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Where analog meets digital

Analog-to-Information conversion and beyond

Marian Verhelst and Ahmad Bahai

Energy efficiency, long battery life and low latency are some of the key attributes of many emerging ultra-
low power sensing and monitoring systems. Applications such as always-on reactive sensor systems for
natural human-device interfaces and loT for consumer and industrial applications require ultra-low power
designs beyond the promises of state of the art data converters.

These devices demand for a new approach to analog-digital system partitioning with the goal of significant
overall reduction in energy consumption. Many loT applications, unlike most multimedia systems, require
signal information extraction or signature extraction, rather than full reconstruction of the original sensed
waveforms. Under these conditions, Nyquist rate sampling may no longer offer the optimal digitization
scheme. Recent work on alternative sensor digitization strategies target drastic sampling rate reduction
in the ADC, while preserving the valuable relevant information (knowledge) present in the sensed signal.
This paper aims to give an overview of this emerging field of analog-to-information conversion in light of
various sub-Nyquist sampling techniques recently appearing in literature, as well as highlight new
opportunities, challenges and applications emerging by such converters.

I Nyquist rate vs. Information rate:

Over the last several decades, a growing number of signal processing architects have embraced intensive
digital signal processing preceded by a standard analog frontend and analog-to-digital converter. This
trend has been exacerbated by the exponential rate of miniaturization in silicon, growing complexity of
signal processing algorithms, and more systematic digital design and technology porting compared to
analog design in deep submicron technology nodes. The interface between analog and digital signals has
as such generally been governed by sampling at or above the Nyquist sampling rate of the analog
waveforms. The dimensionality of a bandlimited signal f(t) with a physical bandwidth W over a period of
T is 2WT, indicating the number of samples sufficient for perfect digital signal reconstruction. Such
sampling at the Nyquist rate of 2W ensures the integrity of the signal represented by samples which are
Fourier series coefficients in a Fourier series expansion of function F(w) over fundamental interval [-W W]
[1]. The original signal can subsequently be reconstructed by superimposing a set of orthogonal basis
functions (sinc functions) weighted by the samples f(nT). Sampling the incoming signal at this rate hence
guarantees that no information about the incoming signal is lost without taking into account any heuristic
or a priori side information about the signal or its information content other than the physical bandwidth.
While sampling at or above Nyquist rate offers a classic and straightforward approach, it can compromise
overall power efficiency.



Many emerging sensing applications, such as reactive user interfaces, sensors for the internet-of-things
(loT), medical monitoring systems, or radar applications, evolve around sensing natural signals, whose
physical bandwidth is much higher than their actual information rate (Figure 1). In other words, a-priori
information on the sensed signal can be exploited to reduce the information rate well below the physical
bandwidth. Examples are heartbeat signals, or the reception of reflected pulses in an ultrasound system
(see inset 1). This a-priori information can take various forms, such as the shape, periodicity, or the
sparseness of the sensed signal. Taking this a-priori information into account, reduces the effective
information rate of the received signal well below the theoretical Nyquist rate. In theory, the signal can
now be sampled at this lower rate, while preserving full information conversion into the digital domain.
Yet, in practice it is not necessarily straightforward to achieve sampling rate reduction all the way down
to the information rate, as pursued by analog-to-information converters.

FIRST INSET: Many emerging sensing applications, such as reactive user interfaces, sensors for the
internet-of-things (loT), medical monitoring systems, or radar applications, evolve around sensing natural
signals, whose physical bandwidth is much higher than their actual information rate . For example, a
pulsed radar signal which consists of sparse pulses in the time domain with a known pulse shape, can be
completely defined by only characterizing the amplitude and position of the pulses. Their information
rate is hence much smaller than their physical Nyquist bandwidth (Figure 1).

In addition, some applications are not even concerned with the complete information rate , but only
interested in a selected subset of features that can be extracted from the signals. This can, for example,
be the amplitude of the pulses. As a result, the relevant feature rate of the signal can again be smaller
than its information rate.
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Figure 1: Physical bandwidth vs. information rate vs. feature rate

Il. Alternative sampling techniques
A. Beyond Nyquist through analog-to-information conversion:

The term “analog-to-information” emerged with the introduction of a sub-Nyquist sampling technique
called compressed sensing (CS) for sparse signals [2, 3, 4]. Sparsity means that a signal is compressible and
can be represented with fewer samples on an appropriate basis [5]. CS exploits the fact that the
information rate of a waveform that is sparse in a particular domain (such as e.g. in the time domain, in




the frequency domain, or in a wavelet domain) is significantly smaller than the Nyquist rate [6]. By
correlating the signal with waveforms which are not coherent with the sparse basis, the analog bandwidth
is narrowed down to near the information rate. Such projections can be implemented in the analog
domain through non-uniform sampling, as well as through various modulate-and-integrate schemes.
Subsequently, the original waveform can be recovered in the digital domain with signal processing of far
fewer samples through finding sparse solutions to an underdetermined linear system [5]. The resulting
analog-to-digital convertor architecture, depicted in Figure 3.b, uses a-priori knowledge of the signal, in
terms of the basis in which the signal is sparse. This allows the ADC to trade-off sampling rate reduction
against additional analog and digital complexity for analog random basis projection and digital signal
reconstruction. A large part of CS theory deals with the optimum choice of undersampling rate and choice
of incoherent basis functions. In some applications, feasibility of achieving up to 1 order of magnitude
sampling rate reductions have been demonstrated in imager, radar, spectrum sensing, and biomedical
systems [7, 8, 9, 10]. While full signal reconstruction comes with a very large computational load,
interesting emerging work involves the direct extraction of features in the digital domain from the
compressed signal without prior full signal reconstruction. This has also successfully been applied to visual
object tracking [11], and power spectrum determination of unoccupied bands in efficient spectrum
sensors [7]. Yet, it is important to note that CS-based sampling techniques strongly rely on signal sparsity
to avoid information loss, and are as such not suitable for arbitrary signals. Moreover, impact of circuit
impairments, clock jitter, noise folding and the complexity of the required digital signal processing,
diminishes benefits of compressed sensing for signals with large dynamic range and bandwidth [11].

B. Finite innovation rate sampling:

A slightly different approach to sub-Nyquist sampling, exploiting a-priori information for improved
sampling rate reduction, is ‘finite innovation rate sampling’ [14, 15, 16]. This technique allows to efficiently
sample signals that have a finite number of degrees of freedom per unit time, such as pulse trains (see
1%t inset), or piece-wise polynomials using a smoothing kernel. These signhals hence are not necessarily
bandlimited or sparse in the time or frequency domain. Yet, the selection of an adequate smoothing
kernel is typically needed to filter the analog waveform, such that the required analog sampling rate is
reduced to the degrees of freedom of the smoothed signal, called the ‘rate of innovation’ of the signal.
This allows reconstruction of a pulse train, for instance, with unknown pulse amplitudes and timing while
only sampling at twice the pulse rate, hence orders of magnitude lower than the actual pulse bandwidth
(Figure 3.c). Similar to the CS approach, innovation rate sampling [14, 16] attempts to recover a faithful
approximation of all information present in the original signal, which is achieved through extensive digital
post-processing. This technique is currently being applied towards its first hardware realizations and
promises to offer significant benefits in various applications, such as biomedical imaging or radar
applications.

Aforementioned analog-to-information converters have recently gained increased attention, and
demonstrated applicability in a wide range of application domains where perfect signal reconstruction or
complete information retrieval in the digital domain is desired. By exploiting a-priori knowledge of the
signal they reduce the information rate below the Nyquist bandwidth without loss of information, yet
often at the cost of a considerable increase in digital signal processing complexity [15]. Interesting work



harmonizing these diverse analog-to-information techniques in a general framework, is the Xampling
framework [14], based on sampling Union of Subspace models.

SECOND INSET: Analog-to-information sampling techniques pursue ADC sampling rate reduction without
losing any information present in the analog waveform, hence targeting lossless compression at the
analog-to-digital interface to maintain full signal reconstruction capabilities in the digital domain.
However, in applications where neither the entire content of the original data, nor its full reconstruction
is of interest, the data converter can target the conversion of a specific subset of information extracted
from the waveform, called “features”. This opportunity for lossy signal compression samples exploits the
gap between a signal’s information rate and its feature rate.
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Figure 2: Comparison of sampling techniques based on their information preservance.

C. Feature extracting ADCs through analog analytics:

Analog to Information techniques as mentioned earlier attempt to reduce the sampling rate without loss
of information present in the analog waveform, hence target lossless compression at the analog-to-digital
interface to maintain full signal recovery capabilities in the digital domain. However, in many natural
signals and sensor applications such as visual, acoustic and medical monitoring systems, the signal is not
necessarily sparse nor has finite degrees of freedom, due to corruption from noise, interfering signals or
circuit impairments. As such, standard sub-Nyquist sampling techniques are not applicable. Furthermore,
in many of these applications neither the entire information content of the original signal, nor its full
reconstruction is typically of interest. Instead, many applications require a specific subset of information
extracted from the waveform, called “features”, such as the maximum signal level over a period of time,
the number of zero-crossings, etc. The significance of lossy signal compression is particularly paramount
for signal classification and pattern recognition applications. Such signal processing techniques are used
extensively in many loT and wearable devices, such as speech recognition, gesture detection systems,
heart rate monitors, etc, where the information rate of the signals considerably exceeds the relevant
information rate. (See Figure 1 and 2" inset.)




An emerging class of ADCs, which we will denote by feature extracting ADC’s, does not convert the
complete signal into the digital domain, nor relies on signal sparsity. Instead, they only target to sample
the signal at its relevant Information rate, termed the feature rate. This is achieved through extracting a
specific set of features which are embedded in the analog waveforms. By combining analog signal
processing and data conversion, the signal is first projected onto a specific feature space, after which
conversion at the feature rate takes place (See Figure 3.d). This allows the signal processing to exclusively
focus on feature-bearing information, and discard irrelevant information as early in the signal chain as
possible. The signal’s projection or transformation (linear or nonlinear) into the feature domain is
achieved through a feature enhancing filter, boosting the relevant signal features, while suppressing other
irrelevant information or distorting interferers. By discarding irrelevant information as early in the signal
processing chain we can significantly improve overall system energy efficiency. This of course implies
moving the boundaries between analog and digital, requiring more intelligent analog signal processing
prior to sampling. This analog processing, denoted as analog analytics, should emphasize relevant
features and reduces the dimensionality of the waveform through a “feature preserving” transformation
with the intention of classifying features instead of reconstructing the original waveform. The ultimate
goal is to sample the signal as close as possible to the Nyquist rate of the relevant information present in
the incoming waveform, or the feature rate, as this would offer the ultimate feature - power efficiency
trade-off.



THIRD INSET: Many novel ADC sampling strategies have emerged over the last decade, targeting a
significant reduction in sampling energy consumption compared to traditional Nyquist rate conversion
(Figure 2.a), by exploiting a-priori signal information. To this end, compressed sensing (Figure 2.b) and
innovation rate sampling (Figure 2.c) try to reduce the sampling bandwidth as close as possible to the
signal’s information rate. Feature sampling ADCs (Figure 23.d) reduce the dimensionality of the waveform
through analog analytics in order to retain only application-relevant signal features, with the intention of
classifying these features instead of reconstructing the original waveform.
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D. Real world examples:

Sub-Nyquist sampling and analog analytics has implicitly been exploited since long in digital
communication systems. Also in such systems, the ultimate goal is the integrity of data (not signal)
transmission over communication channels plagued by noise and interference. Sub-Nyquist sampling, in
this case, can be tolerated as long as signal distortion does not corrupt the extracted features
(communicated data symbols). Projection into the feature space and resulting sampling bandwidth
reduction is achieved in the analog domain by boosting relevant signals while suppressing noise and
filtering away irrelevant interfering signals. The resulting signal is then sampled at its feature rate. As
shown in Figure 4, a typical waveform such as a root raised cosine has a bandwidth larger than 1/2T, yet
sampling at the feature rate 1/T is theoretically sufficient to extract the transmit data. Clearly this sampling
below Nyquist rate results in signal distortion, as shown in Figure 5, yet the relevant information present
at sampling instants with interval k/T is preserved.
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The more significant and enormous bandwidth saving opportunities for sensor applications facilitated by
feature sampling can be clearly illustrated with an example from the speech processing domain: Speech
detection and speech analysis are often done using features representing the averaged energy-content of



exponentially-spaced bandpass frequency bands (called mel-scaled frequency bands) as a coarse form of
spectrum analysis. As the speech signal, typically corrupted by background noise, is not sparse, nor has
finite degrees of freedom, standard sub-Nyquist sampling techniques are not appropriate. Yet, significant
sampling rate reduction can be achieved by introducing a feature sampling ADC. For example, voice
activity detection can be implemented by extracting features in the analog domain representing the
energy profile of mel-scaled frequency bands, averaged across 20msec frames [16]. Good speech
detection performance has been demonstrated using 8 of such mel-frequency features, coarsely
computed in the analog domain. The resulting feature rate hence corresponds to 8/20msec = 400Hz, or
more than an order of magnitude below the Nyquist rate of the audio signal. Hence, the speech signal
information bands are enhanced through analog analytics, while distorting background noise is discarded
(if out-of-band) or suppressed (if in-band).

Clearly, feature extracting ADCs enable drastic sampling rate reduction, beyond what is possible in
traditional lossless analog-to-information converters. It is important to note that the feature extracting
ADCs exploiting analog analytics, are not suggested as a replacement for classical converters. In many
applications where reconstruction of a signal is required, such as multimedia applications, a standard
Nyquist approach of Figure 3.a is still required. Feature extracting ADCs are most appropriate for
applications which do not involve reconstruction of original signals, or can function as a smart wake-up
front-end to such systems. Yet, these new opportunities also come with many remaining challenges, both
at the systems and circuit level, which will be discussed in Section Ill and IV.

1. System challenges and opportunities of feature extracting ADCs:

A typical system architecture for feature extracting data converters is represented in Figure 6. One or
more feature channels project the analog input onto a feature enhancing basis. Subsequently, (a subset)
of all feature channels is scanned and sampled into the digital domain for further processing and potential
signal classification. This new paradigm comes with a set of new system challenges. First of all, the choice
and design of the analog feature enhancing filters is not straightforward, as yet generic and flexible analog
feature extraction has not been realized. Moreover, unlike most standard data conversion approaches
where each block (ADC, DSP,...) is independently evolving, this new approach does require a system
optimization to realize all the benefits of performance and power efficiency, and hence is mostly
application specific. Nevertheless, several system-level techniques and architectural opportunities can be
exploited across many applications. We will discuss them in detail, and illustrate each aspect with
aforementioned voice-activity detection example.
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A. Choice of feature enhancing filters:

A crucial parameter determining the accuracy of the classifying sensor interface under noise and
distortion, as well as its power efficiency, is the choice of the feature enhancing filters. The optimal feature
enhancing filter set maximally spreads information bearing data, while suppressing irrelevant distortion
data. At the same time, this set consists of the minimal filter set necessary to achieve the desired
performance, such that the power consumption footprint is minimized. Inspiration can be drawn from
techniques commonly applied in the domain of machine learning, yet care must be taken regarding their
implementation through analog analytics.

Feature learning is a well-studied task in the machine learning community. The goal is to automatically
discover a good sub-space representation of the data to be analyzed. In contrast to heuristic, manual
feature design, where domain-specific expert knowledge is exploited to handcraft features, feature
learning targets the optimization of an objective function that captures the goodness of the features [17].
Techniques such as principal component analysis (PCA) [18] and deep learning [19], automatically reveal
the most informative portions of the incoming waveforms, resulting in demonstrated improved
classification accuracies relative to standard features. However, all these approaches do not take the
analog implementation challenges of the generated features into account, and typically result in very
complex feature generation networks which cannot be mapped on power efficient analog analytics.

A second criteria of utmost importance in feature extraction is the ease of implementation in the analog
domain, and sensitivity to circuit impairments. A widely used type of feature fitting these requirements
are statistical metrics directly extracted from raw sensor data, in a frame-by-frame, or sliding window
approach [20] [21]. Statistical metrics frequently applied in sensor classification include mean, standard
deviation, energy, zero crossings and correlation coefficients in the time domain, bandpass energy (or
coarse Fourier coefficients) in the frequency domain or wavelet transform. For each of these features, an
analog implementation, configurable along several parameters, such as feature precision, window length,




etc. can readily be derived. A study in [20] related to activity detection illustrates the information quality
of these feature types.

A third important aspect to the selection of the feature enhancing filters is the complexity and variety of
features that can be computed. The optimal feature enhancing front-end, is programmable, and can
extract a broad variety of complex features, rendering the front-end reusable across diverse sensing
applications. Yet, this is still an open challenge. The difficulty of introducing programmability and
challenges of implementing efficient memory elements in the analog domain currently limit feature
enhancing ADCs to a subset of relatively simple features, such as the statistical metrics described above.
Yet, due to their low power cost, many of such features can be combined, rendering high classification
accuracy at low power-cost.

Starting from such an extensive set of implementable features, machine learning techniques for
dimensionality reduction and feature selection using mutual information criteria [22] can be exploited to
select the minimal subset of features achieving the targeted detection quality (Figure 7). A front-end with
the derived set of (configurable) features can subsequently be implemented. This design is, at the
moment, application specific with limited versatility and reuseability. An Interesting future challenge for
analog analytics is the design of programmable feature extracting front-ends capable of extracting a
generic set of features, rendering them more widely reusable and configurable across many applications
or various operating environments, as discussed in Section IlI.B.

Example: Voice activity detection has proven benefits of statistical feature extraction through analog
analytics. Voice activity detectors based on mel-scaled mean energy features [23], Fourier coefficients
[24], and zero-crossing frequency [25] have already been implemented. These voice activity detectors
demonstrate good detection accuracy with at an energy cost which is orders of magnitude lower than
their classical digital counterparts. Such a feature extracting voice activity detector can hence serve as the
perfect low-power always-on wake-up sensor for a more complex digital processing system. These
systems are typically tuned during their training phase to have very low miss detection probabilities, at
the expense of an increased false detection rate, to avoid impacting the system’s sensitivity.
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B. Dynamically (de)activating feature channels:

An important challenge is the fact that in most application domains, there is neither a single feature, nor
a limited feature set with acceptable performance across all operating circumstances. For instance, in
order to achieve a good voice activity detection accuracy under various types of background noises (street
noise, babble noise, subway noise, etc.), many of the analog features have to be observed in parallel [26],
resulting in a large power consumption footprint. Also the study in [20], related to activity detection,
points out varying optimal window lengths and feature types across operating contexts. A static
implementation of the super-set of all relevant features extractors on the chip which are sampled
continuously, would significantly diminish the power consumption benefits of the feature extracting ADC.
Yet, the current limited analog programmability also prevents the implementation of a single feature
extraction filter, which can be completely reprogrammed on the fly. An interesting and proven alternative
is to implement a diverse set of parallel feature extractors with limited programmability in the analog
domain, yet only activate the subset of features most beneficial under specific operating conditions at any
given moment in time.

As illustrated in Figure 7, this approach relies on a set of configurable feature filters implemented on the
chip. These filters can be configured at run-time along several parameters, such as window length, gain,
bandwidth, etc. At run-time, a context detection block determines the current operating context, and
hence the optimal analog feature set. A run-time configuration manager subsequently only activates and
configures the relevant feature set in the analog domain. As such, the implemented feature sampling
system truly achieves the goal to only spend resources on information bearing data, and discard all other
irrelevant data as early as possible.



Example: This principle has been implemented in a voice activity detector in [23]. The voice activity
detector can extract the energy content in 16 different mel-scaled frequency bands between 50 and
4000Hz, with configurable gain and window length. Across various background noises (street noise,
babble noise, etc.) different frequency bands are most relevant regarding speech vs. no speech
discrimination (Figure 8). This stems from the different frequency profiles of the distorting background
noise. The feature selection strategy introduced in [26] selects features based on information content, as
well as power consumption footprint, to maximize detection accuracy under a power constraint (or vice
versa). The resulting run-time feature (de)-activation saves up to one order of magnitude in power
consumption by only activating the most distinctive frequency bands, as illustrated in Figure 8. This front-
end hence realizes efficient and programmable feature extracting, its programmability is limited to a
particular type of feature, being energy per frequency subband.
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C. Power-performance scalability though flexible analog analytics:
The configurable feature extraction implementation through limited programmablity “analog analytics”

enables more than just maintaining detection performance across various operating contexts at low
power consumption. Due to the analog-centric implementation, the configurability can be exploited
further towards efficient run-time power — accuracy scalability. As studied extensively by Vittoz [27],
Sarpeshkar [28] and others [29], analog power consumption shows a much more pronounced dependency
on the required signal to noise ratio (SNR) compared to digital power consumption, which is only
logarithmically dependent on SNR requirements. As a result, dynamic accuracy scalability, which is not
very effective in the digital domain, does offer opportunities in analog analytics (See 4™ INSET).



FOURTH INSET: Vittoz, and later Sarpeshkar, analyzed the power consumption footprint of analog and
digital processing systems [27] [28]. A clear cross-over point between the analog and digital power
consumption was identified, with analog implementation benefits for systems with low-to-medium range
SNR requirements (up to about 10 bits ENOB). Since this study, digital power consumption has benefited
more profoundly from silicon technology scaling. However, in the context of feature extracting ADCs, the
power consumption of the “analog analytics” benefits in a similar way from technology scaling due to
improved digital enhancement techniques (see Section IV) and dynamic feature selection. As a result, the
cross-over point between analog and digital does not seem to be shifted drastically in advanced CMOS
technologies (Figure 9). Low-to-medium range SNR processing, as required in typical classifying sensor
interfaces, still benefits from analog analytics.

A second important observation, is that the analog power consumption scales much better (proportional)
with the precision requirements, than its digital counterpart (logarithmic). This illustrate an additional
opportunity for analog analytics: dynamic accuracy-power scalability.
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A feature extraction ADC can exploit power-vs-accuracy scalability along two axis. On one hand, the
system can dynamically activate and deactivate features to increase the feature rate at the expense of
additional power consumption, as discussed earlier. In parallel, it can modify the accuracy settings of every
analog feature processing block, which also results in power-vs-accuracy scalability. Note that again
feature rate is here not defined by the amount of information present in the incoming signal, but instead
as the amount of relevant information (features) transferred into the digital domain. The result is a highly-
linear, very-wide dynamic range achievable power scalability, which can by tuned towards the desired
detection accuracy. Again, a smart, power-aware feature selection scheme, such as in [26] is required to
select the most appropriate feature set at run-time.




In summary, feature extracting ADCs can exploit various new system level opportunities compared to
digital-centric implementations, such as low-cost extraction of a wide range of simple statistical features,
improved power-accuracy scalability and power savings through dynamic feature (de)activation. While
the realization of a common front-end for generic analog feature extraction is still out-of-reach, large gains
have already been achieved with application specific solutions [31]

IV- Implementation challenges and opportunities of feature extracting ADCs:

Feature extracting ADCs exploiting analog analytics promise significant benefits at system level yet
introduce new implementation challenges compared to digital-centric solutions. This section will address
some of the key design challenges of analog analytics and highlight opportunities for further investigation.

A. Implementation challenges of analog analytics

Feature extraction in analog analytics involves additional analog signal processing prior to digitization.
Analog circuits are constrained by noise and accuracy requirements which do not necessarily benefit from
voltage scaling and in most cases suffer from lower supply voltages [34]. The key parameters for a robust
analog design are in broad categories of design parameters such as transistor geometries, process
manufacturing parameters, and operational parameters such as temperature [35]. In a typical high
performance analog design, traditionally a combination of meticulous layout and floor planning, careful
circuit topologies such as fully differential architectures and accurate device modelling are critical to
ensure robustness against device mismatch as well as operating condition and process variations. This
becomes more challenging in finer geometry process nodes, which increasingly suffer from reduced
matching quality for minimum feature size transistors and shrinking of voltage headroom. This problem
worsenss when trying to introduce more flexibility of programmability into the analog analytics blocks,
requiring more transistor stacking and operational robustness across multiple circuit configurations.
Combatting these impairments in the traditional way could seriously compromise power efficiency and/or
die size, or otherwise result in additional distortion to the computed features.

B. Digital enhancement techniques in feature extracting ADCs

In order to mitigate some undesirable attributes of deep submicron technology nodes for robust analog
design, active and passive components matching using digitally assist techniques have increasingly been
used in various analog circuits. Data converters, in particular, have extensively benefited from background
and foreground digital calibration and compensation [35] for various reasons: Affordability in cost, die
area, and power, as well as availability of digital gates for mixed signal design in deep submicron
technologies which have promoted application of digital compensation in data converters. Most common
approaches to digital calibration, specifically in data converters, as described in [34]: tightly coupled closed
loop digital calibration which in most cases utilizes the embedded DAC, as well as redundancy techniques
which involve post-processing to correct for imperfections at block or system level. Digital assist
calibration circuits such as compensating DACs, typically run much slower than Nyquist rate, hence not
imposing significant power penalties.

C. Impairment mitigation techniques unique to feature extracting ADCs




In a typical data converter and most analog-to-information converters described in Section Il, analog
circuit design performance needs to stay within tolerance limits of intended system parameters, such as
linearity, offsets, etc. This is however not the case in feature sampling ADCs, whose design differs at two
fundamental ways:
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Figure 10: a) Typical robust analog design methodology and parameters. b) Analog design in analog analytic approach

The first key difference is the performance metrics which matter in applications where feature sampling
ADCs are deployed. The target system performance parameters are no longer the amount of noise or
distortion added to the sampled signal and bit integrity, but rather the system-level probability of false
alarms (Pr) and probability of miss detections (Pu) in the system’s classification application (Figure 10). As
such, the main task of the analog analytics pre-processing is not to extract the features in undistorted
form, but to significantly reduce the bandwidth and enhance features for maximal distinction between
classes of interest, as illustrated in Figure 11. Therefore, some distortion can be tolerated as long as it
does not impede the system’s classification performance. This can be exploited by driving the digital
enhancement techniques from the classifier's output. In Figure 12.a a typical background digital
calibration of a feature sampling ADC is shown. The error term, unlike regular data converters, is derived
from classification metrics. These classification error terms can either be obtained based on training
seqguence inputs which are time interleaved with the incoming analog signal, or without a training signal,
based on parallel sporadic accurate conversion and classification of the signal of interest.
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Figure 12: Run time background impairment mitigation in analog analytics

The second key difference, is the iterative adaptive learning in the classification system following the
feature extracting ADC. Since classification algorithms such as neural networks of decision trees relay on
iterative learning and adaptive threshold setting, they can further enhance tolerance to imperfections in
the analog frontend. As the classifier learns the classification features, the neural weights, or the decision
thresholds with the analog front-end in the loop, attempts to take into account the imperfections during
the training phase, Figure 12.b. Non-linearity, offsets, frequency shifts, and other distortions will as such
be absorbed in the trained classifier, and have limited impact on the system performance. This can be
illustrated by the design of the voice activity detector in [23], which is plagued by serious shifts in the
central frequency and bandwidth of the filter banks, and offsets and non-linearity in the envelop detector
circuitry. These shifts are not only process dependent, but also vary slightly due operational condition



variations. Nevertheless, they do not impact system classification performance, as the adaptive learning
capability of the classifier learns thresholds, and feature values with these shifts incorporated. This
assumes that adaptive learning runs continuously enough to track out variations.

It is important to note that feature extracting systems do not require redundancy, in contrast to many
digitally assisted analog techniques, which typically utilize data (bandwidth) redundancies such as fault
tolerant encoding schemes or circuit redundancies such as auxiliary comparators. Instead, feature
extracting systems inherently exploit the post processing classifier training phase to digitally assist the
analog frontend without any analog redundancies.

These alternative impairment mitigation schemes, unique to the feature sampling ADCs, result in very
different performance requirements compared to traditional data converters. Impairments can be
tolerated without significant performance degradation, to save additional power consumption and area
as discussed in the 5" INSET, making feature extracting ADCs very compelling for many applications.



FIFTH INSET:

As analog imperfections such as non-linearities, gain errors, offset, etc. can be absorbed in the classifier
commonly following a feature extracting ADC, increased non-idealities can be tolerated, opening up a
whole new world of design strategies to further reduce the power and area implications of the introduced
analog analytics. We will here briefly introduce a, non-exhaustive, list of upcoming opportunities:

Subthreshold design: One way to exploit the higher tolerance to circuit imperfection of analog
analytic to achieve ultra-low power at or below microwatts is the usage of circuit architectures
utilizing the weak inversion (subthreshold) mode of transistors. These topologies need very low
power supply voltage which are appropriate for transistors with finer gecometry. Furthermore, it’s
exponential behavior in weak inversion (similar to Bipolar) can be exploited for non-linear analog
preprocessing required for mapping the signal to lower bandwidth feature spaces [36]. The
matching and modelling errors typical in subthreshold circuits are absorbed in the adaptive
classifier.
Die size: Another potential tradeoff in analog preprocessor is the die size. Variations in threshold
voltage Vr and S which are the main sources of mismatch in MOSFET devices are inversely
proportional to the gate area [37]. Therefore, the intuitive approach of increasing the device
aspect ratios to mitigate matching issues in analog design has been a common practice. Also here,
the higher tolerance of analog analytics systems to mismatch imperfection helps to reduce device
size.
Programmability: As discussed previously, feature extracting ADCs could benefit tremendously
from having a programmable analog analytics front-end. This enables the architecture to address
multiple applications with programmable features. While this is straightforward in digital circuits,
where e.g. digital filters and equalizers are tunable to different center frequency or bandwidth by
changing clock frequency and parameter adjustments, this is less evident in analog designs.
Typically analog circuit blocks require an involved redesign for e.g. tuning to different frequencies.
However, architectures such as switched capacitor filters [38] have addressed programmability of
analog blocks effectively. The large threshold frequency (F:) of advance CMOS process
technologies and relatively low signal bandwidth of many event driven applications can
accommodate novel ultra-low power and programmable signal processing circuit design
techniques such as analog adaptive filtering using digital calibration and adaptive switched
capacitor biquad bank of filters as in Tl’s ultra-low power voice signature detection [41]. While
there is still a long way to go towards the fully programmable analog feature extractors, switched-
cap or N-path architectures might lead the way, facilitated by the high impairment tolerance of
the feature extracting ADC approach. Also here, impairments such as charge injection, clock
feedthrough, etc. can be absorbed by the classifier.

These examples illustrate a new world of opportunities opening up due to the increased impairment

tolerance in feature extracting ADCs integrated in a classifier application. This makes them optimally

prepared to make a difference in deep sub-micron implementations.




Conclusions and outlook

A growing new class of low power applications does not require perfect signal reconstruction or full
information retrieval in the digital domain, rather targets specific feature extraction from an observed
signal. This is especially apparent in the emerging application domain of natural human-device interfaces,
loT, and ubiquitous sensing. The ultra-low-power, always-on requirements for these applications prompts
revisiting traditional system partitioning to achieve a significant reduction in system energy consumption.
This paper gave an overview of the emerging field of analog-to-information processing in light of various
sub-Nyquist sampling techniques recently appearing in literature. Special attention is given to feature
extracting ADCs, which, extracts a specific subset of features from the waveform by combining analog
analytics with low rate sampling. It is important to note that feature extracting ADCs are not suggested as
areplacement for classic converters. In many applications where reconstruction of signal is required, such
as multimedia applications, a standard approach is still required. Instead, it forms a complementary
approach for applications which do not involve reconstruction of original signals, or can form a smarter
wake-up front-end to higher complexity systems.

Both at system level, as well as at circuit level, these feature extracting ADCs allow new design
opportunities towards run-time energy scalability and power savings. Yet, new challenges also arise.
Unlike most standard approaches where each block (ADC, DSP,...) is independently evolving, the new
approach requires a system optimization to realize all the benefits of performance and power efficiency,
hence is currently mostly application-specific. While several application-specific implementations have
proven the power consumption benefit of this approach, at the moment, it is not known how to expand
this to efficiently sampling generic features, in sharp contrast with programmable digital-centric solutions.
This paper hopes to stimulate this discussion, which will require an interesting interaction between
information theory and circuit design.
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