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Abstract

In industrial experiments, there are often restrictions in randomization caused by
equipment and resource constraints, as well as budget and time restrictions. Next
to the split-plot and the split-split-plot design, the staggered-level design is an in-
teresting design option for experiments involving two hard-to-change factors. The
staggered-level design allows both hard-to-change factors to be reset at different
points in time, resulting in a typical staggering pattern of factor level resettings. It
has been shown that, for two-level designs, this staggering pattern leads to statis-
tical benefits in comparison to the split-plot and the split-split-plot design. In this
paper, we investigate whether the benefits of the staggered-level design carry over to
situations where the objective is to optimize a response, and where a second-order
response surface model is in place. To this end, we study several examples of D-
and I-optimal staggered-level response surface designs.

Keywords: D- and I-optimality criterion, cost, response surface model, split-plot
design, split-split-plot design, staggered-level design.

1 Introduction

Many industrial experiments involve two categories of factors: easy-to-change factors,
whose levels are reset independently for each run, and hard-to-change factors , whose lev-
els are not reset independently for each run. This can be due to equipment and resource
constraints, but also to budget and time restrictions. For situations in which there is only
one hard-to-change factor or in which the levels of all hard-to-change factors need to be
reset at the same time, the split-plot design is the appropriate design option.

The design and analysis of split-plot industrial experiments has received considerable at-
tention in the literature in recent years. Huang, Chen and Voelkel (1998), Bingham and
Sitter (1999), and Bingham, Schoen and Sitter (2004) focused on the construction of two-
level regular fractional factorial split-plot designs using the minimum aberration criterion.
Kulahci and Bisgaard (2005) use Plackett and Burman designs to construct non-regular



two-level split-plot designs. Vining, Kowalski and Montgomery (2005), and Parker,
Kowalski and Vining (2006, 2007a, 2007b) discussed equivalent-estimation split-plot re-
sponse surface designs for which ordinary least squares estimation leads to the same esti-
mates as generalized least squares estimation. Goos and Vandebroek (2001, 2003, 2004)
and Jones and Goos (2007) constructed D-optimal split-plot designs using point-exchange
and coordinate-exchange algorithms, respectively. Macharia and Goos (2010) and Jones
and Goos (2012a) showed a range of D-optimal and D-efficient designs that also result
in equivalent OLS and GLS estimators. Finally, Jones and Goos (2012b) compared the
performance [-optimal and D-optimal split-plot designs for response surface models, while
Mylona, Goos and Jones (2013) present a new optimality criterion for selecting split-plot
designs.

For situations in which there are at least two hard-to-change factors or two classes of
hard-to-change factors, the split-split-plot design is the most common and known de-
sign configuration. The literature on industrial split-split-plot designs is, however, rather
limited. Trinca and Gilmour (2001) discussed the design and analysis of multi-stratum ex-
periments, special cases of which are split-plot and split-split-plot designs. Schoen (1999)
constructed an orthogonal split-split-plot design in a combinatorial way by joining frac-
tional factorial designs in order to create the desired nesting structure. Jones and Goos
(2009) discussed a coordinate-exchange algorithm to compute D-optimal split-split-plot
designs.

Arnouts and Goos (2012) left the well-trodden path of split-plot and split-split-plot de-
signs and presented a new type of two-level design for situations in which there are two
classes of hard-to-change factors, the number of settings of the hard-to-change factors is
not dictated by the physicalities of the experiment (such as oven or batch sizes), and the
runs are conducted under homogeneous circumstances. Contrary to the split-split-plot
design, this new design option allows the two classes of hard-to-change factors to be reset
independently at different points in time. Since the structure of the new design option
requires the hard-to-change factors to be reset alternatingly, the new design option is
named a staggered-level design. Arnouts and Goos (2012) compared the performance of
D-optimal staggered-level designs to the performances of D-optimal split-plot and split-
split-plot designs in case of a main-effects-plus-two-factor-interaction-effects model. It
turned out that the D-optimal staggered-level design was not only the most cost-efficient
design of the three options but also statistically the most efficient option.

In this article, we introduce the staggered-level design as a cost-efficient and statistically
efficient alternative for split-plot and split-split-plot response surface designs. We do not
only focus on D-optimal designs, which maximize the determinant of the information
matrix, but we also generate I-optimal designs, which minimize the average prediction
variance. The consideration and use of I-optimal designs is a logical choice since the goal
in response surface experimentation is usually to make predictions. Moreover, Hardin
and Sloane (1993) showed that D-optimal completely randomized response surface de-
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signs perform poorly in terms of the [-optimality criterion, while I-optimal designs per-
form reasonable well with respect to the D-optimality criterion, when the design region
is cuboidal. When the experimental region is spherical, the differences between D- and
[-optimal designs are less pronounced, but generally still in favor of I-optimal designs.
Jones and Goos (2012b) observe a similar pattern for split-plot response surface designs.

In this article, we first review the characteristics of the staggered-level design option,
using a two-level design. Next, we describe the model used for data from staggered-level
designs and define the D-optimality criterion as well as the I-optimality criterion. Finally,
we demonstrate the benefits of the staggered-level design option for response surface
models using three examples. Additionally, we compare D- and I-optimal staggered-level
designs.

2 The staggered-level design option

To explain the characteristics of the staggered-level design, a 16-run two-level staggered-
level design is shown in Table This design was constructed for an experiment with
two hard-to-change factors, w and s, and two easy-to-change factors, ¢; and t5, where the
goal was to estimate a main-effects-plus-two-factor-interaction-effects model. In Arnouts
and Goos (2012), the first hard-to-change factor, w, was referred to as the class-1 hard-
to-change factor, and its levels were assumed to be most difficult to reset. Similarly,
the second hard-to-change factor, s, was named the class-2 hard-to-change factor, and
its levels were assumed to be less difficult to reset. In this article, we adopt the same
notation and nomenclature. Unlike Arnouts and Goos (2012), we do not assume that
class-1 hard-to-change factors are harder to change than class-2 hard-to-change factors.
This is because the staggered-level design is a cost-efficient and statistical efficient option
when the class-1 and class-2 hard-to-change factors are equally hard to change as well.

The key feature of the staggered-level design in Table [1| is the fact that the level of the
class-2 hard-to-change factor, s, is reset at different points in time than the level of the
class-1 hard-to-change factor, w. In the 16-run staggered-level design in Table[I] the runs
are divided in four subsets of size four by the settings of the class-1 hard-to-change factor,
w. The runs are also divided in subsets through the settings of the class-2 hard-to-change
factor s. The latter division begins and ends with a subset of runs half as large as the
subsets defined by the settings of w, i.e. with subsets of size two. This results in an
alternating pattern for the settings of the hard-to-change factors.

In Arnouts and Goos (2012), this new design option was compared to the split-plot and
split-split-plot design, the two alternative design options for an experimental scenario in-
volving two hard-to-change factors described in the literature. First of all, it turned out
that, of the three possibilities, the staggered-level design was the most cost-effcient design
due to the smaller number of settings of the hard-to-change factors. For the experimen-
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Table 1: 16-run staggered-level design for a model including main effects and two-factor in-
teractions of two hard-to-change factors, w and s, and two easy-to-change factors t;
and t9. Horizontal lines indicate time points at which a hard-to-change factor’s level
is reset.

Run | w| s | t1| ta

1 (-1 111
2 |-1]1]-1|-1
3 |-1]-1] 1/-1
4 |-1]-1|-1] 1
D 1/-1] 1] 1
6 1]1-1]-1]-1
7 111} 1]-1
8 111} 1]-1
9 |-1] 1|-1] 1
10 |-1] 1| 1]-1
11 |-1]-1] 1] 1
12 |-1]-1|-1]-1
13 11-1] 1]-1
14 1/-1}-1]1
15 10 1]-1]-1
16 101} 1)1




tal situation given in Table [I] the split-plot design would require eight settings of both
hard-to-change factors, since both hard-to-change factors are reset at the same time in
a split-plot design. In a split-split-plot design configuration, the class-2 hard-to-change
factor is reset whenever the level of the class-1 hard-to-change factor changes, as well as
at several other time points. For the 16-run experiment, a split-split-plot configuration
would lead to four settings of the class-1 hard-to-change factor, w, and eight settings of
the class-2 hard-to-change factor, s.

The comparison of the three alternative designs also revealed that the staggered-level
design was statistically the most efficient design of the three in terms of the D-optimality
criterion. In general, in comparison to the split-plot design, the main effect of the class-2
hard-to-change factor, s, as well as the interaction effect of both hard-to-change factors, is
estimated more precisely from the staggered-level design, even though this design option
involves a smaller number of settings of both hard-to-change factors. Compared to the
split-split-plot design, the staggered-level design generally leads to a more precise estima-
tion of the main effect of the class-1 hard-to-change factor, w, and the interaction effect
of the class-1 and class-2 hard-to-change factor, while having fewer settings of the class-2
hard-to-change factor.

This statistical advantage of the staggered-level design is a consequence of the specific
ordering of the subsets of runs determined by the level settings of the hard-to-change
factors. That ordering ensures that the two levels of the class-2 hard-to-change factor can
be compared with each other within each of the four subsets created by the settings of
the class-1 hard-to-change factor. Similarly, the two levels of the class-1 hard-to-change
factor can be compared with each other in the three large subsets formed by the settings
of the class-2 hard-to-change factor. Neither the split-plot nor the split-split-plot design
possess this characteristic.

3 Statistical model and optimality criteria

3.1 Model

In the experimental designs considered in this article, there are three types of factors.
There is one class-1 hard-to-change factor, w, one class-2 hard-to-change factor, s, and
there are v; = v — 2 easy-to-change factors, t1, ..., t,,. The easy-to-change factors are
reset independently for each run, even when the factors’ levels are the same in consecu-
tive runs. As mentioned in the previous section, the experimental runs are partitioned in
two ways, one for each class of hard-to-change factor. In the model, we include random
effects 6;, i =1,...,r, for each of the r independent settings of the class-1 hard-to-change
factor to capture the dependence between runs for which this hard-to-change factor is not
independently reset. To capture the dependence between runs for which the class-2 hard-
to-change factor is not independently reset, we also include random effects v;, 7 = 1,..., g,
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in the model for each of the g independent settings of the class-2 hard-to-change factors.

For a response surface model, the kth response obtained at the ¢th setting of w and the
jth setting of s can then be written as

V1
Yijk =00 + Buww; + Bss; + Z Bi bk + Buwswis;
=1
v1—1 V1

V1 v1
+ Z But, Wity + Z Bst, 85t + Z Z Bty tiktmk (1)
=1 =1

=1 m=Il+1

U1
+ Buwtt] + Baas] + D But, + 0+ + €
=1

This model is utilized in Webb et al. (2004) for data from experiments involving several
hard-to-change factors.

By using the model in Equation (1f), we assume that the runs of the staggered-level de-
sign mainly suffer from treatment error which is “error due to our inability to replicate
a treatment from one application to the next”. This is the first of five possible sources
of random error that can occur when running an experiment listed by Hinkelmann and
Kempthorne (2008). In Equation , the inability to replicate a treatment can be due to
the class-1 hard-to-change factor(s), the class-2 hard-to-change factor(s), and the easy-
to-change factor(s). The errors introduced by resetting the levels of these types of factors
are 0;, 7; and ;. The assumption that the treatment error is the dominating source of
errors means that, for example, we assume that the staggered-level design is not spread
over different days. This would cause a change in the physical state of the experimental
units, introduce a second type of error and necessitate the inclusion of block effects in
Equation (1)). Hinkelmann and Kempthorne (2008) refer to this second type of error as
state error.

In matrix notation, Equation (| is written as
Y =XB8+Zs6 +Z,y+e, (2)

where Y is the n x 1 vector containing the n responses of the experiment, 3 is a p x 1
vector that contains the p = v(v + 1)/2 model parameters, X is the n x p model matrix,
Zs is the n x r matrix with (¢, 7)th entry equal to 1 if the ith run is conducted at the jth
setting of the class-1 hard-to-change factor and equal to 0 otherwise, Z, is the n x g matrix
with (7, j)th entry equal to 1 if the ith run is conducted at the jth setting of the class-2
hard-to-change factor and equal to 0 otherwise, & and -« are the r x 1 and g x 1 vectors
containing the random effects associated with the independent settings of the class-1 and
the class-2 hard-to-change factors, respectively, and € is the n x 1 vector of random errors.



It is assumed that
E(8) = 0,,cov(8) = 031,

E(y) =0y, cov(y) = 021,
E(e) = 0,,cov(e) = afIn,

and that
cov(d,7) = 0,44, cov(d,€) = 0,4, and cov(vy,&) = 0yxn,

where 0. and I. represent a c-dimensional zero vector and identity matrix, respectively,
and 0.x4 1S a zero matrix of dimension ¢ X d.

Under these assumptions, the variance-covariance matrix of the responses, Y, is

V =02l + 0;ZsZ5 + 027, Z!, )
= 0Z(L, + nsZsZs + 1,2, Z,),
where 75 and 7, are the variance ratios o /0? and o2 /o2 for the class-1 and class-2 hard-

to-change factors, respectively. The larger these ratios, the stronger the runs conducted
at the same setting of the class-1 and/or class-2 hard-to-change factors are correlated.

The statistical model in Equation (1) generalizes the split-plot and the split-split-plot
model. For the model to reduce to the split-plot model, it is necessary that Zs = Z,.
This means that the class-1 and class-2 hard-to-change factor are reset at the same points
in time. In that case, the variance components o2 and 0'?{ cannot be estimated sepa-
rately. Only their sum is estimable. This does not occur in split-split-plot designs, where
Z,=1®1, and Z; = 1, ® 1.,, with ® the Kronecker product, 1., a c;-dimensional
vector of ones, ¢; and ¢y the number of runs in a whole plot and a subplot, respectively,
and n = rc; = ges.

Under the assumption of normality, the maximum likelihood estimator of the unknown
model parameter vector 3 is the generalized least squares estimator

B =XV IX)'X'V1Y, (4)
with variance-covariance matrix
cov(B) = (X'VIX) L (5)
The information matrix on the unknown parameter vector 3 is given by

M = X'V 'X. (6)



3.2 Optimality criteria
D-optimality criterion

The D-optimality criterion is probably the most commonly used criterion when construct-
ing optimal designs. Designs that are D-optimal are usually said to also perform well in
terms of other design criteria. In addition, the criterion is invariant to linear transfor-
mations of the design matrix. Consequently, the criterion is invariant to the scale or
the coding of the variables. The D-optimality criterion seeks designs that maximize the
determinant of the information matrix in Equation ().

To compare two designs with information matrices M; and M in terms of the D-
optimality criterion, we use the relative local D-efficiency (|M;|/|Ma|)/?. A relative
D-efficiency larger than one means that Design 1 is better than Design 2 in terms of the
D-optimality criterion.

In general, the D-optimal designs as well as the relative performance of two designs depend
on the relative magnitude of the variance components through the variance-covariance
matrix V. This is why we use the adjective “local” in the term relative local D-efficiency.
Arnouts and Goos (2012) observed that the performance of the staggered-level designs
is not sensitive to the variance ratios ns; and 7,. This is why we do not use a Bayesian
approach, which explicitly accounts for uncertainty concerning the values of 75 and 7,
during the design construction, in this paper. Instead, we just perform a sensitivity study
for each experimental situation we discuss in the following sections.

I-optimality criterion

The I-optimality criterion seeks designs that minimize the average prediction variance

[ F@)XVIX)" f(z)de
fx dx

over the experimental region y. Since the goal in response surface experimentation usu-
ally is to make predictions, it makes sense to also consider this optimality criterion when
constructing staggered-level response surface designs. Just like the D-optimality criterion,
the [-optimality criterion is also invariant to linear transformations of the design matrix.

(7)

For regular experimental regions, the calculation of the expression in Equation is
not computationally involved. If there are v quantitative experimental variables and
the experimental region is [—1,+1]Y, then the denominator, representing the volume of
the experimental region, equals 2. The numerator involves the variance of prediction,
F'(w)(X'V7IX) 7! f(x), which is a scalar. Consequently,

F@)(XVIX) " f(2) = e[ f(2) (X'VX) 7 f ()],
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Using this result, Jones and Goos (2012b) showed that the formula for the average pre-
diction variance can be rewritten as

> | (X / fl@)f (@)iz] . (®)

The integral in Equation is applied to a matrix of monomials, i.e. one-term poly-
nomials. Therefore, it can interpreted as the matrix of integrals of these monomials.
Let

B- [ fla)f (@)ia.
X
then the average prediction variance can be written as
27tr[(X'VIX)'B]. (9)

If the experimental design region is y = [—1, +1]", then the integrals in B are quite simple.
Hardin and Sloane (1993) pointed out that the matrix B, called the moments matrix, has
a very specific structure for a response surface model and a cuboidal design region:

1
0 Mo o
B = 21; v 3-v vXV* VXV , 10
Ov* Ov*xv %Iv* Ov*xv ( )

%]—v OUXU vav* ﬁ({[v + 5JU>

where v is the number of factors, v* = v(v — 1)/2 is the number of two-factor interaction
effects and J, is a v X v matrix of ones.

To compare two designs with an average prediction variance of P; and P;, we can calculate
the relative local I-efficiency I-efficiency = P»/P;. A relative local I-efficiency larger than
one indicates that Design 1 is better than Design 2 in terms of the average variance of
prediction. Since the [-optimality criterion depends on V through the variance-covariance
matrix of the parameter estimates, (X’V~1X)~1 the I-optimal design and the I-efficiency
of one design relative to another depend on the variance ratios 7 and 7,. We therefore
also investigate the sensitivity of the I-optimal staggered-level designs constructed in this
article to the values of 75 and 7,.

4 28-run design

We start the comparison of the three design types, i.e. the staggered-level, the split-plot
and the split-split-plot design, in the context of a 28-run experiment to estimate a response
surface model in two hard-to-change factors, w and s, and two easy-to-change factors, t;
and t5. To generate optimal designs, we implemented a coordinate-exchange algorithm
that seeks the D- and I-optimal factor levels for any given staggering structure. When
using the algorithm, input on the magnitude of the variance ratios 75 and 7, is required.
For now, we assume that both variance ratios equal one. Later in this section, we study
the dependence of the constructed staggered-level designs on these variance components.



4.1 Design options

To have enough degrees of freedom to estimate all fixed parameters and all variance com-
ponents, the split-plot designs, which we use as benchmarks, involve seven level settings
of both hard-to-change factors. The D- and I[-optimal split-plot designs for this situation
are shown in Table 2] The staggered-level design with seven level settings of the class-1
hard-to-change factor w and eight level settings of the class-2 hard-to-change factor s is
another cost-efficient configuration for this experimental situation. The D- and I-optimal
staggered-level designs are shown in Table [3] The least cost-efficient option of the three
in this experimental situation is the split-split-plot design, the D- and I-optimal versions
of which are shown in Table |4l with seven level settings of w and 14 level settings of
the class-2 hard-to-change factor s. The statistical comparison between the three design
options is summarized in Table [5], assuming all variance components are equal to one.

4.2 Comparison in terms of the D-optimality criterion

In terms of cost efficiency, the split-plot designs are slightly better than the staggered-level
designs with one fewer level setting of s. The statistical results, however, are strongly
in favor of the staggered-level design. The D-optimal split-plot design has a D-efficiency
of only 77.3% relative to the D-optimal staggered-level design. This is mainly due to
an imprecise estimation of the main effects and quadratic effects of both hard-to-change
factors, as well as their interaction effect, when using the split-plot design. For the split-
plot design, the main effect of w, the main effect of s and their two-factor-interaction
effect are confounded with the random effects contained within both § and ~. Arnouts
and Goos (2012) explained that, because of its specific ordering of the hard-to-change
factor levels, this is not true for the staggered-level designs. Instead, the main effect of
w is only confounded with § and not with «v. The main effect of s is confounded with
~ and only to a small extent with §. This results in more precise estimates of these effects.

As mentioned before, the 28-run split-split-plot design is the least cost-efficient option of
the three, but this does not result in a larger D-efficiency. This is due to the fact that
the main effect and quadratic effect of the class-1 hard-to-change factor w, as well as the
interaction effects between the hard-to-change facors w and s and between the easy-to-
change factors ¢; and ¢y are estimated more precisely from the D-optimal staggered-level
design. This results in the D-optimal split-split-plot design being 8% less D-efficient than
the D-optimal staggered-level design.

4.3 Comparsion in terms of the I-optimality criterion

In terms of the I-optimality criterion, the split-plot design performs poorly in comparison
to the staggered-level design. The I-optimal split-plot design has an I-efficiency of only
52% relative to the I-optimal staggered-level design. This means that the split-plot design
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Table 2: D- and I-optimal 28-run split-plot designs for estimating a response surface model

in two hard-to-change factors w and s, and two easy-to-change factors t; and o,
assuming 7 and 7, equal to one. The column labelled WP indicates the seven whole

plots.
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Table 3: D- and I-optimal 28-run staggered-level designs for estimating a response surface

model in two hard-to-change factors w and s, and two easy-to-change factors ¢; and

t2, assuming 7s and 7, equal to one.
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Table 4: D- and I-optimal 28-run split-split-plot designs for estimating a response surface model
in two hard-to-change factors w and s, and two easy-to-change factors t; and o,
assuming 7 and 7, equal to one. The column labelled WP indicates the seven whole
plots, while the column labelled SP indicates the 14 subplots.

Run | WP | sp D-optimal [-optimal
w S tl tg w S tl tQ
1 1 1 1/-1(-1 -1 0] 1] 0 O
2 1 1 1|1-1] 1 1] 0] 1]-1 -1
3 1 2 1 1(-1 1) 0] 0] 1 O
4 1 2 11,1 -1} 0] 0] 0 -1
5 2 3 -1 1] 1 -1}-1]-1]1 -1
6 2 3 -1} 1}-1 1]-1{-1(-1 O
7 2 4 (-1 -1{-1 -1{-1] 1] 0 1
8 2 4 (-1 -1 1 1{-1] 1] 1 -1
9 3 5 (-1}(-1{ 1 -1 0 0 0 1
10 3 5 (-1(-1}-1 1) 0] 0|0 0
11 3 6 [|-1] 1] 0 1) 0| 1|-1 0
12 3 6 [|[-1] 1]-1 -1} 0] 1] 1 1
13 4 7/-1} 1} 1 1) 0|-1]0 O
14 4 7 -1 1(-1 Of O0O]-1|-1 1
15 4 -1 01 00 0 0 -1
16 4 8 1-1] 0] 0 -1 00| 1 0
17 5) 9 11,1 0 1}-1}{-1 O
18 5 9 1) 1}-1 -1} 1]-1]1 1
19 5 01 1(-1{-1 1 1] 1] 1 -1
20 5 01 1(-1{1 -1{ 1] 1]-1 1
21 6 11 1,00 1 1]-1]1 -1
22 6 1wy 1, 0|-1 Of 1}(-1] 0 1
23 6 122 1, 1{0 -1{ 1] 0]-1 -1
24 6 2111 1100 O
25 7 B3 0of-1{1 -1{-1]-1]1 1
26 7 30 0|-110 Of-1]-1]-1 -1
27 7 1414 0y 0-1 1{-1]0]-1 1
28 7 14040 000 Of-1{0[0 O
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Table 5: Variances of estimates of fixed model parameters along with the D- and I-efficiencies
for the 28-run split-plot designs in Table [2] the split-split-plot designs in Table [4] and
the staggered-level designs in Table 3| when n; =1, n, = 1 and o2 =1.

Split-Plot Split-Split-Plot Staggered-Level
Effect (Table [2) (Table 4) (Table [3)
D-optimal | I-optimal | D-optimal | I-optimal | D-optimal | I-optimal
Intercept 4.838 1.175 2.130 0.781 3.225 0.824
w 0.376 0.569 0.297 0.459 0.222 0.348
s 0.570 0.569 0.157 0.217 0.215 0.372
t 0.046 0.069 0.051 0.070 0.048 0.063
to 0.044 0.062 0.051 0.077 0.049 0.063
ws 0.566 0.573 0.164 0.303 0.099 0.266
wtq 0.054 0.103 0.056 0.106 0.054 0.095
wty 0.050 0.085 0.056 0.105 0.054 0.098
sty 0.062 0.088 0.057 0.092 0.055 0.102
sto 0.058 0.075 0.057 0.097 0.054 0.097
tits 0.052 0.091 0.137 0.154 0.065 0.108
w? 3.412 3.420 2.296 1.117 1.848 0.889
52 1.717 3.960 0.936 0.599 1.346 0.703
t2 0.267 0.190 0.321 0.260 0.331 0.214
t2 0.340 0.208 0.320 0.203 0.328 0.207
D-efficiency 0.773 0.657 0.920 0.788 1.000 0.809
[-efficiency 0.327 0.523 0.619 1.025 0.491 1.000
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should be run twice to produce comparable prediction variances to the staggered-level de-
sign. This result is again to a large extent due to an imprecise estimation of the main
effect and the quadratic effect of both hard-to-change factors w and s, as well as their
interaction effect. However, the less precise estimation of the intercept also contributes to
the poorer I-efficiency for the split-plot design. As a matter of fact, when multiplying the
variance-covariance matrix of the parameter estimates with the matrix B in Equation ([10))
to calculate the average prediction variance, the variance of the estimate of the intercept
is multiplied with a factor of 2* and therefore has a major impact on the I-efficiency of a
design.

The least cost-efficient split-split-plot design turns out to best design option of the three in
terms of the [-optimality criterion. In comparison to the [-optimal staggered-level design,
the intercept as well as the main effect and the quadratic effect of s are estimated more
precisely from the split-split-plot design. The I-optimal staggered-level design, however,
produces more precise estimates of the main effect and the quadratic effect of the other
hard-to-change factor, w. Ultimately, the I-optimal split-split-plot design is 2.5% more
[-efficient than the I-optimal staggered-level design.

4.4 Fraction of Design Space plot

In Figure |1}, we use a Fraction of Design Space (FDS) plot to compare the predictive per-
formance of the three I-optimal designs assuming the variance ratios ns; and 7, are equal
to one. In the plot, the dotted line shows the predictive performance of the I-optimal
staggered-level design. The solid line corresponds to the I-optimal split-plot design and
the dashed line shows the predictive performance of the I-optimal split-split-plot design.
Each point on the horizontal axis of the FDS plot corresponds to a fraction of the design
space. The vertical axis covers the range from the minimum prediction variance to the
maximum prediction variance, relative to a2. Suppose, for example, that the point (0.75,
1.1) is on the FDS curve. Then, the variance of prediction, relative to o2, is less than or
equal to 1.1 over 75% of the design region. For a design to be good in terms of predictive
performance, its FDS curve should be as low as possible. This actually means that the
design results in small prediction variances in large fractions of the experimental region.

Figure [1| confirms that the split-plot design is indeed the worst option of the three in
terms of predictive performance and that there is a negligible difference between the cost-
efficient staggered-level design and the more expensive split-split-plot design.
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Figure 1: Fraction of Design Space (FDS) plot for the 28-run I-optimal split-plot, split-split-
plot and staggered-level designs, constructed assuming n; = 1 and 7, = 1.

4.5 Comparison between D-optimal and I-optimal staggered-
level design

A comparison of the D- and I-optimal staggered-level designs in Table[3], in terms of their
factor level settings, reveals a greater emphasis on the center of the experimental region
for the I-optimal design. In the D-optimal design, the class-1 hard-to-change factor w is
set at its middle level only once, the class-2 hard-to-change factor s twice, and there are
no center runs. On the other hand, in the I-optimal design, w has three settings at its
middle level, s has four of them and there are three center runs. This greater emphasis on
the center of the experimental region is typical of I-optimal designs, and is also discussed
by Hardin and Sloane (1993) and by Jones and Goos (2012b) for completely randomized
desings and split-plot designs .

As a result of this greater emphasis on the center of the experimental region, the intercept
and the quadratic effects are estimated more precisely from the I-optimal staggered-level
design, while the D-optimal staggered-level design produces more precise estimates of the
main effects and two-factor interaction effects.

Evaluating the D-optimal staggered-level design in terms of the I-optimality criterion and
the I-optimal staggered-level design in terms of the D-optimality criterion confirms that
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Table 6: D- and I-efficiencies resulting from misspecification of the ns and 7, assuming these
variance ratios and o2 are equal to one when constructing a 28-run staggered-level
design.

D-efficiency [-efficiency
s Ty
My 0.1 1 10 0.1 1 10
0.1 10.979 0.981 0.981 | 0.951 0.976 0.987
1 10.983 1.000 0.995 | 0.996 1.000 0.995
10 [ 0.981 0.986 0.988 | 0.994 1.000 0.991

the D-optimal response surface design performs poorly in terms of the I-optimality crite-
rion, while the I-optimal design performs reasonable well with respect to the D-optimality
criterion in case of a cuboidal experimental region. The D-optimal staggered-level design
has an I-efficiency of only 49.1% relative to the I-optimal staggered-level design, while
the I-optimal staggered-level design has a D-efficiency of 80.9% relative to the D-optimal
staggered-level design. The same kind of pattern in the D- and I-efficiencies can be ob-
served for the split-plot and split-split-plot designs. This can be seen in Table [5]

4.6 Sensitivity study

In Section 3, we already mentioned that the D-optimal as well as the [-optimal staggered-
level design depends on the variance ratios 75 and 7,. All optimal designs in Section 4 so
far have been constructed assuming both variance ratios are equal to one. It is interesting
to investigate how sensitive the D- and I-optimal staggered-level designs are to these
assumptions. Therefore, we computed D- and I-optimal 28-run staggered-level designs for
a 3 by 3 grid of 5 and 7, values from 0.1 to 1 to 10. The results of this sensitivity study
are reported in Table[6] When 7; and 7, are one, the D-efficiencies of the designs found,
relative to the optimal design, range from 97.9% to 99.5%, while the I-efficiencies range
from 95.1% to 100%. So, a misspecification of the variance ratios ns and 7, has no major
impact on the efficiency of the staggered-level response surface design obtained.

5 20-run design

In the previous section, it turned out that the split-plot design, even though it had only
one fewer level setting of the class-2 hard-to-change factor than the staggered-level de-
sign and was the most cost-efficient design option, perfomed poorly in terms of statistical
efficiency. In this section, we therefore consider an experimental situation in which the
split-plot design is no longer the most cost-efficient option. Suppose there is a budget to
perform 20 runs to estimate a response surface model in two hard-to-change factors, w
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Table 7: D- and I-optimal 20-run split-plot designs for estimating a response surface model
in two hard-to-change factors w and s, and two easy-to-change factors t; and o,
assuming 75 and 7, are equal to one.

Run | WP D-optimal [-optimal

w S tl tz w S tl tg
1 1 1 -1/-1 -1 0 0-1 1
2 1 1 -1} 1 00 00 O
3 2 ||-1 -1]-1 1-1 11 1
4 2 ||-1 1|1 -1(-1 1|-1 0
) 3 /-1 -1, 1 1)1 -1}0 1
6 3 /-1 -1/-1 -1 1 -1} 1 -1
7 4 |1-1 1(-1 11 1]-1 1
8 4 -1 1,0 -1 1 1}1 -1
9 5 1 1|11 -1-1 00 1
10 5 1 110 1-1 01 -1
11 6 ||-1 1/-1 -1 0 01 0
12 6 ||-1 1,1 1|0 00 -1
13 7 1 o1 141 0O0f-1 0
14 7 1 0|-1 of 1 01 1
15 8 1 -1/-1 1-1 -1, 1 1
16 8 1 110 -1-1 -1/-1 -1
17 9 0O 01 -1}0 -1]-1 1
18 9 0O 0|0 O} 0 -1]0 O
19 10 O 1}{1 00 1]-1 -1
20 10 0O 1(-1 -1 0 1,0 O

and s, and two easy-to-change factors, t; and t,.

5.1 Design options

To have enough degrees of freedom to estimate all fixed parameters and all variance
components, the benchmark split-plot designs involve ten settings of both hard-to-change
factors. The D- and T-optimal split-plot designs for this situation are shown in Table [7]
The split-split-plot and the staggered-level designs are more cost-efficient design options,
since they require fewer level settings of the hard-to-change factors. The D- and I-optimal
split-split-plot designs, consisting of only five whole plots and ten subplots, are shown in
Table[8l The staggered-level designs in Table[9]are, in this scenario, the most cost-efficient
options, with five settings of the class-1 hard-to-change factor w and only six settings of the
class-2 hard-to-change factor s. Table [10| provides an overview of the results obtained for
the variance of the parameter estimates and the relative efficiencies assuming all variance
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Table 8: D- and I-optimal 20-run split-split-plot designs for estimating a response surface model
in two hard-to-change factors w and s, and two easy-to-change factors t; and o,
assuming 75 and 7, are equal to one.

Run | WP | sp D-optimal [-optimal

w| s|t; tof w| s|t1 o
1 1 1 1{-110 -1 0]-1]0 1
2 1 1 1{-1)1 1011 -1
3 1 2 1] 1/-1 140,00 O
4 1 2 11 1/-1 00 0f-1 0
5 2 3 -1 1}-1 1{-1]-1]-1 -1
6 2 3 l-1 1] 1 -1{-1]-1]1 1
7 2 4 ||-1]-1]-1 -1|-1] 1] 1 -1
8 2 4 |-1]-1] 0 1]-1]1]-1 1
9 3 5 110 1§ 1] 1/-1 1
10 3 5 111 11} 11 -1
11 3 6 110|-1 Oof 1] 00 -1
12 3 6 101 -1 1,01 0
13 4 7 oo 1 1} 1{-1]-1 0
14 4 7 000 Of 1]-1]1 1
15 4 8 Oj(-1{ 1 0 1[0 0 O
16 4 8 O(-1}-1 1] 1] 0]-1 -1
17 5 9 (|-11]-1 -1 0] 1|1 1
18 5 9 ||-1f 1] 1 1 0] 1]-1 -1
19 5 |10|-1/-1|1 -1 0| 0]-1 1
20 5 |10 |-1|-1}(-1 1} 0] 0] 0 O

components equal to one.

5.2 Comparison in terms of the D-optimality criterion

The staggered-level design is not only the most cost-efficient design, but also statistically
the most efficient one of the three D-optimal design options. The D-optimal staggered-
level design is 12.6% and 6.4% more D-efficient than the D-optimal split-plot design and
the D-optimal split-split-plot design, respectively. In comparison to the split-plot design,
the good result for the staggered-level design is due to a more precise estimation of the
two-factor interaction effect between the hard-to-change factors and a more precise esti-
mation of the quadratic effect of the class-2 hard-to-change factor s, despite the fact that
the staggered-level design has a smaller number of level settings for s than the split-plot
design. Note that the staggered-level design also yields more precise estimates of the
interaction effect between t; and ¢, and their quadratic effects.
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Table 9: D- and I-optimal 20-run staggered-level designs for estimating a response surface
model in two hard-to-change factors w and s, and two easy-to-change factors ¢; and
t2, assuming 75 and 7, are equal to one.

Run D-Optimal [-Optimal

w S tl t2 w S tl t2
1 0o, 0 00} 1]0 1
2 0| 0|-1 -1 0} 1] 1 0
3 o(-1,1 0 0] 0] 1 -1
4 Oj-1/-1 1} 0] 0] 0 O
5 -1{-1p1 1) 170]0 0
6 -1(-1]0 -1} 1]0]1 1
7 -1 1)1 1) 1}-1}]-1 1
8 -1 1}(-1 1} 1]-1]1 -1
9 111 1-1)-1|-1 1
10 11110 -1-1|-1|1 -1
11 1111 -1-1| 1|-1 -1
12 11-110 1-1) 11 1
3 |-1|-1|-1 0 1|, 1/-1 0
4 || -1{-1{ 1 -1} 1] 1] 0 -1
-1} 1)1 1} 1700 0
6 | -1 1|1 -1} 1] 0]-1 -1
17 11} 1 -1 0,00 O
18 11 1|-1 10} 0-1 1
19 1701 -1 0-11 1
20 110(-1 0 O]-1|-1 -1
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Table 10: Variances of estimates of fixed model parameters along with the D- and I-efficiencies
for the 20-run split-plot designs in Table[7] the split-split-plot designs in Table 8| and
the staggered-level designs in Table @ when ns =1, n, = 1 and o2 =1.

Split-Plot Split-Split-Plot Staggered-Level
Effect (Table |7[) (Table |§[) (Table |1_OD
D-optimal | I-optimal | D-optimal | [-optimal | D-optimal | I-optimal
Intercept 2.209 1.007 2.502 1.192 2.432 1.365
w 0.371 0.463 0.482 0.707 0.354 0.517
s 0.370 0.429 0.233 0.346 0.353 0.423
t 0.075 0.115 0.075 0.093 0.074 0.110
to 0.079 0.117 0.079 0.097 0.079 0.102
ws 0.401 0.648 0.257 0.478 0.112 0.216
wty 0.091 0.136 0.091 0.114 0.091 0.168
wty 0.085 0.137 0.085 0.138 0.083 0.171
sty 0.092 0.148 0.091 0.118 0.091 0.158
sto 0.083 0.141 0.083 0.127 0.085 0.152
ity 0.280 0.273 0.186 0.253 0.156 0.209
w? 2.168 1.185 2.607 1.598 2.355 1.393
s 2.080 1.110 1.443 0.967 1.551 1.038
t2 0.687 0.444 0.537 0.430 0.515 0.390
t2 0.607 0.413 0.539 0.528 0.517 0.390
D-efficiency 0.888 0.802 0.940 0.816 1.000 0.837
[-efficiency 0.784 1.159 0.746 1.005 0.767 1.000

Compared to the split-split-plot design, the statistical benefits of the staggered-level design
are mainly the more precise estimation of the main effect and quadratic effect of the class-1
hard-to-change factor w as well as the two-factor interaction effect between both hard-to-
change factors. The split-split-plot design allows a more precise estimation of the main
effect of the class-2 hard-to-change factor s, due to the larger number of level settings of
this factor.

5.3 Comparison in terms of the I-optimality criterion

The large number of level settings of the hard-to-change factors in the split-plot design
option has a positive influence on the I-efficiency of the design. More particularly, it
turns out that the I-optimal split-plot design, the design option with the largest number
of level settings of the hard-to-change factors, is in fact the most I-efficient design. The
more cost-efficient I-optimal staggered-level and I-optimal split-split-plot design are about
16% less I-efficient than the I-optimal split-plot design. Especially for the staggered-level
design, this result is quite good, since a decrease of 50% and 40% in the number of level
settings of w and s, respectively, leads to a decrease in I-efficiency of only 16%. So, the
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staggered-level design produces reasonably precise predictions despite the fact it is much
more cost efficient.

A thorough comparison of the I-optimal staggered-level design and the I-optimal split-plot
design reveals that the better result of the split-plot design in terms of the I-optimality
criterion is mostly due to the more precise estimation of the intercept, as shown in Table
[10] As mentioned before, the variance of the estimate of the intercept is important when
calculating the I-optimality criterion value. The I-optimal split-plot design also scores
better in terms of the estimation precision of the main effect and the quadratic effect of
w.

In spite of the smaller number of level settings of the class-2 hard-to-change factor s,
the I-optimal staggered-level design is equally good as the I-optimal split-split-plot design
in terms of the I-optimality criterion. The staggered-level design allows a more precise
estimation of the main effect and quadratic effect of the class-1 hard-to-change factor
w and the two-factor interaction effect between both hard-to-change factors, whereas the
split-split-plot design allows a more precise estimation of the intercept and the main effect
and quadratic effect of the class-2 hard-to-change factor s.
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Figure 2: Fraction of Design Space (FDS) plot for the 20-run I-optimal split-plot, split-split-
plot and staggered-level designs, constructed assuming 15 = 1 and 7, = 1.
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5.4 Fraction of Design Space plot

The FDS plot in Figure [2 constructed assuming that ns and 7, equal one, confirms
that the expensive I-optimal split-plot design performs better than the cost-efficient I-
optimal split-split-plot and the I-optimal staggered-level design. Perhaps the most striking
observation is that, in about 62.5% of the experimental region, the I-optimal split-split-
plot design results in more precise predictions than the I-optimal staggered-level design.
For the remaining fraction of the design space, the I-optimal staggered-level design has
a lower prediction variance. The difference in precision of prediction between the two
designs is, however, limited throughout the entire design region.

5.5 Comparison between D-optimal and I-optimal staggered-
level design

Again, the I-optimal staggered-level design puts a greater emphasis on the center of the
experimental region. This results in a more precise estimation of the intercept and all
quadratic effects compared to the D-optimal staggered-level design. The latter, on the
other hand, allows a more precise estimation of the main effects and two-factor interaction
effects. In the I-optimal staggered-level design in Table @ two runs (the center run and
an axial run) are replicated, whereas the D-optimal staggered-level design has only one
replicate (see rows 7 and 15).

Finally, the D-optimal staggered-level design performs reasonable well in terms of the I-
optimality criterion. It has an I-efficiency of 76.7% relative to the I-optimal staggered-level
design, while the I-optimal design has a D-efficiency of 83.7% relative to the D-optimal
staggered-level design.

5.6 Sensitivity study

To conclude the discussion on the 20-run designs, we investigated the sensitivity of the D-
and [-optimal 20-run staggered-level design to the assumption that both variance ratios
ns and 7, are equal to one. The results of the sensitivity study are reported in Table [L1]
When 75 and 7, are one, the I-efficiencies of the designs found, relative to the optimal
design, range from 97.2% to 100%. For the D-efficiencies, the differences are a bit larger
sinces these efficiencies range from 94.7% to 99.7%. Thus, the efficiencies of the staggered-
level response surface design are not substantially influenced by a misspecification of the
variance ratios 7; and 7,
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Table 11: D- and I-efficiencies resulting from misspecification of the 75 and 7, assuming these
variance ratios and o2 are equal to one when constructing a 20-run staggered-level
response surface design.

D-efficiency [-efficiency
s Ty
My 0.1 1 10 0.1 1 10
0.1 1 0.955 0.989 0.995 | 0.972 0.990 0.980
1 10.997 1.000 0.996 | 0.991 1.000 0.997
10 [ 0.947 0.947 0.989 | 0.991 0.978 1.000

6 36-run design

6.1 Design options

In the last example, we consider an experiment with one class-1 hard-to-change factor
w, one class-2 hard-to-change factor s, and three easy-to-change factors t;, to and ts.
Suppose there is a budget to perform 36 runs. A cost-efficient staggered-level design with
a sufficient number of degrees of freedom to estimate all fixed effects and variance com-
ponents is one with six settings of w and seven settings of s. The designs in Table
are the D- and [-optimal staggered-level designs for estimating a response surface model
assuming both variance ratios 75 and 7, equal to one.

The split-plot alternatives we consider are the 36-run split-plot designs with nine whole
plots shown in Table [I3] These design options have enough degrees of freedom to esti-
mate all fixed parameters and variance components and offer reasonable benchmarks for
the staggered-level designs in terms of experimental cost. Another option would be a
split-plot design with twelve whole plots, but this option is too expensive in comparison
to the staggered-level designs. The split-split-plot alternatives we consider are the 36-run
split-split-plot designs in Table [14] with six whole plots and twelve subplots.

In Table [15], the variances of the parameter estimates of all the presented design options
are compared assuming that ns = 1, n, = 1 and 02 = 1, as well as the values of the
D- and l-optimality criteria. For both optimality criteria, the results are in favor of the
staggered-level designs, despite the fact that the design involves the smallest number of
level settings of the hard-to-change factors.

6.2 Comparison in terms of the D-optimality criterion

In comparison to the D-optimal staggered-level design, the main effects and quadratic
effects of both hard-to-change factors as well as their interaction effect are estimated less
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model in two hard-to-change factors w and s, and three easy-to-change factors t¢1,

Table 12: D- and I-optimal 36-run staggered-level designs for estimating a response surface
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Table 13: D- and I-optimal 36-run split-plot designs for estimating a response surface model

in two hard-to-change factors w and s, and three easy-to-change factors ¢1, to and

t3, assuming 75 and 7, are equal to one.
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Table 14: D- and I-optimal 36-run split-split-plot designs for estimating a response surface

ty 13

1

-1

-1

-1

-1
-1

-1

-1

1
-1

-1 -1

1

-1

-1
-1

-1-1

1

-1-1

1
-1

-1

-1

[-optimal

-1

1

1
-1
-1
-1

0

-1
-1

1

-1
-1

0

0

0

-1
-1
-1

1
1

0

0

ty 13

151

-1 -1

1

-1 -1
-1

-1

1

0

1
1

-1

-1

-1

-1

1

-1

-1

-1

-1

-1 -1

1

-1 -1

0

-1

-1

0
-1

-1 -1

1

1

-1

1 -1

1

D-optimal

1

-1
-1
-1

1
1

1

-1
-1
-1
-1

1

1

0

1

1
1
1

1

-1
-1
-1

1
1

-1

-1
-1
-1

1

1

0

1
1
1

2

3
3

6

7

7

10
10
10

12
12
12

model in two hard-to-change factors w and s, and three easy-to-change factors t¢1,

t2 and t3, assuming 7s and 7, are equal to one.

Run | WP | SP

10
11

12
13
14
15
16
17
18
19
20
21

22

23
24
25

26
27
28
29
30
31

32

33
34
35

36

27



precisely from the D-optimal split-plot design. This result is striking since the split-plot
design involves more level settings of both hard-to-change factors. So, it seems that, as
long as the number of level settings of w in the split-plot design is not twice the number
of level settings in the staggered-level design, the split-plot design performs substantially
weaker when it comes to estimating the hard-to-change factors’ effects. As a result, in
this example, the split-plot design has a D-efficiency of 91.5% relative to the D-optimal
staggered-level design.

The D-optimal split-split-plot design performs slightly better with a D-efficiency of 95.5%.
The biggest differences with the D-optimal staggered-level design are a less precise esti-
mation of the main effect and quadratic effect of w and the interaction effect between
both hard-to-change factors from the split-split-plot design and a less precise estimation
of the main effect of s from the staggered-level design.

6.3 Comparison in terms of the I-optimality criterion

As in Section 5, the I-optimal split-split-plot design and the I-optimal staggered-level de-
sign are almost equally efficient, despite the fact that the I-optimal staggered-level design
is more cost efficient than the I-optimal split-split-plot design. This time, the I-efficiency
of the split-split-plot design relative to the staggered-level design equals 98.8%. The I-
optimal staggered-level design offers a more precise estimation of the main effect and the
quadratic effect of w, and the two-factor-interaction effect between w and s, while the
[-optimal split-split-plot design offers the advantage of a more precise estimation of the
intercept, the main effect and the quadratic effect of s.

The I-optimal split-plot design has an I-efficiency of 89.6% relative to the I-optimal
staggered-level design. This is mainly due to an imprecise etimation of the main ef-
fect of s, the two-factor interaction effect between both hard-to-change factors as well as
their quadratic effects.

6.4 Fraction of Design Space plot

In the FDS plot in Figure |3, we see that the [-optimal split-split-plot design has a smaller
prediction variance than the I-optimal staggered-level design in 60% of the experimental
region. This is surprising given that the staggered-level design has the smallest average
variance of prediction. It turns out, however, that the split-split-plot design has a sub-
stantially larger maximum prediction variance than the staggered-level design. Despite its
larger cost, the I-optimal split-plot design generally results in larger prediction variances
than the other two designs.
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Table 15: Variances of estimates of fixed model parameters along with the D- and I-efficiencies
for the 36-run split-plot designs in Table the split-split-plot designs in Table
and the staggered-level designs in Table|12| when 15 = 1, 7, = 1 and o? =1.

Split-Plot Split-Split-Plot Staggered-Level
Effect (Table |E[) (Table |ﬂ[) (Table |ﬁb
D-optimal | I-optimal | D-optimal | [-optimal | D-optimal | [-optimal
Intercept 6.298 0.944 2.280 0.784 2.279 1.042
w 0.353 0.379 0.363 0.660 0.262 0.324
s 0.353 0.514 0.153 0.207 0.260 0.326
131 0.035 0.051 0.040 0.050 0.043 0.045
12 0.035 0.054 0.040 0.052 0.040 0.047
i3 0.034 0.047 0.038 0.046 0.039 0.046
ws 0.359 0.577 0.163 0.312 0.053 0.113
wty 0.039 0.061 0.047 0.101 0.046 0.063
wty 0.040 0.061 0.044 0.104 0.048 0.062
wis 0.039 0.061 0.047 0.088 0.045 0.060
sty 0.038 0.082 0.045 0.063 0.046 0.064
sto 0.038 0.072 0.043 0.063 0.047 0.072
sts 0.038 0.070 0.044 0.056 0.045 0.066
ity 0.040 0.064 0.056 0.077 0.053 0.079
t1ts 0.039 0.061 0.053 0.074 0.058 0.076
lots 0.042 0.063 0.057 0.072 0.058 0.085
w? 3.170 1.395 2.312 1.301 1.904 1.101
52 3.140 1.235 1.229 0.707 1.158 0.789
t2 0.270 0.182 0.224 0.170 0.223 0.168
t2 0.273 0.170 0.252 0.215 0.221 0.188
t2 0.276 0.201 0.266 0.211 0.230 0.191
D-efficiency 0.915 0.774 0.955 0.789 1.000 0.866
[-efficiency 0.295 0.896 0.636 0.988 0.656 1.000
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Figure 3: Fraction of Design Space (FDS) plot for the 36-run I-optimal split-plot, split-split-
plot and staggered-level designs, constructed assuming n; = 1 and 7, = 1.

6.5 Sensitivity study

Finally, a sensitivity study pointed out that a misspecification of the variance ratios n;
and 7, has a small impact on the efficiency of the D- and I-optimal 36-run staggered-level
designs. The results of the sensitivity study are reported in Table . When 7; and 7,
are one, the D-efficiencies of the designs found, relative to the optimal design, range from
97.6% to 100%. For the I-optimal designs, the I-efficiencies range from 98.1% to 100%.

7 Conclusion

In this paper, we introduced the staggered-level design as an interesting design option
for response surface modelling. For the generation of optimal staggered-level designs we
focused on the D-optimality criterion as well as the I-optimality criterion. Comparing
D- and I-optimal staggered-level designs in different experimental situations showed a
greater emphasis on the center of the design region for the I-optimal staggered-level de-
sign. This emphasis is typical for I-optimal designs and has been observed for completely
randomized designs and split-plot designs too. Consequently, the intercept as well as the
quadratic effects are estimated more precisely from I-optimal staggered-level designs. The
D-optimal staggered-level designs produce more precise estimates of the main effects and
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Table 16: D- and I-efficiencies resulting from misspecification of the 75 and 7, assuming these
variance ratios and o2 are equal to one when constructing a 36-run staggered-level
response surface design.

D-efficiency [-efficiency

s Ty
My 0.1 1 10 0.1 1 10
0.1 10.982 0.985 0.981 | 0.990 1.000 0.995
0.976 1.000 1.000 | 0.991 1.000 0.998
10 [ 0.976 0.980 0.994 | 0.981 1.000 0.986

the two-factor interaction effects.

In comparison to the split-plot and the split-split-plot designs, the staggered-level designs
turn out to be cost-efficient as well as statistically efficient design options, also in a re-
sponse surface modeling context. In general, the staggered-level designs turn out to be
the most D-efficient design options of the three. For the I-optimality criterion, the sta-
tistical differences between the staggered-level design and the split-split-plot design were
often negligible. This result is in favor of the staggered-level design, because that type of
design is generally the least costly of the two. On the other hand, there were considerable
differences in I-efficiency between the staggered-level design and the split-plot design, in
favor of the staggered-level design.
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