
Integrating Decision Tree Learning into

Inductive Databases

Élisa Fromont and Hendrik Blockeel

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200 A, 3001 Heverlee, Belgium,

{elisa.fromont, hendrik.blockeel}@cs.kuleuven.be

Abstract. In inductive databases, there is no conceptual difference be-
tween data and the models describing the data: both can be stored and
queried using some query language. The approach that adheres most
strictly to this philosophy is probably the one proposed by the ADReM
group from Antwerp: in that approach, models are stored in relational
tables and queried using standard SQL. The approach has been described
in detail for association rule discovery. In this work we study how de-
cision tree induction could be integrated in that approach. We propose
a representation format for decision trees similar to the one proposed
earlier for association rules, and queryable using standard SQL; and we
present a prototype system in which part of the needed functionality is
implemented. In the process, we identify a number of important differ-
ences between discovery of global models (such as decision trees) and
local models (such as association rules), which force us to re-evaluate
the motivation for the approach.

1 Introduction

An Inductive DataBase (IDB) [1] is a database that contains not only data, but
also generalisations (patterns and models) valid in the data. In an IDB, ordinary
queries can be used to access and manipulate data, while inductive queries can
be used to generate (mine), manipulate, and apply patterns.

Two approaches have been studied to represent and query patterns and mod-
els in IDBs. First, depending on the models that will be stored, special-purpose
storage and query language can be created. In this context, several researchers
have proposed extensions to the popular relational query language, SQL, as a
natural way to express such mining queries. For example, in [2,3], the authors
have presented some extensions to SQL especially designed for mining associ-
ation rules. In [4,5] the authors extend this approach to other models such as
classification rules but they do not give any clues about how to actually stored
those models in the IDB. In [6], De Raedt has proposed a entirely new query
language based on logic and especially suited for relational data.

The second approach consists of storing the patterns and models in a straight-
forward way, using the usual relational database tables provided by any Rela-
tional Database Management System (RDBMS) and the standard SQL language

to represent, store and query the new generalisations made on the data. This
approach is being investigated by members of the ADReM group in Antwerp1

for frequent itemsets and association rules mining; we will refer to it in the rest
of this paper as “the ADReM approach”. This approach has a number of advan-
tages over other approaches with respect to extensibility and flexibility. In this
paper we investigate whether and how it can also be used for learning global
models such as decision trees, and to what extent its advantages carry over to
this new setting.

In Section 2 we present the basic ideas behind the ADReM approach and show
how they are applied in the context of association rule discovery. In Section 3,
we discuss how the same approach could be used for decision tree learning; in
particular, Subsection 3.5 describes a prototype that is being implemented and
shows some examples of queries that can already be used. Section 4 presents the
perspectives of this work and we conclude in Section 5.

2 The ADReM Approach to Association Rule Mining

The basic idea behind the ADReM approach is that models are stored in a
relational database in the same way that other information is stored: as a col-
lection of tuples in relations or views. This idea is applicable to a broad range of
models, but up till now it has been studied mostly in the context of association
rules [7]. Below, we briefly review the proposed representation for association
rules, the conceptual view on association rule mining that it leads to, and some
implementation issues. More information on this can be found in [8].

2.1 The Conceptual View

Sets

isid item

i1 p4

i1 p6

i1 p5

.

i2 red

i2 green

.

i3 p4

i3 1

.

Supports

isid support

i0 80

i1 60

i2 40

i3 80

.

Rules

rid isida isidc isid conf

r1 i2 i1 i5 60%

r2 i1 i3 i6 40%

.

Fig. 1. Storing association rules

1 {toon.calders,bart.goethals,adriana.prado}@ua.ac.be

Consider a set of transactions D. The set is often represented as a table with
one row per transaction and one boolean attribute per item, but conceptually it
can also be represented as a binary relational table with, for each transaction,
a set of tuples of the form (tid,item), where tid is the transaction identifier and
item is an item name. The crucial difference between the first and second repre-
sentation is that in the second, the item names are values instead of attributes
(hence a query can return an item name as part of its result set). Note that
we are talking about the conceptual representation here — how the transaction
table is really implemented is not important.

Itemsets can be represented in a similar way. Figure 1 shows the ADReM rep-
resentation of frequent itemsets and association rules in an IDB. The Sets table
represents all itemsets. A unique identifier (isid) is associated to each itemset
(we then write that itemset as IS(isid)) and, for each itemset of size n, there are
n rows (isid, itemj)1≤j≤n where itemj is the jth item of IS(isid). The Supports

table stores the support of each itemset. The Rules table stores the association
rules computed. For each rule X ⇒ Y , there is a row (rid, isida, isidc, isid, conf)
in the IDB where rid is the association rule identifier, isida (resp. isidc) is the
identifier of the itemset used in the antecedent (resp. consequent) of the rule,
IS(isid) = IS(isida) ∪ IS(isidc) and conf is the confidence of the rule.

With this representation, finding association rules subject to certain con-
straints can be done easily using an SQL query. For instance, the query

select rid

from rules r

where r.conf > 0.8 and

r.isidc in (select isid from sets where item = ‘‘red’’)

finds all association rules with a confidence of at least 0.8 that contain the item
“red” in the consequent of the rule.

2.2 The Implementation

Conceptually, the database has tables that contain all itemsets and all association
rules. But in practice, obviously, the amount of such patterns can be huge and
it may be impossible to store them all. This problem is solved by keeping these
tables virtual. As far as the user is concerned, those tables or virtual mining

views contain all the tuples needed to answer the user query. In reality, each
time such a table is queried, a efficient data mining algorithm is triggered by
the DBMS to populate those views just sufficiently for the DBMS to be able to
answer the query.

More specifically, the procedure works as follows: given a query, an execution
plan is created; on the highest level this is just a relational algebra tree with
tables as leaves. Standard query optimisation procedures push projection and
selection conditions as deeply down into the this tree as possible, thus reducing
the size of intermediate results and making the overall computation more effi-
cient. In the context we are discussing here, the leaves may be the result of a data

mining process, and the projection/selection conditions may be pushed further
down into the data mining process. Calders et al. [8] describe this optimisation
process in detail.

2.3 Advantages of the Approach

The ADReM approach has several advantages over other approaches to inductive
querying. The main point is that the data mining processes become much more
transparent. From the user’s point of view, tables with itemsets and rules etc.
exist and can be queried like any other table. How these tables are filled (what
data mining algorithm is run, with what parameters, etc.) is transparent. The
user does not need knowledge about the many different implementations that
exist and when to use what implementation, nor does she need to familiarise
herself with new special-purpose query languages. The whole approach is also
much more declarative: the user specifies conditions on the models that should
result from the mining process, not on the mining process itself.

In the light of all these advantages, it seems useful to try a similar approach
for other data mining tasks as well. In this paper, we focus on decision tree
induction.

3 Integration of Decision Tree Learning

A decision tree aims at classifying instances by sorting them down the tree from
the root to a leaf node that provides the classification of the instance [9]. Each
node in the tree specifies a test of some attributes of the instance, and each
branch descending from that node corresponds to one of the possible values
for these attributes. In this paper, for simplicity reasons, we focus on decision
trees with boolean attributes. Each attribute can then be seen as an item in a
transaction table and transactions are instances to classify. Note that due to the
well-known correspondence between trees and rule sets, a tree can be represented
as a set of association rules: with each leaf corresponds one association rule,
with as antecedent the conditions on the path from the root to that leaf and
as consequent the majority class in that leaf. However, while the representation
with one rule per leaf is interesting for prediction purposes, the structure of the
tree gives more information: e.g., the higher an attribute occurs in the tree, the
more important it is for the prediction. Such information is lost if we represent
a tree as a set of association rules with each rule corresponding to one leaf. We
will therefore choose a slightly different representation.

In this section we first discuss the motivations for integrating decision trees
into IDB and we propose a representation of decision trees that will enable the
user to make queries using a large number of different constraints.

3.1 Motivations

To see the motivation behind using the ADReM approach for decision tree learn-
ing, consider the current practice in decision tree induction. Given a data set,

one runs a decision tree learning algorithm, e.g., C4.5 [10], and obtains one par-
ticular decision tree. It is difficult to characterise this decision tree in any other
way than by describing the algorithm. The tree is generally not the most ac-
curate tree on the training set, nor the smallest one, nor the one most likely
to generalise well according to some criterion; all one can say is that the learn-
ing algorithm tends to give relatively small trees with relatively high accuracy.
The algorithm usually has a number of parameters, the meaning of which can
be described quite precisely in terms of how the algorithm works, but not in
terms of the results it yields. In summary, it is difficult to describe exactly what
conditions the output of a decision tree fulfils without referring to the algorithm.

This situation is quite different from discovery of association rules, where the
user imposes some constraints on the rules to be found (typically confidence and
support) and the algorithm yields the set of all rules fulfilling these conditions.
A precise mathematical description of the result set is very easy to give, whereas
a similar mathematical description of the tree returned by a decision tree learner
is quite impossible to give.

Are the people using decision tree learners interested in having a precise
specification of the properties of the tree they find? Aren’t they just interested
in finding some tree with good generalisation properties and good generalisation
power, without being interested in exactly how this is defined? This may be often
the case, but certainly not always. Many special versions of decision tree learners
have been developed: some use a cost function on attributes and try to find trees
that combine high accuracy with low cost of the attributes they contain [11];
some take different misclassification costs into account when building the tree
[12]; some do not aim for the highest accuracy but for balanced precision-recall
[13]; etc. The fact that researchers have developed such learning algorithms shows
that users sometimes do have more specific desiderata than just high predictive
accuracy.

By integrating decision tree learning into inductive databases, we hope to
arrive at an approach for decision tree learning that is just as precise as asso-
ciation rule learning: the user specifies what kind of trees she wants, and the
system looks for such trees.

Here are some queries the user might be interesting in:

1. find {T |size(T) < 8 ∧ acc(T) > 0.8 ∧ cost(T) < 70}
2. find one element in {T |size(t) < 8 ∧ acc(t) > 0.8 ∧ cost(t) < 70}
3. find {T |size(T) < 8 ∧ (∀T ′|size(T ′) < 8 ⇒ acc(T ′) < acc(T))}
4. find {T |T = (t(X, t(Y, l(+), l(−)), t(Z, l(), l()),

X ∈ [A,B,C], Y ∈ [D,E], acc(T) > 0.8}

In the first query, the user asks for all decision trees T of size less than 8
nodes, of global accuracy higher than 0.8 and of cost lower than 70 (assuming
that each item has a given cost). To describe the tree of interest, other criteria
such as the number of misclassified examples (error), the accuracy computed for
a particular class, the precision, the recall, the area under the roc curve (auc)
for two-class problems might also be interesting.

Since the user is interested in all the trees that fulfil his criteria, the query
can not be answered by triggering a standard greedy algorithm. Such a query
implies the use of a decision tree learner that can perform an exhaustive search
in the search space of all possible trees that fulfil these constraints. The number
of such trees might be huge and this query might not be tractable. Note that
without constraints, the number of decision trees that can be constructed from
a database containing d attributes and a possible values for each attribute has∏d−1

i=0
(d − 1)ai

as a lower bound. As in the association rules case presented in
section 2 we assume that the queries are constrained enough so that a realistic
number of models are looked for and stored. The kind of constraints required to
satisfy this criterion is still an open question.

In the second query, the user asks for one tree that fulfils some criteria. This
tree can normally be computed by a regular greedy tree learner, though for some
greedy learners there may be no guarantee that they find a valid tree if one
exists.

With the third query, the user is looking for the set of trees of size lower
than 8 with maximal accuracy. Again, this means that the search space of trees
of size lower than 8 must be exhaustively covered to ensure that the accuracy of
the tree is maximal.

In the last query, the user gives syntactic constraints on the shape of the tree
and on some attributes that must be used in the tree.

3.2 Representing Trees in a Relational Database

The virtual mining view that holds the predictive models should be precise
enough to enable the user to ask SQL queries as easily as possible without having
to design new keywords for the SQL language. Figure 2 shows the database
framework we propose for integrating decision trees into IDB. We use the table
presented in section 2 to represent the data. We assume in the following that all
the data-dependent measures (such as accuracy) are referring to these data. The
decision trees generated from the data D can be stored in the same database as
D and as the possible association rules computed from D, by using the following
schema:

1. The Tree sets table is inspired by the Sets table created for association rules.
We choose to represent a node of a tree by the itemset that characterises
the examples that belong to this node. For instance, if the itemset is AB,
examples in this node must fulfil the criteria A = true and B = false. In
association rules, only the presence of certain items is required: there is no
condition that specifies the absence of an item. To cope with association
rules derived from trees such that the one corresponding to the leaf L2 of
the tree given in the figure 2 (AB ⇒ −), a sign attribute is thus added to
the table to indicate wether the presence (1) or the absence (0) of an item
is required.
As in the Sets table, a unique identifier (isid) is associated to each itemset
and, for each itemset of size n, there are n rows (isid, itemj , signj)1≤j≤n

Trees charac

treeID size error accuracy auc cost ...

T1

T2

. .

Tree sets

isid item sign

i0 ∅ 1

i1 A 1

i2 A 1

i2 B 1

l1 A 1

l1 B 1

l1 + 1

i3 A 1

i3 B 0

l2 A 1

l2 − 1

l2 B 0

l3

l4

.

all trees

treeID isid leaf

T1 i1 0

T1 i2 0

T1 L1 1

.

T1 L2 1

.

T1 L3 1

.

T1 L4 1

T2

T3

.

greedy trees

treeID isid leaf

T1 i1 0

T1 i2 0

T1 L1 1

.

T1 L2 1

.

T1 L3 1

.

T1 L4 1

Fig. 2. Storing decision trees

where itemj is the jth item of the itemset identified by isid and signj is its
sign. i0 stands for the empty itemset.

2. The all trees and greedy trees tables give a precise description of each tree in
terms of the itemsets from Tree sets. A unique identifier (treeID) is associ-
ated to each tree and each itemset corresponding to a node in this tree is as-
sociated to his treeID. A boolean attribute leaf differentiates internal nodes
of the tree (leaf = 0) from the leaves (leaf = 1). At each level k of the tree,
nodes are composed by k-itemsets. The all trees table is supposed to hold
all possible trees, whereas the greedy trees table holds an implementation-
dependent subset of all trees (more specifically those trees that might be
found by greedy learners under certain conditions and constraints).

3. The Trees charac table gives all the characteristics of the tree the user
might be interested in. For each tree identified by treeID corresponds a
row (size, error, accuracy, cost, auc) that are the computed characteristics
of the tree (see section 3.1).

3.3 Querying Decision Trees Using Virtual Views

The structure created is sufficient to make some interesting queries on the data,
provided that the data mining algorithms connected to the database compute
the different characteristics of the association rules or of the trees that hold
in the IDB. The following queries are examples of what can be done on such
database :

SELECT trees_charac.* FROM trees_charac, all_trees

WHERE trees_charac.treeID = all_trees.treeID AND

accuracy > 0.8 and size < 8;

This query selects the characteristics of all trees that can be computed from the
database with accuracy higher than 0.80 and size lower than 8.

SELECT treeID FROM trees_charac, greedy_trees

WHERE trees_charac.treeID = greedy_trees.treeID

and trees_charac.error < 10;

This query selects a greedy-computed tree with an error lower than 10.

SELECT trees_charac.* FROM trees_charac, all_trees

WHERE trees_charac.treeID = all_trees.treeID

AND accuracy = (select max(accuracy) from trees_charac);

This query selects the characteristics of the tree with maximum accuracy from
all the possible computed trees.

SELECT treeID FROM greedy_trees, tree_sets

WHERE greedy_trees.isid = tree_sets.isid

AND (tree_sets.isid

IN (select isid from tree_sets where item = ‘‘A’’));

This query selects a greedy-computed tree which contains the item “A”.

3.4 Querying Decision Trees Using Itemsets

The framework is flexible enough to allow queries with constraints on metrics
that were not included in the virtual view from the beginning. The user can
create his own virtual mining view using information on the support of the
itemsets. We illustrated this with the notions of accuracy and size.

The accuracy of a specific leaf in the tree can be computed from the support
of the itemsets that belong to the leaf [14] using the formula (on figure 2):

acc(L1) =
support(+AB)

support(AB)
. . . acc(L2) =

support(−AB)

support(AB)
.

The mean accuracy of each leaf is the global accuracy of the tree. This can be
computed without any information on the actual structure of the tree using the

formula (on figure 2):

acc(T) =
acc(L1) ∗ support(AB) + acc(L2) ∗ support(AB) + . . .

support(∅)

=
support(+AB) + support(−AB) + . . .

support(∅)
.

Some itemsets do not have any support associated with because they include
“negative” item. In this case, some formula such as:

support(AB−) = support(A−) − support(AB−)

can be used to compute the support of all itemsets from the support of the
“positive” itemsets [15].

These formulas can be translated into the SQL language to compute all the
characteristics in the tree charac table. We consider that, as in Section 2, we
have a Supports table that countains the support of all itemsets.

acc(T1)= SELECT SUM(Supports.support) /

(SELECT Supports.support FROM Supports

WHERE Supports.isid = ‘‘I0’’) as accuracy

FROM Supports, all_trees

WHERE Supports.isid = all_trees.isid

AND all_trees.treeID = T1

GROUP BY all_trees.treeID

size(T1) = SELECT COUNT(*) FROM all_trees

WHERE all_trees.treeID = T1

3.5 Implementation

An Apriori-like algorithm for association rule mining was connected to a stan-
dard Oracle Database by the ADReM group to use constraints such as the sup-
port of the itemsets, the confidence of the rules and the presence or absence of
some item in the resulting association rules. We connected to the same system
a decision tree learner named Clus. Clus is a predictive clustering tree learner
developed by Jan Struyf that uses a standard recursive top-down induction algo-
rithm to construct decision trees. First, a large tree is built based on the training
data then the tree is pruned according to some user constraints. The constraints
described by [16] were implemented in this generic and efficient system [17] so
it currently supports constraints on the size of the tree (number of nodes), on
the error of the tree and on the syntax of the tree. The error measure used for
classification trees learning is the number of incorrectly predicted classes. The
syntactic constraints allow the user to introduce expert knowledge in the tree
by specifying a partial tree, i.e, a subtree including the root and so the most
important attributes of the tree. Other constraints discussed in section 3.1 have
to be implemented in the system. For the moment, queries such as the following
one can be used:

SQL> select * from trees_charac where err < 8 and sz= 9;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

0 9 3 0,98

1 rows selected.

SQL>select * from trees_charac where err < 8 and sz <= 8;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

1 7 4 0,973

1 rows selected.

SQL> select * from trees_charac where sz< 4;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

2 3 50 0,667

1 rows selected.

All the trees computed with the different queries could be stored in a “log”
table that can be queried just as easily. After the session above, this table would
contain:

TREE_ID SZ ERROR ACCURACY

---------- ---------- ---------- ----------

0 9 3 0,98

1 7 4 0,973

2 3 50 0,667

4 Perspectives

There are many open problems related to the proposed approach. For instance,
for efficiency reasons, the system should be able to look at the “log” table that
contains the previously computed trees to check if the answer of the current query
has not already been computed before triggering a data mining algorithm. If the
user asks for all trees of size less than 8 and then later for all trees of size less than
6, the results computed from the first query should be reusable for the second
query. The “log” table should then also contain the previously asked queries
together with the computed trees, which raises the question of how to store
the queries themselves in the database. This entire problem, called interactive

mining because it refers to the reutilisation of queries posed within the same
working session, has been investigated for association rules [18], but not yet for
decision tree learning.

Another type of problem occurs if the database has been modified between
two queries. Is it possible to use some previously computed predicted models to

compute more efficiently new predictive models from a modified database? This
problem known has incremental learning has already been studied for decision
trees [19] when a new example is added to the database.

These functionalities has to be integrated into the prototype along with the
extension of the framework to multi-valued attributes.

Besides, as predictive models ultimately aim at predicting the class of new
examples, it would be interesting to include that possibility in the IDB. This is
currently non-trivial in our approach, it requires complicated queries.

Generally, the limitations of our approach with respect to what can be ex-
pressed, and how difficult it is to express it, are still unclear. With respect to
query complexity, it may be useful to consider an extended relational model
where trees are an abstract data type with a number of predefined operators,
instead of being stored as sets of tuples.

Another perspective will be the integration of other predictive models such as
Bayesian Network in the same IDB framework already designed for association
rules and decision trees mining. The user might be interested in query such
as “find the Bayesian network of size 3 with maximal probability”. Again, a
structure to store Bayesian networks has to be designed and algorithm than can
build Bayesian networks under constraints has to be implemented.

5 Conclusion

In this paper we have studied how decision tree induction could be integrated in
inductive databases following the ADReM approach. Considering only boolean
attributes, the representation of trees in a relational database is quite similar to
that of association rules, with this difference that the conjunctions describing
nodes may have negated literals whereas itemsets only contain positive liter-
als. A more important difference is that a decision tree learner typically returns
one tree that is “optimal” in some not-very-precisely-defined way, whereas the
IDB approach lends itself more easily to mining approaches that return all re-
sults fulfilling certain well-defined conditions. It is therefore useful to introduce a
greedy trees table in addition to the all trees table, where queries to greedy trees

trigger execution of a standard tree learner and queries to all trees trigger ex-
ecution of an exhaustive tree learner. We have described a number of example
queries that could be used, presented a preliminary implementation that handles
such queries, and discussed open questions and perspectives of this work.

Acknowledgement

Hendrik Blockeel is a post-doctoral fellow of the Fund For Scientific Research
of Flanders (FWO-Vlaanderen). This work is funded through the GOA project
2003/8, “Inductive Knowledge bases”, and the FWO project ”Foundations for
inductive databases”. The authors thank Jan Struyf, Sašo Džeroski and the
ADReM group for many interesting discussions, and in particular Jan for his help
with the Clus system and Adriana Prado for her help with the IDB prototype.

References

1. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Comm.
Of The Acm 39 (1996) 58–64

2. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules. Data
Min. Knowl. Discov. 2 (1998) 195–224

3. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data
Min. Knowl. Discov. 3 (1999) 373–408

4. Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive databases in the relational model: The data as
the bridge. In: KDID. (2005) 124–138

5. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query
language for relational databases. In: SIGMOD’96 Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMKD’96), Montreal, Canada (1996)

6. De Raedt, L.: A logical database mining query language. In Cussens, J., Frisch,
A., eds.: ILP00. Volume 1866 of LNAI., SV (2000) 78–92

7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, Morgan Kaufmann (1994) 487–499

8. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational
databases. In: PKDD: 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases. LNCS, Springer (2006) To appear

9. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
11. Turney, P.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic

decision tree induction algorithm. Journal of Artificial Intelligence Research 2

(1995) 369–409
12. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive.

In: Knowledge Discovery and Data Mining. (1999) 155–164
13. Xiaobing, W.: Knowledge representation and inductive learning with xml. In: WI

’04: Proceedings of the Web Intelligence, IEEE/WIC/ACM International Confer-
ence on (WI’04), Washington, DC, USA, IEEE Computer Society (2004) 491–494

14. Pance, P., Dzeroski, S., Blockeel, H., Loskovska, S.: Predictive data mining us-
ing itemset frequencies. In: Zbornik 8. mednarodne multikonference Informacijska
druzba. Ljubljana: Institut ”Jozef Stefan”, Informacijska druzba (2005) 224–227

15. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Proceed-
ings of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery. Volume 2431 of LNCS., Springer-Verlag (2002) 74–85

16. Garofalakis, M.N., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Min. Knowl. Discov. 7 (2003) 187–214

17. Struyf, J., Dzeroski, S.: Constraint based induction of multi-objective regression
trees. In: KDID. (2005) 222–233

18. Goethals, B., den Bussche, J.V.: On supporting interactive association rule mining.
In: Proceedings of the Second International Conference on Data Warehousing and
Knowledge Discovery. Volume 1874 of LNCS., Springer (2000) 307–316

19. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4 (1989)
161–186

