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Abstract
In this paper a multi-channel speech enhancement framework
for distant speech acquisition in noisy and reverberant environ-
ments for Non-negative Matrix Factorization (NMF)-based Au-
tomatic Speech Recognition (ASR) is proposed. The system is
evaluated for its use in an assistive vocal interface for physically
impaired and speech-impaired users. The framework utilises
the Spatially Pre-processed Speech Distortion Weighted Multi-
channel Wiener Filter (SP-SDW-MWF) in combination with a
postfilter to reduce noise and reverberation. Additionally, the
estimation uncertainty of the speech enhancement framework is
propagated through the Mel-Frequency Cepstrum Coefficients
(MFCC) feature extraction to allow for feature compensation
in a later stage. Results indicate that a) using a trade-off pa-
rameter between noise reduction and speech distortion has a
positive effect on the recognition performance with respect to
the well-known GSC and MWF and b) the addition of a post-
filter and the feature compensation increases performance with
respect to several baselines for a non-pathological and patho-
logical speaker.

Index Terms: multi-channel speech enhancement, speech
recognition, uncertainty of estimation, dysarthric speech

1. Introduction
A Vocal User Interface can make a significant difference for
people with a physical disability for whom controlling domes-
tic devices would require a substantial amount of physical ef-
fort [1]. Current state-of-the-art Automatic Speech Recognition
(ASR) is not sufficiently robust to dialectic or dysarthric speech,
which is often encountered with disabled users. Therefore, this
study is conducted in the context of a speaker-dependent rec-
ognizer that learns from user interactions [2]. Secondly, and
most relevant for this work, is the fact that for most users it is
not convenient or comfortable to wear a close-talk microphone,
creating the need for a robust far-talk speech acquisition sys-
tem. Speech signals recorded with a distant microphone con-
tain noise and reverberation which degrade the performance of
ASR systems. Whereas speech enhancement aims to improve
speech quality or intelligibility, robust ASR aims to reduce the
mismatch between the noisy and reverberant speech features
and the trained acoustic model. Despite this fact it is reason-
able to assume that speech enhancement algorithms are useful
to achieve robust ASR.

Multi-channel algorithms may obtain a significant gain over

single-channel algorithms since the former exploit spatial diver-
sity. Regarding adaptive multi-channel speech enhancement al-
gorithms we can distinguish adaptive beamforming and Multi-
channel Wiener Filtering (MWF) [3]. A common implementa-
tion of adaptive beamforming is the Generalized Sidelobe Can-
celler (GSC) [4]. While the GSC relies on the assumption that
the microphone signals are delayed versions of each other and
needs an estimate of the angle of arrival, the MWF utilises no
a-priori information on the signal model. In general, the goal
of MWF is to estimate the desired speech in a Minimum Mean
Squared Error (MMSE) sense using second-order statistics. In
[3] the Speech Distortion Weighted-MWF (SDW-MWF) was
introduced providing a trade-off between noise reduction and
speech distortion. Here the SDW-MWF was integrated in the
GSC obtaining the Spatially Pre-processed SDW-MWF (SP-
SDW-MWF) providing more robustness against signal model
errors. In case of diffuse noise fields, when both desired and
undesired acoustic sources are in the same direction or due to
signal model mismatch, the previous algorithms may not pro-
vide sufficient noise reduction. To reduce the residual noise and
reverberation some researchers have proposed a scheme with
multi-channel processing followed by a single-channel postfil-
ter [5, 6].

In the last decade observation uncertainty techniques have
been introduced in the context of robust ASR [7, 8, 9, 10].
In traditional feature compensation techniques the cleaned up
speech feature vector is assumed to be a deterministic estimate.
Observation uncertainty techniques describe each feature as a
probabilistic density function to include the uncertainty. Many
speech enhancement techniques however operate in the Short
Time Fourier Transform (STFT) domain whereas the speech
recognition features are, in our case, Mel-Frequency Cepstral
Coefficients (MFCCs). In [9] a method was introduced to es-
timate the statistics in the STFT domain and propagate these
through the feature extraction process to obtain a probabilistic
MFCC feature description. An estimate of the uncertain vari-
ance was obtained empirically using the measure of change be-
tween input and output. In [11, 12] these were extended based
on a Gaussian model of uncertainty.

The state-of-the-art speaker-dependent ASR for speech-
impaired users introduced in [2] has not yet been evaluated in
adverse acoustic environments. The main contributions of this
paper are a) a robust distant speech enhancement framework
based on the generic SP-SDW-MWF scheme with postfilter and
observation uncertainty techniques, b) the evaluation of the pro-
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posed framework for its use in the speaker-dependent ASR in
adverse acoustic environments for both a pathological and a
non-pathological speaker.

2. Proposed framework
This Section introduces the proposed framework which consists
out of a multi-channel speech enhancement stage followed by a
postfilter where instead of a deterministic estimate of the clean
speech, a probabilistic representation is estimated which is in-
corporated into the ASR to allow for feature compensation.

2.1. Multi-channel speech enhancement

Consider a model where each acoustic path between a speaker
and microphone m is represented as a Room Impulse Response
(RIR) hm[n]. Using this representation each microphone signal
can be modelled as follows:

um[n] = s[n] ∗ hm[n] + vm[n],m = 1 . . .M, (1)

with ∗ denoting the convolution operator, vm[n] the additive
noise component and um[n] the acquired input signal, at time
index n. Our objective is to estimate the desired speech signal
s[n]. The SP-SDW-MWF depicted in Fig. 1 is a general scheme
that encompasses multiple multi-channel speech enhancement
algorithms. It consists out of a Delay-and-Sum Beamformer
(DSB), blocking matrix and an adaptive stage. The DSB is a
fixed beamformer that, ideally, steers a beam in the direction
of the desired speech source by time aligning and adding the
M different microphone signals um[n] (m = 0, . . . ,M − 1)
to obtain the so-called speech reference y0[n]. The blocking
matrix subtracts the different time-aligned microphone chan-
nels in a pair-wise manner to obtain M − 1 noise references
ym[n]. The goal of the adaptive stage is to estimate the noisy
component in the speech reference yv

0 [n]. Let K be the num-
ber of reference channels (for now, K = M ) to the adaptive
stage and L the filter length. Consider the L-dimensional vec-
tor yi[n] defined as [yi[n] yi[n− 1] . . . yi[n− L+ 1]]T

and the KL-dimensional stacked vector y[n] defined as
[yT

M−K [n] yT
M−K+1[n] . . . yT

M−1[n]]
T . Let y[n] be the

reference input to the adaptive stage and w[n] a vector of Finite
Impulse Response (FIR) coefficients which is defined similarly
as y[n]. The speech reference signal y0[k] is delayed by Δ
samples to obtain a non-causal filter. The estimated noise is
subtracted from the speech reference to obtain the output signal
z[n]:

z[n] = yv
0 [n−Δ]−wT [n]y[n], (2)

with (.)T denoting transpose operation. The SP-SDW-MWF
aims to minimize a weighted sum, depending on parameter μ,
of the residual noise energy ev[n] and speech distortion energy
es[n]:

J(w[n]) = E{
ev [n]︷ ︸︸ ︷

‖yv
0 [n−Δ]−wT [n]yv[n]‖2}

+
1

μ
E{‖wT [n]ys[n]‖2︸ ︷︷ ︸

es[n]

},
(3)

with E(.) denoting the expectation parameter and upperscript
s or v denoting the speech or noise component respectively. If
μ > 1 emphasis is put on noise reduction. When μ < 1 em-
phasis is put on reducing speech distortion. In case μ = 1 the
MMSE estimate is obtained. The minimizer for the cost func-
tion is obtained in (4).

Figure 1: SP-SDW-MWF scheme consisting of a DSB, blocking
matrix and a SDW-MWF in the adaptive stage.

w[n] =[E{yv[n]yv,T [n]}
+

1

μ
E{ys[n]ys,T [n]}]−1E{yv[n]yv

0 [n−Δ]}. (4)

Due to the assumption that speech and noise are uncorrelated
ys[n]ys,T [n] can be estimated by subtracting yv[n]yv,T [n]
from y[n]yT [n] which are estimated in periods of only noise,
and noisy speech respectively. This introduces the need for
a Voice Activity Detection (VAD). Depending on the usage
of the spatial pre-processor, of inclusion of the FIR filter
w0 and the choice of the trade-off parameter μ, several al-
gorithms are obtained. Without w0 (K = M − 1) and
with μ = +∞ the algorithm behaves as a GSC. For any
other values of μ speech distortion is regularized depend-
ing on μ and the amount of speech leakage. This algo-
rithm is formally known as the Speech Distortion Regularized-
GSC (SDR-GSC) [3]. Consider the L-dimensional vector
ui[n] defined as [ui[n] ui[n− 1] . . . ui[n− L+ 1]]T

and the ML-dimensional stacked vector u[n] defined as
[uT

0 [n] uT
1 [n] . . . uT

M−1[n]]
T . In case no spatial pre-

processing is used, by changing ys,v and yv
0 in Equation 4

to us,v and uv
1 respectively the SDW-MWF is formed. For

μ = 1 this resembles a MMSE estimate which is denoted as the
MWF. In this paper an adaptive frequency-domain implementa-
tion (Recursive Least Squares-type) is used. More information
regarding this implementation can be found in [13].

2.2. Single-channel postfilter

The single-channel postfilter is directly applied to the output
z[n] of the multi-channel speech enhancement scheme. z[n]
can be expressed in the STFT domain as:

Zl,k = Sl,k +Dl,k +Rl,k +Nl,k

= Xl,k +Rl,k +Nl,k,
(5)

with k denoting the discrete frequency index and l the frame in-
dex. This signal is assumed to contain the desired speech signal
Sl,k, residual early Rl,k and late reverberation Dl,k along with
residual noise Nl,k. Due to the fact that Dl,k does not have a
negative effect on the recognition performance [14] the objec-
tive is estimating Xl,k by applying a spectral gain factor Gl,k

as follows,
X̂l,k = Gl,kZl,k. (6)

In [15] a MMSE Log-Spectral Amplitude (LSA) estimator was
proposed. This estimator uses the logarithm of the Short-Time
Spectral Amplitude rather than STFT in its optimization crite-
rion and is defined as:

Âl,k = argmin
Â′

l,k

E{|logAl,k − log Â′l,k|2}, (7)
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where Al,k is the amplitude of the clean Fourier coefficient af-
ter marginalizing out the phase in Xl,k. Assuming a Gaussian
prior distribution on Al,k, Rl,k and Nl,k with zero mean and
variances λXl,k , λRl,k and λNl,k respectively and a likelihood
p(Zl,k|Al,k) with mean Al,k and variance λRl,k + λNl,k the
criterion in (7) corresponds to the expectation of the posterior
distribution [15]:

Âl,k = exp(E〈logAl,k|Zl,k〉), (8)

which leads to the following optimal spectral gain [15]:

Gl,k = ql,k exp (
1

2

∫ ∞

ql,kγl,k

exp−t
t

dt), ql,k =
ζl,k

1 + ζl,k
, (9)

with ql,k the Wiener gain, ζl,k being the a-priori Signal-to-
Noise Ratio (SNR) and γl,k the a-posteriori SNR defined as:

ζl,k =
λXl,k

λRl,k + λNl,k

, γl,k =
|Zl,k|2

λRl,k + λNl,k

. (10)

Regarding equation 9 the reader is advised to read the litera-
ture in [15]. ζl,k is estimated using the Decision-Directed (DD)
algorithm [15]. Both the DD algorithm and γl,k need an es-
timate of λRl,k and λNl,k . λNl,k is estimated using an algo-
rithm called Improved Minima Controlled Recursive Averaging
(IMCRA) [16] which estimates the speech presence probability
to determine the recursive smoothing parameter for each fre-
quency bin. In [17] it was shown that the late reverberant vari-
ance λRl,k can be estimated directly from the variance of the
speech signal λXl,k based on a statistical RIR model:

λRl,k = e−2ηtmλXl′,k , l′ = l − tm
tshift

, (11)

where tshift resembles the amount of shift between consecu-
tive frames, tm the boundary between early and late reverber-
ation (typically 50ms) and η the decay rate which is inversely
proportional to the reverberation time T60.

2.3. Integration of front-end and back-end

Training and recognition are both based on Non-negative Ma-
trix Factorization (NMF) which relies on modelling utterances
as a linear combination of acoustic units [2]. Unlike other ASR,
the NMF-based ASR can deal with weak supervision. It is de-
signed to learn from a spoken command accompanied by an
action on some device’s user interface (e.g. ”Turn on the light”
when pressing a certain button). The NMF-based ASR needs
a set of posterior probabilities p(ci|ol) where a codebook rep-
resents multiple codewords ci and a MFCC feature vector ol

is given for a particular frame l. In the original setup a de-
terministic estimate of the desired speech was used to extract
frame-based MFCC features. To obtain a codebook, the avail-
able training data is clustered in an unsupervised manner, using
a k-means iterative process [2], to represent the data as a set of
codewords ci each containing a Gaussian. Given the codebook
and a MFCC feature vector ol, a vector containing a posterior
probability p(ci|ol) for each codeword is obtained using soft
Vector Quantization (soft VQ):

p(ci|ol) =
p(ol|ci)p(ci)

p(ol)
≈ p(ol|ci)∑

i p(ol|ci) . (12)

More information regarding the training and recognition pro-
cess can be found in [2].

Instead of using a deterministic estimate of Xl(k), com-
bining this with an uncertainty of the estimate provides more
information for the ASR. The integration between front-end and
back-end basically consists of 3 steps: 1) estimation of poste-
rior distribution p(Xl,k|Zl,k) for each frame l and frequency
index k, 2) propagation of the posterior distribution through the
MFCC feature extraction and 3) usage of this uncertainty for
codebook-based feature compensation. To obtain an estimate
of the uncertainty of observation in the STFT domain a com-
plex Gaussian model of uncertainty was used [12]:

p(Xl,k|Zl,k) = NC(X̂l,k, λl,k). (13)

However, for the posterior distribution of Equation 8 no closed-
form solution is available. It was shown that the uncertainty λl,k

of the MMSE-LSA can be approximated by using the Bayesian
MSE of the single-channel Wiener filter [12]:

λl,k ≈ ζl,k
1 + ζl,k

(λRl,k + λNl,k ). (14)

Once the posterior distribution of the enhanced speech is ob-
tained it is transformed through the MFCC feature extraction
using the technique in [11, 12], known as Uncertainty Propaga-
tion (UP). In short, the different steps in the MFCC extraction
process are treated separately containing both linear and non-
linear transformations. Finally, each MFCC vector is charac-
terized by a likelihood p(ol|Zl) where Zl represents the STFT
vector of z[n] for a particular frame l. Obtaining the poste-
rior distribution p(ci|ol) in (12) is achieved by using Modified
Imputation (MI) [12] which will allow for a codebook-based
feature compensation of ol. The imputed value of the MFCC
vector oMI

i,l , assuming it is generated by codeword i, with prior
p(o′l|cl) taking the uncertainty model p(o′l|Zl) into account is
given as:

oMI
i,l = argmax

o′
l

{p(o′l|Zl)p(o
′
l|cl)}. (15)

3. Experimental setup
The results presented in this work have been obtained us-
ing the DOMOTICA-2 database acquired during the ALADIN
project [18] which contains recordings of dysarthric and im-
paired speakers controlling a home automation system [2, 19].
For the evaluation, a pathological (PS) and non-pathological
(NPS) speaker were selected. For these speakers, Speech In-
telligibility (SI) scores were obtained using an automated tool
[20], leading to a score of 64,2% and 93,4% respectively which
are the lowest and highest SI in the DOMOTICA-2 corpus.
Each utterance can be decomposed into one or more so-called
slots values (e.g. ”Kitchen light” and ”on”). The amount of slots
values determines the complexity of the classification problem.
The corpus of the PS contained 18 slots values while the NPS
has 21. In this experiment 4 different realizations of 28 differ-
ent commands were used. For the purpose of evaluating these
algorithms on robust distant speech recognition a simulation en-
vironment was defined. RIRs were simulated using the Image
Source Method [21] in a room with dimensions 5x5x3m and a
T60 time of 0.4s. A linear microphone array containing three
microphones with an inter-microphone distance of 6.8 cm lo-
cated at [0.01m;2.5m;2m] was used. The position of the desired
source and noise were randomly chosen for each utterance to
minimize position-related bias. Each command was convolved
with a different RIR and each added to a different noise realiza-
tion using stationary (white Gaussian) and non-stationary noise
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stationary noise non-stationary noise stationary noise non-stationary noise

SNR(dB) -3 6 15 AI -3 6 15 AI -3 6 15 AI -3 6 15 AI

Clean 98.9 98.9 98.9 98.9 98.9 98.9 93.6 93.6 93.6 0.0 93.6 93.6 93.6
Unpre-processed 54.6 77.3 79.5 0.0 33.2 56.3 68.4 0,0 34.9 53.5 61.2 0.0 24.0 37.7 47.9 0.0

DSB 61.6 77.8 80.8 2.1 37.4 54.2 65.0 1.3 38.7 53.3 62.2 1.7 28.2 45.7 51.7 6.5
GSC 75.5 85.5 86.4 11.0 66.5 78.5 84.8 24.1 57.7 63.7 67.1 12.1 46.0 57.7 66.2 20.5

MWF 58.8 81.7 82.3 3.6 31.2 61.0 71.7 2.1 44.7 56.7 63.1 5.3 21.9 26.8 48.2 -1.0

SDR-GSC 75.7 86.3 88.4 11.3 63.4 81.5 85.0 24.7 56.8 64.7 68.8 13.0 46.3 61.5 68.5 22.5
SDW-MWF 71.9 84.4 84.4 8.4 62.6 80.9 86.1 24.7 52.3 58.0 61.2 6.3 40.0 51.1 59.9 14.1

SP-SDW-MWF 73.4 82.6 83.7 7.7 57.3 79.2 84.6 22.0 49.1 60.6 62.2 7.0 36.8 52.0 62.4 14.9
SDR-GSC-PF 81.0 92.0 92.7 17.1 67.8 77.7 88.3 25.1 60.2 73.9 75.5 21.6 49.2 60.3 70.7 23.8

SDR-GSC-PF-U 84.6 95.0 93.0 19.9 68.4 81.5 89.6 27.6 65.9 77.0 78.0 24.7 47.3 63.7 74.5 25.0

Table 1: Results for the non-pathological speaker (left) and pathological speaker (right) for stationary and non-stationary noise in
function of SNR (dB). Overall, the SDR-GSC-PF-U outperforms the alternatives with an AI ranging from 19.9 to 27.6%.

(Chime corpus [22]). For evaluation purposes a five-fold cross-
validation was performed. Commands were grouped in groups
of nearly equal sizes by minimizing the Jensen-Shannon diver-
gence between the slot value distributions of each block [2].
Due the fact that the ASR is speaker-dependent, in a practical
situation, the ASR is trained based on pre-processed recorded
data containing residual noise and reverberation. Each com-
mand for each fold in the trainingsset was duplicated and com-
bined with two different SNR values (1.5dB and 10.5dB), con-
volved with a different RIR and added to a different noise re-
alization. This data set was also pre-processed for each speech
enhancement algorithm to obtain the training data set.

For the implementation of the SP-SDW-MWF scheme pre-
sented in [13] a filter length L of 400 samples was used at a
sampling rate of 16kHz. For the (SP-)SDW-MWF a trade-off
parameter μ of 100, and for the SDR-GSC a value μ = 1000
was chosen which turned out to be good values based on the
training data. Other parameters were set as described in [13].
The filter length of the single-channel postfilter was set to 400
samples with an overlap of 240 which is similar to the MFCC
framing. For the boundary between early and late reverberation
a value tm of 50ms was used and the T60 was assumed to be
known a priori. Regarding the estimation of the noise variance
with IMCRA we refer to [16] for the extensive list of param-
eters. For the propagation of the uncertainty a full covariance
was used [12].

4. Results
In Table 1 the results are shown for the experimental setup de-
scribed in Section 3. For the entire corpus we have the golden
standard description available, which will be used to evaluate
the system based on the slot F -score (%) which considers both
the slot precision and slot recall using a harmonic mean. The
proposed framework is compared with an unpre-processed mi-
crophone signal, clean speech, DSB, GSC and MWF. Results
for -3, 6 and 15 dB are shown along with the average improve-
ment (AI) with respect to the unpre-processed baseline. The
AI is based on SNR values of -3 to 15 dB in steps of 3dB.
Compared to the clean baseline, results drop considerably for
the unpre-processed microphone signal. Although the results
for clean speech are close, the drop in performance for the PS
with respect to a decreasing SNR is much higher. Several vari-
ations of the SP-SDW-MWF scheme are evaluated. The SDR-
GSC outperforms the alternatives and therefore only this algo-
rithm is shown with the addition of a postfilter (denoted PF)

and usage of uncertainty for feature compensation (denoted as
U). Due the fact that the ASR is trained on the enhanced noisy
speech, speech distortion has a smaller impact on the recogni-
tion performance compared to clean speech training. However,
it is not beneficial to put all emphasis on noise reduction. Al-
though a small difference, the SDR-GSC (μ = 1000) performs
better than the GSC (μ = +∞). Also, the MWF is outper-
formed by the SDW-MWF where in this case more emphasis is
put on noise reduction compared to the MWF. This shows that
using a proper value for μ has a beneficial effect on recogni-
tion performance. As shown in [3] the SP-SDW-MWF outper-
forms the SDR-GSC in terms of SNR enhancement but intro-
duces additional speech distortion which could explain the fact
that the SDR-GSC outperforms the SP-SDW-MWF. The addi-
tion of a postfilter does increase the performance especially for
the stationary noise type in case of low SNRs which is expected
because of the lower noise variance estimation errors during
speech presence compared to the non-stationary noise type. For
the entire experiment it is clear that the SDR-GSC-PF-U outper-
forms the other alternatives with an AI 19.9-27.6% for the non-
pathological speaker and 24.7-25.0% for the dysarthric speaker.

5. Conclusions
Several multi-channel speech enhancement algorithms based on
GSC and MWF were compared for robust ASR in two con-
trolled environments using data acquired from a pathological
and non-pathological speaker. It was shown that the usage of the
trade-off parameter between noise reduction and speech distor-
tion has a positive effect on the recognition performance. Over-
all, the SDR-GSC performed significantly better than the al-
ternative multi-channel speech enhancement algorithms. The
additional postfilter has a positive effect on all algorithms espe-
cially in the case of stationary noise at low SNRs. Combining
this with an estimate of the estimation uncertainty also further
improved the performance. Overall, the SDR-GSC-PF-U out-
performed the other algorithms for both speakers in both en-
vironments with an average improvement of 22.3%. Further
research will focus on a) making the usage of the parameter μ
more practical by adaptively estimating its optimal value and b)
evaluating the framework for a larger set of speakers.

6. Acknowledgements
We thank IWT-SBO projects ALADIN [18] (100049), SINS
[23] (130006) and IC1303 COST Action AAPELE.

749



7. References
[1] J. Noyes and C. Frankish, “Speech recognition technology for in-

dividuals with disabilities,” Augmentative and Alternative Com-
munication, vol. 8, no. 2, pp. 297–303, 1992.

[2] B. Ons, N. Tessema, J. van de Loo, J. F. Gemmeke, G. De Pauw,
W. Daelemans, and H. Van hamme, “A self learning vocal in-
terface for speech-impaired users,” in Proc. of the Fourth Work-
shop on Speech and Language Processing for Assistive Technolo-
gies. Grenoble, France: Association for Computational Linguis-
tics, August 2013, pp. 73–81.

[3] A. Spriet, M. Moonen, and J. Wouters, “Spatially pre-processed
speech distortion weighted multi-channel Wiener filtering for
noise reduction,” Signal Processing, vol. 84, no. 12, pp. 2367–
2387, 2004.

[4] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly
constrained adaptive beamforming,” IEEE Transaction on Anten-
nas and Propagation, vol. 30, no. 1, pp. 27–34, January 1982.

[5] S. Gannot and I. Cohen, “Speech enhancement based on the gen-
eral transfer function GSC and postfiltering,” IEEE Transactions
on Speech and Audio Processing, vol. 12, no. 6, pp. 561–571,
2004.

[6] B. Cauchi, I. Krodrasi, R. Rehr, S. Gerlach, A. Jukic, T. Gerk-
mann, S. Doclo, and S. Goetze, “Joint dereverberation and noise
reduction using beamforming and a single-channel speech en-
hancement scheme,” in Proc. 2014 REVERB Workshop, Florence,
Italy, May 2014.

[7] R. F. Astudillo, S. Braun, and E. A. P. Habets, “A multichannel
feature compensation approach for robust ASR in noisy and re-
verberant environments,” in Proc. 2014 REVERB Workshop, Flo-
rence, Italy, May 2014.

[8] R. F. Astudillo, D. Kolossa, A. Abad, S. Zeiler, R. Saeidi,
P. Mowlaee, J. P. da Silva Neto, and R. Martin, “Integration of
beamforming and uncertainty-of-observation techniques for ro-
bust ASR in multi-source environments,” Computer Speech Lan-
guage, vol. 27, no. 3, pp. 837–850, May 2013.

[9] D. Kolossa, A. Klimas, and R. Orglmeister, “Separation and ro-
bust recognition of noisy, convolutive speech mixtures using time-
frequency masking and missing data techniques,” in Proc. IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics, New Paltz, NY, Oct. 2005, pp. 82–85.

[10] T. T. Kristjansson and B. J. Frey, “Accounting for uncertainty in
observations: a new paradigm for robust automatic speech recog-
nition,” University of Toronto, Tech. Rep., 2013.

[11] R. F. Astudillo, A. Abad, and J. P. da Silva Neto, “Integration
of beamforming and automatic speech recognition through prop-
agation of the Wiener posterior,” in Proc. ICASSP, Kyoto, March
2012, pp. 4909–4912.

[12] R. F. Astudillo, “Integration of Short-Time Fourier Domain
Speech Enhancement and Observation Uncertainty Techniques
for Robust Automatic Speech Recognition,” Ph.D. dissertation,
Technical University Berlin, Germany, 2010.

[13] S. Doclo, A. Spriet, J. Wouters, and M. Moonen, “Frequency-
domain criterion for the speech distortion weighted multichannel
Wiener filter for robust noise reduction,” Speech Communication,
vol. 49, no. 7-8, pp. 636–656, 2007.

[14] A. Sehr, E. A. P. Habets, R. Maas, and W. Kellermann, “Towards
a better understanding of the effect of reverberation on speech
recognition performance,” in Proc. International Workshop on
Acoustic Echo and Noise Control (IWAENC), Tel Aviv, Israel, Au-
gust 2010.

[15] Y. Ephraim and D. Malah, “Speech enhancement using a mini-
mum mean-square error log-spectral amplitude estimator,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 32,
no. 6, pp. 433–445, 1985.

[16] I. Cohen, “Noise spectrum estimation in adverse environments:
improved minima controlled recursive averaging,” IEEE Transac-
tions on Speech and Audio Processing, vol. 11, no. 5, pp. 466–
475, 2003.

[17] E. A. P. Habets, S. Gannot, and I. Cohen, “Late reverberant spec-
tral variance estimation based on a statistical model,” IEEE Signal
Processing Letters, vol. 16, pp. 770–773, 2009.

[18] ALADIN. Adaptation and Learning for Assistive Domestic vocal
INterfaces. [Online]. Available: http://www.aladinspeech.be/

[19] J. F. Gemmeke, B. Ons, N. Tessema, H. Van hamme, J. van de
Loo, G. De Pauw, W. Daelemans, J. Huyghe, J. Derboven, L. Vue-
gen, B. Van Den Broeck, P. Karsmakers, and B. Vanrumste, “Self-
taught assistive vocal interfaces: an overview of the ALADIN
project,” in INTERSPEECH, Lyon, France, 2013, pp. 2039–2043.

[20] C. Middag, “Automatic analysis of pathological speech,” Ph.D.
dissertation, Ghent University, Belgium, 2012.

[21] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small-room acoustics,” Journal Acoustical Society of Amer-
ica, vol. 65, no. 4, pp. 943–950, April 1979.

[22] H. Christensen, J. Barker, N. Ma, and P. D. Green, “The chime
corpus: a resource and a challenge for computational hearing in
multisource environments,” 2010, pp. 1918–1921.

[23] SINS. Sound INterfacing through the Swarm. [Online]. Available:
http://www.esat.kuleuven.be/sins/

750


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Hugo Van hamme
	----------

