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The feasibility of linear normalization of child brain images with structural
abnormalities due to periventricular leukomalacia (PVL) was assessed in
terms of success rate and accuracy of the normalization algorithm. Ten T1-
weighted brain images from healthy adult subject and 51 from children (4–
11 years of age) were linearly transformed to achieve spatial registration
with the standard MNI brain template. Twelve of the child brain images
were radiologically normal, 22 showed PVL and 17 showed PVL with
additional enlargement of the lateral ventricles. The effects of simple
modifications to the normalization process were evaluated: changing the
initial orientation and zoom parameters, masking non-brain areas,
smoothing the images and using a pediatric template instead of the MNI
template. Normalization failure was reduced by changing the initial zoom
parameters and by removing background noise. The overall performance
of the normalization algorithmwas only improved when background noise
was removed from the images. The results show that linear normalization of
PVL affected brain images is feasible.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Spatial normalization of MR images to a common stereotaxic
brain template is a pivotal step in many clinical and research
applications. All automated intersubject comparisons of brain
images require a spatial alignment of the images prior to the
comparison. Normalization to a standard brain template is also
required for many automated single-subject analysis tools (e.g.
automatic tissue segmentation algorithms and labeling methods).
The quality of the normalization step strongly affects the results of
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subsequent analyses (e.g. voxel-based, deformation-based and
tensor-based morphometry, automated volumetry, functional MRI)
(Ashburner and Friston, 2000; Bookstein, 2001; Muzik et al., 2000;
Shen and Davatzikos, 2003; Wilke et al., 2003).

Automated intensity-based normalization algorithms have been
developed to achieve a spatial match between a brain image and a
standard template (e.g. Collignon et al., 1995; Friston et al., 1995;
Maes et al., 1997; Wells et al., 1996; Woods et al., 1992). These
algorithms calculate spatial deformations by maximizing a measure
of similarity between a floating and a reference image. In the
deformation process a distinction is made between linear deforma-
tions (translation, rotation, zoom and shear), which are applied in the
same manner throughout the brain image, and non-linear deforma-
tions, which invoke different transformations on different parts of
the image. These two steps are often performed in succession (Hill
et al., 2001), because the accuracy of non-linear normalization
depends on the quality of the linear alignment.

Particularly in the context of morphologic NMR studies of brain
disorders, questions have been raised regarding the effect of spatial
normalization on the validity of the analysis. The reference image
used to guide the normalization process presents the first problem.
Themost widespread digital atlas – the ICBM152 template created at
the Montreal Neurological Institute (MNI) – is derived from 152
coregistered brain images from healthy adult subjects (Evans et al.,
1994). Consequently, it might match better the images of
neurologically healthy adults than images of patient or child brains
(Bookstein, 2001;Karas et al., 2003;Muzik et al., 2000). Population-
specific (Wilke et al., 2002) and even study-specific (Karas et al.,
2003) atlases have been proposed to circumvent this problem.

Another issue concerns the presence of gross structural abnorm-
alities in patient brain images (lesions, malformations, tumors, etc.).
These affect the signal intensity distribution in the patient's image to
such an extent that normalization algorithms may introduce un-
desirable transformations in order to maximize the similarity with a
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template. Manually masking the lesion site improves the normal-
ization in case of spatially confined abnormalities (Brett et al., 2001).

The aim of the present study was to evaluate the quality of
linear spatial normalization of patient brain images with gross
structural abnormalities. Periventricular leukomalacia (PVL) was
chosen as an exemplary operationalization for gross structural
abnormalities. PVL is one of the most common brain injuries in
preterm-born children. It consists of ischemic damage to the white
matter around the lateral ventricles which appears as regions of
hyperintensity in T2-weighted and FLAIRMR images (Baker et al.,
1988; Flodmark et al., 1989; Maalouf et al., 1999). Often, the
damage results in white matter reduction, which in turn leads to
enlarged and irregularly shaped ventricles.

In the present study, several manipulations to the images were
applied prior to the linear normalization. We considered changes in
the initial position of the floating image, masking of non-brain
voxels, smoothing the floating images and the use of a pediatric
instead of an adult brain template. The impact of thesemanipulations
on normalization quality was assessed both in terms of the ability of
the algorithm to compute a mathematically acceptable solution and
the accuracy of the successful solutions. We further investigated
whether the effects of these simple preprocessing steps differed
between adult and child brain images and whether these effects were
dependent on the amount of white matter signal alteration and
ventricle enlargement in the images.

Methods

Subjects

Fifty-one children with a history of prematurity and ten healthy
adults with no known neurological history participated in this study.
Their characteristics are summarized in Table 1. The pediatric patients
were recruited from the population of preterm children followed at the
Pediatrics Department of the University Hospital Gasthuisberg,
Leuven, Belgium. They were diagnosed by an experienced
radiologist from multi-channel MR data sets. In 12 children, the
MR-scanwas radiologically normal. Thirty-ninewere diagnosedwith
periventricular leukomalacia, and in 17 of these the lateral ventricles
were labeled enlarged. These pediatric groups will be referred to as
the Normal group, the PVL group and the PVL+ group, respectively.
Patients with additional neurological complications (e.g. intracranial
hemorrhage, focal infarctions, brain malformation, postnatal trau-
matic or infectious brain lesions) were excluded from the study. No
Table 1
Characteristics of groups studied

Groups a n Gender Age (years) Gestation (w

F/M M (SD) range M (SD) rang

Adult 10 4/6 24.7 (3.2) Not available
19.0–30.0

Normal 12 7/5 7.4 (2.9) 33.4 (2.0)
4.3–13.4 31–36

PVL 22 11/11 7.2 (1.6) 32.5 (2.7)
4.6–12.1 26–36

PVL+ 17 6/11 7.8 (2.2) 31.1 (3.5)
5.0–12.8 25–36

a Patient categorization based on radiological evaluation of available MR data.
b Lateral ventricle index (%)=100×ventricle volume/ total brain volume.
c T2-hyperintensity index (%)=100×volume of white matter voxels with hyper
subject was sedated for the image acquisition. The study was
approved by the local ethics committee and informed consent was
obtained from all participants and/or their parents.

MR image acquisition

High-resolution T1-weighted MR images were collected from
all subjects. All images were acquired on the same 1.5-T Philips
Gyrosan NT Intera scanner, using a 3D MPRAGE sequence (TR
22 ms, TE 4.6 ms, flip angle 30°). The resolution of the images was
0.86×0.86×1.00 mm, comprising 150 axial slices with 256×256
in-plane dimensions.

For all children additional proton-density, T2-weighted and
FLAIR imageswere acquired on the same scanner. A dual echo STIR
sequence (TR 4000 ms, TE1 17.2 ms, TE2 86 ms, TI 160 ms, flip
angle 90°) yielded a proton density and a T2-weighted image. The
images comprised 44 adjacent 3 mm thick axial slices of 256×256
voxels with an in-plane resolution of 1.17×1.17mm. The 3DFLAIR
sequence (TR 5000 ms, TE 100 ms, TI 2000 ms, flip angle 90°)
yielded images with a resolution of 1.21×1.21×1.50 mm, compris-
ing 100 axial slices with 256×256 in-plane dimensions. For each
child, the multi-channel images were automatically aligned by
applying rigid-body transformations (translation in 3 directions and
rotation around each orthogonal axis) with the MIRIT software
(Medical Image Computing, KULeuven, Belgium), implementing
the algorithm described in Maes et al. (1997).

Segmentation

The T1-weighted images were segmented into tissue-specific
density maps using the EMS software (Expectation-Maximization
Segmentation; Van Leemput et al., 1999). To improve segmenta-
tion quality for pediatric images with gross morphological
abnormalities, the anatomic template was matched with the brain
image using a viscous fluid deformation algorithm (D'Agostino
et al., 2003). The resulting deformation fields were applied to the
template density maps. The deformed template density images
guided the subsequent segmentation step.

Volumetry

To investigate the effect of lateral ventricle enlargement on linear
normalization, the volume of the lateral ventricles was quantified on
the T1-weighted images, using a three-dimensional interactive
eeks) Cerebral palsy LVI (%) b T2HI (%) c

e n (%) M (SD) range M (SD) range

0 (0.0) 1.400 (0.577) Not available
0.357–2.108

0 (0.0) 0.753 (0.485) 0.268 (0.101)
0.301–2.042 0.037–0.377

15 (68.2) 1.199 (0.446) 0.479 (0.154)
0.394–2.297 0.207–0.742

11 (64.7) 3.039 (1.295) 0.554 (0.250)
1.546–6.445 0.123–1.227

intense MR signal / total brain volume.
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watershed-transform (IWT) algorithm (Hahn and Peitgen, 2003).
IWT volumetry has been shown reliable for both normal and
pathological anatomy and for children as well as adults (Hahn et al.,
2004). Importantly, this semi-automatic procedure does not require a
prior normalization of the images. Hence, the effect of ventricular
abnormality could be evaluated independent of linear normalization.
The volumes of the lateral ventricles and of the whole brain were
calculated from the original brain images. For each subject the lateral
ventricle index (LVI) was defined as the ratio of the volume of the
lateral ventricles over the total brain volume, multiplied by 100.

The amount of white matter voxels exhibiting MR signal
hyperintensity was determined for each child with a fully automated
model-based tissue classification algorithm (Van Leemput et al.,
2001) from multi-channel MR images comprising the proton-
density-weighted, T2-weighted and FLAIR images. The algorithm
performs intensity-based tissue classification by estimating tissue-
specific intensity models from the data and simultaneously detecting
outlier voxels whose intensity values are not well explained by the
model. The lesion class was set to white matter, with the constraint
that FLAIR signal intensity should be larger than the average FLAIR
gray matter intensity. A custom-made periventricular mask was
applied to the resulting lesion images to quantify the number of
outlier voxels. This number, multiplied by the voxel-size, yielded the
volume of periventricular voxels showing white matter hyperinten-
sity. The T2-hyperintensity index (T2HI) was calculated as the ratio
of the volume of the hyperintense periventricular voxels over the
total brain volume, multiplied by 100. Fig. 1 visualizes the
relationship between the T2HI and the LVI for the three
radiologically defined pediatric groups.

Linear normalization

The MIRIT software was used to spatially normalize the T1-
weighted MR images with a standard brain template. MIRIT uses
mutual information as a measure of statistical dependence between
intensities of corresponding voxels on two images. This depen-
dence is assumed to be maximal if the two images are
Fig. 1. Relationship between the lateral ventricle index (%) [LVI=100×
ventricle volume/ total brain volume] and the T2-hyperintensity index (%)
[T2HI=100×volume of periventricular white matter voxels with hyper-
intense MR signal / total brain volume] for the three radiologically defined
pediatric groups (Normal= radiologically normal children; PVL=children
showing periventricular leukomalacia on multi-channel MR-images; PVL
+=PVL with additional enlargement of the lateral ventricles).
geometrically aligned. As such, mutual information is applied as
an objective criterion to find the linear transformation that spatially
normalizes two images (Maes et al., 1997).

A linear transformation between two 3D data sets is fully
described by 12 parameters: translation, rotation, zoom and shear,
each along three orthogonal dimensions. To correct for different
head positions in the scanner, the MIRIT algorithm was initiated
with approximations for 3 of the 12 linear transformation
parameters: rotation around the superior–inferior and the ante-
rior–posterior axis, and translation around the left–right axis. These
approximations were derived by manually aligning the midplane of
each image with the template. This was identical for all methods,
as were the MIRIT optimization parameters which were set to their
default values (Maes et al., 1997). Contrary to Ashburner et al.
(1997), no prior constraints about the distribution of zoom and
skewness parameters were incorporated in the algorithm.

Modifications to the normalization procedure

Four different modifications to the normalization procedure
were employed. Their effect on the success rate and the accuracy of
the linear normalization was assessed.

Modification to initial position and volume
The information about the starting position of a floating image

was manipulated by providing the algorithm with manual
approximations for some of the twelve normalization parameters
that the algorithm has to compute in order to maximize mutual
information.

In the baseline method no prior information beyond the initial
correction for head position described above was provided. In the
slant correctionmethod, the rotation angle around the left–right axis,
necessary to align the anterior commissure (AC) and posterior
commissure (PC) in the axial plane in the floating and reference
image, was included as an additional ‘initial guess’ for the algorithm.
In the standard space method, in addition to the parameters in the
slant correction method, the AC was co-localized with its position in
the reference image. This amounts to providing additional estimates
of translation along the superior–inferior and the anterior–posterior
dimensions. Finally, in the volume correction method, the starting
estimates for the zoom parameters were modified depending on the
ratio of the reference over the floating image volumes. Total brain
volume for the template was calculated from the corresponding gray
and white matter priors. Total brain volume for the original brain
images was calculated from the segmented gray and white tissue
maps obtained with the EMS software, by summing the probabilities
in eachmap over all voxels. The IWTvolume estimateswere not used
for this purpose because the IWTalgorithm is not fully automated and
because it could not be applied to the smooth template. The
agreement between the two methods was very high, however. The
IWT estimates of total brain volume were on average 0.47% smaller
(SD=0.023) than the estimates based on the segmented tissue density
images. The correlation between the two estimateswas 0.98. For each
brain image, an isotropic volume correction factor was calculated as
the cube root of the ratio of the floating image brain volume over the
reference brain volume. This factor was used as the starting estimate
for each of the three zoom parameters.

Masking of background image areas
MR images differ considerably in the amount of background

noise. The background exclusion method assessed the contribution
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of the background area on linear normalization by excluding
background voxels from the analysis. For this purpose, individual
binary masks were generated by thresholding each image at 10% of
its intensity range. This mask image was then repeatedly smoothed
with a 7-mm full-width at half-maximum (FWHM) Gaussian kernel
and dichotomized at a 50% threshold. Ten iterations were sufficient
to fill the ‘holes’ in the mask and to remove all background image
Table 2
Description of landmarks and position of landmarks in MNI and CCHMC templa

ID Name Plane Description

1 Extreme left Sagittal Find slice with last cerebral voxels. Determ
2 Extreme right Sagittal Find slice with last cerebral voxels. Determ
3 Extreme anterior Coronal Find slice with last cerebral voxels. Determ
4 Extreme posterior Coronal Find slice with last cerebral voxels. Determ
5 Extreme superior Axial Find slice with last cerebral voxels. Determ
6 Inferior

temporal L
Axial Find the most inferior slice still showing lef

Determine midpoint of cluster.
7 Inferior

temporal R
Axial Find the most inferior slice still showing rig

Determine midpoint of cluster.
8 Inferior frontal L Coronal–

axial
intersection

In the sagittal plane just left of midline, see
most anterior curving of cingulate s. Seek s
center of left eyeball. Determine lowest poi

9 Inferior frontal R Coronal–
axial
intersection

In the sagittal plane just right of midline, se
most anterior curving of cingulate s. Seek s
center of right eyeball. Determine lowest po

10 Temporocerebellar
junction L

Sagittal
through 8

Most anterior point in the slice where cereb
lobe part.

11 Temporocerebellar
junction R

Sagittal
through 9

Most anterior point in the slice where cereb
lobe part.

12 Inferior occipital Axial Find most inferior slice where occipital lobe
posterior of cerebellum. Determine point in
middle of cluster.

13 Putamen L Coronal–
axial
intersection

In the sagittal plane, find center of thalamus
center, find coronal slice through fornix. At
determine most lateral point of left putamen

14 Putamen R Coronal–
axial
intersection

In the sagittal plane, find center of thalamus
center, find coronal slice through fornix. At
determine most lateral point of right putame

15 Splenium of
corpus callosum

Coronal Find slice in which corpus callosum no long
cerebral hemispheres. For other coordinates
anteriorly and determine midpoint of cluste

16 Tectum of corpus
callosum

Axial Find slice in which corpus callosum no long
cerebral hemispheres. For other coordinates
and determine midpoint of cluster.

17 Superior pons Coronal Find slice showing the dip between the two
pons at its superior junction with the brains
starts expanding.

18 Hippocampus L Coronal
through 17

Determine intersection of lines touching late
of left hippocampal gyrus.

19 Hippocampus R Coronal
through 17

Determine intersection of lines touching late
of right hippocampal gyrus.

20 Anterior
commissure

Axial A few mm below the genu of the cc, find th
the small connection between the cerebral h
immediately posterior of the head of the nu

21 Posterior
commissure

Axial A few mm below the splenium of the cc, an
the colliculus superior, find the slice showin
between the thalami.

22 Nucleus
caudatus L

Coronal
through 20

Determine intersection of lines touching late
of left caudate nucleus head.

23 Nucleus
caudatus R

Coronal
through 20

Determine intersection of lines touching late
of right caudate nucleus head.

The reported coordinates are in MNI space.
areas. The resulting mask was applied to the original floating image,
resulting in the removal of background voxels while leaving most of
the skull intact. The same procedure was applied to create a
background-deleted MNI template.

In the skull stripping method, the BET utility (Smith, 2002)
was used to remove background and skull from all original
images. The skull-stripped ICBM152 template (available from
te

MNI template CCHMC template

x y z x y z

ine midpoint of cluster. −71.4 −30.0 5.2 −73.7 −31.9 8.8
ine midpoint of cluster. 70.6 −31.9 7.3 73.8 −33.3 9.4
ine midpoint of cluster. 0.6 71.9 1.1 1.0 73.3 5.7
ine midpoint of cluster. 0.6 −106.2 2.2 1.0 −109.9 0.2
ine midpoint of cluster. 0.6 −27.1 79.1 1.3 −31.1 87.9
t temporal lobe voxels. −23.4 −8.3 −51.7 −23.4 −7.6 −47.9

ht temporal lobe voxels. 24.6 −6.3 −51.8 24.1 −5.4 −48.4

k coronal slice through
agittal slice through
nt of frontal lobe.

−32.4 46.0 −19.9 −33.3 46.6 −15.8

ek coronal slice through
agittal slice through
int of frontal lobe.

34.6 46.0 −19.9 35.7 46.8 −16.6

ellum and temporal −32.4 −33.5 −32.7 −33.5 −33.0 −30.0

ellum and temporal 34.6 −34.5 −32.6 35.8 −33.8 −30.8

voxels are visible
midline and through

0.6 −91.2 −22.4 0.7 −91.9 −25.2

. In axial slice through
the intersection,
in basal ganglia.

−32.6 0.0 6.0 −33.4 −0.6 11.1

. In axial slice through
the intersection,
n in basal ganglia.

32.6 0.0 6.0 34.0 −0.3 10.5

er connects the
, go one slice
r.

0.6 −43.6 14.8 1.0 −46.1 18.1

er connects the
, go one slice down

0.6 −7.1 28.3 1.1 −8.4 34.2

hemispheres of the
tem, just before it

0.6 −21.0 −20.2 0.8 −20.6 −17.1

ral and superior extent −38.4 −18.6 −10.3 −39.5 −19.2 −6.8

ral and superior extent 38.6 −18.6 −10.3 40.1 −18.8 −7.4

e slice showing
emisphere,
cleus caudatus.

0.6 3.6 −6.1 0.9 3.8 −2.0

d a few mm above
g the small connection

0.6 −24.4 −5.0 0.9 −25.0 −1.6

ral and superior extent −19.4 4.7 21.8 −19.8 3.9 28.0

ral and superior extent 21.6 4.8 24.8 22.9 4.1 30.8



690 B. Machilsen et al. / NeuroImage 35 (2007) 686–697
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/no_skull_norm.
shtml) was used as the reference image.

Smoothing
In this method, the images were smoothed with an isotropic

Gaussian kernel because it has been shown that this decreases the
likelihood that the normalization algorithm gets caught in a local
minimum or maximum (Ashburner and Friston, 1997). Within this
smoothing method, three different kernel widths were explored:
4 mm, 8 mm and 12 mm FWHM.

Pediatric template
As a final modification to the linear normalization procedure,

we used a pediatric brain template instead of the MNI template. A
population-specific template resembles more the population under
study and may therefore reduce the intersubject variability after
normalization. The updated CCHMC template (Cincinnati Chil-
dren's Hospital Medical Center; Wilke et al., 2002), based on MRI
data from 200 children aged 5–19, was chosen as the reference
image. We repeated the baseline and background exclusion
methods with the CCHMC template as the reference image. The
background excluded CCHMC template was created in the same
way as the background excluded MNI template.

Accuracy evaluation

Predefined Landmarks
To evaluate the quality of linear normalization, 23 anatomic

landmarks were identified in all original images (Table 2). The
choice of landmarks was based on the method proposed by
Grachev et al. (1999), with some modifications based on
landmarks used in other studies (Arndt et al., 1996; Salmond et
al., 2002). We ensured that the landmarks were widely distributed
across the brain. All landmarks were quickly and easily identified
by defining anatomic reference planes: First, the image was
manually reoriented to align the midsagittal plane with an
orthogonal reference frame. Next, the AC and PC were placed in
the same axial plane, and the image origin was set at the AC in the
midline. Three-dimensional landmark coordinates were then
defined relative to this reference position of the image. Inter-
observer differences in the location of landmarks in this way have
been shown to be relatively small (Arndt et al., 1996). The mean
absolute deviation between landmark coordinates located by two of
the authors (P.S. and B.M.) on an arbitrary subset of 22 images was
less than 1 mm (0.946 mm) in the present study (60% were
localized within 1 mm; over 90% within 2 mm).

Homologous landmarks were defined for the MNI and
CCHMC templates. To avoid localization bias between the two
templates, the 23 landmarks were only manually localized on the
MNI template. The position of these landmarks was transposed to
the CCHMC template by calculating the linear and non-linear
parameters to normalize the MNI template to the CCHMC template
using SPM5 (Wellcome Department of Imaging Neuroscience,
London, http://www.fil.ion.ucl.ac.uk/spm). The resulting para-
meters were applied to the MNI landmarks to obtain the
coordinates for the CCHMC landmarks. Table 2 presents the
coordinates for both templates.

Accuracy index
Although three-dimensional coordinates were obtained for all

landmarks, the accuracy calculation was based on only one or two
coordinates for each landmark. This was done because not all
coordinates are equally relevant for describing normalization
accuracy. For instance, the inferior–superior dimension is irrelevant
for assessing the left outermost boundary of the brain. The relevant
coordinates are indicated in bold in Table 2.

Normalization accuracy was defined as the difference between
the set of landmarks on a normalized floating image F and the
corresponding landmarks on a reference image R. The absolute
accuracy index AAI,

AAI ¼ 1
n

Xn
i¼1

wixðfix � rixÞ2 þ wiyðfiy � riyÞ2 þ wizðfiz � rizÞ2;

was calculated as the squared Euclidean distance, averaged over all
n landmarks and weighted for the relevant dimensions. Relevant
coordinates had a weight w of one, irrelevant coordinates had a
weight of zero.

Optimal linear transformation
Given the landmark coordinates and their associated weights,

the most optimal linear transformation M that maps the
landmarks from a floating image to a particular reference image
could be derived by minimizing the sum of squared differences
between the two landmark sets.

Let F be the (n×4) matrix of n floating landmarks, with the
first three columns representing the x, y and z coordinates, and
the fourth being a column vector consisting of only ones. Let R
and W be similar (n×4) matrices for the reference landmarks and
the associated weights. The elements of the optimal linear
transformation can then be calculated as

mk1

mk2

mk3

mk4

2
664

3
775¼

Xn
i¼1

wik f 2i1
Xn
i¼1

wik fi1 fi2
Xn
i¼1

wik fi1 fi3
Xn
i¼1

wik fi1

Xn
i¼1

wik fi2 fi1
Xn
i¼1

wik f 2i2
Xn
i¼1

wik fi2 fi3
Xn
i¼1

wik fi2

Xn
i¼1

wik fi3 fi1
Xn
i¼1

wik fi3 fi2
Xn
i¼1

wik f 2i3
Xn
i¼1

wik fi3

Xn
i¼1

wik fi1
Xn
i¼1

wik fi2
Xn
i¼1

wik fi3
Xn
i¼1

wik

2
66666666666664

3
77777777777775

�1

T

Xn
i¼1

wik fi1rik

Xn
i¼1

wik fi2rik

Xn
i¼1

wik fi3rik

Xn
i¼1

wikrik

2
66666666666664

3
77777777777775

;

where k stands for the row index of the (4×4) transformation
matrix M.

The resultant transformation M provides the optimal linear
registration between the configurations of selected landmark
coordinates on the floating and on the reference image. No other
linear transformation brings the landmark coordinates on the two
images in closer correspondence.
Relative linear transformation
The relative accuracy index (RAI) for a particular floating and

reference image was defined as the difference between the optimal
AAI for these images and the AAI obtained by the linear
normalization algorithm by maximizing the mutual information
between the same floating and reference images. As such, the RAI
indicates how far the solution offered by the intensity-based
algorithm deviates from the optimal linear normalization solution.

Statistics

Group-wise comparisons between the three pediatric groups on
descriptive characteristics involved chi-square and t-tests. For t-

http://www.mrc-cbu.cam.ac.uk/Imaging/Common/no_skull_norm.shtml
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/no_skull_norm.shtml
http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. Average optimal accuracy indices for each subject group for both the
MNI and CCHMC templates. These indices are mean squared distances
between landmark coordinates on a template and on the optimally
normalized floating image. Optimal normalization is achieved by minimiz-
ing the sum of squared distances between the landmark coordinates on
floating and reference image. Whiskers denote 95% confidence intervals.
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tests, randomization methods were used to avoid underlying
parametric assumptions (Manly, 1991). These involve 100,000
randomizations of the data. The associated p-values will be
indicated as randomization probabilities (rp).

The effect of prior modifications on linear normalization was
evaluated with analysis of variance (ANOVA) on the relative
accuracy indices. For each modification approach, a separate
bifactorial split-plot ANOVAwas computed with the methods as a
within-subjects factor and the radiologically defined groups as the
between-subjects factor. Accuracy indices were Box–Cox trans-
formed (λ=−0.5) prior to the analyses to circumvent violations of
the normality of residuals (Shapiro–Wilk test) and the homogeneity
of variances (Levene's test) assumptions. For each ANOVA,
outliers within any method were omitted from all methods
involved in that particular analysis. Planned comparisons contrast-
ing the adult and the pooled pediatric groups on the one hand and
the different pairs of pediatric groups on the other hand were then
used to elaborate on the effects observed in the ANOVAs. Pair-
wise contrasts of methods within individual subgroups were
assessed as Bonferroni-corrected post hoc comparisons.

Finally, multiple regression analyses were applied at the image
voxel level to investigate the relationship between the objective
measures of pathology and tissue distribution mismatch after linear
normalization with the best method as indicated by the ANOVAs.
SPM5 was used to assess the independent contribution of the LVI
and T2HI measures to the probability distribution of the two main
tissue classes. The analysis was performed separately for the white
matter and gray matter tissue maps smoothed with an isotropic 8-
mm FWHM Gaussian kernel. Statistical parametric maps were
computed for both positive and negative partial correlations of gray
matter and white matter probabilities with the LVI and the T2HI
measures. The t-maps were evaluated at the significance level 0.05,
corrected for multiple comparisons (Friston et al., 1991; Worsley et
al., 1992). Only clusters of 10 or more voxels were considered.

Results

Characteristics of the pediatric groups

Characteristics of the three radiologically defined pediatric
groups are compared in Table 1. The groups did not differ in age
(largest difference: t(37)=1.08; rp>0.05) or gender (χ2(2)=1.633,
p>0.05). There was, however, a small but significant difference in
gestation age between the Normal and the PVL+ groups (t(27)=
2.03; rp<0.05). No difference in gestation age was found between
either of these two groups and the PVL group.

The average percentage of voxels showing hyperintense T2-
weighted MR signals (T2HI) was 0.268 (SD=0.101) for the
radiologically normal children. This was significantly higher in
the PVL group (M=0.479, SD=0.154, t(32)=4.25; rp<0.001)
and in the PVL+ group (M=0.554, SD=0.250, t(27)=3.74;
rp<0.001), although the difference between the PVL and PVL+
groups was not significant (t(37)=1.16; rp>0.05). As expected,
the lateral ventricle volume index (LVI) was significantly higher
in the PVL+ group (M=3.04, SD=1.30) compared to the PVL
group (M=1.20, SD=0.45, t(37)=6.23; rp<0.001). However, the
LVI was also significantly larger in the PVL group than in the
normal children (M=0.75, SD=0.49, t(32)=2.70; rp=0.01), even
though the radiologist had categorized these children as having
PVL without ventricle enlargement. The T2-hyperintensity in-
dex and the lateral ventricle index in the 51 pediatric brain
images were only moderately correlated (r(49)=0.27, p=0.06;
see Fig. 1).

Optimal linear normalization

ANOVA on the optimal accuracy indices (based on the best
possible linear transformation) with the adult or pediatric brain
template as the within-subjects factor and the radiologically defined
groups as the between-subjects factor, detected a main effect of
groups (F(3,57)=4.43, p<0.01) and of templates (F(1,57)= 19.34,
p<0.001). The interaction subject groups× templates was signifi-
cant as well (F(3,57)=5.73, p<0.01). Planned comparisons showed
that the main effect of subject groups was not due to the difference
between adult and pediatric subjects (F(1,57)=2.88, p>0.05). As
Fig. 2 illustrates, there was however a difference between the three
pediatric groups: Landmarks on the PVL images deviated more from
the templates than the two other pediatric groups (PVL-Normal:
F(1,57)=6.22, p<0.05; PVL-PVL+: F(1,57)=6.90, p<0.05; Nor-
mal-PVL+: F(1,57)=0.02, p>0.05). The observed interaction could
be explained by the fact that the landmarks from the adult group
fitted better the MNI landmarks than the CCHMC landmarks (post
hoc F(1,57)=23.17, p<0.05/4), whereas no significant difference
between templates was observed for any of the three pediatric groups
(smallest p>0.05/4). The optimal normalization solution for our
pediatric images is thus not systematically influenced by the choice
of template.

The above results indicate that the optimal linear solution differs
between subject groups. Therefore, the AAI is an inappropriate
measure to evaluate normalization accuracy. For example, images
from the PVL group are more likely to yield higher absolute
accuracy indices than images from the PVL+ group, since the
optimal solution for PVL+ children is superior to the optimal
solution for PVL children. The AAI cannot discriminate between
the performance of the linear normalization algorithm and the best
possible linear fit between two sets of landmarks based on their
spatial constellations. Therefore, the evaluations will be based on
relative accuracy indices.



Table 3
Number of unsuccessful linear normalizations (relative accuracy index
exceeds 33)

Methods Groups

Adults Normal PVL PVL+ Total

Initial position
Baseline 0 0 3 2 5
Slant correction 0 0 3 1 4
Standard space 0 0 3 1 4
Volume correction 0 0 0 0 0

Background
Background exclusion 0 0 0 0 0
Skull stripping 0 1 0 1 2

Smoothing
Smoothing 4 mm 0 0 2 2 4
Smoothing 8 mm 0 2 1 2 5
Smoothing 12 mm 0 1 3 4 8

Pediatric template
CCHMC baseline 0 0 3 1 4
CCHMC background exclusion 0 1 0 2 3
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Baseline results

Fig. 3A summarizes the relative accuracy indices obtained with
the baseline method. It illustrates the superior result obtained with
adult compared to pediatric brain images (median test: χ2=11.57,
p<0.001). It also shows that the baseline method produces some
unsuccessful solutions. Although no gold standard is available to
assess normalization accuracy (Woods et al., 1998), we considered
a linear normalization unsuccessful if the RAI exceeded Tukey's
outlier criterion, defined as 1.5 (Q3−Q1)+Q3 (Tukey, 1977). Cal-
culated on the relative accuracy indices obtained with the baseline
method on all subjects, this cut-off value equals 33 (horizontal line
in Fig. 3A). Outliers only occurred in the pathological pediatric
groups. Similar results were obtained for all normalization methods
in this study (Table 3).

Effects of modifications

To evaluate the performance of the linear normalization
methods, all methods within a particular modification approach
were first compared by ANOVA. Subsequently, the best methods
from each approach were compared in a separate analysis.

For the initial position approach (Fig. 4A), only the effect of
subject groups was significant (F(3,51) =25.04, p<0.001).
Planned comparisons reveal that this main effect was due to the
difference between adults and all three pediatric groups (F(1,51)=
72.55, p<0.001), not between any of the pediatric groups (highest
Fig. 3. (A) Whisker plots for each subject group summarize the relative
accuracy indices obtained for the baseline method. The squares represent the
median values for each subject group, the whiskers the first and third
quartiles. The plot in the shaded area is based on all 61 subjects. The
horizontal line represents the cut-off for successful normalization. The scale
of the ordinate is logarithmic to enable the graphical presentation of all
outliers. (B) Sagittal slices from a successfully normalized image (left), a
normalization failure (right) and the MNI template (middle).
F-value between Normal and PVL group, F(1,51) =0.89,
p>0.05).

For the background area approach (Fig. 4B), only the
interaction between subject groups and methods reached signifi-
cance (F(3,55)=7.36, p<0.001). Post hoc tests revealed that the
background exclusion method outperformed the skull stripping
method for adult subjects (F(1,55)=9.85, p<0.05/4). The opposite
was true for the children from the PVL group (F(1,55)=10.57,
p<0.05/4). No difference was found for the normal and PVL+
groups (smallest p>0.05/4).

The smoothing approach (Fig. 4C) revealed a main effect
of subject groups (F(3,45)=20.549, p<0.001) and of methods
(F(2,90)=25.04, p<0.001). The group effect was caused by the
superior results obtained for adult compared to pediatric brain
images (planned comparisons F(1,45)=57.04, p<0.001). Planned
comparisons revealed no difference between any of the three
pediatric groups (smallest p>0.05). The main effect of methods
was due to the inferior normalization quality obtained when
smoothing the images with a 12-mm kernel compared to a 4-mm
(post hoc F(1,45)=26.50, p<0.05/3) or an 8-mm kernel (F(1,45)=
36.97, p<0.05/3). No significant difference was found between
the 4- and 8-mm kernels (F(1,45)=0.80, p>0.05/3). No smooth-
ing (baseline), smoothing with 4 mm, 8 mm and 12 mm kernels
resulted in average relative accuracy indices of 9.82, 11.27, 11.29
and 13.99, respectively.

Fig. 4D directly compares the best method from each approach,
as indicated by the above analyses. In the absence of a main effect
of methods or whenever post hoc tests could not decide between
two methods, the most robust method (i.e. the method that
produced the smallest amount of outliers over all subject groups)
was chosen. As such, the volume correction, background exclusion
and 4-mm smoothing methods were compared. ANOVA revealed a
significant main effect of subject groups (F(3,53) =18.61,
p<0.001) and of methods (F(2,106)=104.71, p<0.001). Planned
comparisons show again that adult brain images were better aligned
with the MNI template than pediatric brain images (F(1,53)=53.19,
p<0.001). No significant difference was found between the three



Fig. 4. Mean relative accuracy indices (RAI) for each subject group. (A) The four methods from the initial position approach are being compared: baseline, slant
correction, standard space and volume correction. (B) Masking of non-brain areas: skull stripping and background exclusion. (C) Smoothing with three different
kernel widths. (D) Comparison between the best methods from each approach group. Error bars represent ±1 SD. Images causing a normalization failure
(RAI>33) for any of the methods compared within each plot were omitted from that particular analysis.
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pediatric groups (highest F-value between Normal and PVL group:
F(1,53)= 0.94, p>0.05). Post hoc tests revealed that background
exclusion outperformed volume correction (F(1,53) =91.73,
p<0.05/3). Volume correction in turn was more accurate than
smoothing with a 4-mm kernel (F(1,53)=35.59, p<0.05/3). No
additional gain in accuracy is to be expected from a combination of
these three methods, since only the background exclusion method
improved the landmark co-localization compared to the baseline
method.

It should be noted that the lack of a significant difference
between our three pediatric groups might be a mere corollary of
the radiological classification. This classification did not fully
correspond with the objective pathology measures (Fig. 1). To
investigate the possibility of a relationship between the
performance of the normalization algorithm and our objectivation
of ventricle enlargement (LVI) and white matter abnormality
(T2HI), we did a multiple regression analysis on all pediatric
subjects with the background exclusion RAI as the dependent
variable and the two pathology indices as predictor variables.
Partial correlations between the background exclusion RAI and
the two predictor variables were not significant (LVI: t(47)
=0.26, p>0.05; T2HI: t(47)=0.46, p>0.05). This implies that the
performance of the background exclusion method is not only
comparable for the three radiologically defined pediatric groups,
but is also not related to the objective amount of ventricle
enlargement or white matter signal abnormality.

Normalizing to a pediatric template

Fig. 4 shows that even with the background exclusion method
a significant difference remained between the adult and pediatric
subjects (F(1,53)=16.61, p<0.001). Since our results are based on
relative accuracy indices, this effect cannot be attributed to the
fact that the landmarks on the adult images are in closer
correspondence with the MNI template than the landmarks on
the pediatric images. The difference can only be due to an inferior
performance of the normalization algorithm for pediatric brain
images.

To investigate whether the use of a pediatric template would
further improve linear normalization of pediatric brain images,
we repeated the baseline and background exclusion methods with
the CCHMC template as the reference image (Fig. 5). ANOVA
on the relative accuracy indices revealed a significant main effect
of methods (F(3,141)=26.61, p<0.001) and of subject groups
(F(3,47)=5.30, p<0.01). The interaction subject groups×methods
was significant as well (F(9,141)=5.06, p<0.001).



Fig. 5. Mean relative accuracy indices for each subject group for the baseline
and background exclusion methods, and for normalization to the MNI and to
the CCHMC templates. Error bars represent ±1 SD.
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Removing the background noise resulted in better accuracy
levels for both templates, as indicated by planned comparisons
(MNI: F(1,47) =38.64, p<0.001; CCHMC: F(1,47) =50.02,
p<0.001). Planned comparisons did not reveal a significant effect
of templates for the baseline method (F(1,47)=1.61, p=0.21), nor
for the background exclusion method (F(1,47)=0.02, p=0.43). For
both methods, however, a significant interaction between templates
and subject groups was observed (baseline: F(1,47)= 17.56,
p<0.001; background exclusion: F(1,47)=10.69, p<0.01). For the
baseline method, the CCHMC template outperformed the MNI
template for the pooled pediatric groups (F(1,47)=12.10, p<0.01),
whereas the opposite was true for the adult images (F(1,47)
=8.66, p<0.01). For the background exclusion method, the MNI
template was again better than the CCHMC template for adult
images (F(1,47)=7.90, p<0.01). However, no significant
difference was now present between using the CCHMC or the
Fig. 6. Significant clusters of partial correlations between the lateral ventricle vol
(8 mm kernel) white matter and gray matter probability maps, as indicated by voxe
was performed on all pediatric images normalized to the MNI template using the ba
corrected alpha level of 0.05 are overlayed on the ICBM high-resolution single-su
Red indicates clusters of positive partial correlations between white matter maps an
between white matter maps and LVI; blue indicates a negative partial correlation
MNI template when normalizing pediatric images (F(1,47)= 2.85,
p=0.10).

Relationship between pathology measures and normalization
accuracy

The predefined landmarks yield only a single measure for the
quality of linear normalization: the relative accuracy index. This
index provides no information on the spatial distribution of
remaining mismatches after linear normalization. In this final
section, the relationship between the brain pathology and spatial
distribution of tissue density maps will be explored with multiple
regression analyses at the image voxel level. The pediatric gray and
white probability maps, normalized to the MNI template using the
background exclusion method, were modeled as dependent
variables in the regression. The LVI and T2HI were independent
regressors. Of the eight maps computed (2 tissue types×2
regressors×2 directions of effect), only three revealed significant
voxel clusters. All three pertained to the lateral ventricle index. The
results are summarized in Fig. 6.

The largest classification mismatch that was linearly related
to the size of the lateral ventricles (corrected for dependency
on T2HI) was a reduction of white matter probability along
the anterior horn, body, atrium and occipital horns of the
lateral ventricles. Particularly near the body and the anterior
horn of the ventricle, this was complemented by a reduction in
gray matter, reflecting a lateral–inferior shift of the caudate
nucleus and the superior thalamus. A second large region of
ventricle volume dependent tissue distribution mismatch was
seen in the basal ganglia. Here, reduced probability of gray
matter was complemented by increased white matter prob-
ability. Lastly, smaller clusters of voxels showing increased
white matter probability with increasing ventricle volume were
found at the ventral side of the posterior temporal lobe. This
probably reflects the more downward positioning of the ventral
posterior brain.
ume (corrected for the volume of hyperintense WM voxels) and smoothed
l-wise regression analysis using statistical parametric mapping. The analysis
ckground exclusion method. Clusters of ten or more significant voxels at the
bject template (LONI). Five coronal slices and one axial slice are presented.
d lateral ventricle volume (LVI); green indicates a negative partial correlation
between the gray matter maps and LVI (L=left; R=right).
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Discussion

Even without any preprocessing, linear normalization of adult
and child brain images proved highly robust against outliers. Minor
changes in procedure were needed to improve the robustness for
pediatric MR images with ventricle enlargement and white matter
abnormalities. No more outliers were observed for these abnormal
images when correcting for total brain volume or removing
background noise. Without any preprocessing, the successfully
normalized adult images were more accurately normalized than the
successfully normalized pediatric images. An overall gain in
accuracy was achieved by eliminating the weight of the image
background from the computations. Nonetheless, the accuracy
remained lower in radiologically normal child images as well as in
images evidencing white matter disease. This result cannot be fully
explained by biological differences between pediatric and adult
brains because we evaluated the performance of the algorithm
against the best possible coregistration that can be obtained with
the specific landmark configuration of each individual image. The
result is also not entirely due to differences in signal intensities and
distribution of different tissue classes because the normalization
accuracy did not significantly improve when using a child template
instead of the adult MNI template.

Although the volume correction method solved the outlier
problem, it did not result in improved accuracy for the successfully
normalized images. Correcting the slant of the brain or co-
localizing the AC in floating and reference image did not influence
the robustness or the accuracy of the results. These findings indi-
cate that the normalization algorithm is very well able to overcome
initial differences in position and size between floating and refe-
rence images.

Smoothing did not reduce the amount of outliers and even
decreased the landmark co-localization for the successfully
normalized images compared to the baseline method. While
smoothing increases the similarity in intensity distributions bet-
ween floating and reference images, it also reduces the clustering
of voxels within the distribution, which corresponds to the
anatomic differentiations in the image. Consequently, many more
possible matching solutions between the two fuzzy images are
acceptable for the algorithm. This increases the chance that the
algorithm gets stuck in the wrong local maximum while seeking
convergence between a floating and a reference image.

Removing the background noise from the MR images yielded
the best results, for both pediatric and adult images, and regardless
of the neurological characteristics of the subject. Although the
intensity of background noise is usually very low compared to the
intensity of brain voxels, the disproportionally large volume of
background compared to brain voxels in MR images lends a
substantial weight to background noise in the assessment of mutual
information. By removing the background, the algorithm is no
longer influenced by these low intensity signals and is more
focused on brain voxels. For the same reason, the skull stripping
method performed well, although this method did yield some
unsuccessful solutions. For adult images, skull stripping was less
accurate than removing background noise. Conversely, for children
in the PVL group it outperformed the background exclusion
method. For the two other pediatric groups no difference between
skull stripping and background exclusion was found.

The present study also allows for a comparison between adult
and pediatric templates. The landmarks defined on the adult brain
images fitted better the MNI template than the CCHMC template.
Since pediatric brains have been shown to differ from adult
brains in size and morphology (Giedd et al., 1996; Sowell et al.,
1999, 2002), one would expect pediatric brains to match better
the CCHMC than the MNI template. Remarkably, the mathema-
tically optimal normalization solution for pediatric images did not
depend on the choice of template. This finding might be due to
more heterogeneity in the pediatric template. The CCHMC
templates are divided into three age groups: young (5–10 years),
medium (10–13 years) and old (13–19 years). Neither of these
age ranges fully covered any of our three pediatric groups (Table
1). Therefore, the CCHMC template based on the entire data set
of 200 children was chosen in the present study. This template
represents the variability in normal age-related brain morphology
for children from 5 to 19 years old. This might explain why the
landmarks on this template do not correspond better with the
child brains than the MNI template. More age-appropriate
pediatric templates may yield a mathematically better correspon-
dence between the two sets of landmarks. The fact that all
pediatric subjects in our study were born prematurely might also
explain why the optimal landmark fit did not improve with a
pediatric template. Even in the absence of overt white matter
damage very preterm infants can show reduced gray matter
(Ajayi-Obe et al., 2000; Inder et al., 2005), in the cortex as well
as in deep gray matter and in myelinated white matter (Inder et
al., 2005), although these abnormalities are much more pro-
nounced with increasing prematurity and with additional white
matter abnormality.

Without any modifications to the normalization procedure,
pediatric images were more accurately normalized to the CCHMC
template than to the MNI template. Removing the background
noise resulted in even better accuracy levels when normalizing
these pediatric images to the MNI template. This effect of
background noise was also observed for the CCHMC template.
However, with background noise removed from the images, the
use of the CCHMC template did not significantly improve
normalization accuracy over the use of the MNI template. To-
gether, these findings imply that the removal of background noise
is the most important modification for accurate normalization of
pediatric images. With background noise removed, considerations
beyond accuracy may determine the choice between the MNI and
the CCHMC template.

Three crucial factors might explain the results obtained with
the CCHMC template. Firstly, the CCHMC template reflects the
large variability in normal age-related brain morphology. This
might allow more variable solutions to the normalization of
individual child brain images. Secondly, the CCHMC template
was created from 3.0 Tesla images, while our images were
acquired on a 1.5-T scanner. The present study cannot evaluate the
contribution of the difference in magnetic field strengths, but this
difference might have corrupted the intensity-based normalization
algorithm. Lastly, all our pediatric subjects were born prematurely.
As noted above, this fact might lead to a different tissue
composition and hence might influence the intensity-driven linear
normalization algorithm.

The present study also investigates the difference in normal-
ization accuracy between the three pediatric subgroups. No method
included in this study revealed a differential effect on the relative
accuracy indices for the three subgroups. This implies that the
intensity-based linear normalization algorithm is not influenced by
lateral ventricle enlargement or white matter abnormalities in terms
of co-localizing two sets of landmarks. In terms of optimal accuracy
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indices, some remarkable results were obtained. On the one hand, no
difference in optimal accuracy indices was found between the
radiologically normal and the PVL+ children. This implies that the
conspicuous and usually extensive lateral ventricle enlargement has
no impeding effect on the best possible linear normalization
solution. This finding may be explained by the fact that the
predefined landmarks did not directly encode the position of the
ventricles because it was obvious that affine normalization cannot
and should not normalize such large structural abnormalities. The
regression analyses on the tissue probability maps show that this
goal is achieved. The main regions of misalignment were located in
periventricular and subcortical regions, while the boundaries
between cerebrospinal fluid and gray matter and between gray and
white matter in the more peripheral brain were well aligned with the
template. On the other hand, a remarkable difference in optimal
accuracy indices was found between the PVL group and the two
other pediatric groups. The landmarks on the PVL affected images
without ventricle enlargement could not be brought equally close to
the landmarks on the two templates than the landmarks for the two
other pediatric groups. This unexpected finding might be due to the
fact that our sample of PVL children is accidentally atypical. Or, it
might be due to unknown characteristics of periventricular
leukomalacia that could alter the brain in such a way that the
predefined landmarks deviate more from the template. There is still
no good explanation why PVL results in enlarged ventricles in some
cases and not in others.

Conclusion

Our results show that the coregistration of patient images with
PVL and lateral ventricle dilatation can be considerably improved
without increased sophistication of the algorithms and procedures.
Simple modifications as eliminating background noise, and/or
performing a global volume correction suffice for successful
normalization. Moreover, the accuracy of the normalization solution
seems relatively unaffected by the occurrence of extensive structural
deformations, at least for the outer brain structures. Of course, the
effect of the structural abnormality on non-linear normalization
needs yet to be established. But this effect cannot be evaluated fully
without the knowledge that the starting point of the non-linear
analysis – i.e. the linearly normalized image – is robust against the
amount of structural abnormality. The present study is not a
comprehensive validation of linear spatial normalization procedures
for patient brain images. Nonetheless, it shows that with minor
modifications, at least the linear normalization step is feasible for
clinical as well as research purposes with respect to children with
PVL.
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