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Cardiac Chamber Volumetric Assessment Using 3D Ulasound — a Review
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Abstract: When designing clinical trials for testing novelrdiavascular therapies, it is highly relevant &
understand what a given technology can providerims of information on the physiologic status @ Heart
and vessels. Ultrasound imaging has traditionadfigrbthe modality of choice to study the cardioviscu
system as it has an excellent temporal resoluti@perates in real-time; it is very widespread angbt unimportant — it
is cheap. Although this modality is mostly knowmidally as a two-dimensional technology, it hasergly matured into
a true three-dimensional imaging technique. In tieigew paper, an overview is given of the ava#ahbltrasound
technology for cardiac chamber quantification inme of volume and function and evidence is givery whese
parameters are of value when testing the effenewef cardiovascular therapies.
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1. MOTIVATION

The current global status of cardiovascular diegas
accounting for more deaths than any other causeaift]
projected to remain the leading global cause otrd¢2],
makes the assessment of cardiac volume and furetiopic
of extreme importance not only in the clinical diefor
patient diagnostic and follow-up but also in reshass new
therapies are developed and tested. Several cardaging
modalities have arisen to satisfy the demand fadiaa
function assessment techniques, among which three:
dimensional (3D) echocardiography seems to be &ijyec
promising. The analysis of the images to obtain the
volumetric indices has also been heavily develdpearder
to extract the information in a fast,

processing and automated volumetric assessngenthén
given in Section 3. Section 4 focuses then on tralable
software solutions in clinical practice for volumet
biomarkers of cardiac morphology and function facte
chamber, while discussing their validation leved aelevant
clinical findings. Finally, Section 5 concludes tharrent
manuscript with the closing remarks on this topgrdssing
the present and future challenges for cardiac clkeamb
volumetric assessment.

2. ASSESSMENT OF CARDIAC MORPHOLOGY AND
FUNCTION

The fundamental cardiac pumping function arisemfro
exact and ruse a sequence of electrical events which trigger twrdinated

independent manner.

While much research and clinical attention has bee

directed towards volumetric assessment of theviefitricle
(LV), as detailed in the extensive review of Leuagd
Bosch, an increased interest in the other cardiambers is
more recently shifting the focus
comprehensive set of volumetric biomarkers [3]. §hilnis
present review presents an accurate descriptitimeaturrent
state-of-the-art on cardiac chamber volumetric sssent
using three-dimensional ultrasound. The focus isosethe
available technologies in clinical practice, as Iwet the
most relevant validation efforts for each cardibarober.

towards a more

contraction of the myocardial tissue. These evéms the
cardiac cycle and are regularly repeated over eveaytbeat,

nbemg regulated through different pacing mechanigarich

control the frequency of cardiac contraction. Thgtlmic
contraction of the different cardiac chambers itssuh
intrinsic volume variations of both atria and véeias over
the cardiac cycle. From these volume traces, akirtices
can be extracted to characterize both cardiac notwgi
and global function such as the end-diastolic and- e
systolic volumes (EDV and ESV). In the particulaise of
the atria these volumes are often referred to asid&Aand
LAmin and RAmax and RAmin for the left and rightiain
(LA and RA) respectively. It is also common praetio use

This manuscript is organized as follows: Section 2 volume indices divided by body surface area, ugubi LA

provides a global perspective on the
volumetric cardiac indices and how these can becttiely
assessed. The main existing modalities for carifireging

importance ofvolume index (LAVI) and the RA volume index (RAVI).

Furthermore, other cardiac global functional indi@an be
extracted from volume traces. Stroke volume (SV=EDV

are also presented and compared. A brief conceptuadESV) is the effective amount of blood ejected bygaaity.

description of the available methods for cardiaagm
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The left ventricular SV, when multiplied by the heeate,
gives the total cardiac output (CO). As a measufe o
pumping efficiency, one can estimate the ejectiction
(EF=(SV/EDV)x100%), as proposed originally by Pondio
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al. [4], which is still probably the most widely e
parameter to assess the global status of cardratidn in
LV [5]. For the atria, this measure is also calkdptying
fraction. Some specific measures have been profoseide
function assessment in the case of the atria ssitheaatrial
expansion index (LAElI = LASV / LAmin and RAEI =
RASV / RAmin). Moreover, atrial

RApreA) can be used to derive the passive (EFpg&DY
- preA) / preA) and active (EFact = (preA - ESVESV)
components of EF, the former corresponding to th&sipe
emptying resulting from ventricle expansion (atainduit
function) while the latter corresponds to the actamptying
(atrial contractile function) [6].

2.1. Prognostic value in clinical practice

Extensive research has been directed at determithiag
prognostic value of volumetric indices for diffetelinesses
and conditions. A brief review of some of thesed&s is

presented here to illustrate the importance ofiaardolume

and function assessment.

2.1.1. Left Ventricle

Patient survival after myocardial infarction and it

relation to LV function has been thoroughly desedhn

literature. It was first associated with LV ESV Wyhite et

al. [7] and Norris et al. [8]. In a study by Buresal., it was
shown that LV EF had even a superior prognostiae/éthan
LV ESV for survival after myocardial infarction [9]
Numerous other studies have given further evidemc¢he

prognostic value of LV EF on both short- and loeg

survival after myocardial infarction [10-14]. Fugtimore,

LV EF has been linked to cardiac arrest events, [bh8hrt
failure [15], and arrhythmia suppression and cardigents
[16] in survivors of myocardial infarction. More merally,

mortality in patients with coronary artery disedsss also
been associated with LV EF by Buxton et al. [17].

The prognostic value of LV EF for the mortality in

patients with heart failure has also been a sulgéchuch
research and discussion with different studies hiegc
different conclusions as to which population, presé or
reduced LV EF, represents a higher mortality ritg,19].
More recently, two meta-analysis studies, one hy&atne
et al. and a second by a large-scale project (MKZ3G

volume measured
immediately before the atrial contraction (LApreAr o
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dobutamine stress testing was used to link str¥sEDV to
cardiac events in patients with coronary heartadied27].

2.1.2. Left Atrium

More recently the attention has shifted towards the
prognostic value of LA volume and function. LA vale has
been associated with diastolic dysfunction by Tsahal.
and also with LV remodeling by Rossi et al. [28,29]has
also been linked to the onset of cardiovasculaatiss [30],
future cardiovascular events [31], to the developmef
congestive heart failure in patients with well-gesd LV
function [32] and to the occurrence of ischemimlgtr in
patients without atrial fibrillation [33]. In a siy by Leung
et al., LAVI has been associated with the risk of
cardiovascular death, heart failure, atrial filatibn, stroke
and myocardial infarction [34] and Ristow et al.vlba
associated it to heart failure hospitalization andrtality
[35]. LAVI has also been linked to the survival eaft
myocardial infarction [36,37] and to cardiovasciudaents in
patients with lone atrial fibrillation by Osranek &. [38].
Finally, LA volume has been shown to have a protiaos
value for atrial fibrillation [39,40].

2.1.3. Right Ventricle

Some research has also been done into the prognosti
value of the right heart, and especially of thétrigentricle
(RV). Numerous studies relate RV function, and more
precisely RV EF, with patient survival in differestiages of
heart failure [41-45].

The prognostic value of the RV for survival in patis
with pulmonary arterial hypertension has also beesl
explored in the studies by van Wolferen et al. §@] van
der Veerdonk et al. [47]. Furthermore, the post caydial
infarction mortality has been associated to the EW
measured late after clinical myocardial infarctid®]. RV
EF has also been associated with survival in pitirith
idiopathic dilated cardiomyopathy [49]. Finally, & study
by Kang et al., the early death of patients withutac
pulmonary embolism has been associated to the ratio
between the RV and the LV volumes [50].

2.1.4. Right Atrium

The prognostic value of RA has been substantiakhg |
explored in literature. RAVI was linked to RV syto

analyzed data from 17 and 31 studies respectivelydysfunction in patients with chronic systolic hefaiture and

demonstrating that a higher risk of death is presan
patients with heart failure and reduced LV EF [2(,2

LV function has also been used as a predictor of

survival in dilated cardiomyopathy [22,23]. Furtimare, LV
EF has been associated to mortality in patientd W\

dysfunction [24] and to mortality in end-stage fedisease
patients on starting hemodialysis [25]. Some wdrkee also
been dedicated to the study of stress and posssity

volumes. In Sharir et al. post-exercise LV EF ai®Y/Bvere
associated to cardiac death [26] and in Colettaalet

abnormal RV function by Sallach et al. [51].
2.2. Available Imaging Modalities

From the above, it is clear that the assessment of
cardiac volumes throughout the cardiac cycle ars it
associated indices is a fundamental task in didgnos
cardiology routine. Furthermore, these indices tan of
paramount importance in the design of studies tawsthe
efficacy of new therapies. To this end, there large array
of imaging modalities providing insight to cardialsamber
size and function, with some examples shown in feigu
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Figure 1. Examples of different cardiac imaging mdlitiemgnetic resonance imaging (a), computed tomogréphg-dimensional
echocardiography (c) and 3D echocardiography (dinuted tomography image courtesy of Walter Coudyzepartment of
Radiology,UZ Leuven, Belgium.

Magnetic resonance imaging (MRI), and more function and morphology of patients, while cMRIused as
specifically cardiac MRI (cMRI), is for long congitkd the  a second-line solution for more advanced investgat
gold standard for assessment of cardiac anatomy and
analysis of global cardiac function and shape [F2f key
limitations of cMRI are the high cost of the imagjigystem
and the long acquisition times. This last problem
particularly relevant for cardiac imaging, givenethiast
dynamics of a beating heart. Computed tomograpfy (€
one of the fastest evolving imaging modalities.dtas CT,
which requires the use of contrast agents, offenserd
definition of the boundary between the myocardiumd the
blood pool, excellent spatial resolution (<1mm) ayabd
temporal resolution. However, it is a very techijca
demanding exam, involves exposure to ionizing itamha
and is very expensive. Other imaging modalitiesduse
include cardiac single photon emission computed
tomography (SPECT) and multiple gated imaging stiats
(MUGA), also known as radionuclide ventriculography
[53,54], positron emission tomography (PET) [55¢ arther
nuclear imaging techniques [56]. However, thesariges
require the injection of radioactive contrast agerthus
involving exposure to ionizing radiation, and thmaging
systems are typically extremely expensive.

Nonetheless, conventional 2D presents important
limitations that directly reduce its potential ferccurate
. volumetric assessment of the different cardiac dieam
Indeed, volume estimation from 2D ultrasound images
intrinsically relies on geometric assumptions, vhiare
required to transform the planar measurementsviatome
estimates. Since the imaging planes may corresgond
foreshortened views of the real 3D object, the getocal
assumptions can be easily violated, which in twads to
reduced accuracy in the volume estimates. Furthermo
during the cardiac cycle, out-of-plane motion caeate
illusory displacement of the true boundary positiarich
can further reduce the volumetric assessment acgufaus,
the true three-dimensional nature of real-time 3D
echocardiography (RT3DE) scanning enables to oweeco
these limitations, allowing to entirely visualizehet
morphology of the cardiac chambers. This direatiyslates
into increased agreement of RT3DE against the suged-
standard method (i.e. cMRI) when compared to cotiveal
2D echocardiography. Summing this to the intrinsic
advantages of ultrasound imaging against other litieda
With the exception of standard X-ray exams, ulttmsb  RT3DE will likely become the standard echocardiphia
is the leading imaging modality worldwide [57]. ARy examination of the future.
imaging advantages, the excellent temporal reswiudiearly
sets echocardiography apart from the remaining fieda 3. CARDIAC IMAGE PROCESSING METHODS
Other important advantages, such as its safetyd gpatial
resolution and low cost, also contribute to the esjatead
use of echocardiography as the cardiac imagingndistic
exam of reference in daily practice. The use
echocardiography to assess cardiac chamber size
function dates to the advent of this technologyppPet al.
investigated the variation of cardiac dimensionsirduthe
cardiac cycle using M-mode echocardiography [58].
Feigenbaum et al. used these changes to asseasnkctioh
and correlated it to angiography [59]. Wyatt et stiowed
that volumetric indices extracted from two-dimemsib(2D)
B-mode images were superior to their M-mode coates,
especially in asymmetrical hearts [60,61]. Curngritiplane
area assessment using 2D echo is the standardfdool
assessment of LV volumetric indices.

Additionally to the imaging acquisition, the extiac
of the relevant information from the data by a wafte tool
must be considered. The assessment of volumetric,
nctional and morphologic indices poses two main
problems. First, a clear identification of the magmtial
anatomy is needed, through the delineation of titdoweand
epicardial surfaces at a given time point. Furtt@enthe
position of these boundaries throughout the cardimte is
needed to recover the underlying motion of the ieard
chamber and capture the volume changes. Severabdset
have thus been proposed to address these probledns a
categorization of these methods is possible digidinto
geometrical models, shape-free methods, statistizalels,
classification approaches and tracking [3]. Eachthase
categories is briefly described in this chapterr Romore
2.3. Real-time 3D echocardiography comprehensive description of these methods, trexdsted

Given the considerations previously mentioned, it reader can refer to the extensive review by LeurtgBosch

becomes clear why current clinical practice in wdod)y [3].

typically employs 2D echocardiographic studiestees ftrst- Geometrical models are the most common border

line and fundamental exam in the evaluation of ieard detection approaches and consist of the represantat a
border in terms of a curved surface influenced by
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geometrical constraints. This surface is initiaize
interactively or automatically and evolves iterativ
according to image features such as the local sitieror
edge information. Most geometrical models use energ
based optimization where a mathematical energytimmés
defined according to the
regularization terms and optimized iteratively [6Z}
Given the surface representation that is used, ntizén
disadvantage of these models lies in finding a rxaa
between a surface that is too smooth and one #winbes
implausible.

Shape-free methods are, as the name implies, nwtho
with little or no dependency on the shape of thalfobject.
As such, they are heavily dependent on low-levehgen
information such as pixel intensity, gradients, exigand
corners and motion vectors. The two main familié$ whis
category are clustering and level sets. Clustelsngimply
put, a categorization of each pixel of the image igroups,
for example myocardial tissue and blood pool [6§-Z&vel
sets are similar to geometrical models with the nmai
difference that the shape of the object is noticetet, which
can often result in multiple disconnected surfala&s-76].
Due to the low level of shape restrictions impostese
techniques are quite susceptible to image artifagth as
shadowing or dropouts.

Statistical models are population based methodstwhi
model the statistical variations of patient datacading to
borders manually contoured by experts. This is dbye
finding a relatively simple mathematical model wiiat a
few parameters that can express the patient viryafsom
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dependent on image information such as pixel intgnthe
results can be especially sensitive to the preseha#ifacts.
This makes the introduction of information suchcasdiac
motion patterns particularly interesting. The drigt
tracking approaches are usually based on eithéstratpon

image features and otheror speckle tracking. In registration approaches shatial

correspondence between sequential images is foynd b
measuring and optimizing a measure of similarityween
them [64,87-90]. Speckle tracking approaches aifinding

a correspondence between speckle patterns throtughoa
[91-99].

d

4. CARDIAC CHAMBER VOLUME ASSESSMENT
USING 3D ULTRASOUND

4.1. Left Ventricle
4.1.1. Available Technology

Accurate volume measurements require precise
delineation of the LV endocardial border over thdire
cardiac cycle. Nonetheless, manual delineation tafsé
boundaries in 3D data is a cumbersome and timedooing
task, making the introduction of this approach Iimical
routine impractical. Hereto, several software pgesahave
been introduced to aid the clinician in this comiog
process by providing some form of automation.

Tomtec Imaging Systems  (Unterschleissheim,
Germany) was the first company presenting commiercia
tools for 3D volume quantification, taking advargagf its
expertise on image processing and visualizationeirTh
current product, TomTec 4D LV-AnalySis performs an

an average. By varying these parameters one cam thegutomatic orientation of the LV longitudinal axis display

synthetize a large number of shapes. Different casuiof
information can be used to build such a model. &cthape
models use the manual contoured borders [77—7%reds
active appearance models use a combination of dreuah
contoured borders and the image intensity inforomafB0—
82]. Given their origin from real examples this hw can
only find plausible results. However, this is alsodownfall
as the accuracy of the model will always be depende the
quality of the original database and its extensiooughout
both healthy and pathological populations.

Classification approaches are also dependent ge lar
sets of data contoured by experts, with howeveiffarent
approach than statistical models [83-86]. Accordimghe
database information, a classifier is trained stidguish the
objects of interest into classes using appropffiedtures. In
practice, parts of an image are then classifiecsddgcting
regions of different sizes in the image in diffdreositions
and determining its class following a coarse-t@fstheme.
Though the training procedure is extremely timestwning,
the detection can be very fast. Classification apphes
suffer from the same disadvantage as statisticalelsodue
to its dependency on the original database. Howeaern
larger datasets are typically needed then for sticdi
models.

Finally, tracking approaches are the most diffefesrn
the other approaches as they do not aim at theebord
detection itself but at the estimation of the muotiof an
object throughout time. Thus, tracking approachageha
more dynamic nature. Since tracking approachesnasly

three apical and three short axis views. If neggsshese
can be adjusted by the user to avoid foreshorteaimg
modify the aortic valve landmark orientation. Theiee 3D
endocardial surface of the left ventricle is themtoured by
the software in end-systole and, using 3D speacideking,
propagated throughout the heart cycle [100]. Thises tool
is also available under TomTec’s software solud@nLV-

Functior™,

Contrarily to the purely offline approach offereg b
TomTec, Philips Healthcare (Best, Netherlands)oohiced
the possibility of both offline and online analysigéth their
QLAB — 3DQ Advance (3DQA) software suit [101,102].
First, the longitudinal axes must be aligned in4hghamber
and 2-chamber views at the end-diastolic phasee Fiv
anatomical landmarks must then be marked, whichusee
to initialize a deformable shell model [62]. Thisodel is
afterwards deformed towards the LV boundaries, it
option for manual correction. The same process rbest
completed for the end-systolic phase [102]. Philips
Healthcare is currently preparing to introduce aw ne
commercial tool, HeartMod®&| which will be available on
their EPIQ7 system and should be released by Augss.
The HeartModdél is a fully automatic knowledge-based
model which detects end-diastolic and end-systolic
instances, performs localization and tracking oé tlour
chambers and also alignment of the apical 4-, 3 2n
chamber views [103]. Refinement of the results lsoa
possible through manual correction of the contoling tool
returns then the LV and LA volumes at end-systolé end-
diastole.
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More recently, also General Electric (GE Vingmed, extracted from cMRI, which remains the generallgegted
Horten, Norway) introduced a software package, 4Dgold standard method for volumetric assessmentaadiac
AutoLVQ, which allows both fully or semi-automated chamber dimensions. Alternatively, some studiesontep
segmentation and volume quantification of the \eftricle direct comparison between automated vs. manuabuadng
[100]. In this product, an initial alignment of thaxis is of RT3DE data, thus providing insight on the abilibof
needed so as to avoid foreshortening. This carebfenmed automating the contouring process. The most retestadies
either automatically or manually by pivoting andrslating are summarized in this sub-section and Table ligegvan
the planes. In the semi-automatic version, the user overview of the corresponding main results. FigRighows
required to mark the location of the apex and thwaln  an example of LV segmentation in 3D echocardiogyaph
annulus at end-diastole and end-systole. After, tiis 3D data.
endocardial surface is automatically detected atseh
instances. In the fully automatic version no iriitiation
points are required. After the conclusion of thgrsentation
the user is allowed to manually edit the contours.

Toshiba Medical Systems (Tokyo, Japan) has entered
the RT3DE realm with its Artidd system, which was
complemented with a software tool for chamber
quantification by 3D echocardiography speckle tiagk3D
Wall Motion Tracking (3D-WMT) [102,104,105]. This
computational platform performs an automatic seecbf
apical 4-chamber and 2-chamber views, as well akdst-
axis views at different LV levels. The user is thiequired to
place six markers: at the edge of the mitral valud at the
apex in each of the apical planes. These pointthare used
to automatically segment the endocardium. The egiaia
contour is defined either by a predetermined théslsnor
through manual contouring. The final shape of teé& |
ventricle can then be corrected manually by the.use3-
dimensional block matching algorithm [106] is thesed to
track the wall motion throughout the cardiac cyide fully
automatic manner.

The development of a fully automatic image analysis
software package has been one of the main strategiq
investments of Siemens Medical Solutions (Mountéiew,
California) while developing their Acuson SC2080
RT3DE system, resulting in the software tool eSi6AM
[107]. This tool is based on a comprehensive dselH - J
manually annotated RT3DE exams (over 4000) coveringrigure 2. Example of LV segmentatlon in 3D echocardiography
both healthy and typical pathological cases in iclih  data obtained through a semi-automatic methodriglane-view
practice. The offline learning process was perfatmasing a  and 3D rendering; b: short-axis view; ¢ and d: langs views.
Probabilistic Boosting Tree [108] to obtain the dfin  Reproduced from [67].
classifier. Given an input volume, this classiequentially
estimates position, position-orientation and fufhitarity to
locate the object and finally performs both an maéion
according to standard planes [86] and also theocwimty of
the LV using boundary detectors [109] and stat$tshape
models. The final endocardial contours can be eefiby the
user through manual correction.

The earlier studies focused on software tools which
relied mostly on a computer-assisted 3D manualaoirtg
paradigm, either requiring manual delineation ofe th
endocardial boundary in several long axis planesquiring
significant user input in semi-automatic segmeatati
algorithms. The performance of the pioneer Voluigtr
system has been analyzed by both Schimdt et. &l [44d
4.1.2. Validation Efforts Lee et al. [114]. Both studies found excellent elation
between cMRI-derived volumetric indices and the sone
extracted from RT3DE data by manually contouring in
different azimuthally equidistant long axis imagNete that
Kihl et al. had already demonstrated that the Blynature
of RT3DE data enabled long-axis contouring in casttrto
the short-axis, sum-of-disk approaches initiallyhdrited
from cMRI [115]. Mannaerts et al. performed a sanitudy
with an ATL® HDI 5000 system and manually contouring
;L X : . the endocardium using one of the first TomTec toBlsho-
existing so_ftware swtes_for volumetric measuremisnto View. Mannaerts et al. reported good correlatiorwali as
perform direct comparison of the volumetric indices the first evidence of a negative bias of 3D echdicgraphic
extracted from RT3DE exams against reference value§lo|urnes with respect to cMRI [116]. Kiihl et al. fremed

The enthusiasm generated in the medical commuygity b
2D matrix transducers and RT3DE is well demonstrdty
the numerous validation studies for this imagingdaiiy
over the past decade. Although validation on other
experimental setups has been done (e.g. wateroballof
known volume [110], intracavity balloon measuremeént
canine models [111], in vitro porcine heart moddl$2]),
the primary and more generalized validation roue the
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the first clinical validation on the second genematof 2D Despite the convincing results of the previous
(i.e. fully sampled) matrix transducers, showingeadbent validation studies, a clearer understanding of iptss
correlation against cMRI, in a cohort of 24 goodage sources of errors was required for optimal clinieshge. To
quality patients [117]. In this study, a manual tooming this end, Mor-Avi et al. have studied the sourcevaiation
paradigm was compared against an early semi-auiomat between volumetric indices measured with RT3DE and
algorithm, showing that the tested semi-automapgataach  cMRI, showing that the fundamental difference i® th
enabled full 4D delineation but required longer lgsia inability of RT3DE to resolve the separation betwee
times and showed larger bias and wider limits gkament.  trabeculae and myocardium. Indeed, including thbetcular
Jenkins et al. have further validated the sameesysh a  region outside of the blood pool during cMRI contog in
larger study (#=50) using a semi-automatic approachthe blood pool significantly reduced the RT3DE eMRI
provided in an earlier version of TomTec's 4D LV- bias, as well as the limits of agreement [110].sTfact sums
Analysi® [118]. The tool required the placement of up with the blurring effect caused by the PSF efdlquired
landmarks in 12 azimuthally equidistant long axisws ultrasound signal, which pushes the apparent biizsde
which were used to fit an ellipse to the endocéardieders. interface towards the blood pool, as shown by Mar-& al.
This was then followed by manual refinement. Iniaod to in balloon phantoms.

low bias and acceptable limits of agreement, RT3b&wved More recently, a shift towards more advanced safwa

lower test-retest and intra/inter-observer varigbithan its . .
2D counterpart. The same semi-automatic approach waSuites has enabled more automated analysis of R

; . o allowing a more efficient workflow towards the eadtion of
X?}llgﬁtaer?db%)v%ukggggtheotuﬂhV\\:\I/ti?hev)\(/?dee”f mn?tc;rrgfta;;gamstt clinically relevant information from RT3DE datadieed, the

[119]. Van den Bosch et al. have carried out thet filinical previously cited studies have mostly focused on isem
validation of RT3DE-derived LV volumes in congehita a_lgognatlc soll‘t\(/jva}re t(t).OIS t??rt] plr_cO/lde .?t _lrt‘os.:u;hmﬁfu
heart disease patients, whose challenging carti@ges had aided manual defineation ot the cavity. Typitane o

: o lysis ranged from around 2 min. [101] to 10 min.
been previously reported as a difficulty [120]. Fhesults ana . iy
show excellent correlation/agreement for LV voluricet [76,118], although several studies report analysises

: : : around 5 min per dataset [110,122]. Note that Jaethal.
aré?,\ll)ésvlzr us\,llvnh%na a:)uplllil/ingr]nart]rlegl ;:;furggmii%%ﬁ;&have shown that online LV volumetric analysis caovigle
contourin,g software tool as used in [118], the ltesu accurate results in less than 2 minutes per vollfdg] but
highlighted that this tool relied too much on a gyr they stress that manual qdjustments were requ_vr_éd% of
elliptical shape prior, thus having a poor perfonce the analyzed cases using an online quantificatiool, t

Despite the strong resilience of the multi-planantouring Ir‘rr:?r:ﬁ'?esslngertcze)luarlgglySIS time from 2 minutes to op5t
paradigm in the early clinical validation, a mor@-8riented P :

vision has been int_roduced with the glgorithm_pﬂjmbby With this in mind, strong research effort has been
Corsi et al. [73]_, which was further validated bgighi et al.  directed towards more efficient software packages,
in a clinical setting [76]. incorporating advanced computer algorithms enabling

faster, more efficient and more accurate processihg
RT3DE volumes. Hansegard et al. [124] and Muraralet
[125] used GE’s AutoLVQ and TomTec’s 4D LV-AnalyBis

to show that a more advanced, automated softwarkage
can reduce the average time of analysis when cadpaith
standard semi-automated strategies, while keeping
comparable accuracy. Muraru et al. [125] has egusibwn
that fully automated (i.e. only manual initializati on ED
and ES frames, with subsequent automatic delindai®
feasible. However, their results show that a natibe
increased agreement can be achieved by manualigtauj

the results from an automated method, at the cést o
doubling the total analysis time. Kleijn et al. bavalidated
another highly automated software tool, Toshib@sVBMT
[126]. Despite only moderately good results for the
volume assessment, the EF results showed excellent
correlation and remarkably low bias and limits gfeement,
indicating that more advanced tracking methods can
positively influence the quality of the extractedrfaces
when compared to pure contour-extraction approaches
Similar results have been reported by Kawamura ¢1@5].

To test the potential of RT3DE in a realistic dlili
scenario, Miller et al. analyzed 60 consecutiveeps to
determine the effect of image quality in RT3DE voki
quantification performance [127]. Despite reportilogver
agreement with cMRI measurements than previousindo
the authors stress that the degree of error isngically
linked with image quality.

Jacobs et al. have been the first to validate tmeept
of rapid, online measurement of LV volumes from RE3
data [101], using the tool provided by Philips, @A~
3DQA. Indeed, online volumetric analysis within the
imaging system without the need to export data mo a
external computer for tracing and 3D reconstrucfiamher
reduces time load. Very strong correlation and piztee
limits of agreement were found for all volumetriadices,
despite the significant bias for EDV and ESV. Adiglly,
the comparison between the volumetric indices et¢rh
online correlated strongly and had good agreemegainat
the offline semi-automatic contouring approach psga in
[117]. Nonetheless, in a study by Jenkins et hk, dffline
approach by TomTec was compared to Philips’ QLAB —
3DQA showing that offline approaches remain supetgo
the online quantification of LV volumetric indicesf the
expense of longer analysis times [121]. A simikaidg was
conducted by Soliman et al. using a newer versibn o
TomTec's 4D LV-Analysi§ in which only the manual
contouring of three orthogonal planes is neededsamilar
results as those by Jenkins et al were obtained].[18 a
different study by Soliman et al., two differentrsiens of
TomTec's 4D LV-Analysi€ are compared to volumes
obtained through cMRI showing strong correlation foth
methods and a clear superiority of the newer vaersio
dependent on full volume reconstruction [123].
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Using Siemens’ eSie LVA tool, Thavendiranathan et
al. demonstrated that fully automatic analysis Of3RE is
possible and presents extremely encouraging refl2@g).
Note that Thavendiranathan et al. point out thatghtients

undergoing RT3DE exams in the analyzed dataset weran additional perspective on how RT3DE compared wit

selected for good acoustical windows, thus holdgugpd
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supports the
reproducible in assessing left ventricular volunaesl EF,
although it is not interchangeable with other réuli@
modalities. On the meta-analysis study by Dorosa.etlso

conventional 2D echocardiography is given in pafab the

imaging quality. The authors have applied the samecentral comparison of RT3DE-derived volumetric oedi

computational automatic analysis algorithm to
reconstructed cMRI datasets and have found sligtither
bias and limits of agreement against the manuahekgion
on cMRI data than when using the same software TBDE
data (-0.8+4.7% vs. -0.3+2.5%). This seems to pmiwards
the excellent image quality of the analyzed RT3iEadet.
Similar results have also been published by Zhangl.e
[129]. Using the same tool, Chang et al. [130] r&gmb
slightly lower correlations and the Bland-Altmarabysis on
EF estimates revealed much larger bias and limits
agreement than reported by Thavendiranathan &t El28].
Nonetheless, it is important to stress that theasit
corresponded to consecutive patients, althoughiquely
selected based on 2D echo image quality and thewss
allowed to manually correct the automatically degdc
contours. It should also be noticed that Changl.eteport
that automatic results were considered excellertli%o of

the against cMRI. Their main conclusion is that RT3DE

underestimates volumes and has wide limits of ageee,
but compared with traditional 2D methods, it is mor
accurate (i.e. smaller bias) for volumes (EDV argVEand
more precise (i.e. tighter limits of agreement) EDV, ESV
and EF measurements. One of the key benefits 0DIETIS
the reduction in intra/interobserver variability,hish is
important for clinical practice, since disease pesgion in a
patient will be most likely assessed serially byfedent

oreaders. Dorosz et al. also highlight the naturiuiénce of
image quality on the estimation of LV volumetricdices.
Indeed, an analysis of those studies that accealie@D
datasets, instead of selecting patients for imagality,
shows that the 95% limits of agreement against ckéide
from £34 to £38ml for EDV, £30 to +34ml for ESV ard 2
to £15% for EF.

role of RT3DE as both accurate and

At last, the first step towards effective clinical
integration of 3D echo volume measurements is the
population-based assessment of normal values, as
cknowledged recently by Marwick in the editoriateof a
imaging journal [135]. Sever

the cases (i.e. not requiring any adjustment), goed five
or fewer manual corrections required) in 34% of tases
and it failed completely (i.e. required manual dedtion) in
10% of the cases. Regarding the influence of manuaf" di di |
correction, Shibayama et al. have evaluated the system, eading - cardiovascular

performing firstly fully automatic analysis and thallowing
the user to proceed to manual corrections, in arta¥f 44
consecutive patients [131]. Their results reinforttee
findings of Muraru et al. for a different systermhus

studies, including the work of Aune et al. [136KkG et al.
[137], Fukuda et al. [138], Chahal et al. [139] avidraru et
al. [140], have been filling this gap, providingnitians one
of the last pieces of the path towards clinicaégnation of
RT3DE examination in daily routine. An ongoing lergcale

highlighting that even state-of-the-art softwarekzmes are oroject (EchoNORMAL) is aiming to define the

not yet able to consistently perform  fully ; .
automated/automatic analysis of RT3DE data. Indeed,e(:hocard'Ogr"JIIOhIC normal ranges of the LV, through

Shibayama et al. show that fully automatic resuite collaborative effort meta-analysis approach [142]14

significantly improved through manual interaction. 4.2. Left Atrium

Nonetheless, manual correction increased the totalysis .

time by a factor of 10. Using Philips’ HeartMoffetool, ~ 4-2-1. Available Technology

Tsang et al. have analyzed 46 patients achievinglasi Given the low priority given to LA volume and
the solutions dedicated to LA

results to those reported with other fully automati fynction assessment,
approaches without performing manual correctiontlf  segmentation are limited. TomTec was the first to

contours [132].

The key summary of the literature on the clinica

validation of RT3DE volumetric assessment agaifdRt
can also be appreciated in the recent meta-analysites of

commercialize a dedicated tool: 4D LA-AnalysiSimilarly
| to an earlier version of TomTec’s 4D LV-Analy8jshe user
is asked to manually contour the endocardium ireehr
different views (2-, 3- and 4-chamber) at both BRi &S

Shimada and Shiota [133] and by Dorosz et al. [134] frames. A polyhedral mesh is then generated foh ezc

Shimada and Shiota’s meta-analysis included 30bests
in 95 studies, focusing not only on 2D matrix trdunsers but
also earlier systems based on mechanical steefingey
evidence is the significant underestimation bias left

ventricular volumes (both EDV and ESV) by RT3DE

compared with cMRI. On the other hand, no statdiic
significant bias for estimation of EF was found.uges of

error included gender and presence of congenitarthe

disease, which were associated with more underattimin
the analysis. Semi-automatic border detection Aeduse of
matrix-array transducers were associated with

underestimation. As key conclusion, the studiedrditure

those frames by volumetric interpolation of the @&ihtours
and temporal smoothing is performed, resulting sneoth
volume curve for the whole cardiac cycle. The mesiime
calculation excludes the mitral valve tenting voyrwvhose
limit is that defined by the mitral valve pointgroduced by
the user. The user can also manually adjust theeetgtion
results [143,144]. This same tool is also availableler
TomTec's software solution 4D LA-Functien

Until recently, no other dedicated tool was avdéab
besides TomTec’s. Philips’ fully automatic Heart\étdi

lessool, released on August 2015, will change thatjt asso

provides LA volumes besides LV (cf. Section 4.1[103].
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Table 1.Literature Overview: Validation of RT3DE and conmgial software tools for LV volumetric assessméhtriumber of exams; Ref:
reference measurements taken from cMRI or manuatooang of RT3DE data (3DM); r: correlation coefént; BA Bland-Altman

analysis).
. ) r BA (ut20)
Study maghg  avass st oy g
EDV ESV EF EDV ESV EF
Siggd[tﬁg?"’ Volumetrics - ANR) 25 CMRI 120-180 088 082 NR NR NR NR
Lee ‘E{ﬂl 2001 yolumetrics - A7) 25 CoMRI  NR 099 099 092 NR NR NR
Mannaerts etal.,  ATL® HDI TomTec 1200-

2003 [116] o EchauieS o A©) 28 oMRI 29 079 090 087  -27.9+457 -34.4+45 5 12+15.8
Kini F1t1a7l] 2004 7555’6‘1?; . ; C(242) 24 MR 720£300 098 098 098  -13.6+37.8 -12.8+41 0.9:8.8
Kinl F1l1a7l] 2004 Sonos ; C(242) 24 3DM  720£300 099 099 098  -13+17.2 0.2+108 0154

Jgggﬁlells?'” 7;;’(;‘:’; ., ZODTJ/‘_*\C C(362)+R 50 CMRI  630:60 NR NR  NR 4158 336 0+14

C;(')%”s' [F“;e”]‘"' 755'(‘)’;1?; " - B@4)+R 44 CcMRI ~300 097 097 093 -4.1£30 -3.5+3 -0.8+14
Boscr‘[le(;"' e et A®) 29 CcMRI 1020300 097 098 094 22,9412 0.®:9. 14472
Boscr‘[le(;"' 2006 7;;’(;‘:’; ., 433\'}‘;'3102 C(242) 29 CcMRI  360+120 079 084 054 NR NR NR

J;gggs[leo‘f]‘"' 7§g;f; ., %LDAQBA’ C(52+R 50 CMRI  120-420 096 097 0093 -14+34 +85 1+12.8
Jgggg‘s[leztl?"' 75’6’6‘:’; # ZODT\KC C(362)+R 110 CcMRI  630:60 086 091 081 -15+56 +4 116
J;gg'gs[l‘;tl?"' 7§g;f; . %LDAQBA’ C(52+R 110 CcMRI  240+20 078 086 0.64 -44+70 5+ 2420
S;ggg?ﬁ;?"' 7§g;f; " ZODT\E\C C(182)+R 31  CcMRI NR 097 096 096 5453 6253 83
Sg'(')g“;“[‘l‘?z‘i""' 75’6’6‘:’; " 453{/“;‘32% B(3)+R 41 cMRI  360:120 099 099 0098 -9.448.9 #81 0.3:4.7
Sg'(')g“;“[‘l‘?z‘i""' 755(‘)’(;‘:’; . %LD’??A' C(52+R 41 CcMRI 24020 099 098 097  -16.4+13.4 85+¢142 0.7+6.3
sg'(')’g;’“[‘l‘;‘s?"’ 7;;’6‘:’; ., 433\'219102 C(242)+R 53 CcMRI 9004300 096 098 095  -240404 -11.3+17.2 0.8+6.4
SZ’B@?'{EZ?" * 75’6’6‘:’; " 453{/“;‘32% B(3)+R 53 CcMRI  360:120 099 099 0098 -9.9:8.4 56 0.614.8
Mgg@’ '[fig]"' IE33+X3-1 %LD’??A' C(52+R 92 CcMRI  ~300 091 092 081 -67+92 41292 -3%22
legf(;”[leésa]"' Vivid7+3V AutﬁEVQ CO2) 23 MRl 4824 077 072 064  -32.3:436 9307 15:12.8
legf(;”[leég]"' Vivid7+3V Am‘c‘)EVQ CO2+R 23 CcMRI  112¢30 093 095 085  -11.0:242 9.1+142 2.9:8.4
legf(;”[leésa]"' Vivid7+3V 453?;9200 B@)*R 23 CcMRI 226484 096 094 085 8419 7413 84B.4
02%‘1”19[16;%"' SC2000+4Z1c  eSie LVAY D+R 91  cMRI NR 091 094 091  -41.38+37.2 791933 -8.26£13.0
LTZ‘I’E’;%'E”S‘;%” SC2000+4Z1c  eSie LVAY D 91 cMRI  30-60 090 096 098  -17.6:53.4 0.8835.  -0.3%5.0
Kleijn et al., 2012 Artida4D+PST- ~300 (W/

(ol ) 3D-WMT cea 45 omri 00 o7 o oo -34150 13422 -0.6+2.4
M'”e’[el‘;;']" 2012 eagixaa Q3LD’33A’ C(52+R 42 CcMRI 30660 083 084 077 -45+70 8+4 718
Sh?gf’;ﬂ%ﬁt al. 5co000+471c  eSie LV D 41 cMRI 368 0.80 085 054  -22.2+73.0 184642  1.2423.3
Sh?gf’;ﬂ%ﬁt al. 5co000+4z1c  eSie LV D+R 41  cMRI  371#116 096 097 09 -4.4£34.9 -5827. 0.9+15.2

o eartMo Cl < B B . -35.05+90. -24. 05+11.
Tsa”%fégl” 2013 X5-1 HeartMode D 46 CMRI 5 0.89 094 093 -35.05:90.34 -24.95886  0.55:+11.62
esSlie C . . B -3.9+43. -0.07+33. (15,
Zha”%leztg?"'zolg SC2000 Sie LVAY D 60 CcMRI NR 089 093 071 3.5£43.5 0074332 274157
Ka‘ggﬂ“[’f‘og al., Artida 3D-WMT C5.2+R 64 CcMRI NR 086 085 074 9.0t76.5 -10.1+70.4 -0.3+13.1

User input: A(X): Computer assisted delineatiortrad 3D surface via manual contouring of X 2D plari&X): Semi-automatic segmentation, with manual
initialization by contouring in X 2D planes; C(L;Futomated segmentation, with user input of L amatal landmarks in F time frames; D: Fully autoimat
segmentation without any user intervention; R: Mamefinement of segmentation results.
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Apart from these tools, other LA quantification
solutions still rely on the use of generic toolsimarily
designed for LV volumetric quantification. With shiegard,
the use of QLAB — 3DQA (Philips) [102,145,146], aBD-
WMT (Toshiba) [102], and eSie LVA' (Siemens) [147] for
guantification of LA volume has been reported. The
description of aforementioned tools can be foun&éation
4.1.1.. The current eSie LVA fully automated solution is
based on the database-driven knowledge-based approa
which relies on learned features from LV shape eapgnce
and motion. As such, it seems to not be suited Lfar
volume analysis. However, a semi-automated versias
available and has been used for LA volume assedsme
[147].

4.2.2. Validation Efforts

The recent efforts towards clinical validation ob 3

echocardiographic assessment of LA volumes haven bee

reflected in the latest Recommendations for Chambe
Quantification [148]. A summary of the validatiotugies
found in literature are presented in this sectiod &able 2
presents the corresponding results. Figure 3 shmwsA
segmentation example on a 3D echocardiography image

To et al. [6] address the strengths and weaknesfses
different imaging modalities (2D and 3D echocardamy,
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and RT3DE values [149]. The underestimation of nug
was in this study, however, much larger. A multieerstudy
(92 patients with a large range of LA volumes) agtdd by
Mor-Avi et al. [143] showed that LAmin and LAmax
volumes from 3D echocardiography also correlateebet
with cMRI, compared to 2D. Moreover, statistically
significant underestimation of volumes was observed®D
and not on 3D measurements. In the same study, 3D
echocardiography also improved classification ofaeged
atria, while intra- and inter-observer variabiligas similar.
The volumetric measurements reported in this stwdye
obtained using the semi-automated 4D LA-Fun&ionol
r{Tomtec).

An extensive analysis of different techniques towae
LA volumes from echocardiography (both 2D and 3B) i
presented in [146], including data from 60 patiefise 3D
images were analyzed with two semi-automatic tools:
rTomTec’s 4D LA-Analysi8 and Philips’ QLAB — 3DQA,
which was built primarily for LV segmentation. Atihgh all
volumes derived from echocardiography  were
underestimated compared to cMRI, reported bias edng
from -50.5% down to -4.7% across the different teghes.
The following techniques estimated LAmax and LAmin
volumes with increasing accuracy (sorted from tighdst to
the lowest bias): 2D prolate ellipsoid method; 38ms

cMRI and CT) in the assessment of LA morphology andautomated generic tool (QLAB — 3DQA); 2D area-léngt

function. In this review, 3D echocardiography is1sidered
comparable to the other modalities regarding thignesion

of static dimensions, and superior in the estinmatibphasic
size, and LA mechanics. In addition, the authorte rtbe
current indications of echocardiography for LA asseent
(first-line diagnostic evaluation and follow-up) carother
potential indications (serial monitoring and dezdil
functional assessment of LA phasic function).

Miyasaka et al. [145] demonstrated the added vafue
3D echocardiography to derive LA volumes, in a gtud
including 57 patients, with multi-detector CT asldyo
standard. The volume underestimation typically olese in
echocardiographic measurements was significantigitdor
LAmax volumes derived from 3D echocardiography,
compared to those estimated from 2D echocardiograph
Rohner et al. conducted a similar study using TocrsTéD
LA-Functior® also showing good correlation between CT

method; 2D bi-plane Simpson method; 3D manual §ipeci
tool (4D LA-Analysi®). These results suggest that, despite
the previously shown importance of 3D data, theueszy
may vary significantly depending on the methodol¢ggmi-
automated vs. manual or generic vs. LA-specifiésfoo

Another study using a generic semi-automated tool,
eSie LVA™, to assess LA volumes from 3DE shows
alarmingly inaccurate results [147]. It must be eabt
however that this study included only atrial filailon
patients, which are typically more challenging rtmage and
analyze, and that this tool was primarily desigred LV
segmentation. Therefore, image quality played ay ver
important role on such results (poor correlatiothwT for
both 2D and 3D echocardiography measurements).
Nonetheless, LA volume was also significantly
underestimated in a sub-group of recordings witlodgo
image quality (-44% for 2DE and -21% for 3DE).

Figure 3. LA segmentation example in a 3D echocardiograptgge using a semi-automated algorithm [150]. abaheohg axis views; c:
triplane-view and 3D rendering.
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Finally, a comparison between two standard echo-showing good correlation with volumes obtained fraiRlI

analysis tools, QLAB — 3DQA (Philips) and 3D-WMT
(Toshiba), was performed in a large study includirzp
subjects (both unselected patients and healthyntedus)
[102]. The results were in close agreement for hatmax
and LAmin, and showed equally good inter- and hoisar
reproducibility, suggesting its interchangeability.should
be noted however that this refers only to the caimpa of
echo-based measurements, without an independersdlityod
as reference.

The use of LA-specific fully automatic tools hasshe
reported in a single validation study by Tsang letuaing
Philips’ HeartModel' tool. The results are promising,

though somewhat below the performance reporteatioer
LA dedicated semi-automatic tools [132].

In summary, echocardiography is a reliable modality
for LA volume assessment (albeit its typical und@meation
compared to CT or cMRI). Volume measurements fran 3
echocardiography are consistently more accurate lessl
user-dependent than those from 2D as pointed ouhen
recommendations by Lang et al. [148]. Image quadityl
LA-specificity of automated tools are important tfars
influencing the reliability of the measurements. IphAasic
function assessment from 3D echocardiography kstdks
validation, despite having been used in some dirstudies.

Table 2. Literature Overview: Validation of RT3DE and conmgial software tools for LA volumetric assessméhtrumber of exams; Ref:
reference measurements taken from cMRI or manuatooang of RT3DE data (3DM); r: correlation coefént; BA Bland-Altman

analysis).
. . . r BA (L£26)
Study Igasgggnr% Asnzlt);srlns User input # Ref T|(r;1)e
Y Y LAmax LAmin EF LAmax LAmin EF
M'%’giiﬁfst]a"' iE33+X3-1  QLAB-3DQA C(2+R 57 CT 300600 095 RN NR 2.5¢3.6 NR NR
Rohner et al., 2011 . TomTec
T199] IE33+X3-1 ADLAE B(3) 34 CT NR 0.92 095 082  -24.8+40.6 25.2430.0 8.6+18.4
Mor-Avi et al., 2012 . TomTec
1431 IE33+X3-1 LR B(3) 92 cMRI NR 0.93 088 NR 128 0+43 NR
Buechel et al., 2013  iE33+X3- TomTec
[144] o ADLAn B(3) 55  cMRI NR 0.93 095 092 7.2+21.8 724200 1.8+17.7
Buechel et al., 2013 iE33+X3- TomTec
[146] YVt ADLAR B(3) 60 CcMRI 16129  0.94 095 NR 524 -6.5£20 NR
Buecheletal, 2013 IE33+X3- 4 \g 3p0A  C(52)+R 60 MRl 144+19 080 090 NR  74B3 1127 NR
[146] 1/X5-1
Tsa”%fgg'” 2013 X5-1 HeartModel D 46 cMRI <5 0.91 NR NR  -10.26+32.30 NR NR
Heo etal., 2014 SC2000 eSie LVAY NR 31 cT NR 0.23 NR  NR NR NR NR

[147]

User input: A(X): Computer assisted delineatiortred 3D surface via manual contouring of X 2D plari&): Semi-automatic segmentation, with manual
initialization by contouring in X 2D planes; C(L;FAutomated segmentation, with user input of L amatal landmarks in F time frames; D: Fully autoimat
segmentation without any user intervention; R: Mamefinement of segmentation results.

4.3. Right Ventricle
4.3.1. Available Technology

Recently, Tomtec Imaging Systems
(Unterschleissheim, Germany) has made availableffine
tool for semi-automatic RV function assessment, R
Functiorf [151]. Firstly, the correct anatomical axis must b
defined by the user and landmarks placed in both th
tricuspid and mitral valves and the apex. The eiadtdlic
and end-systolic phases must then be identified thed
endocardial borders manually contoured on the 4nties,
sagittal and coronal views on both phases. Thevaoé then
automatically delineates the RV endocardial boedeng the
heart cycle. The results can be refined by the asére end
of this step. A number of measurement values aem th
available for the user namely 3D volume measuresn@®i
EDV, ESV, EF and SV), strain analysis and 2D stashda
measurements [151].
Medical Solutions have recently made this tool labdé in
their systems thanks to a strategic cooperatioh WatmTec

XXX-XXX/14 $58.00+.00

Imaging Systems. Figure 4 shows an in-program sshes
of 4D RV-Functioff in the contour revision step.

Ventripoint Diagnostics Ltd. (Bellevue, United Sts)t
has introduced the Ventripoint Medical Syst¥m[152].
This system relies on a 3D RV reconstruction from a
freehand acquisition using a standard 2D probe with
magnetic localizing system. After acquisition offfsuent
2D planes for a good coverage of the RV (10 to iEws)
the end-diastolic phase is automatically definezbeding to
the electrocardiographic R wave and the end-sysfiliase
is defined manually by the user. An offline anayis then
required, namely the identification of anatomic dararks
(ideally 17 to 23 points) after which a database3bf RV
shapes is used to define the RV shape using &wise
smooth subdivision surface reconstruction [152].

Both GE Vingmed and Siemens

© 2014 Bentham Science Puliisrs
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£ LIS ) S S—
Figure 4. TomTec 4D RV-Functioh screenshot (Courtesy of
Guido Claessen, Laboratory on Cardiovascular Ingagand
Dynamics, KU Leuven, Belgium).

4.3.2. Validation Efforts

Though the importance of assessing RV function
assessment has long been recognized, the lackeddtlire
found for RV segmentation in echocardiography riisig,
especially when compared to the extensive liteeafound
for the LV. This can be justified by a series offefient
factors. First of all, the very acquisition of tRY/ is often
quite challenging in 3DTE due to its position artthse
[153]. The sternum and lung tissue can shadowrttaging
of the RV anterior wall and outflow tract and ateatpt to
avoid this shadowing frequently results in parthaf anterior
wall not being included in the field of view [154econdly,
the anatomical complexity and asymmetric shapéefRV
make an automatic segmentation an extremely clutign
task. The heavy trabeculation found in the RV amal thin
myocardial wall can also increase the difficulty emh
assessing the volume [155]. Finally, the perceigeeater
importance of the left heart has forced most refets be
directed towards LV and LA segmentation, thus démgot
RV analysis to a field of study of lesser impor@anm this
section some of the studies focused on the vatidaif RV
volume assessment by 3D echocardiography are supmendar
and Table 3 show the corresponding results.

The first efforts for RV volume/function assessment
were, of course, developed for 2D echocardiograghy.
example of this is the tricuspid annular plane dist
excursion (TAPSE) introduced by Kaul et al. [156his
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measure extracted from a 4-chamber view is shown to
correlate to RV volumes obtained from radionuclide
angiography and is still common in today’s clinigahctice
[148]. Nevertheless, Helbing et al. have shown,
comparison with cMRI volumes, that due to
asymmetrical shape of the RV, 2D echocardiographiyoit
sufficient to assess the RV volumes [157]. Gopallego a
step further by comparing volumes assessed thromagiual
contouring of 3DTE images of the RV with 2D estigtht
volumes and volumes determined by cMRI, concludheg

3D echocardiography is superior to 2D for RV volume
assessment [158]. Two studies, by Jenkins et dlvan der
Zwaan et al., compare once more 2D and 3D
echocardiography to cMRI for RV volume assessment
though now using 4D RV-Functi6rio determine the 3D RV
volumes [159,160]. Both studies are in agreememt th
RT3DE not only is superior to the two-dimensionathods

but also has a greater reproducibility. A singladsgt by
Kjaergaard et al. claims that 3D echocardiograpiitygls no
advantage from 2D when compared to cMRI assessed
volumes [161]. Later studies however propose thmg t
conclusion is merely a result of the older 3D
echocardiographic platform used and the populatioosen
[160].

In a compromise between 2D and
echocardiography, some authors have used
reconstruction of 2D echocardiographic planes tagenthe
whole shape of the RV. Linker et al. have used 3D
reconstruction of 2D images of ex vivo hearts tonoaly
contour the RV endocardium [162]. This was shown to
correlate with the reference volume obtained by sugag
the volume of water required to fill the RV. The 3D
reconstruction system commercialized by Ventripoint
Diagnostics Ltd. is compared in two clinical stidi® RV
volumes obtained by cMRI showing a good correlation
between the two [152,163)].

The accuracy of manual contouring of the RV in3Be
echocardiography has been validated in a number of
different frameworks but the gold standard for RMume
assessment remains cMRI. Some of the approachkslénc
models from excised animal or human hearts [37,168}
in vivo measurement by intracavity balloon [169],
thermodilution [170] and intraoperative measurerserging
injections of saline solution [171]. Comparisonsnofnual
contouring of the RV in 3D echocardiography areoals
numerous. The first effort for validation of RV ma
contouring against cMRI was conducted by Vogel let a
using a rotating one-dimensional array probe amtbpaing
manual contouring in parallel planes along the laxis
[172]. Similar studies were published by Fujimotb at.
[173] and Papavassiliou et al. [174] all with gammirelation
values between 3D echocardiography and cMRI. Peakas
al. performed the first validation of RV manual tauring in
full matrix transducer imaging using both a Son68(/ and
a Philips iIE33 [175]. The manual contouring wasfqgrened
in only two orthogonal long axes planes which aatsdor
the low correlation values obtained and large teapgcially
for EDV. In a study by Nesser et al., RV manualtoaning
was compared to cMRI in both transthoracic (TTEW an
transesophageal (TEE) acquisitions [176]. Manual
contouring was done in this study in 10 to 12 azhally
equidistant planes. Results highlight better catieh and

by
the

3D
3D
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bias for the TEE approach which are explained leyltdtter 3D echocardiography. Finally, Ostenfeld et al. hased the
image quality. However, the TTE approach also prisse same commercial tool with and without performingnmunal
very competitive values. Lu et al. have used Tonsd® refinement after the semi-automatic contouring and
Echo-View tool to perform manual contouring of tR¥ in compared the obtained RV volumes against cMRI [154]
5mm contiguous planes and compared the volumesnebita Besides again evidencing the volume underestimatian
to cMRI reference also with good results [177]. results from 3D echocardiography, and similarlytoat was
shown by Shibamaya et al. for the LV commercial

The validation of the semi-automatic method 4D RV- R
Functior? developed by TomTec Imaging Systems has alsoapproaches, Ostenfeld at al. show that manual amreis

. . still necessary for better results to be achieved.

been a subject of some attention and has been cedpa

against cMRI RV volumes in some studies. A firfbe In regard to the reference values for RV volumes,
was performed by Niemann et al. using a prototyjgbe 4D several studies have published values in different
RV-Functiorf tool which depended on a single manual populations. Gopal et al. [158] presented a stutlythe
contouring in one plane [178]. The software then normal RV volumes performed in 71 healthy patiemsg
reconstructed the contours in the orthogonal plamed manual contouring and disk summation. Tamborinialet
manual refinement could then take place. Resultsvgfood [182] studied 245 subjects divided by age and gende
correlation for the RV volumes against manual coritgy of performing the contouring using TomTec's 4D RV-
cMRI volumes although the EF results are not soFunctiorf tool. A more extensive study was conducted by

competitive. Niemann et al. also used the protofpeRV- Maffessanti et al. including 540 healthy adultsiagasing
Functiorf to contour the cMRI images obtaining excellent the tool by TomTec for semi-automatic contouringd an
correlation, bias and limits of agreement. The @cilD RV- reporting age-, body size- and sex-specific refegevalues

Functior? tool was validated against cMRI by Grewal et al. for RV volumes and RV EF [183].
obtaining good correlation values [179] but alsoviay der 4.4 Right Atrium

Zwaan et al. [151], Leibundgut et al. [180] and @faet al. 4 RIg
[181]. In spite of presenting good correlation ‘esy the To the best knowledge of the authors, there ishiat t
results from van der Zwaan et al. are the moskisgiby  point no commercial solution or validation studiésr
revealing the severe underestimation of the RV malsi by  automatic or semi-automatic RA volume assessment.

Table 3.Literature Overview: Validation of RT3DE and comwmiat software tools for RV volumetric assessmenin@mnber of exams; Ref:
reference measurements taken from cMRI or manuatooong of RT3DE data (3DM); r: correlation coefént; BA Bland-Altman
analysis).

Study Imaging Analysis User # Ref Time r BA (1+20)
System system input O] EDV ESV  EF EDV ESV EF
Vogel et al., )
1997 [172] Vingmed800 - A(2mm) 16 CMRI NR 0.95 0.751 NR NR NR NR
Fujimoto etal., SSH160A+486 ;
1998 [173] cPU A(2mm) 15 CcMRI NR 0.94 0.97 0.90 NR NR NR
Papavassiliou et : A(3- } . B
al., 1998 [174] Sonos2500 3.5mm) 13 cMRI NR 0.95 0.95 0.8 9.6+31.0 4.3+27 3.9614.
Prakasa etal.,, Sonos7500/iE3
2006 [175] 3 TomTec A(2) 43 CMRI NR 0.5 0.72 0.88 -15.9+£35.6 81.7.8 NR
Nesser et al., CFM800 : A(10- ; :
2006 [176] (TTE) 12) 20 cMRI NR 0.85 0.86 0.86 1.6+36.4 0.1+26.8 2881
Nesser et al., CFM800 : A(10- ; }
2006 [176] (TEE) 12) 20 cMRI NR 0.86 0.88 0.84 1.3+35.6 2.8+30.4 4941
Niemann et al TomTec
" Sonos7500 4DRV B(1)+R 30 cMRI 600 0.93 0.92 0.68 -0.44+25.40 1075 -1.56+13.39
2007 [178]
prototype
Luetal, 2008 oo c7500+xa 1OMTECAD g 17 oMRI NR 098 096 089  -70+180  -32814 03482
[177] EchoView
Grewal et al., . TomTec
2010 [179] iE33 ADRVE B(3)+R 25 cMRI NR 0.88 0.89 0.89 NR NR NR
Leibundgut et . TomTec
al., 2010 [180] iE33+X3-1 ADRVF B(3)+R 88 cMRI NR 0.84 0.83 0.72 -10.2421.6 -4.5814 -0.4+7.6
Van der Zwaan TomTec
etal., 2010 iE33+X3-1 B(3)+R 50 cMRI 126+30 0.93 0.91 0.74 -34+66 -11+56 -4+13
[151] 4ADRVF4.0
Ostenfeld et al., Sonos7500+X4 TomTec
2012 [154] IE33+X3-1 ADRVE B(3) 53 CMRI NR 0.769 0.773 0.488 -32+52 -8+34 -8+1
Ostenfeld et al., Sonos7500+X4 TomTec
2012 [154] JE33+X3-1 ADRVF B(3)+R 53 cMRI NR 0.779 0.835 0.597 -22+52 -7432 +18
Zhang et al., TomTec
2013 [181] SC2000+4Z1c ADRVF B(3)+R 59 cMRI NR 0.97 0.96 0.71 -2.16+15.40 -2.640 0.86+16.32

User input: A(X): Computer assisted delineationthef 3D surface via manual contouring, where X ésrthmber of 2D planes contour or the distance ketwe
parallel 2D planes contoured; B(X): Semi-automa@gmentation, with manual initialization by contagrin X 2D planes; C(L,F): Automated segmentation,
with user input of L anatomical landmarks in F tifnames; D: Fully automatic segmentation withouy arser intervention; R: Manual refinement of
segmentation results.
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5. CLOSING REMARKS

The assessment of cardiac chamber volume
fundamental task in both clinical and research exinto

obtain a unique insight into the heart function d&ad been

shown to have a strong diagnostic and prognostigevin

numerous instances. Among the different heart ingagi

modalities, RT3DE reveals itself as an excelleahtégue as
it allows a true three dimensional imaging of tteat while
maintaining a relatively low cost and portabilitydawithout
the need for exposure to ionizing radiation. Howevke
nature of RT3DE make it a particularly challengingage

analysis task. For these reasons, a great efferbéan made

towards RT3DE image analysis and retrieval ofritpartant
clinical information. Semi-automatic approaches dne
most common but, recently, attention has beenisgifto
more automatic ones and special attention is beegted
to implementing these solutions in real-time. Tke af prior
information and population-based methods are paatity
promising with new approaches reaching the fielthmlast
years.

Because most attention has been directed towasds th
LV, the development of methods for the remainingrhe

chambers has been more scarce in spite of thettfacthe
assessment of function of these chambers is oputible
clinical importance. Nevertheless, the advancezadly
achieved with LV will facilitate the implementaticsf new
methods for these chambers, with methods beingpated
and adapted from one chamber to the other.

Though not in the scope of this work, the advandés
RT3DE image acquisition also play a powerful roig¢aking
this field further. It is expected that, in the dtg, better
image quality will be possible with both higherrfra rates
and higher spatial resolution. This will not onlyake cardiac
function assessment through RT3DE a more accesgiake
but will also give access to new information makRIG3DE
an even more powerful tool.

In conclusion, it can be expected that the impaeanf
cardiac function assessment by RT3DE will contitmeise
as technology evolves and novel, more sophisticated
automated approaches arise in the field making RETaD
undeniable tool in clinical practice.
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