is used to search for a local
minimum of Lagrange function given as

Zi(Ẍi,ν) = min
q̈i

{ N∑
i=0

1
2(Ẍi − ¨̃Xi)THi(Ẍi − ¨̃Xi)+

+
N∑
i=1

1
2(diq̈2

i )− τ iq̈i + νTAT
NẌN

}
,

(3.27)

where ¨̃X is the acceleration of the system when it is not under constraint and d
is inertia of a transmission unit connecting a joint to a motor, Section 2.4.2. The
quantity Z† is called Zwang or degree of constraint [Gauss, 1829]. According to
Bellman’s optimality principle [Bellman, 1957, Bertsekas, 1995], Equation (3.27)
can be re-written as in

Zi−1(Ẍi−1,ν) = min q̈i
{1

2(Ẍi−1 − ¨̃Xi−1)THi−1(Ẍi−1 − ¨̃Xi−1)+

+1
2(diq̈2

i )− τ iq̈i +Zi(Ẍi,ν)
}
,

(3.28)

where the last term Zi(Ẍi,ν) is searched in a form of a function that is
quadratic in Ẍi and ν [Popov et al., 1978] and given as

Zi(Ẍi,ν) =1
2(Ẍi − ¨̃Xi)THi(Ẍi − ¨̃Xi) + 1

2(νTLν)+

+νTAT
i (Ẍi − ¨̃Xi) + F Ti (Ẍi − ¨̃Xi) + νTU i + ᾱi,

(3.29)

where ᾱ is a scalar and ᾱN = 0, U is a vector of size m× 1 and UN = AT
N

¨̃XN ,
L is a symmetric matrix of size m × m and has units of bN with LN = 0.
By first substituting Equation (3.29) for Zi(Ẍi,ν) in Equation (3.28) and
minimizing the final expression with respect to q̈i and solving for q̈i gives the
accelerations of constrained motion. This is given as

q̈i = D−1
i

{
τ i − STi

(
F bias,i +Hi(Ẍi−1 + Ẍbias,i) +Ai ν

)}
, (3.30)

†“Zwang” is the German term for “constraint”, as used in the early publications in the
domain of constrained dynamics that appeared in the dominant German scientific literature of
the early 20th century [Hertz, 1984], so the symbol Z is commonly used in the international
literature to denote degree of being constrained: The first English translation of this German
and Russian literature introduced the term “acceleration energy”, although strictly speaking
it is not energy [Vereshchagin, 1974].
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where Di = di + STi HiSi. By substituting q̈i back in Equation (3.27) and
searching for Zi(Ẍi,ν) in the form of Equation (3.29) gives rise to the following
recursive expressions for the coefficients in Equation (3.29):

Hi = Hi + (iTvi+1)T
(
Hi+1 −Hi+1Si+1D

−1STi+1Hi+1

)
(iTvi+1)

and HN = HN .

(3.31)

F i = (iTvTi+1)
{
F i+1 +Hi+1

(
Ẍbias,i+1 + Si+1D

−1
i+1

(
τ i+1 − STi+1(F i+1 +Hi+1Ẍbias,i+1)

))}
and FN = 0.

(3.32)

Ai = (iTvTi+1)
(
1−Hi+1Si+1D

−1
i+1S

T
i+1

)
Ai+1 and AN = AN . (3.33)

Note the striking resemblance of these recursive equations to those presented
in Section 3.3.2 and stand for articulated body inertia, Equation (3.31)
and articulated body bias forces, Equation (3.32). Furthermore, the
structure of Equation (3.31) is analogous to that of the algebraic Riccati
equation [Bertsekas, 1995].

When the solution to the minimization problem in Equation (3.28) is to be
expressed in terms of the computational sweeps on a kinematic chain, these
coefficient recursions are computed during the inward computational sweep as
it is in the case of the forward dynamics problem. In addition to them, the
inward sweep also contains the recursions of U i and Li that have the following
physical interpretations:

• The inward recursion keeps track of how much of the desired constraint
acceleration energy bN is already generated by the (external and inertial)
forces, and by the applied joint torques. That amount of acceleration
energy need, hence, not be generated anymore by the to-be-computed
constraint forces. Its computation is recursively accumulated, from the
end-effector down to segment i, in the acceleration energy U i:

U i = U i+1 +AT
i+1

{
Ẍbias,i+1 + SiD−1

i+1

(
τi+1 − STi (F i+1

+Ha
i+1Ẋbias,i+1)

)}
,

(3.34)
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where UN = 0. The terms in the curly braces represent all accelerations
that result from (i) the torque applied at joint i, and (ii) inertial forces
applied more distally than this joint i.

• The inward recursion also keeps track of how much of the constraint
acceleration energy bN is already generated by each of the virtual “unit”
constraint forces AN themselves, via the m×m acceleration constraint
coupling matrix Li:

Li = Li+1 −AT
i+1Si+1(STi+1Hi+1Si+1)−1STi+1Ai+1, and LN = 0.

(3.35)
The jth row of Li contains the acceleration energy that the jth unit
constraint force has generated (up to now in the recursion) against
the accelerations generated by all constraint forces. Ai+1 is what is
felt of the unit constraint forces, more distal than the current joint
i; the multiplication with Si+1(STi+1Hi+1Si+1)−1STi+1 results in the
acceleration generated at the current joint i by those constraint forces; and
the multiplication with AT

i+1 yields the acceleration energy contributions
at this joint.

Now, in order to find Lagrange multiplier ν, one is to minimize Lagrange
function given in Equation (3.27) with respect to ν. As it can be observed the
result of the minimization is equal to:

Zi(Ẍi,ν) = min
ν

{ N∑
i=0

1
2(Ẍi − ¨̃Xi)THi(Ẍi − ¨̃Xi)+

+
N∑
i=1

1
2(diq̈2

i )− τ iq̈i + νTAT
NẌN

}
= bN .

(3.36)

Searching for the solution of Zi(Ẍi,ν) in the form of Equation (3.29), the
following expression is obtained:

Liν +AT
i (Ẍi − ¨̃Xi) +U i = bN . (3.37)

When the recursion arrives at the base (i = 0), one can solve for the still
unknown constraint force magnitudes ν. For a robot with a rigidly fixed base,
the acceleration Ẍ0 consists of gravity only and ¨̃X0 = 0. If Li is not full
rank, the imposed end-effector constraint cannot be completely satisfied and
the inversion of the coupling matrix needs to be search using damped least
squares approach, for instance. Another extreme case there are no any external
constraints at all, then the whole computations reduce to Equations (3.31) and



88 POPOV-VERESHCHAGIN HYBRID DYNAMICS SOLVER

(3.32). Finally, by substituting computed coefficients back in Equation (3.30),
the acceleration of the constrained system can be computed. This remains
similar to the unconstrained case of Equation (3.20), except that an extra joint
torque Aν is added to generate the desired constraint forces. In summary, the
hybrid dynamics algorithm of Popov and Vereshchagin has no formal changes
in the equations with respect to the traditional case, Equation ((3.20)), except
that, now, the joint torques τi are the sum of two contributions: (i) the “inverse
dynamics” torque needed to satisfy the Cartesian constraints, and (ii) the
“forward dynamics” torque needed for posture control, or any other feedforward
objective. Figure 3.3 summarizes the number of sweeps, the quantities that are
computed during each sweep and the constraints on the kinematic tree.

3.5 Extensions

This Section explains the various extensions that this research makes to the
original Popov-Vereshchagin algorithm.

3.5.1 Multiple constraints in a tree

The recursions of the previous Sections apply to constraints on only one segment
of a kinematic chain. Extending this to multiple constraints on (the same or
different) segments in a tree-structured kinematic chain does not change the
recursions in Equation (3.33) and Equation (3.34) of, respectively, the constraint
force matrix A and the accumulated acceleration energy b of each individual
constraint. But it involves some extensions for the acceleration energy coupling
matrix L and for the computation of the constraint force magnitudes ν. The
following paragraphs explain the extensions for the case of the composition of
two constraints, but the procedure generalizes to any number of constraints:

• When a constraint applies on a segment that is not a leaf segment, the
recursions can start from that segment, because more distal segments will
not contribute to the constraint satisfaction or violation.

• When the inward recursion of a k-dimensional constraint c reaches a
segment where it must be joined with the recursion of a l-dimensional
constraint d, both acceleration constraint coupling matrices Lc and Ld,
Equation (3.35), are fused into a (k + l)× (k + l)-dimensional constraint
matrix Lcd:

Lcd =
(
Lc 0
0 Ld

)
. (3.38)
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Algorithm 3.3: Constrained Hybrid Dynamics
Input : Robot geometric, inertial data, qi, q̇i, τi, Ẍ0, F

ext
i , AN , bN

Output : Robot motion, q̈i, Ẍi

1 begin
// Outward sweep of pose, twist and bias component

2 for i← 0 to N − 1 do
3

i+1
i X =

(
di
i X

i+1
di
X(qi)

)
;

4 Ẋi+1 = (i+1Tvi)Ẋi + Si+1q̇i+1;
5 Ẍbias,i+1 = Ẋi+1 × Si+1q̇i+1;
6 F bbias,i+1 = Ẋi+1 ×∗Hi+1Ẋi+1;
7 F̄

b

bias,i+1 = F bbias,i+1 − (i+1Tf0)i+1F ext0 ;
8 HA

i+1 = Hi+1;
9 FAi+1 = F̄

b

bias,i+1;
// Inward sweep of inertia and force

10 for i← (N − 1) to 0 do
11 Di+1 = di+1 + STi+1H

A
i+1Si+1; PA

i+1 = 1−HA
i+1Si+1D

−1
i+1S

T
i+1 ;

12 Ha
i+1 = PA

i+1H
A
i+1; HA

i = HA
i +

∑
(iTvi+1)THa

i+1(iTvi+1);
13 F ai+1 = PA

i+1F
A
i+1 +HA

i+1Si+1D
−1
i+1τ i+1 +Ha

i+1Ẍbias,i+1;
14 FAi = FAi +

∑
(iTf i+1)F ai+i; Ai = (iTvTi+1)P i+1Ai+1 ;

15 U i = U i+1 +
AT
i+1

{
Ẍbias,i+1 + SiD−1

(
τi+1 − STi (F i+1 +Ha

i+1Ẍbias,i+1)
)}

;
Li = Li+1 −AT

i+1Si+1D
−1
i+1S

T
i+1Ai+1, LN = 0 ;

16 L0 ν +AT
0 Ẍ0 +U0 = bN ;

// Outward sweep of accelerations
17 for i← 0 to N − 1 do
18 q̈i+1 =

D−1
i+1

{
τ i+1 − STi+1

(
F i+1 +HA

i+1
(
(i+1Tvi)Ẍi + Ẍbias,i+1

)
+Ai+1 ν

)}
;

Ẍi+1 = (i+1Tvi)Ẍi + q̈i+1Si+1 + Ẍbias,i+1;

This “fusion” is done before going over the first common more proximal
joint, hence the recursion of Lcd continues from there on as in
Equation (3.35), but now with the 6 × (k + l) constraint force matrix
Acd:

Acd =
(
Ac Ad

)
. (3.39)
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The physical interpretation of Lcd is clear: its jth row contains the
acceleration energy that the jth unit constraint force has generated (up
to now in the recursion) against the accelerations generated by all k + l
constraint forces. Indeed, the extra joint forces needed to realize the
constraint forces in c also influence the constraint forces in d, and vice
versa.

• At the base, the extended version of Equation (3.37) must be solved:

Lcd0
(
νc

νd

)
=
(
bcN

bdN

)
− (Acd

0 )T Ẍ0. (3.40)

The constraints can be satisfied without conflicts, if Lcd0 is of full rank,
and hence it can be inverted. If some of the constraints are conflicting,
Equation (3.40) must be solved via a traditional weighted pseudo-inverse.

3.5.2 Posture/Null space control

Similar to the concept of the velocity-level “null space” of a kinematic
chain [Liegeois, 1977], the acceleration null space is defined to be the set of
joint forces that generate a zero acceleration at the end-effector, ẌN = 0. This
is a special case of the constrained end-effector in Equation (3.22):

AN =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , bN = 0. (3.41)

Applications like posture control for a redundant or humanoid robot want
to superimpose a null space motion to the outcome of the hybrid dynamics
algorithm, to keep the whole robot close to a certain posture, for balancing
or obstacle avoidance. Such posture control works by adding joint forces (or
accelerations) and/or segment forces, to generate motions of the legs, torso
and arms that do not change the desired end-effector motion constraints. The
presented recursions deal with this problem as follows:

• If the null space motion is specified as desired accelerations q̈i of some
of the joints, or forces τi at some of the joints, these are added to the
recursion in Equation (3.34), possibly with the help of Equation (3.21).
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• If the null space motion is specified as desired segment forces F i on
some of the segments, these are added as given forces to the recursion in
Equation (3.17).

Both result in “bias accelerations” at the end effector, just like those generated
by the Coriolis and centripetal forces. Hence, the later recursions then compute
the joint forces that compensate for these bias accelerations, irrespective of
their origin.

3.5.3 Novel linear-time solution for task prioritization and
constraint weighting

The posture control procedure as outlined in the previous Section does, implicitly,
a prioritization of the end-effector constraints over the posture control inputs:
the constraints take precedence over the posture control inputs, because the
compensating joint forces to realize the desired constraints (exactly, and
irrespective of the other inputs) take place after the posture control forces
are taken into account. (Of course, within the limits of (i) available actuator
forces at the joints, and (ii) conflicts of the end-effector acceleration constraints.)

This insight allowed us to change the traditional implicit computational order,
and to determine whether to prioritize constraints, joint forces, or external
forces, just by switching the order of the recursions:

• The constraint vector ν is computed with zero posture control forces
(on joints and segments) in Equation (3.34) (but of course with all other
external forces taken fully into account);

• During the final outward recursion Equation (3.30) the non-zero posture
control forces are added (Figure 3.4).

Of course, variations on this prioritization approach exist by selecting whether
or not to include the joint forces or the segment forces into the computational
scheme (Figure 4.3).

Also the complementary approach to prioritization, that is weighting, of
the various controls, can be achieved in the following ways by changing the
traditional computatonal scheme:

• The actual bias acceleration Ẍbias,i at the end-effector that results
from non-zero posture control forces at segments or joints is used to
generate the right-hand side acceleration energy vector bpostureN using
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Equation (3.22) with the desired end-effector constraint matrix AN . The
desired acceleration energy vector beeN is added to bpostureN as input to the
constraint computation recursion (Figure 3.4). In this way, the weighting
is achieved via the natural dynamics of the kinematic chain.

• An application-specific weighting can be introduced, by weighting the
contributions of beeN and bpostureN before starting the recursion.

bcontrol = wpostureb
posture
N + weeb

ee
N . (3.42)

Finally, note that all the presented prioritization or weighting schema can still
be achieved via the linear time recursions, without having to resort to the higher-
order null space projection matrices as in, for example, [Khatib et al., 2008].

Popov Vereshchagin Dynamics

Constraintcomputation
2nd Outward

sweep

1st Outward
sweep
Inward
sweep

XẊẌ

Atask

bcontrol

τ ff

τ fb/control

priority
constraint

priority
posture

τ

q̈

+

Constraint
update

2nd Outward
sweep update

bdes

wposture
wee

Figure 3.4: The figure depicts feedforward and feedback inputs to the recursions.
Such decomposition of the torques and acceleration energy contributions allows
implementation of priority and weighting-based task control.

3.5.4 Unilateral and maximum joint torque constraints

During the final outward recursion of Equation (3.30), one checks whether the
requested total joint torque τi (that is, the sum of all the term inside the curly
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braces) exceeds the maximum available torque τmax
i . If that is the case, the

algorithm is adapted in the following way:

• The total applied torque is set to τmax
i in Equation (3.30), and the recursion

continues.

• When reaching the end of the recursion, one computes to what extent
the local acceleration constraint is violated, via the acceleration energy
formula for bnN in Equation (3.22).

• This new acceleration energy value bnN is used in Equation (3.37) to
compute new constraint force magnitude values νn.

• Repeat the procedure until all specified constraint violation tolerances are
satisfied, or no solution is possible.

The worst-case computational complexity occurs when (i) one wants to redo the
computations to try to satisfy the constraints anyway despite the joint torque
saturation, and (ii) the last joint N is the first one to saturate, and then joint
N − 1 in the next recursion, and soon. This involves a cost of O(N2).

Chapter 5 presents a setup with the constraints on maximum joint torques.
There the controller that stabilizes the constraints uses adaptive gains which
are computed using a predictive greedy algorithm.

3.5.5 Numerical considerations

The matrix L0 in Equation (3.37) is symmetric—as are all its predecessors Li—
as is apparent from Equation (3.35). Since each recursion in Equation (3.35)
adds a matrix of rank one, and starts with a zero matrix, a minimum of m
joint degrees of freedom are needed for the invertibility of L0, and hence to
generate the m constraint forces. Even then, L0 can be singular, which is
the mathematical indication that the kinematic chain is physically unable to
generate the desired constraint of Equation (3.22). Another reason for singularity
of L0 is that the different constraints are not independent, sometimes also called
“conflicting”.

In both cases of singularity, a (weighted) pseudo-inverse solution can provide
a set of joint forces that approximates the desired acceleration constraints, by
weighting their relative importance. The weighting takes place in the space of
the constraint magnitudes ν, or in the end-effector accelerations ẌN . This is
different from the “inertia weighting” that takes place in the recursions on the
mechanical dynamics, e.g., in Equation (3.11), [Whitney, 1969].
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The numerical complexity of computing such weighted-inverse for L0 is typically
O(m3), with m the number of constraints. But since the recursion in
Equation (3.35) starts with a zero matrix, and each time adds a rank − 1
symmetric update, linear time rank-revealing and decomposition solutions exist
for this case, as described in [Sentana, 1996]. The latter solution is recursive,
and fits perfectly to the use case of segment-by-segment recursions over 1-DOF
joints. Hence, when arriving at the root segment, the presented numerical
decomposition approach allows to immediately solve Equation (3.37) for the
constraint force magnitudes ν, because the matrix L0 being already available
in a decomposed form that fits well to solving a linear set of equations with
optimal numerical conditioning and efficiency.

3.6 Discussions and conclusions

This chapter brought the original work by Russian roboticists Popov and
Vereshchagin [Popov et al., 1978, Vereshchagin, 1989] into the context of
complex task specification and control for modern robotic systems. Popov-
Vereshchagin algorithm provides a fully recursive, linear-time, inverse and
forward dynamics algorithm with partial acceleration constraints. The original
paper [Vereshchagin, 1989] also briefly mentions some further extensions, that
were not included in this research: the inclusion of joint shaft model, the case of
a free-floating base with general acceleration constraints on the base. Chapter
introduced inverse, forward and hybrid constrained dynamics problems step-by-
step. It has shown that the semantics of the motion and force computations
is essentially the same and that the differences follow from the input-output
causality defined on the mapping between motion and force space constraints.

The algorithms that solve the presented dynamics problems are described
in terms of recursive computations, also known as computational sweeps,
on a kinematic structure. During the sweeps either motion or force space
variables associated with the kinematic mechanism are updated. It is shown
that the inverse problem can be computed by the inverse dynamics algorithm,
Algorithm 3.1 that consists of two computational sweeps: an outward sweep
of motion space quantities and an inward sweep of force space quantities.
The forward problem can be computed by the forward dynamics algorithm,
Algorithm 3.2 that consists of three computational sweeps: an outward sweep
of motion variables, an inward sweep of forces and inertias and the second
outward sweep to compute the remaining motion variables that result from
the forces. In all cases, it is important to emphasize the role of the rigid body
inertia tensor that plays a role of a mapping operator between motion and force
spaces. Depending on the type of the dynamics problem the mapping takes
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place either between the momentum and the velocity in the inverse problem or
between the force and the acceleration in the forward problem.

The chapter presented Popov-Vereshchagin algorithm in terms of the compu-
tational sweeps described in the context of the inverse and forward dynamics
problems. Popov-Vereshchagin algorithm computes the motions and forces
associated with the kinematic chain which is under external acceleration level
equality constraints. It approaches the solution to this constrained problem by
reformulating the original Equation 3.26 as a dynamic programming problem of
minimization of Lagrangian, Equation 3.27. In mechanics, such a problem is
known as Gauss’s principle of least constraint that in its simplified form states
that any motion of the constrained system deviates from its unconstrained
motion as little as possible.

Furthermore, the chapter presented extensions to the algorithm to the case of
tree-structured robots, with multiple “task frames”, so that it becomes applicable
to modern humanoid robots and mobile manipulators. The extensions are based
on the insight that the computational sweeps are essentially a set of computations
that are scheduled sequentially and that this schedule is determined by the
structure of the kinematic chain whose dynamics is computed. This insight
allows to compute many variants of the generic hybrid dynamics (forward,
inverse, constraints, weighting, prioritization, torque limits,. . . ) by simple
changes in the scheduling of the computational sweeps and contributions of
different quantities during each sweep. The result is a generic/meta algorithm
that is simple to configure for one or more of the desired dynamics computations
with a very limited extra cost of computations. This allows an implementation
of different task control schema such as prioritization and weighting-based task
control. The implementations do not involve conventional nullspace projection-
based technique. It relies on the decoupling of the commanded inputs, e.g.,
torque or the acceleration energy contributions, and feeding them component-
wise at different points of the computational sweeps. Such structural and
behavioral re-organization of the algorithm allows one to combine it with other
exotic control algorithms, such as the one discussed in detail in Section 5.4 that
is used to predict and to adapt gains of the constraint controllers.

The implementation of the constrained dynamics solver is available as part of the
OROCOS KDL [Smits et al., 2001] project. The latest tested version that also
partially uses geometric relations semantics library [De Laet and Bellens, 2012]
is available at [Shakhimardanov and Bruyninckx, 2014a]. The implementation
follows the same guidelines presented in Section 2.5, i.e., the algorithms are
expressed as the recursive sweeps that apply a set of composite operations
on a kinematic chain according to some traversal policy. Most of the existing
implementation is tested for serial kinematic chains and currently can only cope
with the constraints on the end-effector segment. Therefore, all simulations and
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examples in following chapters are performed on setups involving serial kinematic
chains with the end-effector constraints. Some other proposed theoretical
extensions such as the one in Section 3.5.4 are not implemented yet.



Chapter 4

Role of Popov-Vereshchagin
Solver in Control

The goal of this chapter is twofold. First, it discusses how the constrained hybrid
dynamics presented in Chapter 3 can be used in a robot control application. The
examples and approaches presented in this context do not develop controllers
that exhibit perfect behavior. The main focus lies in analyzing how the dynamics
solver is integrated in a control loop and interacts with different existing control
laws, and where a control specification itself fits in the motion programming
stack, Figure 4.1.

The second complementary matter that is addressed by this chapter is
a validation of the implementation of the algorithm and its extensions,
Section 3.5.3, via extensive simulation results on some relevant use cases,
Section 4.2.

4.1 Related work

Chapter 3 presented various domain specific solvers that can be used to compute
dynamic motions and interactions of a robotic mechanism. First, it presented the
forward and inverse dynamics solvers that compute an unconstrained dynamic
motion of the robot given by Equation (3.2) either in generalized or spatial
coordinates.

Then, the complexity of the problem increased by the introduction of the

97
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Figure 4.1: Controller specification and its position in the (motion)task
programming stack.

external constraints on system’s dynamics, and a resultant constrained problem
had the form that could be expressed using either Equation (1.4) in generalized
coordinates with a holonomic position level constraint, or Equation (3.1) in
generalized coordinates with an acceleration level constraint, or Equation (3.26)
in spatial coordinates with the special case of the acceleration level constraint
on robot’s end-effector.

Many texts in robotics and in multi-body dynamics do implicitly rely on some
form of optimization, in order to solve the constrained dynamics problems
above [Udwadia and Kalaba, 2002, Masarati, 2011, Peters et al., 2008]. This
is especially observable in redundancy resolution approaches based on the
pseudo-inverse of the robot Jacobian matrix. [Whitney, 1969, Liegeois, 1977]
and [Hollerbach and Suh, 1987, Luh et al., 1980b] are some of the well-known
texts for the velocity- and the acceleration-resolved schema, respectively that
use techniques based on the pseudo-inverses. Additionally, many of those
contributions do not always draw a line between the solution of the constrained
problem and the design requirements for the controllers.
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Many constrained kinematics and dynamics solvers, although claim to solve the
problem described by Equation (3.1), essentially solve a constrained optimization
problem as in 

I = uT ·W (q, u) · u

h(q, t) = 0

M(q)q̈ = u(q, q̇)− C(q, q̇)− τc(q)︸ ︷︷ ︸
JT

c λ

.

(4.1)

Here, I,u,h,W are a cost function, a control input, a holonomic position
constraint function, and a positive semi-definite metric weighing matrix,
respectively. In this formulation the metric weighing matrix W is often chosen
based on the fundamental physical principle, e.g., D’Alembert, Hamiltonian,
Gauss, Appell principles, that is used to analyze and solve the problem. For
instance, as it was presented in Chapter 3, an equivalent of the formulation in
Equation (4.1) is given as in

Ii(Ẍi) = min
q̈i

{ N∑
i=0

1
2(Ẍi − ¨̃Xi)THi(Ẍi − ¨̃Xi)

}
AT
NẌN = bN

HẌ = F − Fbias− F c︸︷︷︸
Aν

(4.2)

and Popov-Vereshchagin constrained hybrid dynamics solver, Algorithm 3.3
computes the solution to this problem. Furthermore, the motion model used in
these formulations do not have to involve dynamics, Equation 3.2, but can also
rely on the kinematic model as in Equation 1.2. Then, the solution of these
kinematic formulations is based on looking for the solution of the least-squares
problem [Duffy, 1990, Doty et al., 1993], where the weighing or damping matrix
W plays a central role [Smits, 2010].

In [Nakanishi et al., 2008, Peters et al., 2008], the authors present a framework
for the robot control. They introduce the framework as an ‘umbrella’
to explain the relationships between the existing robot control approaches.
The authors formulate their approach as an optimization problem that can
be expressed as in Equation (4.1) using the principles of motion discussed
in [Udwadia and Kalaba, 2002]. The analytic solution of this optimization
problem is given as

u = W−1/2(JcM−1W−1/2)+(b̂− JcM−1C), (4.3)
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where Jcq̈ = b̂(q, q̇) is obtained by differentiating the holonomic constraint
function h(q, t) = 0 upto the acceleration level. Based on this formulation of
the input u, the authors can express different control approaches by varying
W and Jc. Here, W determines how the control inputs are distributed
over the joints. For instance, if the W metric is to be consistent with the
Gauss principle, it is set to M−1. This is equivalent to the control approach
formulation presented in [Bruyninckx and Khatib, 2000] and can be computed
by the constrained solver from Chapter 3. If the robot is to track a Cartesian
space trajectory, one obtains the following control law

u = JT

apparent
inertia︷ ︸︸ ︷

(JM−1JT )−1

Cartesian acc. resolved
control law, b̄︷ ︸︸ ︷(

Ẍd −KD(Ẋ − Ẋd)−KP (X −Xd)− J̇(q)q̇
)

+

+C +M (I −

dynamically consistent
inverse︷ ︸︸ ︷

M−1JT (JM−1JT )−1 J)︸ ︷︷ ︸
dynamically consistent

nullspace

M−1u0,

(4.4)
with h(q, t) = X(t)−Xd(t) ⇒ Jc = Jr = J and u0 is a nullspace vector,
b̄(q, q̇) = Ẍd −KD(Ẋ − Ẋd)−KP (X −Xd)− J̇(q)q̇. Although the
problem that is solved is the constrained problem of Equation (4.1) and
its general solution is as in Equation (4.3), note the structure of b̄ in this
expression. Strictly taken, this is not true! Because during the differentiation
of holonomic constraint h(q, t) to obtain its acceleration level representation,
the information on pose and velocity constraints is lost, which causes numerical
drift, thus resulting in unstable mathematical representation [Masarati, 2011]!
In order to account for these lost constraints, the control should be chosen that
stabilizes Equation (4.4). Frequently, this is not exemplified, and just mentioned
as a side note by many authors [Hollerbach and Suh, 1987, Luh et al., 1980b,
Nakanishi et al., 2007, Nakanishi et al., 2008, Peters et al., 2008]. This can
also lead to a false impression that an outcome of the optimization-based
control problem is a stable control command.

To summarize, the solvers compute either constrained or unconstrained
problems and often rely on optimization-based techniques to compute
the former. In order to use them in robot control applications, an
additional stabilizing or controlling expression is required. In constrained
rigid body dynamics literature this kind of stabilization is also referred to as
Baumgarte’s method [Baumgarte, 1972, Chiou et al., 1999, Flores et al., 2011,
Bauchau and Laulusa, 2008, Laulusa and Bauchau, 2008, Lin and Chen, 2011,
Masarati, 2011]. Popov-Vereshchagin algorithm in Chapter 3 copes with
acceleration level constraints, hence pose and velocity level constraints need
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Figure 4.2: Three complementary ways exist to build controllers around the
Popov-Vereshchagin algorithm: joint torques, segment forces (actual and
constraint) on end-effector or internal segments, and segment acceleration
energies generated against specific unit constraint forces (also at end-effector or
internal segments).

to be accounted for by introducing a stabilization mechanism. Baumgarte
stabilization approach suggest addition of terms that contain pose and velocity
information to the linear equations Jcq̈ = b̂ or AT Ẍ = b, resulting in

Jcq̈ =

b̄︷ ︸︸ ︷
b̂− 2α̂

dh(q, t)
dt

− β̂2h(q, t)

AT Ẍ = b− 2α
dh(q, t)
dt

− β2h(q, t).

(4.5)

Here the right choice of α, α̂ and β, β̂ gains ensure that the solution of
Equation (4.5) converges. This is also the reason for the structure of b̂ in
Equation 4.4. In [Lin and Chen, 2011], the authors go further to suggest
addition of the third integral term to obtain

Jcq̈ = b̂− 2α̂
dh(q, t)
dt

− β̂2h(q, t)− η
∫ t

0
h(q, t)dt, (4.6)

with η an integration gain. In textbooks on control theory the equiv-
alents of Equation (4.5) and (4.6) are known as PD and PID type of
controllers [Aström and Murray, 2010], respectively. The well-known examples
in robotics that use such stabilization approach are joint and Cartesian
space trajectory tracking control application with h(q, t) = qd(t)− q(t) and
h(q, t) = Xd(t)−X(q, t), respectively.
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The stabilization, i.e., instantaneous control of constraints can be applied on
any combination of inputs and outputs of the motion/interaction. This results
in the following combination of instantaneous control approaches around the
constrained dynamic solver as depicted in Figure 4.2:

• external forces F exti on the segments. These forces can be actual forces,
or virtual, desired constraint forces, applied to any segment, not just the
end-effector segments.

• joint forces τ i on the joints.

• acceleration energy bN on the segments, generated against unit constraint
forces.

Suggesting “the best” instantaneous control approaches is beyond the scope of
this research (and is application dependent, anyway). Section 4.2 on simulation
and examples in Sections 5.3 and 5.4 showcase applications of generic control
approaches that are tested with the hybrid dynamics solver from Chapter 3.

Contributions. This chapter shows how various stabilizing controllers can be
integrated in the same control loop with the constrained dynamics solver. It
shows that the general architecture of the control loop does not need to change
to implement a different control application. It is rather various configurations
of these controllers that need to be switched either on or off.

4.2 Validation in simulation

The validations do not focus on the quality of the achieved control, but on
showing the richness of the set of controller approaches that can be built around
the instantaneous constrained hybrid dynamics algorithm, Algorithm 3.3, and
on how each controller can be integrated into the algorithm, while keeping its
efficient computational properties. This highlights the presented algorithm’s
major advantage: control can really be integrated into the algorithm’s dynamics
recursions and need not be done “outside”, using the dynamics as a monolithic
black box. This integration feature improves further on the computational
efficiency of working with acceleration-level constraints, that is, in itself, already
an improvement with respect to the state of the art.

So, the algorithm’s implementation is tested with several kinematic chain
configurations (over-constrained or redundant in their own right), and with
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Figure 4.3: This generic control diagram depicts the interactions of various
posture and operational space controllers with the constrained dynamics
algorithm. It also shows the paths of controller inputs, τ(·) torques, to the
algorithm. Such a decoupling of the input torques allows the implementations
of weighting and priority-based control schema, Figure 3.4.

combinations of end-effector constraints and joint space and Cartesian space
controllers. A brief description of these configurations is given in Table 4.1.

1. Setup for 2-DoF planar manipulator (Figure 4.4a): two types of
settings for these experiments are considered. In the first setting, the
goal is to move the manipulator depicted in Figure 4.4(a), from some
configuration S0 to another configuration S1 in the presence of the gravity
and constraints in the end-effector’s X direction. In the second setting,
the goal is to keep the position of the end-effector constant by applying
constraints to both the X and Y degrees of freedom. For both settings,
since the acceleration constraint relation is of the linear form AT Ẍ = b,
one would require a controller to keep it stable. For this purpose one could
use an impedance controller and take its effect as a virtual external force
in the dynamics algorithm. Another possibility is to directly influence
the constraints themselves by introducing an acceleration energy-based
controller, which negates excessive acceleration energy introduced in an
attempt to satisfy the constraint.

2. Setup for 4-DoF planar manipulator (Figure 4.4c): the system
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Figure 4.4: Three types of robot chain configurations of Section 4.2: in
configuration (a), a 2-DoF planar serial chain is moved from its initial state on
the left to the state on the right, under the effect of gravity and end-effector
constraints. In configuration (b), a 5-DoF manipulator is moved in the presence
of gravity and end-effector constraints. In configuration (c), a 4-DoF planar
serial chain is to move vertically down under the effect of gravity and end-effector
constraints. In all three cases, the constraints are of the form AT Ẍ = b.
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considered in this setup is redundant and gives more opportunities to
explore the effects of different combinations of constraints and controllers,
both in end-effector and joint space coordinates. In particular, it is shown
that the algorithm can be used either in priority or weighting-based
multitask control involving robot dynamics, Section 3.5.3. In addition
to constraining end-effector coordinates as described in the setup above,
the joints are to follow some specified trajectories. In this setting it is
shown that depending on where priorities lie, one can perform multiple
tasks with different degrees of success. For instance, Figure 4.6 shows that
it is possible to do a posture control with small errors and at the same
time satisfy end-effector constraints, if there are enough system degrees
of freedom, and priority is set to posture trajectory tracking.

3. Setup for 5-DoF spatial manipulator (Figure 4.4b): the system
considered in these setups represents a kinematic structure similar to that
of youBot manipulator [KUKA, 2010]. In these experiments, a setting is
considered where two of the end-effector’s translational degrees of freedom,
X and Y, are constrained, and the other last translational degree of
freedom, Z is to track a polynomial trajectory. Additionally, four of the
five available joints are to track polynomial trajectories.

4. Setup for 7-DoF spatial manipulator: the system considered in these
setups represents the kinematic structure of Baxter [Rethink Robotics, 2012]
robot. In experiments here, a setting is considered where two of the end-
effector’s translational degrees of freedom, X and Y, and one of the
rotational degrees of freedom, Z are constrained. Additionally, two joints
closest to the end-effector segment are to track polynomial trajectories.

For all the setups described, the Popov-Vereshchagin algorithm is used for
the dynamics computations in the form equivalent to that of the articulated
body algorithm, [Featherstone, 2008] and with extensions to multitask control
[Khatib et al., 2002, Khatib et al., 2008] with constraints. Structurally, the
constraint stabilization through acceleration energy and impedance, as well
as joint space computed torque controllers are similar. This research also
introduces a stabilization term based on the compensation of the acceleration
energy b in Equation (3.22). The controller around b is given in the form of

b = AT (Ka∆Ẍ +KD∆Ẋ +KP∆X), (4.7)

with ∆X = Xdesired −Xactual and Ka, KD and KP are gains. For the joint
space tracking task, a computed torque control of the form

τ = τ ct(q̈desired) +KDj∆q̇ +KPj∆q (4.8)
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was used, [Bejczy, 1974]. Here ∆q = qdesired − qactual is the tracking error,
and ∆q̇ its time derivative; KDj and KPj are (virtual) joint space damping
and stiffness matrices, respectively. The trajectory of q(t) is interpolated
as a third degree polynomial, which provides the desired joint accelerations,
velocities and positions. The desired joint acceleration q̈desired then gives rise to
the corresponding torque τ ct(q̈desired), computed by the Popov-Vereshchagin
algorithm.

The constraint stabilization that uses the impedance control has the form
presented in [Albu-Schäffer et al., 2003]

F ext = HA∆Ẍ +KDc∆Ẋ +KPc∆X, (4.9)

with ∆X = Xdesired −Xactual, HA the articulated body inertia matrix, KDc

and KPc the Cartesian damping and stiffness matrices, respectively. This type
of controller is equivalent in its effects to the constraint stabilization controller
around b defined by Equation (4.7). The trajectory of X(q, t) is interpolated as
a third degree polynomial, which provides the desired Cartesian accelerations,
velocities and poses. Figure 4.3 depicts the control loop which performs a
whole-body control by integrating different constraint-controller combinations.
This control loop can not only be applied to control of the robot motion, but
also to interaction type of tasks.

4.2.1 Results and analysis

The values of the parameters of the kinematic chains used in the simulations
are as follows:

• For the 2-DoF manipulator, the segment lengths are L1 = L2 = 0.4m;
the segment masses are m1 = m2 = 0.3kg and they are located at the
distal ends of the segments (Figure 4.4a); and the joint axis inertias
are d1 = d2 = 0.01 kg·m2. The convention for frames is that the Z
directions are pointing out of the page, and joint values are positive in a
counterclockwise direction.

• For the 4-DoF manipulator, L1 = L2 = L3 = L4 = 0.2m; m1 = m2 =
m3 = m4 = 0.2kg; d1 = d2 = d3 = d4 = 0.01kg·m2; Z direction is pointing
out of the page.

• For the 5-DoF manipulator, model parameters can be found in
[KUKA, 2010].

• For the 7-DoF manipulator, model parameters can be found in
[Rethink Robotics, 2012].
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Ẍ

=
b

=
0,

all
joints

are
controlled

Table
4.2:

C
ontrollers

and
their

gain
configurations

as
used

in
priority-based

m
ultitask

controlw
ith

non-conflicting
constraintsfor4-D

oF
robot.

H
ere

T
(sec)isthe

tim
e
required

to
finish

the
task

and
T
in
e
r
tia

isthe
naturalinertialtim

e
constant

ofthe
system

s.
T
hese

values
were

obtained
for

T
=

2.5s,sim
ulation

tim
e
of2T

,
T
in
e
r
tia

=
0.5s

and
sam

pling
rate

of0.001s.
Figure4.6

depicts
the

results
associated

w
ith

this
table.

Joint
variable

q
is

in
rad.



VALIDATION IN SIMULATION 109

Setup 1: one of the coordinates of the end-effector is constrained and
the remaining coordinate follows a trajectory : Figure 4.5(a)-(c) shows the
results of the simulation with a 2-DoF planar manipulator. In this setting X
coordinate of the end-effector is constrained using the acceleration constraint

AN =


0
0
0
1
0
0

 , bN =
(
0
)
. (4.10)

and Y coordinate is to follow a polynomial trajectory as in Equation (4.13) but
expressed in Y Cartesian coordinates. Figure 4.5a compares two configurations:
X is constrained as in Equation (4.10) and Y is free; both X and Y are free.
As expected, when both coordinates are unconstrained the end-effector moves
under the influence of the gravity in a free form and since there is no loss
due to friction or any other dissipative forces, the motion will continue infinite
amount of time. When X is constrained, then there is a kind of virtual external
dissipative force on the end effector which alternatingly works with or against
the gravity. This constraint force immediately starts to work against the motion
along X axis. This effect is observed in the amplitude of the X curve (in blue)
when compared to the unconstrained case (in cyan). Since the constrained is
not controlled the motion eventually leads to high amplitude oscillations. In
order to cope with those, the constraint needs to be controlled using one of the
approaches discussed in Section 4.1. In this setup X constraint is controlled
using beta controller and Y is prescribed to follow a trajectory, Figure 4.5b.
As expected from the simulation Figure 4.5c shows almost a perfect tracking
behavior.

Setup 1: fixed end-effector position : In this setting, the task is to keep
the pose of the end-effector constant in the presence of the gravity. This is
accomplished by constraining both X and Y coordinates of the end-effector
using the acceleration constraint

AN =


0 0
0 0
0 0
1 0
0 1
0 0

 , bN =
(

0
0

)
. (4.11)

One can interpret this setup as a static equilibrium, where the manipulator
which is under the effect of the gravity is being balanced by holding its tip.
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Figure 4.5d compares the configurations when either both or none of the end-
effector coordinates are constrained. The outcome is similar to that in the
case when only X coordinate is constrained. But unlike Figure 4.5a, now it
takes some time before the motion becomes unstable. It can be explained by
the fact that there is now an external constraint force that is working against
the gravity along Y coordinate. Considering the initial configuration it starts
from, the end-effector is in the first quadrant (both X and Y are positive) and
it is closer to Y-axis, both X and Y converge to zero. This is a ‘bend over’
configuration where end-effector coincides with the base. But because of the
oscillatory motion that never disappeared, the simulation eventually becomes
unstable. But addition of the beta controller-based stabilization, Figure 4.5e,
keeps the end-effector as its initial configuration. The same simulation is also
performed with different initial configuration, Figure 4.5f that shows also a
similar outcome. In this new configuration, constrained in Y coordinates is
stabilized using F ext-based simple impedance controller. Though Figure 4.5f
shows perfect tracking behavior for both types of controllers, one can see that
their performances differ, Figure 4.5g. As can be observed, the system keeps
its position after some transition phase. This difference comes from the fact
that the controller use different gain values Equation (4.7) vs Equation (4.9).
Furthermore, the contributions of the F ext and beta controllers are taken into
account during first outward sweep and immediately after the second inward
sweep during computations of the constraint forces respectively, Algorithm 3.3.
This also contributes to the difference of Y coordinate in Figure 4.5g.
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Figure 4.8: Simulation data for a 2-DoF planar manipulator. The first task
is to constraint X coordinate and let Y coordinate to follow a trajectory. The
second task is to keep the end-effector position fixed by constraining it both in
X and Y coordinates.



VALIDATION IN SIMULATION 115

Setup 2: controlled end-effector fall under the gravity and non-conflicting
constraints: in this setup the task is to move the end-effector of the redundant
planar 4-DoF robot vertically along the Y axis, while keeping its X coordinate
constant. From the point of Cartesian coordinates of the end-effector, this is
the same as in the first case of 2-DoF robot:

AN =


0
0
0
1
0
0

 , bN =
(
0
)
. (4.12)

But it gets interesting in joint space, because the 4-DoF robot is redundant for
this task. Due to this fact, the algorithm will try to search for all possible joint
configurations that would satisfy imposed constraint. From the physical point
of view, this is not only inefficient, but also unrealistic. Because, most probably
some of the solutions are not physically realizable, for instance, joints having
infinitely high rates (singular configuration), high torques or joint positions
having values bigger than 2π. In order to restrict the solution space to the
physically feasible set, one should define a set of tasks in joint/posture space.
Such tasks could include avoiding joint limits or following prescribed joint
trajectories. Depending on whether Cartesian or posture space constraints need
be satisfied best, one can use either weighting or priority-based task control
approaches as explained in Section 3.5.3. In this task, in addition to satisfying
the end-effector’s X DoF constraint, three of the joints of the robot are to follow
an (admittedly rather artificially created) trajectory profile as in

f(q, t) = q0 + q1t+ q2t
2 + q3t

3, (4.13)

where the values of coefficients of the polynomial depend on the initial and
final values for that joint. Each of the joints is controlled independently using
computed torque controller Equation (4.8). As can be seen in Figures 4.6(a)–(d),
the first three joints of the system follow the prescribed trajectory with some
bounded error, while the fourth joint is free. In Figure 4.6d the dashed line
(desired) represents a motion profile the fourth joint would follow if it were
controlled too. This is to show that the tracking in the fourth joint is not
present. Otherwise, it might give an impression that some trajectory is being
tracked, since all the other curves are stacked together.

Figure 4.6e compares acceleration in X coordinate with different configurations
of constraint controller. As can be observed, regardless of whether weighting
or priority-based approaches are used, the values of the X DoF acceleration is
around zero. This is difficult to observe on this scale, but looking at Figure 4.6f
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which compares the accelerations in X and Y with different kind of prioritization,
it is clear that the motion caused by the acceleration in X are negligible. This
can also be confirmed by looking at the value of the position in X, Figure 4.6g.
Here, the worst performance is obtained when the priority is given to the
satisfaction of joint space trajectories. Then, the worst case absolute error in
position is 2.5 cm and with respect to the total length of the manipulator,
4 × 0.2m it makes around 3.125%. Figure 4.6g shows a ‘zoom in’ version of
a priority on the end-effector constraint. Here the worst case absolute error
is in sub-millimeter scale. Another factor that influences behaviors of the
constraint controllers is that weights and priorities are defined for different
physical quantities, acceleration energy and joint space acceleration respectively.
Furthermore, the weights in acceleration energy controller are numbers that
dictate how much acceleration energy should be ‘added’ to or ‘removed’ from
posture contributions. Whereas, priority is determined by the contributions of
the joint space acceleration during different phases of computational sweeps,
Section 3.5.3.

Setup 2: controlled end-effector fall under gravity, with conflicting
constraints: this setup is exactly the same as the one discussed above, but
now all of the four joints of the system are controlled. This clearly leads to a
conflict between satisfaction of end-effector constraints and posture constraints.
Because unlike in the previous case, the number of degrees of freedom of the
system (four) is less than what the task requires (five degrees of freedom). A
direct consequence of this, is that, regardless of the control approach used,
the constraints are almost never satisfied (except when the priorities are on
end-effector constraints). This is in contrast to the case above with the non-
conflicting constraints, where all control methods satisfied the constraints, even
if their quality were different and not perfect.

While analyzing data, one is to consider two issues: (i) weighing and
prioritization are on different quantities and performed during different stages of
the computational sweeps; (ii) because of the conflicting constraints, controllers
may not behave as one expects them to. Such effects are well observable
in Figures 4.7(a)–(d), where the quality of joint space tracking is very poor,
regardless whether the priority is set on posture control or not. One could
assume, if the proportional gain of the joint space controller, Equation (4.8), is
tuned more aggressively a better performance could be achieved, but that kind of
approach will be at the cost of the stability of the system’s motion. Furthermore,
conflicting constraints exhibit more aggressive dynamics during the transition
phase, Figures 4.7e and 4.7f, than that in non-conflicting Figures 4.6e and 4.6f.
This could also explain higher torques at the joints, Figures 4.8(a)-(b) than
those in non-conflicting cases, Figures 4.8(c)-(d).
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For the controllers based on weighing of acceleration energy, the contributions
of posture/joint space force and Cartesian space constraint forces are weighed
according to Equation (3.42). In Equation (3.30) the forces in inner braces that
consist of articulated bias forces contribute to the posture acceleration, whereas
the last term involving Lagrange multiplier ν contributes to Cartesian space
constraint acceleration. In weighing-based controller, these two contributions
are weighed before computing the acceleration of the system. Figure 4.7g shows
different cases that involve these controllers in conflicting constraint setup.
At the first impression, one can observe a strange behavior of weighing-based
controllers for Wc > Wp and Wc >> Wp (in Equation (3.42), Wc = wee). One
would expect Wc >> Wp to be closer to the case with the priorities on the
end-effector constraint (default case of the constrained dynamics). The problem
here is that this figure is constructed a bit incorrectly, because it assumes the
same conditions for all the controllers. But Wc > Wp and Wc >> Wp cases
use completely different weights. Wc > Wp and Wp > Wc use one set of gains
that are interchanged between posture and constraint contributors, whereas
Wc >> Wp and Wp >> Wc use another set of gains that are also interchanged
between posture and constraint contributors. That is why, these two sets are
symmetric with respect to the nominal constrained dynamics output. It is
interesting that this ‘mistake’ becomes evident in conflicting setup, but not in
non-conflicting setup in Figure 4.6g.

But again, looking at Figure 4.7h (this is ‘zoom in’ into 4.7g) one can observe
that in its default configuration the constrained dynamics still satisfies the
end-effector constraint.
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Figure 4.12: A comparison of six different controller setups using priorities and
weighting. The data is associated with a setup with non-conflicting constraints.
Wc, Wp, pp, pc stand for constraint weight, posture weight, priority posture
and priority end-effector constraint respectively.
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Figure 4.16: A comparison of six different controller setups using priorities and
weighting. The data is associated with a setup with conflicting constraints. Wc,
Wp, pp, pc stand for constraint weight, posture weight, priority posture and
priority end-effector constraint respectively.
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Figure 4.18: A comparison of the joint torque data for the setups with conflicting
and non-conflicting constraints on 4-DoF serial chain.
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Setup 3: controlled end-effector fall of a 5-DoF spatial robot under gravity,
with conflicting constraints: in this setup the motion of the end-effector of a 5-
DoF youBot manipulator, [KUKA, 2010], is constrained in X and Y coordinates.
The constraint specification is given as

AN =


0 0
0 0
0 0
1 0
0 1
0 0

 , bN =
(

0
0

)
. (4.14)

The end-effector is to follow a polynomial trajectory in Z coordinate,
Equation (4.13). Figures 4.9(a)–(c) depict the data on X, Y and Z position
coordinates. In X and Y coordinates the behavior is as expected. First, X and
Y coordinates of the end-effector are constrained and no joint space trajectories
are present (green), i.e., non-conflicting situation with three linear DoF of the
end-effector are involved. The X and Y are controlled with beta controller and
Z is tracking a polynomial trajectory using a simple impedance controller input
to the dynamics through F ext. The performance of the latter is poor, but it
is clearly tracking the given trajectory, while X and Y after undergoing some
oscillations during the transition phase converge to their values imposed by the
constraints. In the second case, four joints are to track trajectories of their
own, thus creating an over-constrained setup, i.e., two acceleration constraints
and five trajectories. During the configuration of the controllers, a priority
is given to the satisfaction of the end-effector acceleration constraints, i.e.,
default configuration of the dynamics algorithm. X and Y directly converge top
their desired values, while Z coordinate does not track its trajectory anymore.
The latter is due to the fact that F ext used to control the trajectory is input
during the initial outward sweep of the algorithm and its contribution to the
end-effector motion is weighted down by the articulated body inertia during the
second inward sweep. Figure 4.9d shows ZYX-Euler angles that oscillate with a
high amplitude when there is only stabilization on the end-effector constraints
and no posture control. On the other hand, addition of the posture controllers
can lead to less erratic behavior. This might be explained by the fact that
there are fewer free system DoFs that can be allocated to the motion of the
orientation.

Figure 4.9e compares joint motion profiles, when there are only end-effector
constraints are present and the joints are free to move. The desired trajectory
serves as a reference, in order to show that no motion is being tracked. Figure 4.9f
depicts the over-constrained situation, when four of the five joints are controlled
to track polynomial trajectories. There are two factors that contribute to this
outcome: (i) the priority is set to satisfy the end-effector acceleration constraints,
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(ii) the system is over-constrained which makes it difficult to obtain desired
outcome for all tasks.
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(a) Data on X coordinates. In the first case (green), X is constrained and controlled
with beta controller but no posture trajectories are imposed. In the second case (blue),
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-0.0084

-0.0083

-0.0082

-0.0081

-0.008

-0.0079

-0.0078

-0.0077

-0.0076

-0.0075

-0.0074

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Y
 p

o
si

ti
o
n
 (

m
)

time (sec)

desired
beta-control

pc

(b) Data on Y coordinates. In the first case (green), Y is constrained and controlled
with beta controller but no posture trajectories are imposed. In the second case (blue),
the posture trajectories are present but a priority is given to end-effector constraint.
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(b) Joint motion profiles when the robot is overconstrained, four joint trajectories, one
Cartesian trajectory and two Cartesian acceleration constraints.

Figure 4.21: A comparison of the acceleration energy and impedance based end-
effector controllers for the 5-DoF serial chain under the conflicting constraints.
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Setup 4: controlled end-effector motion of a redundant 7-DoF spatial
robot under gravity, and with non-conflicting constraints: in this setup the
motion of the end-effector of a 7-DoF Baxter robot, [Rethink Robotics, 2012],
is constrained in its linear X and Y degrees of freedom, and its Z rotational
degree of freedom. The specification for this task is given as

AN =


0 0 0
0 0 0
0 0 1
1 0 0
0 1 0
0 0 0

 , bN =

0
0
0

 . (4.15)

According to this motion specification the robot is only to move along its Z axis,
while keeping its orientation about the axis constant. Figures 4.10a and 4.10b
show X and Y coordinates of the end-effector, respectively. They compare two
configurations: (i) in the first configuration, there are only constraints on the
end-effector and none in the joint space. As can be seen, the use of controllers
did not improve stability of the motion. This does not necessarily mean that
the controllers are poorly tuned, but can also have been caused by the ‘jump’ in
orientation coordinates as depicted in Figures 4.10c and 4.10d, which themselves
can be due to poorly chosen specific coordinate representation, i.e., Euler angles.
Here, more simulation data using such continuous representations as quaternions
and rotation matrices is required, (ii) in the second configuration, in addition
to the end-effector constraints, two of the outermost joint in the kinematic
chain (closest to the end-effector segment) are to track imposed trajectories,
Figure 4.10e. The introduction of these trajectories greatly improves tracking
dynamics of all the constraints. The reason for choosing specifically these two
joint is the fact that their motion contributions are not strongly weighted by
the robot’s inertia.
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(a) The motion profiles of the last two joints in the kinematic chain. The joints are
controlled to track trajectories. The configuration uses a computed-torque controller.

Figure 4.24: A comparison of constraint stabilization using impedance and
joint space controllers for a 7-DoF manipulator model. All data represent non-
conflicting constraint configurations with a priority on satisfying the end-effector
acceleration contraints.
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4.3 Discussions and conclusions

This chapter presented how the existing constraint solvers are related to a
constrained optimization problem. Specifically, it looked into an optimization-
based formulation of the constrained dynamics solver from Chapter 3. It is
shown that the constraint solvers often compute a solution to the constrained
optimization problem, where a cost function is determined by one of the
fundamental principles of mechanics. The choice of the latter determines
what quantity is being optimized and is often given as a quadratic expression
that includes weighed product of a motion and a force space physical quantities.
For example, the cost function can be a kinetic energy/instantaneous power
(a product of momentum and screw velocity twist), an acceleration energy (a
product of screw force wrench and screw acceleration twist ), etc. The weighing
of the motion and force products is often performed by the spatial inertia term.
The choice of such a metric weighing term enables physically consistent outcome
of the constrained dynamics.

It is shown that the result of the optimization computations does not generate a
stable motion. This follows from the fact that in order to obtain the acceleration
level constraints, the position level holonomic constraints are often directly
differentiated. This causes the loss of the position and velocity level constraint
information, which results in a numerical drift problem. A common approach
that is adopted to cope with this issue is changing the shape of the linear
constraint differential equation with diverging solution(s) to the one whose
solution(s) converge(s) as in Equation (4.5). In multi-body dynamics, the
additional negative terms in this equation are known as Baumgarte stabilization
terms. In the context of robotics, most conventional control approaches,
impedance control, computed torque control, and other PD and PID controllers
have this stabilizing structure.

The chapter also presented the results of the validation of the implementations
of the constrained hybrid dynamics and stabilizing controllers. The validation is
performed in simulation for multiple setups that involved various kinematic chain
structures. It is shown that the control architecture built around the constrained
hybrid dynamics does not differ from that when the unconstrained dynamics
are used. It is shown that the current implementation supports prioritization
and weighing of the controllers as outlined in Section 3.5.3 and most of the time
their behaviors are as expected. Most of the simulations have been performed
on serial kinematic chains with the end-effector being frequently constrained
in translational degrees of freedom. Therefore, other constraint configurations,
involving kinematic trees and rotational degrees of freedom, as outlined by the
theory, but not implemented yet need to be tested in the future. Furthermore,
current implementation uses one specific coordinate representation for various
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geometric relations involved. As it is shown in simulations, Figures 4.10d and
4.10e, the choice of the specific coordinate may not always be the right one
for the specified task. Therefore, a lot more effort is required to make the
implementation truly coordinate representation independent as is outlined in
Chapter 3. With respect to the over-constrained cases, the simulations show
that it is not always possible to influence the outcome of the prioritization and
weighing toward the desired performance by just changing the values of the
weights or order of the computations in the sweeps. Therefore, more research is
required to check how the proposed control approaches in this thesis relate to and
favor against other existing task prioritization and weighing-based approaches
out there.



Chapter 5

Examples of implementation
of motion control stack

5.1 Introduction

Chapters 2 and 3 presented the methods to specify the robot and the solver
using semantic models. Furthermore, Chapter 3 considered the specification of
some types of the task constraints in a combination with the dynamics solver.
Chapter 4 covered the conventional approaches to cope with the constraint
control problem. So far, the functionalities and the design of each of these
constrained task components were discussed separately. The results of this
chapter should be viewed as the cumulative of the research presented so far.
It discusses how the task components interact with each other, both on the
functional level and in the context of motion programming stack, in order to
implement the motion task as it is presented in Figure 1.2.

Figure 5.1 shows a conceptual organization of the motion programming stack
that implements the symbolic task in Figure 1.2. It illustrates what level
of the stack the programmatic representations of the components belong to.
From the functional point of view, this motion programming stack implements
WBCA which is at the core of many robot motion task control frameworks.
In the context of this research WBCA refers to an architecture that enables
a control of a robotic system whose Cartesian space, joint space, and sensor
space coordinates are constrained simultaneously.

The following sections analyze the architecture of WBCA, its constituting

139
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components and their underlying mathematical formulations. Finally, these
sections show how a motion task based on WBCA can programmatically be
realized using the motion stack semantic models and their DSLs implementations.
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Articulated body
(segment, joint, chain)
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Figure 5.1: An implementation of the WBCA can be expressed using a
composition of various DSLs that are part of the (motion)task programming
stack.

Contributions This chapter discusses how WBCA can be realized in software
using the formulation of the motion programming stack introduced in Chapters 2
and 3. Specifically, it presents a number of example task control architectures
and their implementations. (i) It shows how WBCA can be implemented using
the specialization of a hybrid dynamics solver on a mobile arm platform; (ii) it
develops an optimization-based predictive algorithm that can adapt the gains of
the constrain controllers. This algorithm is then used with the hybrid dynamics
solver to realize WBCA for the tasks with conflicting and non-conflicting
constraints.
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5.2 General structure of WBCA

The constrained system in Equation (1.4) and the one with the optimal control
formulation in Equation (4.1) addressed multi-task cases with either joint/pos-
ture space or Cartesian space constraints and controllers [Peters et al., 2008].
These included computed-torque-like control techniques [An et al., 1987] for
posture space constraints, as well as indirect force control using robot’s
impedance formulation [Hogan, 1985] for the Cartesian space constraints.
All of these methods have a structure similar to that of Baumgarte
stabilization [Laulusa and Bauchau, 2008, Lin and Chen, 2011], Chapter 4.

In addition to the joint and the Cartesian space constraints, most of the
contemporary task control framework implementations can also cope with
the constraints specified in the sensor space of the robot. A class of the
problems that consider such cases is visual servoing. In visual servoing the
task of the robot is to track the motion of the objects (features) in the
sensor space, often in a camera image [Espiau et al., 1992, De Laet et al., 2012,
Hutchinson et al., 1996]. Mathematically, one could express a constrained
system that is under posture, Cartesian (or end-effector), and sensor space
constraints as

M(q)q̈ = τpa (q)− τ eec (q)− τ sc (q)− C(q, q̇)

hp(q) = 0⇒ Ĵpc q̈ = b̂p posture space,

hee(q) = 0⇒ Ĵeec q̈ = b̂eec Cartesian space,

hs(q) = 0⇒ Ĵsc q̈ = b̂s sensor space.

(5.1)

Here, the input to the motion of the robot is decomposed into the inputs to
address the constraints in each of the three constraint spaces. Note that the
Equation (5.1) does not involve the control terms yet. The goal of the task
control framework is to find control inputs τpa (q), τ eec (q) and τ sc (q) that
do not interfere with each other and satisfy their constraints as closely as
possible. Such control inputs are usually referred to as dynamically consistently
decoupled [Peters et al., 2008, Sentis, 2007] and the control framework is said
to implement the whole-body control architecture. Note the similarity between
Equation (5.1), Equation (1.4), and Equation (3.1). The latter two are explicitly
accounting for ‘one constraint’. Depending on where this constraint is specified
Jc performs the mapping either from the end-effector space and is equivalent to
Jr, Equation (4.4) or maps to the posture/joint space itself and is an identity
matrix, respectively. In Chapter (4), the kinematic chains in the simulations were
configured with constraints in posture and Cartesian spaces, thus distributing
available degrees of freedom of the robot to satisfy the constraints across two
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Figure 5.2: The block diagram shows a generic whole-body control architecture.
It summarizes that any whole-body control approach consists of constraints,
constraint controllers in one of the constraint spaces and a kinematic or a
dynamic model solver. Here Xf (·) are feature poses in the sensor space and
subscripts des, est, and meas stand for desired, estimated, and measured
respectively.

spaces. These are then controlled according to Equation (4.5). Equation (5.1)
generalizes Equation (4.5) to address the constraints specified in sensor space
as well, thus distributing available degrees of freedom of the robot to satisfy the
constraints across three spaces. One can view WBCA as the generalization of
the classical control architectures with a solver as the central component. This
allows a design of various task control loops around the solver component, e.g.,
hybrid dynamics or inverse kinematics. Such whole-body control architecture
in general case can be depicted as in the Figure 5.2. The block diagram shows
several possible control loops formed around the solver component. This shows
that the control loops can be closed in either posture, Cartesian or sensor
spaces, depending on where the constraints were specified. All these constraints
require a mapping of the motions (i.e., coordinates) in each space onto robot
generalized coordinates in which the robot is usually commanded. This mapping
is performed by the Jacobian matrices, as depicted in Equation (5.1).

WBCA implies that all the specified constraints can be active simultaneously.
The example for such a case is demonstrated in [Vanthienen et al., 2011a].
Physically speaking, each constraint keeps a number of degrees of freedom of the
robot busy. Therefore, it can be that there are not enough free robot degrees
of freedom to satisfy the constraints, thus the tasks. Such situations lead to
a performance degradation and are called conflicting. In order to address this
problem, most of WBCA frameworks implement some form of scheduling or
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coordination policy. This policy can be implemented as a separate component of
the task, or be part of the solver component, as is explained in Section 3.5.3. In
Section 3.5.3 and Section 4.2, such a policy is part of the solver component and
the scheduling policy is based on priorities. One could also implement a control
architecture that switches off and on a specific set of constraint control loops
depending on the application context, as is done in Figure 5.8. This solution
relies on the coordination policy to cope with the over-constrained situation.
In robotics, a set of constraints, controllers and coordination policies that are
valid in a specific context are often referred to as skills or sub-tasks.

Many frameworks, specifically their solvers opt for the scheduling policy based
on priorities, because it relies on the physical capabilities of the system that
are taken into account during the constraint resolution [Nakamura et al., 1987].
This point is complementary to the dynamically consistent decoupling discussed
before. It also requires that the constraint inputs to the solver should have
a consistent formulation that reflects the schedules of each task constraint.
Such a formulation is usually achieved by projecting the tasks of a ‘lesser’
importance or priority onto the nullspace of the Jacobian matrix relating the
constraint space and the robot’s generalized coordinate space. For instance,
in [Khatib et al., 2008, Sentis, 2007], the authors introduce a posture and a
constraint consistent nullspace projection operator. It enables decoupling of
the primary task inputs from those of the posture and other constraints such
as a distance to an obstacle, for example. This process can be repeated on
many constraints and one can invert priorities which imply a different set of
projections.

Consequently, a formulation and a decomposition of WBCA into the solver,
controllers, and constraints components and associating them with the
appropriate constraint space,as in Figure 5.2, simplifies the identification of
its architectural variabilities. The latter facilitates a software realization of
each component using the motion stack and component specification DSLs.
The decomposition and consequent analysis of WBCA components is achieved
by applying a feature oriented domain analysis method [Kang et al., 1990,
Czarnecki and Eisenecker, 2000], which relies on such modelling principles as
aggregation/decomposition, generalization/specialization and parametrization,
Section 1.5.1.
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5.3 WBCA with the inverse kinematics and dy-
namics solvers and the Cartesian impedance
controller for the youBot mobile manipulator
robot

(a)

Y

X

Z

(b)

Figure 5.3: Shows youBot mobile manipulator platform. (a) The robot has a
5-DoF arm and omni-directionally actuated mobile base. (b) serial 3-DoF joint
representation of the robot’s base.

This demonstration shows how a mobile arm platform can be commanded to
move its end-effector to some point which is not directly in the reachability
space of the arm in the XY plane. The XY plane is the plane where the robot
base can move freely. The demonstration uses a youBot robot platform, which
has a 3-DoF redundant base with four active and four passive joints and a
5-DoF arm. A graphical representation of the robot on the plane is depicted
in Figure 5.3(a). For this setup, the task is to reach some pose in space with
the robot’s end-effector. The pose can be specified anywhere as long as its
position value along the Z axis is not bigger than the robot’s height (base and
arm combined).

This task can be realized in multiple ways. One could specify a Cartesian
trajectory between the initial pose of the end-effecotr and the pose it needs to
reach and perform controlled motion along this trajectory. This motion itself
can be decomposed into the motion of the base and the arm. In many similar
robotics applications, the robot base’s motion is treated separately. That is,
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the base is first navigated (controlled motion along the trajectory) to some pose
in the vicinity of the desired end-effector pose and the arm performs another
controlled motion along the trajectory for the remaining portion of the pose.
Here, the base and the arm are treated as two separate systems. In the context
of WBCA, the mobile arm can be treated as a single kinematic chain. The
desired Cartesian pose will then be a Cartesian space holonomic constraint on
the motion of this kinematic chain. This motion can then be controlled using a
velocity or an acceleration resolved control schema, if an appropriate solver is
available. For the domain specific solver as the one in Chapter 3, the structure
of the kinematic chain is important. In the case of the youBot robot, this
structure is a kinematic tree, because the base has four joints with one actively
actuated and one passive DoF (because of the mecanum wheels). Therefore,
the solver needs to be able to cope with such robot structures, which can lead
to complex computations. One can also simplify this model and use instead
an equivalent single 3-DoF joint for the base or three 1-DoF joints connected
serially. The former requires that the solver can deal with joints with more
than one DoFs. This example opts for the model of the robot base with three
1-DoF joints, which forms an RPP manipulator as depicted in Figure 5.3(b).
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Figure 5.4: This control block diagram describes a dynamically compliant
motion control of the youBot mobile platform. The motion of the platform is
generated by specifying a set-point in the Cartesian space of the manipulator.
The distance to this set-point is used to generate an external force which is an
input to the inverse dynamics solver. Here subscripts ee and odom stand for an
end-effector and an odometry.
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Combined with the 5-DoF (5xR) arm serial chain (fig. 4.4(b)), the simplified
model of the youBot robot becomes 8-DoF a serial kinematic chain with the
joint configuration of (RPP)+(5xR).

In this example, the motion of the robot is triggered by a controlled virtual
external screw force wrench, which can be constant or a function of the pose
difference of the robot to the goal and the robot’s instantaneous twist. That is,
it is a simplified indirect force control. This controlled wrench then serves as
an input to the solver. Since the base has four actuated real joints, one has to
make sure that the input values computed by the solver are mapped correctly.
This is achieved by the inverse base kinematics or the odometry. The complete
WBCA configuration for the task is depicted in Figure 5.4.

The inverse dynamics solver computes torques for the modeled base joints. In
the physical world they correspond to the wrench components (fX ,fY , τZ)
applied on the base. Therefore, they need to be projected on each wheel to
obtain the real torque values at each of the four real base joints. If the base is
commanded in a velocity mode, then the wrench needs to be converted to the
base twist with components (νX ,νY ,ωZ). It will then require the solution of
the inverse kinematics problem to find each joint’s velocity as depicted in the
solver component in Figure 5.4. Since the solvers require the values of the robot
state (q, q̇), the forward problem also needs to be solved to obtain the odometry
values for the base. One could summarize that in this demonstration, there are
a number of solvers working together. Of course, these solvers could have been
replaced by a single solver, which could deal with multiple DoF joints or be
based on numerical techniques from optimization. But then its implementation
complexity would increase significantly.

5.4 WBCA with the hybrid dynamics solver and a
controller with adaptive gains for the youBot
manipulator robot

The control approaches and the control loop scheme in Figure 4.3 discussed above
can be applied to solve a broad range of “offline pre-defined” robotic tasks. But in
reality most of these tasks may change their conditions during run-time. This in
turn may lead to a poor system performance or even degrade the stability of the
controllers. Some key reasons that lead to such situations are (i) uncertainties
and variation in the friction and inertia parameters of the dynamic model of the
robot, and (ii) the controller gains, i.e., inertia, stiffness, damping factors, are
robot configuration dependent ([Albu-Schäffer et al., 2007b] provides a model-
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based solution to the latter at a computational cost of O(N3)). In classical
control, when choosing the value of these parameters, one defines a configuration
interval in which some constant parameter values achieve the best results. If
the system needs to go through a different configuration interval the controller
gains need to be adapted accordingly. This is usually realized by devising a
hybrid control system with a “high level” finite automaton that encodes the
state or configuration of interval switches [Egerstedt and Hu, 2002]. Ideally,
the controller should have some mechanism to adapt the gains as the robot’s
configuration changes. There are many approaches ranging from adaptive to
optimal control that can be used to realize such adaptive control behavior, as
summarized in Section 1.5.4.
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online, adapted gains will considerably ameliorate the task performance in comparison
with static gain controllers. The adapted gains are the result of an optimisation
algorithm, but can be sub-optimal. In other words, they should not necessarily be
equal to the optimal set of gains at each time instant.

Di�erent steps taken before the implementation of an adaptive controller included
analysing the algorithm’s implementation by diving into the robot dynamics literature
and understanding model predictive control as an example (optimal) adaptive control
strategy.

The goal of this thesis is to design, implement and test an adaptive controller for a
constrained dynamics algorithm, the Popov-Vereshchagin algorithm (P-VA), on the
KUKA youBot.

2

Prediction step

Chapter

1
Introduction

The first contains a general introduction to the work. The goals are defined and the
modus operandi is explained.

1.1 Context and origin of the project

A new constraint dynamics algorithm has been developed at KU Leuven since 2003.
Their work is highly relevant for the constrained motion specification and control of
modern mobile manipulators and humanoid robots.

What has been done: To validate the presented approach, a C++ implementation
of the algorithm has been developed, and made available under an Free and Open
Source license), in the Kinematics and Dynamics Library (KDL, Smits et al. (2001))
part of the Orocos project, Bruyninckx et al. (2003). The validations do not focus
on the quality of the achieved control, but on showing the richness of the set of
controller approaches that can be built around the instantaneous hybrid dynamics
algorithm, and on how each controller can be integrated into the algorithm. This
highlights the presented algorithm’s major advantage: control can really be integrated
into the algorithm’s dynamics recursions and need not be done outside, using the
dynamics as a monolithic black box. This integration feature improves further on
the computational e�ciency of working with acceleration-level constraints, that is, in
itself, already an improvement with respect to the state of the art. So, the algorithm
was tested with several kinematic chain configurations (overconstrained or redundant
in their 12 own right), and with combinations of end-e�ector constraints and joint
space and Cartesian space controllers. A brief description of these configurations is
given in Table 1. In the following, we explore major aspects of some of these setups:

KÕ
n3 (1.1)
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3.2. Adaptive control strategy

Algorithm 1 Adaptive control algorithm
1: Given
2: K = {K1,K2, ...Kn}
3: Asked
4: KÕ

jú œ KÕ
j so that ’j œ N en j < n3 : Eint(KÕ

jú) Æ Eint(KÕ
j)

5: Solution
6: Construct all sets KÕ from K with ± 10%-rule
7: Execute a prediction step for all KÕ

j

8: Remember lowest cost function Eint(KÕ
jú)

9: Knext = KÕ
jú

framework in literature. This is covered in section 3.2.7.

3.2.4 Repeat during task execution

At this point, only one element in Figure 3.4 is left undiscussed: the horizontal
arrow that says "repeat over simulation". It means that the adaptive controller is
a repeating procedure that is executed every N time ticks. The complete robot
task proceeds by repeatedly executing the following sequential procedure: run the
adaptive controller cycle with n3 prediction steps to find a better set of control
variables and run N time steps with the new control variables. This results in a
controlled task with gains that change sub-optimally during the execution.

3.2.5 Sequential implementation

This section discusses the relation to the implementation in C++ by presenting a
pseudo-code fragment, Algorithm 2. This implementation is purely sequential and
doesn’t have any notion of real time.

In the first 20 lines of code, all variables are initialised. After the initialisation
procedure, the main iteration procedure contains the algorithm. Inside this proce-
dure, the IF- and ELSE-statements at rules 24 and 47 divide the algorithm in two
components. Firstly, an optimisation part which simulates the system and evaluate
the cost functions of the simulated system for all attempting sets Kj . The iteration
over the attempting sets is performed at rule 26, the iteration over the prediction
horizon is written at rule 27 and the cost function calculation and comparisons are
performed at rules 36-41. The prediction for each attempting set needs to start at
the same system state, so this state needs to be remembered in temporary variables
(rule 25) and reset to the original state at rule 44. The IF-part results in a new set
of control variables K. Secondly, the goal of the ELSE-part is to recalculate the

43

Figure 5.5: The performance of the controllers is adapted by the adaptation
block, which uses a prediction algorithm and cost functions to tune the controller
gains. Here K is a set of gains that are being changed. The number of sets is
defined by the allowed variations of the gain values (color coded). For instance
in the experiment for circle tracking, gains were chosen to vary 10% from their
starting some nominal value (K + 0.1K),K, (K − 0.1K).

This section presents an algorithm that allows to adapt gains of the constraint
controllers based on the optimization of some cost function. The adaptation
process occurs by taking into account the future process dynamics of the robot.
It resembles the receding horizon prediction model used in MPC. The algorithm
adapts the gain(s) of an already designed controller based on the forecasted
system behavior. This is unlike the approaches discussed in Section 1.5.4, where
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the outcome of the optimization is the optimal control input itself.

The idea behind this demonstration is to show that most task control paradigms
can be viewed as the special instances of the more generic WBCA. Therefore,
one can reconfigure or replace core components of WBCA to adapt to the
requirements of the task. Additionally, one would like to combine a domain
specific hybrid dynamics solver with an optimization-based controller. The
hypothesis is that such a combination will have advantages over the domain-
invariant purely optimization-based solver, because the latter always solves
ODE of the robot motion model numerically, in addition to searching for the
optimal control inputs.

5.4.1 Controller based on predictive gain adaptation∗

In this algorithm, the prediction process is used to simulate a set of possible
state trajectories that the system model (i.e robot motion model) might undergo
with the given configuration of the controllers and constraints. That is, each
trajectory is the outcome of the robot control loop with the given constraints.
The difference to the conventional scheme is that each trajectory is generated by
varying the gains of the constraint controllers and evaluating their performance
based on some cost function.

Let’s explain this procedure on the basis of Figure 5.5. The system starts with
a set of predefined control loops with an ‘acceptable’ performance (i.e., stable
but with a poor tracking behavior). At some point t1 during the run-time the
prediction algorithm starts searching for the best possible set of gains. In this
prediction phase T , which (can) run(s) in parallel to other system activities,
possible (observable) system state trajectories are generated by computing
system dynamics, controllers, and cost functions. The number of the sets of
gains, Kn, to be tried out is given in advance. This is done by defining allowed
variations of the gain parameters in each set. Such a strategy will not achieve a
globally optimal solution, but will lead to locally sub-optimal results. These are
acceptable in service robotics tasks which are often to be compliant rather than
follow an exact geometric trajectory. But has to note that this is also a big
limitation of the current implementation, and requires the application developer
to account for such an appropriate set of gains. For instance in Figure 5.6, the
stiffness parameters, KP ∗ in computed torque, impedance, and acceleration
energy controllers can be allowed to change 10% from their nominal initial
values, {0.9, 1, 1.1}Kprev. This gives 27 variation sets Kn leading to an equal
number of the trajectories to evaluate. The similar trajectories are shown in
color-codes in Figure 5.5 during the prediction horizon.
∗The content of this section is partially based on the research presented in [Copejans, 2014]
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Figure 5.6: This control block diagram depicts the interaction of the conventional
control loops with the receding horizon prediction-based adaptation algorithm.
The algorithm adapts the gains of the conventional controllers based on the
value of the cost function and a naive search strategy. Here KP ∗ and KD∗ are
predicted stiffness and damping gains of the respective controllers.

Then, based on the value of the cost function, the best set is chosen. The cost
function has the form of the weighted square of some physical quantity. Some
examples of the cost functions that were tested are given in Table 5.1. Here Q
are square weighting matrices that have similar semantics as those described in
[Hollerbach and Suh, 1987] and discussed in Chapter 4. The weighted quadratic
form of the cost functions is physically consistent and is justifiable from
the physical point of view in the context of controlled mechanical systems.
This is also in line with the principle of Gauss and has also been discussed
in [Peters et al., 2008, Kalaba et al., 2004, Udwadia and Kalaba, 2002].

After the prediction phase, the control loops using the chosen best set of the
gains are run for some period of time, indicated by N in Figure 5.5. Then
the procedure is repeated till the task execution time runs out. Algorithm B.1
in Appendix A describes this procedure in a sequential form. A control block
diagram showing the integration of the adaptive gain evaluation blocks with
WBCA is given in Figure 5.6. The adaptation block does not modify the
original WBCA from Figure 4.3. But it might incur a performance penalty,
not only because of the cost function computations, but also the dynamics
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Penalized behavior Cost function

Position error Epos = ∆XTQp∆X
Velocity error Evel = ∆ẊTQv∆Ẋ
Acceleration error Eacc = ∆ẌTQa∆Ẍ
Joint position error Ejointpose = ∆qTQj∆q
Torque magnitude Ejointtorque = τTQττ

Control gain gradient Econtrolgain = (K(ti)−K(ti−1)T )Qgain(K(ti) −
K(ti−1))

Combination of all Etotal = a ·Epos + b ·Evel + c ·Eacc + d ·Ejointpose +
f · Ejointtorque + g · Econtrolgain

Table 5.1: Cost functions and the errors E(·) they penalize. Here, a, b, c, d, f
and g are weights.

computations during the prediction time. The interesting point of the algorithm
is that it searches for the solutions in the controller parameter space. This
ensures that there is a stable control input, regardless of the search result.
An application programmer has to ensure that all the gains in the chosen set
of controller gains KN result in stable behaviors. This is a big limitation of
the current implementation. This is unlike other optimal control approaches,
which directly search for the control inputs themselves. Therefore, not finding
the optimum might lead to issues with the control, if the previous optimal
inputs were discarded. A reader can find more details on the evaluation of the
algorithm in different simulation and experimental setups with conflicting and
non-conflicting constraints in Appendix B.

5.5 An implementation of WBCA using the motion
programming stack

This section discusses how WBCA and the components of the demonstrations
above are implemented using the DSLs of the motion programming stack.
Furthermore, every model and functionality specified using these DSLs should
have a software form that can be run on the robot’s computational hardware.
The implementations of WBCA demonstrations above use a component software
framework. This enables an allocation of WBCA component functionalities to
separate software components with clear responsibilities and that can interact
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with each other through ports. This is often referred to as the component
software architecture. There are two aspects of such an architecture:

• a structural aspect - is concerned with the organization of the functionality
of the control architecture, in this case WBCA, into interacting software
components. The interactions among the components are established
through the communication ports of the components. The ports
are connected to each other through the connectors, which are often
implemented using some communication middleware infrastructure. This
trio of component, port and connector often have the same model for all the
components of the software architecture. Therefore, many modern software
component frameworks offer a tool-chain and a DSL that automate an
implementation of these structural primitives. The tool-chain interprets
the DSL specification of the components and generates what is known
as a stub code. The stubs are empty component templates that can be
filled in with the necessary robot domain specific functionalities. By the
introduction of the motion programming stack, such a domain functionality
is expressed using the DSLs for each domain. For example, the inverse
dynamics (ID) software components is implemented in two stages. First,
the component stub code is generated using the component specification
DSL and then the functionality of the ID is filled in using the kinematics
and dynamics DSL.

• a behavioral aspect - is concerned with the coordination and scheduling
either within the components, e.g component’s internal state coordination,
or the software architecture wide. In the latter case, the task coordination
or schedule in WBCA is reflected in the run-time coordination of the
components in the software architecture.

After the structural and behavioral aspects of the software architecture for
WBCA have been laid out, the architecture needs to be deployed on the
computational environment (operating system + hardware) of the robot. The
deployment process is often complex in itself and follows some deployment
model as well [Hochgeschwender et al., 2013]. Therefore, it is also implemented
using a DSL.

Figures 5.7 and 5.8 are the final products of the implementation of WBCA using
the motion programming stack and the procedures explained above. Figure 5.7
distinguishes between the components that contribute to the functionality
of WBCA and those that have utility functions such as synchronization,
deployment, and robot interfacing. Furthermore, among WBCA components
task relevant components that implement task constraints such as trajectories
or set-points, and task constraint controllers are explicitly grouped together.
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Figure 5.8: State machine diagram of the application that realizes the
architecture in Figure 5.4. Here, the transitions between the states are triggered
by the events e_(·).

Although it is desired and possible to express the functionalities of all components
through motion stack DSLs, for the demonstrations in Sections 5.3 and 5.4 the
DSLs that are developed in this thesis and are packaged with the component
software framework are used. These are indicated in grey in Figure 5.7. The
functionalities of the solver and robot structural model components that are part
of WBCA are realized using DSL from Chapter 2. The application supervisor
component coordinates WBCA components according to the state machine
model depicted in Figure 5.8. This state machine model is implemented using
rFSM DSL. Finally, the deployer component initializes and configures the
properties of all components and their connections. It uses a deployment DSL
that is part of the OROCOS RTT framework [Klotzbücher et al., 2010].
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5.6 Task control applications: Linked data with
semantics

The discussions so far focused on making the semantics of the models
for kinematic structures and motion controllers explicit. Machine-readable
representations for some of these models were also defined. But the full
realization of the constrained task control applications requires similar efforts
for other involved sub-domains, such as a constrained optimization, software
components and architectures. Furthermore, the semantics and implementations
of these models need to be explicitly linked to each other: for example, how
a synchronization mechanism of the components in the robot control loop
relates to its finite state machine implementation in some software component
framework. In the demonstrations in Sections 5.3 and 5.4, this linking of the
models and implementations took place implicitly and relied on the knowledge
and experience of the author. But for a developer who cannot bring such
background knowledge, all these sub-domain models will look like disjoint
‘islands’ of the models without direct connections. This section proposes a
set of guidelines on how a constrained task control application can explicitly
be represented in the form of linked models and implementations from the
sub-domains. The approach relies on the principles of the ‘Linked Data’ as
defined in [Bizer et al., 2009].

According to [Bizer et al., 2009, Heath and Bizer, 2011], ‘Linked Data’ or ‘Web
of Data’ technically refers to data published on the Web in such a way that it is
machine-readable, its meaning is explicitly defined, it is linked to other external
data sets, and can in turn be linked to/from external data sets. More specifically,
the statement implies that there should be three ingredients to define linked data:
the machine-readable models of the data, the semantics of the data, and the ability
to reference other data sets with different contexts. In particular, distinguishing
the semantics of the data from their specific instances enables the definition of
explicit structures on the models, such as data hierarchies, conceptual taxonomies
and ontologies. Once such high-order semantic concepts are defined, the linked
data they are associated with can be traversed in different ways and consequently,
be reasoned on. A machine-readable form of such link data is frequently referred
to as the Semantic Web [Lange, 2013, Bizer et al., 2009].

Recently, in robotics the topic of linked data has started shifting from just being
relevant to the ontologies [Compton et al., 2013] and the Semantic Web. There
are already demonstrations of physical robots that reason on platform capabili-
ties expressed as the linked data and report whether some real world task can
be completed or perform it directly. One such relevant contribution is Semantic
Robot Description Language (SRDL) [Kunze et al., 2011, Chitta et al., 2012].
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SRDL matches task specifications given to a robot by verifying the required
capabilities and hardware components the robots should have to be able to
complete the task. The authors distinguish four concepts, robot, component,
action, and capability, which are at the core of SRDL and its inference
mechanism. The authors use Web Ontology Language (OWL) to model and
reason on taxonomies associated with these concepts. In its current form, the
language is limited to adding the semantic information to already existing
robot kinematic structure descriptions that are specified in Unified Robot
Description Format (URDF) [Willow Garage, 2009]. The approach does not
detail on possible links between the actions, the capabilities and their software
implementations. Furthermore, it contains the limitations associated with
URDF model itself, which implicitly includes a number of coordinate specific
constraints.

The approach presented here adapts the formulations of the principles of Linked
Data to the context of robot task control.

• The linked robot data has a graph model. The graph nodes represent
resources (e.g., data, semantics, models) that belong to different sub-
domains. The links between the nodes represent semantic relations (or
constraints) on the resources.

• Every resource and relation must be uniquely identifiable. The node and
link identities can be in any format, including URI.

• The graph with its nodes and links, as well as the resources they represent
should have a machine-readable format.

• There should be a mechanism (a query protocol) making it possible to
look up useful robot task relevant information.

Every item in the list can be implemented using the existing Semantic Web
technologies. For instance, the graph model of the linked data can be expressed
in Resource Description Framework (RDF) [Manola et al., 2004]. RDF enables
users to make statements about resources in the form of triplets: subject,
predicate, and object. Here, the subject and the object represent resources, i.e.,
nodes in the graph, while the predicate represents the relationship/constraints
on these resources, i.e., links in the graph. For instance, Figure 5.9 graphically
visualizes the relationship between the robot platform and its constituting
components, such as a segment, a link, a joint etc. There are a number of
description languages† that can be used to express this RDF graph in a machine-
readable form. These include the Turtle family of languages (N-Triples, Turtle,
†Also called a serialization format in the context of Web programming.
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Figure 5.9: A linked data graph representation of the constrained task which
shows the relation between its constituting primitives. Here the task has the
components as depicted in Figure 1.2 and p.f.b stands for point, frame, body.
In this example the Robot node is expanded to a node of a KinematicChain
type, which itself has connections to other types of nodes such as Segment,
Joint etc. In addition to a unique identity and a type, every node can have
further properties defined by its type.

TriG and N-Quads) [Beckett et al., 2008], JSON-LD [Sporny et al., 2013] which
uses JSON-based syntax [Zyp et al., 2013, Crockford, 2006], RDFa for HTML
and XML embedding [Adida et al., 2012], and others. Here, the use-cases opted
for the use of the JSON-LD format. In addition to being widely adopted
and syntactically less verbose in comparison to others, JSON-LD has explicit
language primitives for graph modeling. In JSON-LD representation, one creates
a graph with nodes and links, which have specific types. In the robot task
control, these types are one of the semantic models in the related sub-domains.
For instance, one possible node type can be a Segment as defined in Section 2
or a finite state machine coordination model as depicted in Figure 5.8. These
types do not have to be defined anew, but can be referenced from within the
JSON-LD. In order to do this, every relevant type (i.e., model) should be
encoded in a JSON or a JSON-LD schema. The schema serves as a meta
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model that defines core structures, syntactic constraints and semantics of the
models/types. Every instance of the models used in the specification of the
graph is validated against these schema. Another interesting and important
issue which JSON-LD exemplifies is the concept of context. The context, as its
meaning suggests, defines the scope where the semantics and the values of the
types and the properties of the nodes and the links are defined. Furthermore, it
allows definitions of vocabularies. These are diverse specifications of the same
semantic models. For example, a ‘communication channel’ and a ‘connection’
both represent the same thing, but may have been developed by different
developers and given different notations. With the help of the vocabularies, one
can choose which notation to use. Listing A.2 in Appendix A shows an excerpt
of a JSON-LD representation of the graph model in Figure 5.9.

5.7 Discussions and conclusions

The material presented in this chapter is the convergence of the research
presented in Chapters 2 and 3. The chapter re-introduced WBCA as the modular
and reconfigurable architecture. Furthermore, it showed how WBCA relates to
the motion stack, how its different functional components can systematically be
implemented using the specification DSLs and eventually map to the specific
software architecture on robot level.

The explicit separation of WBCA into blocks of constraint spaces, constraints,
controllers and solvers allows one to systematically structure and implement any
task specification problem as a mere reconfiguration of the same architectural
model. This architectural organization emphasizes the fact that as long as the
right type of the constraint solver is chosen, WBCA can cope with any type of
constraints on any robot platform.

In order to justify this claim, the chapter presented two demonstrations using
the mobile arm and the fixed arm platforms. The demonstration on the
mobile arm involved a set-point and a trajectory constraint in the joint space
of the arm and the Cartesian space of the base and the arm, respectively.
This demonstration used a combination of inverse kinematics and dynamics
solvers. The constraint controllers used a conventional Baumgarte form with
the constant gains. The second setup based on the fixed arm platform used
the constrained hybrid dynamics solver of Chapter 3 in combination with the
controllers with the adaptive gains. The only additional differences of this
setup to the one for the mobile arm platform are the additional adaptive
control block and the structural robot models used by the solvers (fig. 5.6).
The WBCA architecture did not undergo any further modifications. It is also
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noteworthy that the setups do not need to use the domain specific solvers,
but rely on the domain independent general purpose optimization solvers,
e.g., qpOASES [Ferreau et al., 2008], IPOPT [for Operations Research, 2005],
KNITRO [Ziena, 2015]. This would not introduce considerable modifications
to the design of the architecture.

With respect to the programmatic realization of WBCA, there are two points
to consider. These are the DSLs that help to formulate different WBCA
components in computer readable form and tool-chains that can interpret,
convert, and/or execute these formulations while accounting for the domain
models. Since both the task control and programming involve multiple domains,
structuring each in terms of the DSLs would not only improve their design and
implementation, but also facilitate their programmatic validation. The latter
improvement is of utmost importance for constructing physically correct robotic
applications.

Current realization has few DSLs and tool-chains that take into account the
semantic models, i.e., primitives and constraints, of their domains. Those are
indicated in Figure 5.7. A part of the future efforts includes the formalization of
such semantic models to express the geometric constraints, e.g., an orthogonality
or a path, and the controllers. These models will then be used to implement the
DSLs and the tool-chains that will allow one to correctly specify and realize these
components. The future goal is to integrate several such language tool-chains
that will enable correct by construction implementations of WBCA architecture.

Finally, one of the most important messages of this chapter is that a
programming the robotic applications is not just the definitions of a set of
abstractions. It either requires that an application developer understand the
innate semantic models involved or the tooling infrastructure that supports
such models in a systematic way.



Chapter 6

Discussions and conclusions

This doctoral thesis sets out to improve the development of robot task control
applications, by providing a systematic and a formal foundation to the currently
often ambiguous practice of the robot, task and software modelling, and
specification. From a functional point of view, little is added to the large body
of research and supporting software implementations that already exists. But,
although the development process of the motion control tasks is rather repetitive
and well-understood, the state of the art still has lots of difficulties to ensure
correct-by-construction development of such tasks, and even more to ensure that
the software components provided by independent development groups can be
integrated automatically via formal checks of their interface semantics. In this
respect, this thesis identified and researched two complementary topics that can
directly contribute to the improvement of correct-by-construction development
of motion task control applications: (i) composable semantic models, and ( ii)
variability points in task control architectures.

Composable semantic models for robot kinematic chains
and computations:
By analyzing existing approaches to task control, it is identified that many task
control applications can be expressed in terms of four constituents:

• target objects in an environment, including robots;

• constraints on the objects’ physical relations;

• controlled actions that satisfy these constraints;

• computational constraints in the form of scheduling and coordination.
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Each of the above needs to be specified during the implementation of the task
and it is clear that the topological and geometric relations are central to this
specification. Each constraint, controller, and computational algorithm that is
based on such geometric data should be both unique and distinguishable, in
order to be handled correctly. It is shown that enabling these properties on the
basis of purely numerical data, which is associated with the specific (coordinate)
representation, is error-prone, hence requires semantic meta data be added in a
systematic way.

Section 1.3.1 introduces the MDE-based approach that identifies and separates
semantic (physical) models from, first of all, their geometric and coordinate
specific representations, and subsequently from framework specific implemen-
tations (Figure 1.7). Based on this approach, Chapter 2 develops semantic
models for the kinematic chain structural primitives, and for the operations
that work on these primitives. Building robot kinematic chain models using
first their semantics and only then instantiating them to a concrete coordinate
representation, allows to uniquely identify all features and all computations on
the kinematic chain. This structured approach gives an opportunity to validate
formally, whether the constructed kinematic chains and associated algorithm
are semantically correct.

The thesis develops a series of DSLs that supports developers with the
specification and the implementation of the composable kinematic chains and
computational algorithm models that conform to the semantic models. The
implementations of the DSLs make use of the existing geometric relations library
by De Laet et al. [De Laet et al., 2013a] as an essential building block, and
extends it along the same systematic ways from the geometry of frames to
the geometry and dynamics of kinematic chains. The design of the DSL
is driven by separating the structural data (e.g., a link, a joint, a chain
etc.), from the operations/computations on those data (e.g., pose or twist
transformations). This decomposition approach enables a use of the functional
programming concepts such as a functor (a function object with no or little
internal state), a high-order function (takes other functions as arguments) and
a functional composition in the implementation of the DSLs. It also facilitates a
programmatic expression of the complex robot kinematic and dynamic motion
models as tree data structures with the operations updating the properties of
the nodes and links.

The importance of this research is not so much in the (limited number of) new
functionalities that it provides, but in the methodology of how it structures
the complex domain of software for robot motion and task specification and
control using the DSLs. Currently, the available DSLs are limited to the
specification of robot kinematic chain structures and their operations, but the
methodology can be applied with the same formal rigour to the immediate
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neighbouring functionalities of controllers and estimators. In particular,
Chapter 4 discusses how the domain specific constrained dynamics solver
interacts with the existing control/stabilization approaches, hence providing a
starting point to identify coordinate-free semantic models that can be used in
the design and implementation of a DSL for the specification of the controllers.

The main challenge in the process of the DSL development is the determination
of the domain specific semantic constraints on the domain primitives and
operations. This process requires a lot of time and expert knowledge of the
domain to get right. Furthermore, the DSLs require careful implementation
of the tool-chains that can compile provided specifications into a semantically
valid application code. The development of such tool-chains should take place
in tandem with a domain expert. In this thesis, only a tiny portion of such tools
is developed, since this requires tremendous efforts to be done professionally.

Chapter 3 introduces the functionalities and new extensions of the domain-
specific constrained hybrid dynamics solver. The first example using
the original solver was presented by the Russian roboticists Popov et al.
in [Popov et al., 1978]. The functionality of the original solver is extended
to cope with priority and weighting-based control approaches. These are
achieved by following the design guidelines presented in Chapters 1 and 2.
These new extensions of the solver come at a low cost by reconfiguration
of the computational sweep inputs, and enable one to implement various
configurations of WBCA that can cope with Cartesian and joint (posture)
space constraints. The advantage of using these extensions of the solver over
other similar approaches is that the presented solver does not require explicit
nullspace projection of the constraint Jacobian to implement prioritization. The
implementation and its various WBCA configurations were extensively tested in
simulation and a simple real world application. Again, the foci and contributions
of the presented research were in the systematic and formal modelling as well
as the structured and configurable software implementations, and not at all on
the quality or performance of the controllers or estimators that are required in
all real-world robotics applications.

Chapters 3 and 4 also position the constrained hybrid dynamics solver in
retrospect to domain-independent optimization-based numerical solvers. It is
observed that the optimization-based numerical solvers treat constraints, robot
motion model and cost function in batch and compute the optimal control
inputs to the system. This is unlike domain-specific solvers which require each
aspect be treated independently, thus the need for a separate controller design in
WBCA setups that are presented. Another difference with the domain-specific
solvers is that they allow the incorporation of the semantic models which can
be used to validate whether the motion task setup is correct.
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Finally, during the course of the software development in the context of this
research, the author came to realize one seemingly intuitive but important
point that often shifts to the background in the development process. It is
the fact that the programming of the robot systems should always rely on the
domain-specific semantics and not only on software abstractions that frequently
tend to ignore the physical nature of the systems.

Variability in whole-body control architecture:
Chapter 5 shows that WBCA is the underlying control architecture of many
motion task control applications. It argues that even though existing motion
task control frameworks originally had different focus points, they all realize
some specific configurations of WBCA. The issue with these frameworks is
that they not only use specific representations for each WBCA component, but
also it is not evident how these components interact with each other and are
related to their software implementations. It frequently leads to ambiguity about
how and for what kind of applications they can be utilized; these ambiguities
quickly come to the surface when application builders have to integrate software
components developed by independent groups. As can easily be observed in the
state of the practice, such multi-group software systems are still extremely rare,
which is major barrier to progress.

In order to address this problem, this research decomposes WBCA into its
constituting components and analyzes their variations. The explicit separation
of WBCA into constraint spaces, constraints, controllers and solvers allow to
systematically structure any task specification problem as a mere reconfiguration
of the same architectural model (Figure 5.2). This architectural organization
emphasizes the fact that as long as the right type of constraint solver is chosen,
any constrained task can be implemented. On the software side, since the
responsibilities and inter-relations of the WBCA components are clear, it is
simpler to organize the whole application as the composition of DSLs with
clear roles and constraints. Figure 5.1 illustrates multiple DSLs in the motion
stack that are used to implement WBCA for several example applications.
Furthermore, the identification of the component variations in WBCA and
associated motion stack enable an integration of the non-conventional receding
horizon prediction algorithm for the controller gains as a component in its own.

Future work

Even though the results of this research are positive and are already available for
use on real robots, there is still a lot that needs to be realized in order to improve
constrained motion modelling and programming. Some of the immediate topics
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that need to be addressed, but are not delivered in this thesis, are summarized
below.

• With respect to semantics and DSL for composable kinematic chain
modelling:

– The presented definitions of the semantic models do not yet cover
the primitives that are required to model kinematic chains and
computations with dynamic properties such as impedance properties
of joint transmissions and a body that a segment is the part of,
explicit specification of the robot Jacobian, and unit systems that
describe physical relations.

– The presented kinematics and dynamics DSL implementation uses
C++ templates. In the next iteration, a dependence on such a
programming language specific feature should be avoided. However,
the introduction of a new representation, which is independent of
a general programming language, i.e., not internal DSL, would also
imply that the necessary compiler tool-chain needs to be developed
from the ground up. So, both options need to be weighed.

– The current use of geometric relations semantics is limited to the
kinematic chain models. They are used neither for the specifications
of the geometric constraints such as a path, an orthogonality, a
direction of motion etc., nor the specification of the constraint
controllers. Extending the use of the semantics to these components
will further improve the determinism and the validation features of
the task specification.

• With respect to the solver, WBCA and motion stack:

– The current implementation of the constrained hybrid dynamics
solver uses only 1-DoF joint model and can only takes into account
Cartesian constraints at the end-effector segments. There is already
a support to perform forward kinematic computations on tree
structured kinematic chains using the semantic models. But full
dynamics computations for the tree structures with multi-DoF are
to be implemented. The future implementation should also provide
support for the constraints that can be placed anywhere on the
kinematic chain. This will help one to cope with the mobile and
other platform types without the need for the additional kinematic
chain manipulations as in the example presented in Section 5.3.
These extensions require only more software development work, since
the theoretical aspects of tree- and graph-structured chains, as well
as multi-segment constraints, were developed several decades ago.
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– The presented WBCA setups only use a constrained hybrid
dynamics solver. This research does not consider how WBCA
and the hybrid dynamics solver can be used in cooperation
with more general purpose optimization solvers and toolkits such
as ACADO [Houska et al., 2009], CasADi [Andersson, 2013] and
qpOASES [Ferreau et al., 2014]. The research by Aertbeliën and
De Schutter [Aertbeliën and Schutter, 2014] shows how such an
integration can be realised.

– All of the presented WBCA software implementations use multiple
DSLs with one DSL per task component. But this is still cumbersome
to use, because one often needs to switch between several syntaxes and
environments and know how these various compile and run-time envi-
ronments interact with each other. Therefore, a compiler tool-chain
that can support multiple semantic models, e.g., the specification of
the motion task components, the description of software components,
their architectural deployments, in a single “Integrated Development
Environment” would be a very welcome (or rather, an indispensable)
development. Several language workbenches, e.g., JetBrains
MPS [JetBRAINS, 2015] and compiler-compiler frameworks, e.g.,
JastAdd [Computer Science, Lund University, 2015], promise to
have such features and that can be used to implement such a motion
programming infrastructure.



Appendix A

JSON representation for the
semantic models of kinematic
chains

1 " @geometry ": {
2

3 " @dsltype ":" relationship ",
4 "name": " pos1",
5 "id": "pos1 -id",
6

7 " @geomtype ":" Position ",
8

9 " semantics ":{
10 " target ":{
11 " point ": {
12 " @semantic_primitive ": {
13 " @dsltype ":" primitive ",
14 "name": "tp1",
15 "id": "tp1 -id",
16 " @semanticstype ": " Point "
17 }
18 },
19 "body": {
20 " @semantic_primitive ": {
21 " @dsltype ":" primitive ",
22 "name": "tb1",
23 "id": "tb1 -id",
24 " @semanticstype ": "Body"
25 }
26 }
27 },
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28

29 " reference ":{
30 " point ": {
31 " @semantic_primitive ": {
32 " @dsltype ":" primitive ",
33 "name": "rp1",
34 "id": "rp1 -id",
35 " @semanticstype ": " Point "
36 }
37 },
38 "body": {
39 " @semantic_primitive ": {
40 " @dsltype ":" primitive ",
41 "name": "rb1",
42 "id": "rb1 -id",
43 " @semanticstype ": "Body"
44 }
45 }
46 },
47

48 " coordinateFrame ":{
49 " @semantic_primitive ": {
50 " @dsltype ":" primitive ",
51 "name": "rcf1",
52 "id": "rcf1 -id",
53 " @semanticstype ": " Frame ",
54 "axes":[
55 "X",
56 "Y",
57 "Z"
58 ]
59 }
60 },
61

62 " physicalquantity ": " Length "
63 },
64

65 " coordinates ": {
66 "x": 0.0 ,
67 "y": 0.0 ,
68 "z": 0.0 ,
69 " physicalunit ":" meter "
70 }
71 }

Listing A.1: Pose semantics in JSON representation as defined in terms of a
point, a frame and a body modeling primitives.
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1 {
2 " @context ":
3 {
4 " TaskDSL ":"http :// some -url/task -dsl. jsonld ",
5 " KinematicChainDSL ":"http :// some -url/kinematic -chain -dsl.

jsonld ",
6 " GeometricRelationsDSL ":"http :// some -url/geometric -relations -

dsl. jsonld "
7 },
8 " @graph ":
9 [

10 {
11 "@id":"_b0",
12 " @type ": " TaskDSL :: Task",
13 "name": " Task_one ",
14 " has_a ":{"@id":"_b1"}
15 },
16

17 {
18 "@id":"_b1",
19 " @type ": " TaskDSL :: Robot ",
20 "name": " youBot ",
21 "is_a": {"@id":"_b2"}
22 },
23

24 {
25 "@id":"_b2",
26 " @type ": " KinematicChainDSL :: KinematicChain ",
27 "name": " youBotStructuralModel ",
28 " hasSegments ": {[{"@id":"_s0"}, {"@id":"_s1"}]} ,
29 " hasJoints ": {[{"@id":"_j2"}]}
30 },
31

32 {
33 "@id":"_s0",
34 " @type ": " KinematicChainDSL :: Segment ",
35 "name": " Segment0 ",
36 " hasLink ": {"@id":"_l0"},
37 " hasFrames ": {[{"@id":"_f0"}]}
38 },
39

40 {
41 "@id":"_l0",
42 " @type ": " KinematicChainDSL :: Link",
43 "name": " Link0 ",
44 " composedOf ": {[{"@id":" _tipFrame "}, {"@id":" _rootFrame "

}]} ,
45 " hasBody ":{"@id":" _body0 "}
46 },
47

48 {
49 "@id":" _tipFrame ",
50 " @type ": " GeometricRelationsDSL :: Pose",
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51 "name": " tip0Pose ",
52 " hasSemantics ": {[{"@id":" _tippoint0 "}, {"@id":" _tipframe0 "

}, {"@id":" _tipbody0 "},{"@id":" _refpoint0 "}, {"@id":"
_refframe0 "}, {"@id":" _refbody0 "}]} ,

53 " hasCoordSemantics ": {[{"@id":" _tippoint0 "}, {"@id":"
_tipframe0 "}, {"@id":" _tipbody0 "},{"@id":" _refpoint0 "},
{"@id":" _refframe0 "}, {"@id":" _refbody0 "}, {"@id":"
_coordframeR "}]} ,

54 " hasCoordinates ":{"@id":" _coord1 "}
55 },
56

57 ]
58 }

Listing A.2: An excerpt of an JSON-LD representation of the graph which
models a structure of a robot.



Appendix B

Receding horizon predictive
gain adaptation algorithm ∗

This appendix provides additional content on the gain adaptation algorithm
which is first discussed in Section 5.4.1 in the context of WBCA with a
constrained hybrid dynamics solver. It presents a number of experiments
that compare tracking behaviors of the controllers that use gain adaptation.
It also analyzes what different parameters of the receding horizon adaptation
algorithm may influence the performance of the controllers.

Following a circular Cartesian trajectory: In this experiment, the end-effector
of a 5-DoF KUKA youBot is to track a circular trajectory in the YZ plane.
Here, the X degree of freedom is constrained as follows:

AN =


0
0
0
1
0
0

 , bN =
(
0
)
. (B.1)

For a comparison, the simulations were run in a conventional control loop
(Figure 4.3) with constant controller parameters and in a control loop with the
receding horizon adaptation algorithm (Figure 5.6). The plot in FigureB.1(a)
∗The content of this appendix is based on the research conducted under the supervision of

the author and presented in [Copejans, 2014]
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shows the overall performance of the tracking when the prediction is either on
or off with respect to the desired trajectory. FiguresB.1(b)–(d) show the error
trajectory in each degree of freedom. While the tracking performance in some
degrees of freedom does not improve considerably when the prediction is on, the
overall tracking behavior improves compared to the case without the algorithm.
The advantage of the adaptation is better visualized when in addition to the
Cartesian space constraints, there are also joint space constraints. This is shown
in the following setup.

Following an infinity sign Cartesian trajectory: As in the previous case, only
X DoF is constrained in the Cartesian space. But now the 5-DoF serial chain
is to track an infinity sign in YZ plane and the mechanical limits of two of
its joints, the second and the third, are taken into account during the motion.
FigureB.2(a) shows that the overall performance is considerably better when
the prediction is on. This is also reflected in position error dynamics in each
DoF as in FiguresB.2(b)–(d), which show less fluctuations. An introduction of
the prediction of the gains also incorporates computation of the cost functions
that penalize the controllers’ behaviors whenever some task constraints are not
satisfied. In this motion task, joint limits were taken into account too. As
can be seen in FiguresB.2(e)–(f), these constraints are also satisfied when the
prediction algorithm is on. FiguresB.3 show the dynamics of the controller
gains that are being adapted during the prediction process. FiguresB.4 show
the influence of the cost function on the tracking performance and the dynamics
of the controller gains.

Reaching for an object pose: In this setup the 5-DoF serial robot is to make
a return trip between two points. Here, the motion does not take place along
the specified trajectory. It is a set point control motion. Since at the beginning
of the motion the relative error, which is defined by the distance between
the points, is large, the motions from the origin to the destination and back
look abrupt. After the robot reaches the destined point, it pauses for some
time and then returns to the original point. This behavior can be observed
in FiguresB.5(a)–(c). The relative error serves as an input to the impedance
controller (Equation (4.9)). Such abrupt motions put a lot of strain on the
robot joints, in particular on the joints that are between the base and the
end-effector joints, because of the high accelerations that are generated. This
can be seen in Figure B.5(d), where the torque values at these joints are high.
Over time, it may wear the mechanical components out and eventually cause the
failure of the drive block. This issue can be elevated by penalizing high torque
and acceleration values and adapting the control gains. We have applied our
receding horizon predictive gain adaptation algorithm in combination with such
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penalizing cost functions. The results of the setup depicted in Figures B.5(e)–(f)
show that the peak values of the torques are reduced considerably.
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Figure B.1: The Figures show the performance comparison between a
conventional and a predictive gain adaptation algorithm based control schema
for the tracking of a circular trajectory in the YZ plane with the X degree of
freedom being acceleration-constrained. The figures (b)–(d) show the error
dynamics for each degree of freedom.
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Algorithm B.1: Dynamically compliant motion tracking control with a
receding horizon gain adaptation
Input : Robot geometric, inertial data, initial configuration(q, q̇, Ẍ0, fext),

constraints
Output : Constraint accelerations and forces

1 begin
2 while t < Ttask do
3 Save state X, Ẋ, Ẍ, τ, Fe, b
4 Construct control gain sets Kn to be tried

// compute possible trajectories using the gains from Kn

5 for Kj in Kn do
6 while tp ≤ T do
7 Compute desired trajectories for joint and Cartesian space
8 Compute control laws with Kj

9 Solve constrained dynamics (Alg. 3.3)
10 Compute and compare cost functions
11 Integrate to obtain state for the next prediction iteration
12 if (tp = T) then
13 Set the optimal gains Koptimal = Kj

14 tp = tp + ∆tpred−integ

// use the optimal gains to compute the real trajectory
15 for tnon−pred ← 0 to N do
16 Compute desired trajectories for joint and Cartesian space
17 Compute control laws using Koptimal

18 Solve constrained dynamics (Alg. 3.3)
19 Send the outcome to the robot

// or for a simulation loop
20 Integrate to obtain state for the next iteration
21 tnon−pred = tnon−pred + ∆tinteg
22 t = t+N + T
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Figure B.2: The figures show a performance comparison between a conventional
and a predictive gain adaptation algorithm based control schema for the tracking
of an infinity sign shaped trajectory in the YZ plane with the X degree of
freedom being acceleration-constrained. Figures(b)–(d) compare the position
error dynamics of each control approach for each degree of freedom. Figures(e)–
(f) show the joint positions. Here the dashed lines represent the joint limits.
Figure(f) shows that the motions of the second and the third joints do not go
over their limits, whenever the prediction algorithm is on.
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Figure B.3: shows how a different set of controller gains perform during the
prediction process. Here, the prediction period is T = 1000 ticks, an integration
step during the prediction is ∆tpred−integ = 1 tick, the prediction takes place
every 10∆t ticks and the controller gain set K is of size 27. For the latter
the gain values are set manually to differ by 10% from their initial nominals,
thus {0.9K(∗) ,K(∗) , 1.1K(∗)}. (a)–(b) show how the acceleration gains Ka of
the beta control law (Equation (4.7)) in X DoF at the first and the second
predictions fare. (c)–(f) show the results for the Y and Z DoF stiffness gains
Kc of the impedance control law (Equation (4.9)).
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Figure B.4: shows how the form of the cost function affects the performance of
the tracking. (a)–(c) show the error dynamics in X, Y and Z DoF. (d)–(f) show
how the gains Kax, Kcy and Kcz vary with the change of the cost function.
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Figure B.5: shows the performance of the set-point controller. The robot’s
end-effector is to make a return trip between two points using an impedance
and beta control law, while keeping the torques at the joints as low as possible
in order not to damage them. (a)–(c) show the position error dynamics along
each linear DoF. (d) shows the torque profiles of each joint when the predictive
gain adaptation is off. (e)–(f) show the torque profiles when the predictive
adaptation is on and both joint torques and the end-effector acceleration are
penalized.
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