Practical experience with the .NET cryptographic
API

Cédric Boon, Pieter Philippaerts, Frank Piessens

DistriNet Research Group, Department of Computer Science
Katholieke Universiteit Leuven, Celestijnlaan 200A, B-3001 Leuven, Belgium

Abstract

When a vulnerability is discovered in a cryptographic algorithm, or in a specific implementation of that algorithm,
it is important that software using that algorithm or implementation is upgraded quickly. Hence, modern cryptographic
libraries such as the Java Cryptographic Architecture and Extensions (JCA/JCE) and the .NET crypto libraries
are designed to be extensible with new algorithms. In addition, they also support algorithm and implementation
independent use. Software written against these libraries can be implemented such that switching to a new crypto
algorithm or implementation requires very little effort.

This paper reports on our experiences with the implementation of a number of extensions to the .NET crypto-
graphic framework. The extensions we consider are smart card based implementations of existing algorithms. We
evaluate the extensibility of the libraries, and the support for implementation independence. We identify several
problems with the libraries that have a negative impact on these properties, and we propose solutions.

The main conclusion of the paper is that extensibility and implementation independence can be substantially
improved with only minor changes. These changes maintain backwards compatibility for client code.

Index Terms

cryptography, .NET Framework, extensibility, algorithm independence, implementation independence

I. INTRODUCTION
A. Motivation

When Microsoft released the first version of the .NET Framework in 2002, they included a newly designed
cryptographic API, built from the ground up. Like with the rest of the .NET runtime, one of the main concerns
during the design of the architecture was to develop an object oriented system that is future-proof and ensures
extensibility by end users. This is reflected in the class structure by modularizing the different algorithms, and
applying standard object oriented design principles.

An additional, crypto-related, requirement was to also ensure algorithmic independence. Cryptography is a fast
moving science where implementations of algorithms are regularly broken [1], [3], [11], [12], or where even entire
classes of cryptographic algorithms are defeated [10], [13], [14]. This has as a consequence that secure applications
must be able to quickly change from one algorithm to another. Having a cryptographic architecture that has been
designed to allow this can be beneficial.

Even though the design goes a long way towards achieving these goals, some optimizations can be made. This
paper describes some of the shortcomings of the .NET cryptographic architecture and proposes minimal changes to
solve these problems. As the .NET Framework is used by numerous applications, a top priority will be to maintain
backwards compatibility. Throughout the paper, the example of a smart card library will be used to expose the
various problems with the API. It also provides a compelling case study, as smart card usage is increasing worldwide
and will eventually be the cornerstone of many secure systems.

B. Organization of this paper

In the remaining part of this section, a short introduction to the .NET cryptographic framework is given. Readers
who are already familiar with the cryptographic structure of .NET can skip this and start with section II. Part I-C
of this section introduces the basics of the .NET crypto framework, whereas part I-D describes the particularities
of extending the architecture with new Cryptographic Service Providers (CSP) for smart cards.



Sections II through V detail the experiences and problems with extending the framework. Each section explores
specific classes of algorithms in the API. A section is composed of a sketch of what the current implementation
looks like, a description of the problems that were encountered, and the proposed solution to counter these issues.

Finally, section VI summarizes the observations.

C. Introduction to the .NET cryptographic API

Due to the volatile nature of the cryptographic domain, the architecture of a cryptographic API must be resilient
to change. Algorithms, and implementations of algorithms, come and go on a regular basis. Additionally, because
it’s important to be able to quickly change an application to use a different algorithm, the API must also support
some easy means of substituting old cryptographic service providers with new ones. This leads to the observation
that two architectural qualities are key for a cryptographic framework:

a) Extensibility: New algorithms are regularly introduced to counter the loss of broken algorithms, so the
framework must have hooks to extend the base system to support other algorithms. Moreover, one algorithm can
have multiple implementations. When new optimizations are found, for example, older implementation may be
replaced with new, faster, implementations.

b) Algorithmic independence: One certainty in cryptography is that algorithms get broken. When this happens,
applications depending on this algorithm must be able to quickly switch to another, more secure algorithm. Hence,
some kind of independence of the algorithm must be achieved.

The .NET cryptographic API uses an inheritance-based model to achieve these goals. The architecture consists
of three layers:

o The engine classes: Engine classes represent a group of algorithms, like symmetric algorithms (the abstract
SymmetricAlgorithm class), asymmetric algorithms (the abstract AsymmetricAlgorithm class), or hash algo-
rithms (the abstract HashAlgorithm class). These abstract classes feature a Create method method that returns
a default implementation of the default algorithm for the concerning engine class.

o The algorithm classes: Algorithm classes represent a specific algorithm. They are abstract and derive from the
abstract engine classes. The DES algorithm class, which inherits from the SymmetricAlgorithm engine class,
and the SHAI algorithm class, which inherits from the HashAlgorithm engine class, are examples of such
abstract algorithm classes. As with the engine classes, algorithm classes define a Create method that returns
a default implementation of the specific algorithm.

o The implementation classes: Implementation classes contain the actual implementation of the algorithms.
These classes are concrete, and derive from the abstract algorithm classes. The .NET framework ships with
a number of concrete implementations, such as the DESCryptoServiceProvider class as an implementation of
the DES algorithm, the SHAICryptoServiceProvider class as an implementation of the SHA/ algorithm, ...

Figure 1 shows the hierarchy of the symmetric and asymmetric algorithms. The names of the classes in the bottom
of the hierarchy, the implementation classes, always end with "Managed’ or ’CryptoServiceProvider. This difference
in naming indicates how they are implemented. "Managed’ classes are written completely in .NET managed code.
Hence, the full cryptographic algorithm was reimplemented when the .NET cryptographic framework was built.
Their ’CryptoServiceProvider’ counterparts on the other hand are wrappers around existing code. They call the
native Windows CryptoAPI (or short: CryptoAPI). This is the cryptographic API that’s been present in Windows
long before .NET existed. It is typically used by so called native (often C/C++) applications.

|AsymmetricAIgorithm | | SymmetricAlgorithm |

JAN
| | | | |

| RSA | | DSA | | DES || Rijndael ||

T T T T

|RSACryptoServiceProvider| |DSACryptoServiceProvider| |DESCryptoServiceProvider| |RijndaeIManaged|

Figure 1. The structure of the .NET cryptographic API for asymmetric algorithms and hash algorithms.



Developers are encouraged to work with the engine classes. The Create method of these classes will return a
default implementation of the default algorithm for the engine class. The .NET Framework provides the ability to
modify the default algorithms and implementations by adjusting settings in the cryptographic configuration file. If
an application uses only the abstract engine classes, changing the cryptographic algorithms used by that application
can be achieved by modifying the cryptographic configuration file, without changing the implementation of the
application or having to recompile the application.

The cryptographic configuration is used to resolve specific algorithm implementations from algorithm names.
This makes it possible for system administrators to specify the default algorithms and implementations on a
particular machine. Listing 1 illustrates how the cryptographic configuration can be modified to replace the default
implementation of the SHA/ algorithm by a custom implementation MySHAIHashClass.

<configuration>
<!— Other configuration settings. —>
<mscorlib>
<cryptographySettings>
<cryptoNameMapping>
<cryptoClasses>
<cryptoClass MySHA1Hash="MySHA1HashClass,
MyAssembly
Culture="en’,
PublicKeyToken=a5d015c7d5a0b012 ,
Version=1.0.0.0"/>
</cryptoClasses>
<nameEntry name="SHAI”
class="MySHAI1Hash” />
<nameEntry name="System. Security .
Cryptography .SHA1”
class="MySHA1Hash” />
<nameEntry name="System. Security .
Cryptography . HashAlgorithm”
class="MySHAIHash” />
</cryptoNameMapping>
</cryptographySettings>
</mscorlib>
</configuration>

Listing 1. Redefinition of the default implementation for SHAT.

D. Custom cryptographic service providers for smart cards

Smart cards have been around for a while, mainly used in the banking and telecommunication sector. Only
recently, however, the interest in smart cards has increased tremendously, with applications for cell phones [7], e-
government [4], authentication [6], ... Smart cards offer a substantial security improvement over traditional magnetic
stripe cards, because they contain a small processor that can execute cryptographic operations on data that is
contained within the card [5]. This means that secret data, such as the private part of an asymmetric key or a secret
symmetric key, doesn’t have to leave the card to compute the output of some cryptographic algorithm.

Version 3.5 of the .NET Framework does not provide direct support to perform cryptographic operations on
smart cards. While it is possible to initialize an RSACryptoServiceProvider or a DSACryptoServiceProvider class
with a CspParameters instance that specifies a smart card cryptographic service provider from the native Windows
CryptoAPI (see listing 2), this requires a custom smart card CSP to be installed on the target machine. Furthermore,
the DSACryptoServiceProvider, the RSACryptoServiceProvider and the RNGCryptoServiceProvider are the only
CSPs that accept such a CspParameters instance. Using smart cards to perform other operations, such as symmetric
cryptography or hashing, requires a lot of implementation work and a thorough understanding of the smart card
communication protocol.




CspParameters csp = new CspParameters (1,
”Schlumberger Cryptographic Service
Provider”);

csp.Flags =
CspProviderFlags . UseDefaultKeyContainer;

RSACryptoServiceProvider rsa =
new RSACryptoServiceProvider(csp);

Listing 2. Initialization of the RSACryptoServiceProvider class with CspParameters to indicate that a smart card CryptoAPI CSP should
be used.

To ease the development of .NET applications that rely on smart cards for cryptographic operations, we developed
a number of custom CSPs based on the ISO 7816-4 [9] and ISO 7816-8 [8] standards. Care has been taken to
fit the smart card CSPs into the current .NET cryptographic framework, to simplify the end-user’s experience.
The problems with the .NET crypto framework are mainly based on our experience with the integration of these
smart card CSPs. Note however that the problems described in this paper are not specific to smart cards, but are
indications of imperfections with respect to the cryptographic model’s extensibility.

II. ASYMMETRIC ALGORITHMS
A. Asymmetric Algorithms in the .NET Framework

The engine class for asymmetric algorithms in the .NET Framework is the abstract AsymmetricAlgorithm class.
All asymmetric algorithm classes must inherit from this engine class. Version 3.5 of the .NET Framework ships
with cryptographic service providers for RSA, DSA, and the elliptic curve variants of Diffie-Hellman and DSA.

The engine class defines members for the creation of (default or named) asymmetric algorithm classes, for the
reconstruction of an AsymmetricAlgorithm object from an XML string, and for the serialization of an Asymmetric-
Algorithm object to an XML string.

On the second level of the hierarchy, classes inherit from the engine class and represent all implementations of a
particular algorithm. The abstract RSA class, for example, inherits from the engine class for asymmetric algorithms,
and represents an algorithm class for all implementations of the RSA algorithm. The RSA class defines the additional
abstract members EncryptValue and DecryptValue. When overridden in a derived class, these methods perform raw
RSA encryption and decryption and return the result. In this context, raw means that the input data should be
encrypted or decrypted without performing any padding.

Padding is an essential step when using some cryptographic algorithms. Inappropriate padding can introduce
potential vulnerabilities and substantially reduce the effort needed to perform attacks on cryptographic algorithms.
Such attacks have been demonstrated in [2] for PKCS#I 1.5' padding.

The .NET Framework provides an elegant solution to cope with different padding schemes for RSA and DSA
by means of formatters. A formatter accepts an AsymmetricAlgorithm as a parameter and takes care of padding
operations before passing on the modified data for encryption or signing. Specific formatters accept only specific
children of AsymmetricAlgorithm. This architecture allows for different padding schemes to be used with one
AsymmetricAlgorithm, and provides an extensible base for future padding schemes. Version 3.5 of the .NET
Framework defines the following abstract base formatters:

o AsymmetricKeyExchangeFormatter: Derived classes perform the padding operations needed for asymmetric

encryption.

o AsymmetricKeyExchangeDeformatter: Derived classes unpad the data from an asymmetric decryption, and

verify the correctness of the padding.

o AsymmetricSignatureFormatter: Derived classes perform the padding operations needed for the creation of

a digital signature.

o AsymmetricSignatureDeformatter: Derived classes perform the padding operations needed for the verification

of a digital signature.

'PKCS#1 1.5: Public-Key Cryptography Standards #1 version 1.5




Concrete implementations for PKCS#I 1.5 and OAEP? padding for RSA operations, as well as a formatter and
deformatter for DSA operations are available in all versions of the .NET Framework.

As previously mentioned, the potential extension possibilities are one of the big advantages of the use of
formatters. When weaknesses in current padding schemes are found, new formatters (like e.g. RSA PSS® signature
formatters) could be defined. Furthermore, upgrading an existing application with a new padding scheme is as
simple as changing one line of code.

B. RSA

1) Identified problems: Version 3.5 of the .NET Framework relies on the CryptoAPI to implement the RSA
cryptographic service provider. It does not ship with an RSAManaged class. The CrypfoAPI, however, does not
expose raw RSA operations. An invocation of the API has to specify the padding scheme to be used. To fit the
.NET RSA CSP in the model of formatters, the formatters handle instances of the RSACryptoServiceProvider class
differently than other subclasses of the RSA class.

If the asymmetric algorithm passed to an RSA formatter is not an instance of the RSACryptoServiceProvider
class, padding is performed by the formatter, and the EncryptValue/DecryptValue methods are invoked. The Encrypt-
Value/DecryptValue methods always perform raw RSA operations.

The RSACryptoServiceProvider does not implement the EncryptValue/DecryptValue methods. Instead, additional
methods are defined that delegate the operations to the CryptoAPI. If the asymmetric algorithm passed to an RSA
formatter is an instance of the RSACryptoServiceProvider class, no padding is performed by the formatter. Instead,
one of the additional methods of the RSACryptoServiceProvider is invoked, and the result is returned as received
by the CryptoAPI.

While the model retains the elegance of the API, version 3.5 of the .NET Framework incorrectly assumes that the
RSACryptoServiceProvider class is the only subclass of RSA that does not support raw RSA. By deriving from the
abstract RSA class, additional implementations of RSA can be provided by third parties. As mentioned in section I,
an RSA CSP for smart cards has been used for the evaluation of the cryptographic framework. Performing RSA
operations on a smart card has the advantage that private keys never have to leave the smart card, offering enhanced
protection for the storage of this private data. The smart card RSA CSP inherits from the abstract RSA class, and can
be passed to the RSA formatters to perform the required padding operations. However, the smart card standards*
allow manufacturers to choose whether padding operations are performed on-card or off-card. The smart card CSP
supports both options, through analogy with the RSACryptoServiceProvider class. Unfortunately, when a smart card
RSA CSP is passed on to an RSA formatter, there is no way to specify whether the RSA CSP does or does not
support raw RSA. Only the RSACryptoServiceProvider class can bypass the formatter’s padding operations. This
introduces problems when using formatters with smart cards that only support on-card padding.

One could argue that this inconsistency could be solved in the smart card CSP itself. The Encrypt method could
remove any padding added by a formatter, while the Decrypt method could add the padding removed by the smart
card. However, this design would introduce additional problems. Firstly, padding information would be introduced
in the smart card RSA CSP class, which undermines the use of formatters. Secondly, the Decrypt method should
perform padding on the result before returning it to a deformatter. But as no information on the deformatter type
is available in the smart card CSP itself, the correct padding scheme cannot be deduced.

Previous paragraphs clearly emphasize the need for formatters to support both raw and padded RSA operations
on more than just the RSACryptoServiceProvider class. The following section describes the modifications required
to achieve this support, while retaining backwards compatibility.

2) Suggested solution: The suggested solution consists of a pull up of several methods from the RSACrypto-
ServiceProvider class to the RSA class. The methods of the RSACryptoServiceProvider that are required by the
formatters for padded operations are:

« public byte[] Encrypt(byte[] rgb, bool fOAEP)

 public byte[] Decrypt(byte[] rgb, bool fOAEP)

o public byte[] SignHash(byte[] rgbHash, string str)

2OAEP: Optimal Asymmetric Encryption Padding
3PSS: Probabilistic Signature Scheme
*Smart card standards: ISO 7816



 public bool VerifyHash(byte[] rgbHash, string str, byte[] rgbSignature)

To support the decision process of the formatters, an additional method should be inserted in the RSA class:

e public virtual bool SupportsRaw()

In order to preserve compatibility with existing applications, and to promote extensibility of the proposed solution,

a number of changes to the pulled up methods are required:

e The pulled up methods should be marked virtual, to allow for dynamic binding.

o An implementation for these methods should be provided, to preserve compatibility with existing subclasses
that do not implement these methods. A suggested implementation is throwing a NotImplementedException.
This is analog to how the current .NET framework solves similar issues.

o The boolean parameter in the Encrypt/Decrypt methods should be changed to a more general parameter, like
a String. This allows extensions with padding types other than PKCS#! 1.5 and OAEP. An Object Identifier
(Oid) could also be used, if Oids for padding types are registered.

The final changes to the RSA class are shown in listing 3.

public virtual byte[] Encrypt(
byte[] rgb,
string padding)

{

throw new NotImplementedException ();
}
public virtual byte[] Decrypt(

byte[] rgb,

string padding)
{

throw new NotImplementedException ();
}

public virtual byte[] SignHash(
byte[] rgbHash,
string str,
string padding)

{
}

public virtual bool VerifyHash(
byte[] rgbHash,
string str, byte[] rgbSignature,
string padding)

throw new NotImplementedException ();

{
throw new NotIlmplementedException ();
}
public virtual bool SupportsRaw ()
{
return true;
}

Listing 3. Methods that should be added to the RSA class.

The RSACryptoServiceProvider class should implement the modified Encrypt/Decrypt methods by delegating the
calls to the original methods, supplied with the appropriate boolean parameter. The implementation of the formatters
should be modified to benefit from the new structure, as shown for the RSAPKCS1KeyExchangeFormatter in listing 4.

An interesting question is whether the methods should be pulled up to the RSA class, or to the Asymmetric-
Algorithm class. The DSACryptoServiceProvider class defines the same SignHash and VerifyHash methods as the
RSACryptoServiceProvider class. Furthermore, the CreateSignature and VerifySignature methods that are used by
the DSA formatters simply delegate the calls to the SignHash and VerifyHash methods. These facts are in favor of
pulling the methods up to the level of the AsymmetricAlgorithm class.




if (_rsaKey.SupportsRaw ())

{
// Perform Padding
data = PerformPadding(data);
// Encrypt the padded data
return _rsaKey.EncryptValue(data)
1 else
{
// Encryption and padding the unpadded
// data
return _rsaKey.Encrypt(data ,”PKCS1”)
}

Listing 4. Modification of the RSAPKCSIKeyExchangeFormatter.

The two elliptic curve asymmetric algorithms (ECDiffieHellman and ECDSA), however, do not share the same
structure. Furthermore, the DSA and DSACryptoServiceProvider classes do not define Encrypt and Decrypt methods,
and the DSA formatters do not experience the same problem the RSA formatters do, as there is no need for multiple
padding schemes with DSA.

While pulling up the methods to the level of the abstract AsymmetricAlgorithm class could lead to a somewhat
higher consistency in the class hierarchy, it will also significantly increase the complexity of the modifications and
introduce redundant methods, without providing additional benefits for the RSA formatters. As such, it is not our
recommendation to do this.

Under the assumption that the methods are pulled up to the level of the RSA class, it is important to show that
the proposed modifications do not break the compatibility with existing applications:

o For users of the RSACryptoServiceProvider class, the only change is the addition of three methods, and the
addition of an override keyword to two existing methods.

o For users of the abstract RSA class, the only change is an addition of five methods.

o For classes derived from the abstract RSA class, five more methods are available to override. As the RSA class
provides concrete implementations for these methods, no additional implementation is required at the level of
the derived class, which preserves compatibility with existing third party RSA subclasses.

« For third party classes deriving from the abstract RSA class and implementing methods with the same signature
as the added ones, the existing methods will hide the added methods in the RSA base class, leaving the
functionality unchanged.

o For users of the formatters, the new implementation would be semantically identical to the existing one for
existing classes. As the SupportsRaw method would return a default value of true and would be overridden
in the RSACryptoServiceProvider class to return false, the behavior of the formatters would be the same as
provided by version 3.5 of the .NET Framework, for all existing RSA implementations.

C. Elliptic Curve Algorithms

The elliptic curve algorithm classes (ECDiffieHellman and ECDsa, as well as implementations of these algorithms
(ECDiffieHellmanCng and ECDsaCng) were added in version 3.5 of the .NET Framework. Like the RSACrypto-
ServiceProvider, the default implementation of ECDiffieHellman does not support raw operations. Whenever the
Diffie-Hellman algorithm is used, some kind of key derivation function must be used to convert the raw output bits
to a cryptographic key of the desired size. For the ECDiffieHellmanCng class, a KeyDerivationFunction property
has to be set that specifies which derivation function should be used. This property is defined as an enum, for which
the values Hash, Hmac and Tls are allowed. Depending on this property, the additional properties HashAlgorithm
and/or HmacKey can be set. Listing 5 illustrates the use of the ECDiffieHellmanCng implementation class.

1) Identified problem: The elliptic curve Diffie-Hellman algorithm class, ECDiffieHellman, does not provide a
method to set the different key derivation functions. While this enhances extensibility —new algorithms different
from those defined in the enums of the default implementation can be used by overriding the algorithm class—
it also reduces the implementation independency of the ECDiffieHellman class. An application that uses the




ECDiffieHellmanCng alice

= new ECDiffieHellmanCng ();
alice . KeyDerivationFunction

= ECDiffieHellmanKeyDerivationFunction .Hash;
alice . HashAlgorithm = CngAlgorithm.Sha256;

ECDiffieHellmanCng bob

= new ECDiffieHellmanCng();
bob. KeyDerivationFunction

= ECDiffieHellmanKeyDerivationFunction . Hash;
bob.HashAlgorithm = CngAlgorithm.Sha256;

byte[] bobKey

= bob.DeriveKeyMaterial (alice . PublicKey);
byte[] aliceKey

= alice.DeriveKeyMaterial (bob.PublicKey);

AesCryptoServiceProvider aes
= new AesCryptoServiceProvider ();
aes .Key = aliceKey;

Listing 5. Use of the ECDiffieHellmanCng class.

ECDiffieHellmanCng class might not be able to easily switch to a different implementation, due to the lack of
a standardized interface.

2) Suggested solution: The suggested solution consists of two steps. In the first step, the Elliptic Curve algorithms
are extended with formatters, through analogy with the formatters for the RSA and DSA asymmetric algorithms. In
a second step, the same changes to the formatters for ECDiffieHellman are applied as the changes mentioned in
section II-B for the RSA formatters. This allows for the use of formatters with third party cryptographic service
providers that, like the default implementation of the ECDiffieHellman algorithm, do not support raw operations.

The implementation of the ECDsa formatter and deformatter would be fairly straightforward. As the ECDsa
algorithm class is very similar to the DSA algorithm class, ECDsaSignatureFormatter and ECDsaSignatureDefor-
matter classes can be implemented through analogy with the DSASignatureFormatter and DSASignatureDeformatter
classes.

The implementation of formatters for the ECDiffieHellman algorithm would require one formatter/deformatter
pair for each possible key derivation function. In the following paragraphs, we will elaborate on a formatter and
deformatter for the SHAI derivation function.

An ECDiffieHellmanSHA 1 KeyExchangeFormatter would inherit from AsymmetricKeyExchangeFormatter. Through
analogy with the RSA formatter, the CreateKeyExchange method could be defined to have an implementation as
presented in listing 6.

The ECDiffieHellmanSHA I KeyExchangeDeformatter would inherit from the base class AsymmetricKeyExchangeDe-
formatter. Through analogy with the RSA deformatter, the DecryptKeyExchange method could be defined to have an
implementation as presented in listing 7. Note that this would also require making the ECDiffieHellmanPublicKey
class concrete instead of abstract. As the abstract ECDiffieHellmanPublicKey has an internal state that matches its
purpose entirely, and the only abstract method is the ToXmlString method, this should not introduce any problems.

Formatters for other key derivation functions could be introduced in a similar way.

While introducing formatters for the Elliptic Curve algorithms would already be a step in the right direction, the
implementation of the ECDiffieHellman formatters as presented in listings 6 and 7 introduces the same problem
as identified in section II-B with the RSA formatters. More specifically, no third party CSPs that do not support
raw operations would be usable with these formatters. The suggested solution is similar to the solution presented
in section 1I-B2 for the RSA formatters:



if (this._key is ECDiffieHellmanCng){
((ECDiffieHellmanCng) _key).
KeyDerivationFunction
= ECDiffieHellmanKeyDerivationFunction .Hash;
((ECDiffieHellmanCng)_key ). HashAlgorithm
= CngAlgorithm . Shal;
return _key.PublicKey.ToByteArray ();

}

byte[] rawData = _key.PublicKey.ToByteArray ();
return SHAl. Create (). ComputeHash(rawData);

Listing 6. A possible implementation of the CreateKeyExchange method for an ECDiffieHellmanSHA I KeyExchangeFormatter.

if (this._key is ECDiffieHellmanCng){
((ECDiffieHellmanCng) _key).
KeyDerivationFunction
= ECDiffieHellmanKeyDerivationFunction .Hash;
((ECDiffieHellmanCng)_key ). HashAlgorithm
= CngAlgorithm . Shal;
ECDiffieHellmanCngPublicKey publicKey
= ECDiffieHellmanCngPublicKey.FromByteArray (
rgb, CngKeyBlobFormat. EccPublicBlob);
return _key. DeriveKeyMaterial (publicKey);

}

ECDiffieHellmanPublicKey publicKey

= new ECDiffieHellmanPublicKey (rgb)
byte[] rawData

= _key. DeriveKeyMaterial (publicKey);
return SHAI. Create (). ComputeHash(rawData);

Listing 7. A possible implementation of the DecryptKeyExchange method for an ECDiffieHellmanSHA 1KeyExchangeDeformatter.

e The introduction of a “public virtual bool SupportsRaw()” method at the level of the ECDiffieHellman
algorithm class.

¢ The introduction of a “public virtual bool SetKeyDerivationFunction(Oid algorithm, object parameters)” at
the level of the ECDiffieHellman algorithm class

Based on the SupportsRaw method, either the SetKeyDerivationFunction would be called (if the ECDiffieHellman
implementation does not support raw operations), or the derivation function would be applied in the formatter itself
(if the ECDiffieHellman implementation does support raw operations). The Parameters property of the asymmetric
key exchange formatters could be used to pass on the parameters required for the key derivation function, such as
a key in the case of an hmac derivation function.

The introduction of formatters for the Elliptic Curve algorithms does not break the backwards compatibility:

o For users of the ECDiffieHellmanCng class, the only change is the addition of two methods.

o For users of the abstract ECDiffieHellman class, the only change is the addition of two methods.

o For classes derived from the abstract ECDiffieHellman class, two more methods are available to override.
As the abstract ECDiffieHellman class provides concrete implementations for these methods, no additional
implementation is required at the level of the derived class, which preserves compatibility with existing third
party ECDiffieHellman implementations.

o For third party classes deriving from the abstract ECDiffieHellman class and implementing methods with the
same signature as the added ones, the existing methods will hide the added methods in the ECDiffieHellman
base class, leaving the functionality unchanged.




III. SYMMETRIC ALGORITHMS
A. Symmetric in the .NET Framework

The base class for symmetric algorithms in the .NET Framework is the abstract SymmetricAlgorithm class. All
implementations of symmetric algorithms must inherit from this base class. Version 3.5 of the .NET Framework
provides cryptographic service providers for the AES, (Triple)DES, RC2 and Rijndael algorithms.

In contrast to the asymmetric algorithms, the class hierarchy of symmetric algorithms is more symmetrical (see
tables I and II), with most of the operational methods concentrated in the abstract SymmetricAlgorithm base class.
The engine class defines a Key property, which gets or sets a byte array that represents the key for the symmetric
algorithm. This byte array represents a transparent key, because the interpretation of this data is fixed and known.
For the asymmetric algorithms, methods for passing transparent keys are only defined at the second level in the
class hierarchy. The abstract RSA class for instance defines the methods ImportParameters and ExportParameters
to import or export an RSAParameters structure, a transparent representation of the keys for RSA. The class
AsymmetricAlgorithm, however, also defines the methods FromXmiString and ToXmlString, which can be used to
get or set an XML representation of the concrete asymmetric algorithm. The only requirement of these methods
is that the input and output has a valid XML syntax. These methods can thus be used to get or set opaque keys,
represented by an XML string. Opaque keys do not have a predefined data structure.

Table 1
THE NUMBER OF NEW PUBLIC AND PROTECTED, NON-STATIC METHOD AND PROPERTY DEFINITIONS BY HIERARCHICAL LEVEL FOR
SYMMETRIC ALGORITHMS.

Methods | Properties
SymmetricAlgorithm 9 9
Aes 0 0
DES 0 0
RC2 0 1
Rijndael 0 0
TripleDES 0 0
AesCryptoServiceProvider 0 0
AesManaged 0 0
DESCryptoServiceProvider 0 0
RC2CryptoServiceProvider 0 1
RijndaelManaged 0 0
TripleDESCryptoServiceProvider 0 0

Table 11
THE NUMBER OF NEW PUBLIC AND PROTECTED, NON-STATIC METHOD AND PROPERTY DEFINITIONS BY HIERARCHICAL LEVEL FOR
ASYMMETRIC ALGORITHMS.

Methods | Properties
AsymmetricAlgorithm 4 4
DSA 4 0
ECDiffieHellman 1 1
ECDsa 2 0
RSA 4 0
DSACryptoServiceProvider 8 3
ECDiffieHellmanCng 5 9
ECDsaCng 9 2
RSACryptoServiceProvider 11 3

One of the objectives of the cryptographic framework is to be able to easily substitute an algorithm by another
one in the case that the first one is broken. Consider the code in listing 8. By using the Create method of the
abstract SymmetricAlgorithm class, a default implementation of a symmetric algorithm will be returned. Version
3.5 of the .NET Framework will return an instance of the RijndaelManaged class. However, the framework allows
overriding the default cryptographic service providers by means of the cryptographic configuration.



SymmetricAlgorithm symmetricAlgorithm =
SymmetricAlgorithm. Create ();
symmetricAlgorithm .Key = myKey;

Listing 8. Creation of a symmetric algorithm.

The .NET cryptographic configuration is located in the <cryptographySettings> section of the machine.config
file. This file can be found in the “%runtime install path%)\Config” directory.

An application using symmetric algorithms via the Create method of the SymmetricAlgorithm class can switch
between symmetric algorithms by changing the cryptographic configuration, without any modifications to the
source code. Should the default algorithm be broken, no changes to the source code are required to upgrade
these applications to use a new algorithm.

B. Identified Problems

One of the advantages of using smart cards for symmetric algorithms is that the key never has to leave the smart
card. Consider a system where data has to be encrypted using a symmetric algorithm. A random key could be
generated on a smart card, and used in the encryption and decryption process. The key on the smart card could be
made accessible to the smart card only, upon entry of a PIN. Once the data is encrypted using the smart card, it
will only be decryptable with the same smart card.

As mentioned in section I, a number of symmetric CSPs (DES, 3DES and Rijndael) for smart cards have been
used for the evaluation of the cryptographic framework. No key property has to be given to those cryptographic
service providers, as the key is already available on the smart card itself. However, these cryptographic service
providers need a number of other parameters, like a PIN (with adequate formatting parameters), an identifier
representing the keyslot to be used on the smart card, ...

While it is possible to introduce ImportParameters and ExportParameters methods that accept opaque key material
at the level of the implementation of the CSP itself, this prevents users from exploiting the advantages of the .NET
cryptographic architecture, as a cast to the concrete implementation class would always be necessary to set the
parameters. Having a mechanism to import opaque key material for symmetric algorithms on a more abstract level
would therefore be beneficial to the developers using the framework.

C. Suggested solution

Through analogy with the abstract base class for asymmetric algorithms, the following methods could be defined
in the abstract SymmetricAlgorithm engine class:

e public virtual void FromXmlString(string xmlString);

e public virtual abstract string ToXmlString();

These methods import and export opaque key material as an XML string. A default implementation in the abstract

SymmetricAlgorithm base class could be used to get or set the key, the initialization vector, the cipher mode and
the padding mode. Consider a modified version of listing 8 presented in listing 9.

SymmetricAlgorithm symmetricAlgorithm =
SymmetricAlgorithm . Create ();

symmetricAlgorithm . FromXmlString (
myOpaqueXmlParameters );

Listing 9. Creation and initialization of a symmetric algorithm using opaque parameters.

In version 3.5 of the .NET Framework, listing 8 would have to be modified with a cast to the smart card based
CSP to upgrade the application with smart card symmetric cryptography. In contrast, listing 9 would allow to
upgrade the application through the cryptographic configuration, without any modifications to the application itself.
This is under the assumption that the XML parameters can be retrieved from a store external to the application
(e.g. a protected file).




For the asymmetric algorithms, the parameters needed by each algorithm are fairly different, which is why the
FromXmliString and ToXmlString methods are defined as abstract in the AsymmetricAlgorithm base class, and only
implemented at the level of the algorithm classes. As the class hierarchy of the symmetric algorithms concentrates
a lot of the required parameters in the SymmetricAlgorithm class, however, the proposed FromXmlString and
ToXmlString methods for symmetric algorithms could be marked virfual, and provided with a default implementation
in the SymmetricAlgorithm engine class.

The modifications to the symmetric algorithms introduced in the previous paragraphs do not break compatibility
with existing applications:

e For users of the SymmetricAlgorithm class, the only change is an addition of two methods.

o For classes derived from the SymmetricAlgorithm class, 2 more methods are available to override. As the
SymmetricAlgorithm class provides concrete implementations for these methods, no additional implementation
is required at the level of the derived class, which preserves compatibility with existing third party symmetric
algorithm implementations.

« For third party classes deriving from the SymmetricAlgorithm class and implementing methods with the same
signature as the added ones, the existing methods will hide the added methods in the SymmetricAlgorithm
engine class, leaving the functionality unchanged.

IV. KEYED HASH MESSAGE AUTHENTICATION CODES (HMAC)
A. HMACs in the .NET Framework

Figure 2 shows the class hierarchy for hash algorithms in the .NET cryptographic framework. The abstract HMAC
class is the algorithm class from which all Hash-based Message Authentication Codes must derive. Version 3.5
provides cryptographic service providers for HMACs based on the MD5, SHA1, SHA2 and RIPEMD-160 hashes.

HashAlgorithm
MD5 SHA1 KeyedHashAlgorithm
T | )
MD5CryptoServiceProvider MACTripleDES HMAC
| | | |
SHA1CryptoServiceProvider| |SHA1Managed HMACSHA1

Figure 2. Class hierarchy for hash algorithms.

The HMAC algorithm is the same for all implementations of the abstract HMAC class. Only the hash function
differs from implementation to implementation. For this reason, the abstract HMAC class contains most of the
functionality, while classes derived from this base class mainly initialize the correct hash algorithm in this base
class.

B. Identified Problems

As mentioned in section I, a SHA1 CSP for smart cards has been used for the evaluation of the cryptographic
framework. In the context of HMACs, the CSP has been used to create a smart card HMAC-SHA1 CSP, by deriving
from the HMAC class. SHA1 hashing operations are delegated to the smartcard, whereas the other operations
required to calculate an HMAC are performed in software.



The problem with deriving from the HMAC class is that the methods used to implement the HMAC algorithm in
this base class are marked as infernal. Thus, deriving from the HMAC class does not support reusing the existing
implementation in this class.

A number of ways exist to create a CSP that derives from the abstract HMAC base class. It is possible to
re-implement the functionality of the base class in the derived class, by overriding the HashCore and HashFinal
methods. However, this would violate the principles of object oriented design that try to promote the reuse of code.
This is also why the additional abstraction of the HMAC class was introduced between the KeyedHashAlgorithm
and the concrete implementations in the first place.

Another way to create a CSP deriving from the abstract HMAC base class would be to use the HashName
property to set the required hash algorithms in the constructor of the deriving class. However, this requires that
the assembly of the smart card based hash implementation is added in the global assembly cache (GAC)’, and
correctly registered in the cryptographic configuration of .NET. While this is definitely the best way to go using
version 3.5 of the .NET framework, it adds a certain complexity to the deployment.

An interesting side note can be made on the HashName property. The fact that this property has a public setter,
can lead to inconsistencies, as shown by listing 10, where the output of a HMACSHAI is in fact an MD5 HMAC.

HMACSHA1 hmacSHA1 = new HMACSHAI(key );
hmacSHA1 .HashName = "MD5”;

hmacSHA1 . ComputeHash (message );

byte[] result = hmacSHAI.Hash;

Listing 10. Inconsistency induced by an incorrect using of the HashName property. The result of the HMACSHAI is in fact an MD5
HMAC.

Alternatively, the required internal fields can be set by means of reflection. Using reflection to set internal
attributes of core classes of the .NET Framework is however prone to compatibility issues with future versions of
the .NET Framework, and is definitely not encouraged.

A similar, though less important problem occurs due to the [InitializeKey method being marked as internal. A
deriving class wanting to set the key in the constructor is forced to use the Key property, as the InitializeKey method
is internal. The Key property, however, is overridable. It is considered bad practice to call overridable members in
constructors, as a deriving class could have its members called before being initialized®. For most cases, the class
deriving from the HMAC class could be marked as sealed (final in Java). However, cases could be found where
an additional level in the class hierarchy is desirable. An example would be an abstract smart card HMAC class
that derives from the HMAC class and bundles smart card specific functionality (for instance, smart card parameter
management). Specific smart card HMAC implementations could then derive from this smart card HMAC class.

C. Suggested solution

Using protected methods and fields is a well-established design pattern to allow for a shielded way of code
sharing between base classes and their children. The HMAC class would benefit in extensibility with a promotion
of the internal fields and methods to protected fields and methods. With protected fields, the need for a setter on
the HashName property disappears. Removing this setter would prevent inconsistencies as illustrated in listing 10.

The change in visibility of the internal fields and methods preserves the backwards compatibility and enables
the reusability of the HMAC class by third-party developers.

While the setter on the HashName property is not used in the .NET Framework itself, its removal could break
the backwards compatibility with third party applications and CSPs that rely on this setter. Hence, removing the
HashName setter is an optional suggestion.

V. CERTIFICATES
A. Certificates in the .NET Framework
The .NET Framework ships with an X509Certificate class that represents an X.509 v3 certificate. Version 2.0

of the .NET Framework extended this class with an X509Certificate2 class that contains additional features. These

>The global assembly cache is a repository of shared .NET libraries
frule CA2214 in Microsoft FxCop




classes are widely used in the .NET Framework itself, e.g. for secure network channels, encrypted and signed XML,
permissions, policies, Cryptographic Message Syntax (CMS), ...

An interesting feature added by the X509Certificate2 class is the possibility to set an AsymmetricAlgorithm
instance as the private key for the certificate. This feature is of particular interest when using smart cards to
perform asymmetric cryptographic operations. One of the advantages of using smart cards for this purpose is that
the private key never has to leave the smart card. The data to sign/decrypt can be passed on to the smart card, which
will unlock the private key for internal use, perform the operations, and return the result. This means that, although
the private key will never be available to the outside world, it is possible to define an AsymmetricAlgorithm class
to issue the commands to the smart card.

Consider the code in listing 11 to generate a digital (PKCS #7) signature. The SignedCms class does not accept
any AsymmetricAlgorithm parameters to compute the digital signature. The X.509 certificate of the signer can,
however, be passed to the SignedCms class through the CmsSigner class. This will allow the SignedCms class to
compute a digital signature using the private key information from the certificate.

ContentInfo contentInfo =

new ContentInfo (myMessage);
SignedCms signedCms =

new SignedCms(contentInfo);
CmsSigner cmsSigner =

new CmsSigner(mySignerCert);
signedCms . ComputeSignature (cmsSigner);

Listing 11. Sample code to generate a PKCS #7 signature.

To generate a PKCS #7 signature through the smart card RSA cryptographic service provider introduced in
section I, the previous paragraphs suggest that the PrivateKey property of the signer certificate could be set to a
smart card RSA provider, which would allow the code in listing 11 to be used without modifications. In practice,
however, this is not the case.

B. Identified Problem

Although the PrivateKey property of the X509Certificate2 class expects an AsymmetricAlgorithm instance, the set-
ter immediately casts the AsymmetricAlgorithm parameter to the ICspAsymmetricAlgorithm interface. This interface,
implemented by the DSACryptoServiceProvider and the RSACryptoServiceProvider classes, allows for interaction
with the CryptoAPI. This is problematic, because only wrappers around the CryptoAPI can offer this kind of
interaction.

Because our smart card based RSA implementation does not rely on the CryptoAPI, it can not implement
the ICspAsymmetricAlgorithm interface. Consequently, the PrivateKey property of the X509Certificate class will
not accept an instance of our RSA implementation. This implies that a complete reimplementation of the CMS
functionality is required in order to generate PKCS #7 signatures with custom .NET CSPs deriving from the
AsymmetricAlgorithm class.

C. Suggested solutions

As the use of X.509 certificates throughout the .NET Framework is strongly connected to the native CryptoAPI,
no easy solution can be found for this problem. The fact that the parameter for the PrivateKey property of the
X509Certificate? class is of the AsymmetricAlgorithm type is positive, because this opens opportunities for a more
loose coupling between the .NET cryptographic framework and the native CryptoAPI in the future, whereas a
parameter of type ICspAsymmetricAlgorithm would have limited the possibilities. However, allowing to get and set
AsymmetricAlgorithm instances that do not implement the ICspAsymmetricAlgorithm for this property would be
beneficial.

As the required changes can be performed internally, and no class interface has to be changed, full backwards
compatibility would be preserved.




VI. CONCLUSION

One of the design goals of the .NET cryptographic framework is to provide an extensible platform for developers,
that offers algorithmic and implementation independency. While it achieves these goals up to a certain level, in
practice a number of problems occur. These problems get bigger when trying to deal with less conventional
implementations of cryptographic algorithms, like cryptographic operations on smart cards.

This paper identified a number of problems, and proposed solutions to alleviate these issues. A common goal
of all solutions is to maintain backwards compatibility, and minimize the impact of the changes on the existing
cryptographic framework, while improving the implementation independency of the APL

Some of the problems mentioned, like the problems with asymmetric algorithms (section II), symmetric algorithms
(section III) and keyed hash message authentication codes (section IV) are relatively easy to solve, effectively
requiring only minor changes to the existing cryptographic library, localized in a minimal set of classes, and
preserving backwards compatibility.

Other problems, like the problems with the X.509 certificates (section V) are more deeply rooted. While the
presented suggestions preserve backwards compatibility, they would have a higher change impact on the inner
workings of the cryptographic framework. They could, however, be kept in mind during the further development
of the .NET Framework, as we believe they would improve the implementation independency of the cryptographic
APIL.

REFERENCES

[1] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the rsa encryption standard pkcs #1. Advances in Cryptology
- CRYPTO 98, 1462/1998:629-660, 1998.
[2] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. New attacks on PKCS#1 v1.5 encryption. Advances in
Cryptology - Eurocrypt 2000, 1807:369-379, 2000.
[3] Richard J. Lipton Dan Boneh, Richard A. DeMillo. On the importance of checking cryptographic protocols for faults. Journal of
Cryptology, 14:101-119, 2001.
[4] Bart Preneel Danny De Cock, Karel Wouters. Introduction to the belgian eid card. Public Key Infrastructure, 3093/2004:1-13, 2004.
[5] David M’Raihi David Naccache. Cryptographic smart cards. IEEE Micro, 16/3:14-24, 1996.
[6] Mark Looi Gary Gaskell. Integrating smart cards into authentication systems. Cryptography: Policy and Algorithms, 1029/1996:270-281,
1996.
[7] Amir Herzberg. Payments and banking with mobile personal devices. Wireless networking security, 46/5:53-58, 2003.
[8] ISO/MEC. ISO/IEC 7816-8 Identification cards - Integrated circuit cards - Commands for security operations, second edition, 2004.
[9] ISO/IEC. ISO/IEC 7816-4 Identification cards - Integrated circuit cards - Organization, security and commands for interchange, second
edition, 2005.
[10] David Wagner John Kelsey, Bruce Schneier. Related-key cryptanalysis of 3-way, biham-des, cast, des-x, newdes, rc2, and tea. Information
and Communications Security: First International Conference, pages 233-246, 1997.
[11] Amit Klein. Openbsd dns cache poisoning and multiple o/s predictable ip id vulnerability. 2007.
[12] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, 1109:104-113, 1996.
[13] Hongbo Yu Xiaoyun Wang, Yiqun Lisa Yin. Finding collisions in the full sha-1. Advances in Cryptology - CRYPTO 2005, 3621/2005:17—
36, 2005.
[14] Xuejia Lai Hongbo Yu Xiaoyun Wang, Dengguo Feng. Collisions for hash functions md4, md5, haval-128 and ripemd. Cryptology
ePrint Archive, 2004/199:2004.



