
Efficient Multiclass Object Detection:

Detecting Pedestrians and Bicyclists in a Truck’s Blind Spot Camera

Kristof Van Beeck and Toon Goedemé
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Abstract

In this paper we propose an efficient detection and track-

ing framework targeting vulnerable road users in the blind

spot camera images of a truck. Existing non-vision based

safety solutions are not able to handle this problem com-

pletely. Therefore we aim to develop an active safety sys-

tem, based solely on the vision input of the blind spot cam-

era. This is far from trivial: vulnerable road users are a

diverse class and consist of a wide variety of poses and ap-

pearances. Evidently we need to achieve excellent accu-

racy results and furthermore we need to cope with the large

lens distortion and extreme viewpoints induced by the blind

spot camera. In this work we present a multiclass detection

methodology which enables the efficient detection of both

pedestrians and bicyclists in these challenging images. To

achieve this we propose the integration of a warping win-

dow approach with multiple object detectors which we intel-

ligently combine in a probabilistic manner. To validate our

framework we recorded several simulated dangerous blind

spot scenarios with a genuine blind spot camera mounted

on a real truck. We show that our approach achieves excel-

lent accuracy on these challenging datasets.

1. Introduction

Each year traffic accidents caused by the blind spot zone

of trucks are responsible for an estimate of about 1300 ca-

sualties in Europe alone. Since only accidents involving

victims are reported, this figure is a great underestimation

of the real problem. Several commercial systems have been

developed that try to cope with this problem, ranging from

simple mechanical solutions (e.g. blind spot mirrors) to

more advanced automatic alarm systems. However, none of

these systems seem able to adequately decrease the number

of victims. Indeed, research indicates that the number of ca-

sualties did not decrease since the use of blind spot mirrors

was obliged by law in 2003 in Europe [13]. This is mainly

due to two reasons: most of these mirrors are not adjusted

Figure 1. (Left) Example frame from our blind spot camera. Both

high lens distortion and a non-standard viewpoint are observed.

(Right) Output detections of our framework.

correctly and rely on the attentiveness of the driver. The first

problem is solved using a robustly mounted blind spot cam-

era, and a monitor in the truck’s cabin. Evidently, the suc-

cess rate of such a system again highly depends on the alert-

ness of the truck driver. These systems are coined passive,

whereas active systems automatically generate an alarm,

such as ultrasonic distance sensors. The main disadvantage

of the latter are false positive alarms; they are unable to

distinguish vulnerable road users from static objects (e.g.

traffic signs). The truck driver experiences this as annoying

and therefore avoids the use of this system altogether. In this

paper we propose a detection framework that overcomes the

aforementioned problems: we developed a vulnerable road

user (VRU) detection system based solely on the monocular

blind spot camera images. Such a system has multiple ad-

vantages: it is always adjusted correctly, requires no truck

driver interpretation and is easily implementable in exist-

ing passive blind spot camera solutions. Developing such

a complete system however is challenging since vulnera-

ble road users are a diverse class (pedestrians, bicyclists,

mopeds, wheelchair users and so on), all with varying ap-

pearances. Our framework tackles the multiclass detection

of both pedestrians and bicyclists, which are involved most

in these type of accidents. Aside from this, the typical com-

mercial blind spot cameras employ wide-angle lenses and

thus introduce non-standard viewpoints and severe lens dis-

tortion which make it unfeasible to utilise out-of-the-box

object detection algorithms. Due to the sideways-looking

view a highly dynamical background is observed making it

hard – or even impossible – to perform an initial segmenta-

1



tion. Furthermore this application inherently requires a high

detection accuracy. Fig. 1 displays an example frame of our

dataset (left) – which indicates the complexity of these im-

ages – and the output of our framework (right).

The main contributions in this paper are two-fold. We give

an approach to efficiently combine multiple object detectors

using a probabilistic manner for these non-trivial images,

and we propose a methodology which selects the most ap-

propriate model to evaluate based on the position in the im-

age. In a nutshell, our framework works as follows. First we

employ a warping window approach: at each position in the

input image we locally model the transformation due to the

viewpoint distortion. Using this information we can rewarp

each region of interest, effectively undoing the local distor-

tion. Next we extract image features on this rewarped patch

and generate probability maps for multiple object models,

selected again based on the position in the image. These

hypothesis maps are then combined into a single detection

probability map for that image patch. Finally, to cope with

missing detections we integrate these detection maps in a

tracking-by-detection methodology.

To validate our approach we recorded several simulated

dangerous blind spot scenarios with a genuine blind spot

camera mounted on a real truck. These datasets involve both

pedestrians and bicyclists - see section 4 for more informa-

tion. Our algorithm achieves excellent accuracy results on

these challenging datasets. The remainder of this paper is

structured as follows. In section 2 we discuss existing work

on this topic. Next we describe our algorithmic approach in

detail in section 3, and provide both qualitative and quanti-

tative evaluation results in section 4. Finally, we conclude

this paper in section 5.

2. Related Work

A vast amount of literature on pedestrian detection is

available, see [2] for a recent extensive overview. In

essence, two popular approaches exist: deformable part-

based models (DPM) and rigid models. Both methodolo-

gies are inspired by [5] where the authors presented the use

of Histograms of Oriented Gradients (HOG) for pedestrian

detection. These part-based models, introduced in [11], ex-

tended the rigid HOG model with parts representing e.g.

the limbs and head of a pedestrian. Specific deformations

for these parts are allowed - subject to a deformation cost -

resulting in an increased detection accuracy. These DPM

models remained among the top performing methods for

several years [9]. Aside from the inclusion of multiple

parts to increase the detection accuracy, [8] presented an

approach that enriches the rigid model with additional fea-

tures, coined the Channel Features detector. Multiple op-

timisations have been proposed to speed-up detection and

increase the accuracy [1, 7]. The Aggregated Channel Fea-

tures (ACF) detector [6] currently is one of the top perform-

ing detectors [2]. Recently, deep learning methods have

become increasingly popular as a mains to further increase

the detection accuracy. Indeed, using convolutional neural

networks (R-CNN) unprecedented accuracy results are ob-

tained [12]. This technique is able to simultaneously clas-

sify a large variety of classes, making it ideal for large im-

age database retrieval applications such as ImageNet [14].

However, these methods rely on large databases for training

and extensive hardware resources, rendering them currently

unfeasible for real-time applications. Several works exist

which apply the aforementioned algorithms on traffic safety

applications, and are thus related to our work. However, to

the best of our knowledge, often only forward-looking cam-

eras are used and only single object classes (pedestrians or

bicyclists) are detected [3, 4, 16]. In [15] we presented a

similar safety system, however only targeting pedestrians

which evidently is a much easier scenario. We differ sig-

nificantly from all of these works: we aim to develop an

efficient framework that enables the detection of multiclass

objects in camera images with non-standard viewpoint and

high lens distortion (see fig. 1).

3. Algorithmic Approach

Traditional object detectors employ a sliding window

paradigm: a full scale-space feature pyramid is constructed

and evaluated at each location. Such an approach is infea-

sible for our application. As seen in the example frame

(fig. 1), the vulnerable road users appear under various ro-

tations and scales. If we ought to run a standard object (e.g.

pedestrian) detector on these images they need to be evalu-

ated at multiple locations, scales and orientations which is

impossible to compute in real-time. Moreover, due to the

viewpoint and high lens distortion the detection accuracy

will be suboptimal. To cope with these challenges we first

employ a warping window approach, similar to our previous

work [15]. We exploit the fact that the exact transformation

(that is, rotation, scale and perspective effects) only depends

on the position in the image. At each position in the image

we thus locally model this transformation, and rewarp the

regions of interest (ROI) to an undistorted, upright and fixed

scale image patch avoiding the need to compute a full scale-

space pyramid. Since we aim to detect both pedestrians and

bicyclists, in the next step we extract features and run mul-

tiple detection models on these image patches. To reduce

the computational complexity we employ feature sharing

and only run specific models at specific locations. These

detection maps are then combined into a single probability

map. Finally we integrate this information in a tracking-

by-detection framework. Figure 2 gives an overview of our

detection approach. Note that due to space constraints the

processing steps are shown for a single ROI only, in prac-

tice each ROI is validated. Let us now discuss each of the

consecutive steps of our detection pipeline in detail.



Figure 2. Overview of our algorithmic approach. Note that the probability maps displayed here are interpolated for visual purposes; during

computation they are calculated discretely on a grid with a step size of 8 pixels (best viewed in color).

3.1. Warping patches

As previously mentioned the pedestrians and bicyclists

appear rotated, scaled and distorted at specific positions in

the image. This transformation only depends on the posi-

tion in the image, if we assume a flat groundplane – which

evidently is a valid constraint in our application. Thus, if

this transformation is known, each ROI can be rewarped to

an upright position at a fixed scale. This approach evidently

eliminates the construction of a full scale-space pyramid,

and allows the use of a single upright detection model (for

each class). Since only evaluation at a single scale is per-

formed, this approach allows the use of an accurate detec-

tor which would otherwise be too time-consuming to run

in real-time. A different approach is possible where we di-

rectly train the detection models using the distorted images.

However, in this case a vast amount of new training data is

needed when a different blind spot camera is used. Using

our approach only a basic recalibration is required.We mod-

elled this distortion as a perspective transformation. The

local deformation for each position is extracted in an of-

fline step, and stored in two deformation maps as visualised

in the left of fig. 2 (see [15] for details). We thus model

the pedestrians as planar objects, faced towards the camera.

Our experiments indicate that this is a valid assumption for

pedestrians. For bicyclists, this assumption is not valid at all

positions in the image. However, this concern is tackled fur-

ther in our detection pipeline: we evaluate multiple bicycle

viewpoint models depending on the position in the image.

During detection we employ these deformation maps and

the vantage line to effectively undo the local rotation and

perspective transformation, and warp the ROIs to a fixed

scale of 140 pixels, as this has proven to be an adequate

trade-off between accuracy and computational complexity.

These upright, fixed-scale image patches are then fed in to

our detection pipeline.

3.2. Object detection pipeline

The unwarped image patches can now be processed to

detect both pedestrians and bicyclists. Several object detec-

tors were discussed in section 2. Currently, rigid detectors

are slightly more accurate as compared to deformable part-

based model approaches [2]. However, the advantage of

the latter is of strong importance in our framework: since

deformation is allowed, slight deviations from the trained

model and the object to be detected are tolerated. Since we

only perform detection at a single scale this deformation is

essential: multiple scales are needed with a rigid model to

achieve accurate detection results. Therefore we opted to

use the cascaded DPM [10] as a baseline. In a first step, for

each ROI image patch we extract a 31 dimensional feature

vector (consisting of HOG and contrast features). Since the

detection accuracy increases if the features for the different

parts are calculated more densely [11], this is done for two

bin sizes. To robustly detect both pedestrians and bicyclists

we share these features between different detection models.

At each position in the image we validate three models: a

pedestrian model (trained on INRIA), an upper body model

and a bicycle model (both trained on the VOC dataset). Ev-

idently, we trained all models such that the size of their root

models are equal, and chose to utilise 8 parts. The pedes-

trian and upper body model consist of a single component

(i.e. a single viewpoint). However, the bicycle model con-

sists of three components: a frontal, semi-side and sideways

looking viewpoint. Based on the position in the image we

perform model selection: we only select the single, most

optimal bicycle detection component to run at that location

and thus decrease the calculation time. For this, in an offline

phase we evaluated all three components on labelled bicy-

Figure 3. Generation of the Model map which indicates which bi-

cycle component should be evaluated where in the image.



Figure 4. A qualitative tracking sequence over one of our datasets. See http://youtu.be/0xFdDOYxKK8 for a video.

clists homogeneously spread over the image and selected

the best scoring for each image position. With this data we

generated a probability map for each component and com-

bined these maps into a final image segmentation, as shown

in fig. 3. This final Model map thus indicates which bicy-

cle component should be evaluated at each position. These

three models (pedestrian, upper body and one of the bicy-

cle components) - and their mirrored versions (we take the

maximum of both) - are evaluated on a grid of 8 pixels, and

yield three discrete probability maps for each image patch.

3.3. Combining probability maps

Finally, these probability maps Pi(x) with x = [x, y] for
each component i are combined into a single probability

map using:

Pfinal(x) = max
x

i∈{1,2,3}

(Pi(x)− di(x)) +G(x) (1)

Here, di(x) indicates an offset for each component used to

ensure correct detection localization. For this we shift each

map such that the expected maximum of the detection mod-

els coincides which each other (e.g. the upper body model

is shifted downwards, and the bicycle model is shifted up-

wards). This exact offset again depends on the position in

the image, and is extracted simultaneously with the gener-

ation of the model map. They are visualised in figure 2 as

the Offset maps. To emphasize the center location the map

is weighted with G(x), centered at the image patch:

G(x) = α

[

e

(

− x2

2σ2

)

− 1

]

(2)

Where α indicates the penalty at the image borders (we em-

pirically determined α = 2).

3.4. Map exploration, NMS and tracking

Finally, these ROI probability maps are integrated in a

tracking-by-detection framework to improve the accuracy

and detection speed. This is done as follows. We define de-

fault search points (corresponding to search ROIs) at strate-

gic positions in the image w.r.t. the blind spot zone. These

positions are evaluated every frame using our pipeline men-

tioned above. Each probability map is then thresholded to

extract local maxima. Next we perform non-maxima sup-

pression (NMS) to cope with overlapping detections - us-

ing a variant of the 50% intersection criterion [9] - keeping

only the best scoring detections. For each new detection a

Kalman filter is instantiated. We employ a constant velocity

motion model with state vector xk =
[

x y vx vy
]T

containing the center of mass of each detection and the ve-

locity. For consecutive frames, we predict the future loca-

tion of the tracked instances, and use these predicted ROI

centers (together with the default search points) as input to

our detection pipeline. For each tracked instance we verify

if a new detection is found in a circular region around the

estimated location of which the radius is based on the scale

at that location. We match the closest detection based on the

Euclidean distance. If a match is found, the Kalman filter

is updated and the new position is predicted. If no match is

found, the Kalman tracker is updated based on the estimated

position. If no detection is associated for multiple frames in

a row, this track is discarded. Evidently, for new detections

without existing tracker, a new track is instantiated. A qual-

itative tracking result is shown in fig. 4.

4. Experiments and Results

We performed extensive experiments to validate both the

accuracy and speed of our algorithm. For this, we recorded

several simulated dangerous blind spot scenarios with a

genuine blind-spot camera mounted on a real truck, involv-

ing both pedestrians and bicyclists. A commercial blind

spot camera was used (Orlaco115◦), which has a viewing

angle of 115 degrees and outputs images with a resolution

of 640×480 at 15 frames per second. In total seven differ-

ent scenarios were recorded each in which the truck driver

makes a right turn, and the vulnerable road users act differ-

ently (e.g. the truck driver notices the VRUs and lets them

pass, or the truck driver keeps driving simulating a near-

accident). Our total testset consists of about 5000 frames,

in which over 3600 pedestrians and 2400 bicyclists were

manually labelled. Our framework is mainly implemented

in Matlab with time-consuming parts (e.g. the detection and

homography) in both C and OpenCV, and the hardware con-

sists of an Intel Xeon E5 CPU at 3.1 GHz. As default search

regions we define two entry points at the left, one entry

point at the end of the truck, and one point in the blind spot

zone (i.e. to recover lost tracks). These default search re-

gions are indicated with a black star (*) in the left frame in

fig. 2. Figure 5 displays the accuracy of our algorithm using

a precision-recall curve (black curve). We achieve excel-

lent accuracy (Average Precision of 81.2%). We also com-

http://youtu.be/0xFdDOYxKK8
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Figure 5. Accuracy results of our algo-

rithm.
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Figure 6. Accuracy improvement with mul-

tiple detection models.
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Figure 7. Processing speeds of our algo-

rithm.

pare our algorithm with a vanilla implementation of [15]

(blue curve). There we presented a similar safety system,

however only targeting pedestrians. As seen, our algorithm

easily outperforms this work on these datasets that also con-

tain bicyclists. The green curve plots the accuracy when the

model selection is discarded, and thus all detection models

are evaluated at each location. The accuracy difference is

minimal, indicating that our model selection procedure us-

ing theModel Map of fig. 3 is optimal. However, running all

models evidently increases computation time. Next we val-

idated the accuracy when running only individual models,

shown in fig. 6. As observed, the accuracy increases when

combining all three detection models. We performed sev-

eral computational speed experiments. Although we mainly

focused on high accuracy, during algorithmic development

we aimed at keeping computational complexity (within the

limitations of Matlab) as minimal as possible. Figure 7

displays the execution speed in function of the number of

tracked VRUs in a frame. Evidently, the computation time

increases with multiple tracks. To partially cope with this,

we implemented both a sequential (dotted lines) and a par-

allel version (solid lines) of our framework. Parallel pro-

cessing is achieved by processing each search region in a

separate thread. The blue curves indicate our implementa-

tion with model selection, the red curves indicate processing

speeds when evaluating all models. Our best implementa-

tion achieves an average processing speed of 8.0 fps.

5. Conclusions

We presented a multiclass object tracking framework tar-

geting a specific application: detection and tracking pedes-

trians and bicyclists in the blind spot camera of a truck.

This is a challenging task due to the non-standard view-

point, high lens distortion, multiclass nature of this problem

and the high accuracy demands. We propose the use of a

warping window approach integrated with an efficient mul-

ticlass object detection scheme where we only run specific

viewpoint detectors based on the position in the image. We

achieve excellent accuracy results, while keeping the com-

putational complexity adequate for practical applications.
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