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Abstract. We present a novel fully-automated generative brain tumor
segmentation method that makes use of a widely available probabilistic
brain atlas of white matter, grey matter and cerebrospinal fluid. An Ex-
pectation Maximization-approach is used for estimating intensity models
for both normal and tumorous tissue. A level-set is iteratively updated
to classify voxels as either normal or tumorous, based on which intensity
model explains the voxels’ intensity the best. No manual initialization of
the level-set is needed. The overall performance of the method for seg-
menting the gross tumor volume is summarized by an average Dice score
of 0.68 over all the patient volumes of the BRATS 2015 trainings set.

1 Introduction

Routine use of automated MR brain tumor segmentation methods in clinical
practice is hampered by the large variability in shape, size, location and intensity
of these tumors. Reviews of MR brain tumor segmentation methods are provided
by Bauer et al. [1] and Menze et al. [2].

Brain tumor segmentation methods in Menze et al. [2] are grouped into gener-
ative and discriminative methods. Discriminative segmentation methods require
a set of manually annotated training images from which the appearance of tu-
mors is implicitly learned by the algorithm. Generative models on the other
hand don’t require a set of annotated training images. Explicit prior knowledge
of anatomy or intensity appearance is directly incorporated into the algorithm
[3]. In the past BRATS challenges [2], discriminative methods have largely out-
performed generative methods, which sparked increased development in discrim-
inative methods. Although it is clear that existing methods need to be improved
in terms of accuracy, the methods also need to be developed and broadened in
order to be deployable in clinical settings where access to a training set is limited
or non-existent.

We present a novel fully-automated generative tumor segmentation method
that only makes use of a widely available probabilistic brain atlas of white matter
(WM), grey matter (GM) and cerebrospinal fluid (CSF) and for which no manual
initialization is needed. The probabilistic prior is fully exploited by searching
globally for voxel intensities that cannot be explained by the normal tissue model.
The method is outlined in Sec. 2 and results are presented in Sec. 3.
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2 Method

Classification is based on an EM-estimation of normal and tumorous intensity
models. An evolving level-set determines which of both intensity models applies
to what regions in the image (Fig. 1).

Expectation-Maximization Level-set update

Normal model Tumor model

Fig. 1. (a) Spatial priors are non-rigidly registered to the patient image. (b) A full
Expectation-Maximization estimation of the normal and tumorous intensity models is
done, after which a level-set is updated. This process is repeated until convergence.

Prior Registration Spatial priors of WM, GM and CSF are non-rigidly registered
to the patient image. The prior information is relaxed by smoothing the spatial
priors with a Gaussian kernel.

Intensity models and the Expectation-Mazimization algorithm Normal and tu-
morous tissue intensities are modeled separately. Let G's; be a zero-mean mul-
tivariate Gaussian with covariance matrix X;, then normal and tumorous tissue
are both modeled by a Gaussian mixture model

K
p(yil0) = ZGEj (yi — p3)p(I5 = j), (1)
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with yi = (¥4, .-, Yin) the intensity of voxel i and I; = {j|j = 1... K} the
tissue class. The intensity model parameters 6 = {(p;,%;)[j € 1... K} are it-
eratively updated using an EM-approach [3]. For normal tissue, K = 3 and
p(I" = j) = m; are the spatial priors for WM, GM and CSF. For tumorous
tissue, the number of Gaussians is a free parameter and the weights of the Gaus-
sians are updated according to the volume fraction of each of the tumor classes.

Convez level-set formulation The image I is subdivided into two regions (2;,
and (2,,; for which the intensities are modeled by the probability distributions
described in the previous paragraph [4]. The regions are separated by a boundary
042 that is implicitly represented by a level-set function. The boundary and
intensity model parameters are found by minimizing the energy functional

argmin A —log pin (I|£2in, Oin) dx+A —10g pout (I|2out, Oout) dx+rL(0S),
einaaoutva‘o -an -Qnut
(2)

where L(.) is the length of the boundary. The first two terms penalize the neg-
ative loglikelihood of the image I evaluated in respectively the tumorous and
normal intensity model. The third term penalizes the length of the boundary.
Parameters \ and k determine the relative importance of the energy terms. For
each iteration to update the level-set, a full Expectation-Maximization estima-
tion of the parameters 0;,, and 6, is done.

The energy functional is non-convex and the gradient flow finds a solution
that depends on a manual initialization of the level-set. It is unclear how close
the initialization needs to be to the ultimate tumor segmentation. In this work,
this problem is overcome by using a convex level-set formulation that performs
a global search over the image and makes a manual initialization superfluous. A
global minimum is guaranteed by replacing the gradient flow by another gradient
flow with the same steady-state solution and by restricting the level-set to lie
in a finite interval [5]. The problem is thus reformulated as an L;-minimization
problem that is solved by the Split Bregman-numerical scheme [5]. It is important
to note that, by using spatial priors of WM, GM and CSF, the global optimum
coincides with the clinically meaningful notion of normal and tumorous regions.

3 Experiments and Results

The method is validated on the BRATS 2015-trainings data set [2] that holds
54 low-grade and 220 high-grade glioma patient volumes that are already skull-
stripped and registered intra-patient. No further pre-processing is done. Since
the method is designed to segment gross tumor volume, the modalities that are
used are the T2-weighted MR image and the T2-weighted FLAIR MR image.
The spatial priors are relaxed by a Gaussian kernel with standard deviation of
o = 3 voxels. The number of Gaussians for modeling the tumor intensities is set
to 1. The energy functional hyperparameters are A = lel and xk = lel. For each
update of the level-set, a full EM-estimation for both the tumorous and normal
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intensity model is performed. The computation time for a single patient volume
is about 15 minutes on a 2 x 2.66Ghz Quad-Core CPU, out of which 10 minutes
are spent for the non-rigid registration of the priors to the patient volume.

The overall average Dice score for the gross tumor volume on the training
data set is 0.68. This score is comparable to fully-automated generative meth-
ods from the past BRATS challenges that were validated on a data set that is
very similar [2]. However, we should note that currently available discriminative
algorithms can reach Dice scores of over 0.80.

4 Discussion and Conclusion

In plenty of clinical settings only a handful of patient images needs to be pro-
cessed without the availability of an annotated training set. Generative methods
have therefore an enormous practical value. In this work, we have presented a
generative method for segmenting the gross tumor volume in glioma patients. A
global search is performed and spatial prior information of healthy human adults
is exploited in order to do the segmentation in a fully-automated way.
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