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Abstract In many hospitals there are patients who re-

ceive surgery later than what is medically indicated. In

one of Europe’s largest hospitals, the University Hos-

pital Leuven, this is the case for approximately every

third patient. Serving patients late cannot always be

avoided as a highly utilized OR department will some-

times suffer capacity shortage, occasionally leading to

unavoidable delays in patient care. Nevertheless, serv-

ing patients late is a problem as it exposes them to an

increased health risk and should be avoided whenever

possible.

In order to improve the current situation, the delay

in patient scheduling had to be quantified and the re-

sponsible mechanism, the scheduling process, had to be

better understood. Drawing from this understanding,

we implemented and tested realistic patient scheduling

methods in a discrete event simulation model.

We found that it is important to model non-elective

arrivals and include elective rescheduling. Modeling

rescheduling ensures that OR related performance mea-

sures, such as overtime, will only loosely depend on the

chosen patient scheduling method.
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We also found that capacity considerations should

guide both patient scheduling and replanning related

decision making. This is the case as those scheduling

strategies that ensure that OR capacity is efficiently

used will also result in a high number of patients served

within their medically indicated time limit. An efficient

use of OR capacity can be achieved, for instance, by

serving patients first come, first served. As applying

first come, first serve might not always be possible in

a real setting, we found it is important to allow for

patient replanning.

Keywords Operating room planning · Patient

scheduling · Due time

1 Introduction

It is a problem if patients wait longer for surgery than

what is deemed to be optimal by their surgeons. In

those cases, patients are said to have been served af-

ter the Due time (DT) [43], which can pose a health

risk. In one of Europe’s largest hospitals, the Univer-

sity Hospital Leuven, 34.6% of patients are served after

their target DT. This is normal as a highly utilized OR

department will sometimes suffer capacity shortage, oc-

casionally leading to unavoidable delays in patient care.

Nevertheless, serving patients late should be pre-

vented if possible, primarily from a medical standpoint,

but also from a societal hidden cost perspective as pa-

tients in a worsened health condition are likely to re-

quire larger amounts of resources.

In order to improve the current situation, the late-

ness of patients had to be quantified and the primarily

responsible mechanism, which is the patient scheduling

process, had to be better understood. Drawing from

this understanding, we implemented and tested real-

istic patient scheduling policies using a discrete event
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simulation model (DES). The results of the tests should

help surgeons and nurses to better understand the con-

sequences of their patient scheduling related decisions.

In this text we describe some of the primary aspects

and properties of the hospital’s inpatient population,

introduce the way patients are scheduled in reality and

describe some of the major mechanisms that take place

in the OR (operating room) department. We will there-

fore describe patient arrival patterns, the relationship

between estimated and realized surgery durations, the

applied rescheduling mechanisms and non-elective OR

allocation schemes. Finally, we will introduce some of

the manually applicable scheduling methods and show

how they perform in the resulting simulation environ-

ment.

2 Problem description and literature review

The amount of time a patient can wait for surgery varies

largely from case to case. It depends on many factors

such as the general health condition of the patient, the

speed at which the underlying disease is progressing,

the endured pain level and the detrimental lifestyle ef-

fects.

One way to ensure that patients receive surgery

within an acceptable time limit is to enforce waiting

time targets, such as, defining DTs. DTs can be set up

by the authority of a larger geographic region such as a

government or can be defined by a lower level authority

such as a hospital. DTs on a governmental level are, for

instance, set up in Australia and Canada [2, 4].

DTs were at the University Hospital Leuven set up

by the surgeons of the hospital themselves and were

determined on the basis of medical reasons. The DT

is therefore a concept that has always existed and has

been explicitly used but has only been formalized re-

cently. Formalizing it allows the hospital to use it as a

benchmark criterion. Fig. 1 shows that a large part of

the patient population is served before their DT and

around one third of them is served after their DT.

The figure is based on data covering the entire years

2012-2013 including all 13 disciplines (Table 1) that are

served in the hospital’s 22 inpatient ORs.

The DT is assigned to patients by the respective

physician in charge. It is divided into 8 categories (Table

2) where categories 4 to 8 are used to classify electives

and categories 1 to 3 are used to classify non-electives.

The DT of elective patients is defined in weeks whereas

the DT of non-electives, as they have to be served the

latest within 24 hours after their admittance, is defined

in hours.

As even the least urgent non-elective patients have

to be served within 24 hours, there is no room

→ over DT (34.6 %)within DT (65.4 %) ←

real

12%

10%

6%

Offset(days)
-28 -21 -14 -7 0 7 14 21 28+

Fig. 1 The horizontal axis shows the number of days patients
were served before or after their respective DT. The open-
ended histogram shows that, for example, 10% of the patients
are served exactly 7 days before their DT. The histogram
does not cover those electives that have not been assigned a
DT and thus do not need to be served within a time limit.
Including them and assuming they are always served within
their DT, the total percentage of patients served within DT
changes to 76%.

Table 1 There are 13 disciplines served in the inpatient de-
partment.

GYN Gynecology and obstetrics
Tx Abdominal transplant surgery
ABD Abdominal surgery
CAH Cardiac surgery
NCH Neurosurgery
ONC General medical oncological
RHK Plastic, reconstructive and cosmetic surgery
THO Thoracic surgery
TRH Traumatology
URO Urology
VAT Vascular surgery
MKA Oral and maxillofacial surgery
NKO Head and neck surgery

for scheduling them. Non-electives are therefore not

planned and they are only included into the simula-

tion model to test their impact on the execution of the

elective schedule.

As Table 2 shows, the DT is defined as a time inter-

val suggesting that it is best for a patient to get surgery

only after a certain reference period. It might seem un-

reasonable to let patients wait unnecessarily, but it can

be the case that they or their surgeons need time to

prepare for the surgery. From a scheduling perspective

the end time of the interval is the determining factor.

The DT score of a discipline is calculated based

on the weights associated to each DT category. The

weights for DT categories 4 to 7 are 1, 1/2, 1/4 and

1/8 respectively. A weight of 0 is associated to DT cat-
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Table 2 The 8 DT categories used at the University Hospital
Leuven.

Category Target time

Non-elective
1 Instantly
2 Up to 6 hours
3 Today

Elective

4 1 week
5 1 - 2 weeks
6 2 - 4 weeks
7 4 - 8 weeks
8 no target time

87654321

EMG

87654321

NKO 0.16

87654321

MKA 0.31

87654321

VAT 0.35

87654321

URO 0.24

87654321

TRH 0.79

87654321

THO 0.44

87654321

RHK 0.59

87654321

ONC 0.34

87654321

NCH 0.41

87654321

CAH 0.46

87654321

ABD 0.36

87654321

Tx 0.02

87654321

GYN 0.23

Fig. 2 The distribution of DT categories varies largely across
disciplines. The number in gray denotes the DT score.

egory 8. The DT score of a discipline is the average DT

weight assigned to their patients.

Fig. 2 shows that both the DT score and the distri-

bution of the DT categories is different for each disci-

pline. For example, MKA covers an even spectrum of

DT categories whereas, not surprisingly, for TRH the

vast majority of patients is associated to DT 4 since

wounds and injuries often need quick care. Correspond-

ingly, TRH also has a high DT score.

The primary goal of our work is to increase the

amount of patients served within their DT, thus, served

within the target time set by their surgeons. This goal

can be achieved in three ways.

Firstly, it can be achieved by increasing capacity on

the supply side by opening new ORs and hiring the ad-

ditionally required personnel. Increasing existing OR

capacities requires additional financial and spatial re-

sources which in our setting are not readily available.

Secondly, it can be achieved by allowing more flexi-

bility and, for instance, using an open scheduling strat-

egy, i.e., there is no Master Surgery Schedule (MSS) [5].

This allows disciplines and surgeons to occupy ORs in a

flexible non-periodic way. This strategy is therefore bet-

ter equipped to deal with occasional peaks in demand

of single disciplines. Open scheduling is not an option

for the University Hospital Leuven as it is important

for them to maintain a periodic and repetitive sched-

ule. This allows surgeons to block certain weekdays for

surgery while keeping other days free for consultation,

scientific work and teaching.

Thirdly, as described in this text, it can be achieved

by improving patient scheduling practices. We tested

methods that are manually usable and thus do not in-

volve a computer. This is done as surgeons (and nurses)

at the University Hospital Leuven, and in Flanders in

general [7], typically create patient schedules by hand.

Moreover, surgeons schedule their patients individually

and therefore generally will not coordinate their sched-

ules amongst each other.

In recent years, a large body of OR scheduling liter-

ature emerged. Cardoen et al. [6] and Demeulemeester

et al. [8] categorize the literature on the basis of de-

scriptive fields, such as used performance measures and

applied research methodology. In the literature review

of Guerriero and Guido [13], a selected number of ar-

ticles are categorized according to the commonly used

three hierarchical decision levels: strategic, tactical and

operational. Magerlein and Martin [22] distinguish be-
tween advance scheduling and allocation scheduling and

provide a review on surgical demand scheduling. Ad-

vance scheduling is the process of fixing a surgery date

for a patient, whereas allocation scheduling determines

the OR and the starting time of the procedure on the

specific day of surgery. In Samudra et al. [34] an intro-

duction to some of the research groups in the field is

given.

Routines that can be followed step by step by sched-

ulers are provided in Adan et al. [1]. They provide rou-

tines for three different problems: (1) determining the

amount of optimal OR capacity reserved for certain pa-

tient types, (2) assignment of patients to those previ-

ously reserved OR capacities, and (3) guidance of the

decision making process on the day of the surgery, i.e.,

determining when to cancel a patient.

The setting described in Adan et al. [1] is differ-

ent from ours in several aspects. For instance, in their

setting, electives are scheduled into regular OR time,

whereas non-electives are scheduled into regular and
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slack time. In our setting non-electives are not being

scheduled since they either need to be served imme-

diately (DT category 1), in which case scheduling is

obsolete, or they can wait (DT categories 2 and 3), in

which case they generally will, as in Azari-Rad et al.

[3], be served in an OR of the corresponding discipline

after the last elective of the day has been served.

Slack time is used by Hans et al. [14] where the

portfolio effect is used to minimize the risk of overtime.

In their setting, the risk of overtime depends on the

variance of the surgery durations. Grouping surgeries in

a way that the total variance of the surgery durations

assigned to ORs is decreased will result in a lower risk

of overtime.

Fei et al. [9] solve the patient-to-date and

the patient-to-OR assignment problem in an open-

scheduling setting where on a given day different sur-

geons can occupy the same OR. This also means that

the patient sequence needs to be determined [10, 11].

A similar problem is solved by Lamiri et al. where pa-

tients are assigned to dates [18, 20] and also to ORs

[17, 19].

Yih and Min [26, 27] schedule patients based on

their priority. The priority of patients will translate into

a cost value that is associated to not being scheduled in

the next future period. If a patient is scheduled, an over-

time cost may occur. The authors also introduce tech-

niques that solve the patient-to-OR assignment prob-

lem including aspects of uncertainty related to surgery

durations, length of stay and non-elective arrivals [28].

The results found in the literature are only to a

limited degree applicable to our setting. For example,

many methods in the literature implicitly assume that

there is one central scheduler in place who is responsi-

ble for scheduling all patients. It is moreover assumed

that this scheduler is able and willing to use a com-

puter algorithm. Neither of this is true in our setting.

Surgeons generally schedule their patients individually

and manually.

We focus on the surgery-to-date and the surgery-to-

OR assignment step. We do not sequence and do not

determine the start time of surgeries. Those two factors

are not important in our setting as elective patients are

available the whole day and surgeons usually “own” an

OR for the entire day. Therefore neither the sequence

nor starting time of single surgeries is important.

Our contribution to the existing literature consists

of aspects that are related to realism. This is true

with regards to both the developed model and the used

methods. The model is realistic as we included all the

aspects that we found to have a major effect on the

results. This includes modeling aspects that relate to

patient attributes (e.g., arrival, duration), to the struc-

ture of the setting (e.g., block assignment schema) and

the processes (e.g., rescheduling, non-elective allocation

schema). Also the tested methods are realistic as they

reflect considerations or processes that also in reality

are important.

Components of the model were created on the basis

of hard data. For aspects that were not covered by the

data, we relied on the insights of our contacts. They

consist of a mix of people from the hospital that to-

gether have all the necessary insights. This includes, for

instance, the head surgeon, the head nurse, the respon-

sible of the bed allocations and people from capacity

management and the data gathering group.

3 Method

We will refer to different scheduling policies or methods

as scheduling factors. The combination of those factors

creates scenarios, which we then test in a DES model.

3.1 Model

The DES model incorporates all the aspects of the

surgery setting of the University Hospital Leuven that

we found to be vital. We included aspects that relate to

the way surgeries, before the surgery date, are sched-

uled and replanned and, on the surgery day itself, are

rescheduled. We also replicated the functions of the OR

department. This includes, for instance, an implemen-

tation of the non-elective to OR allocation schema.

We found that only a DES model is able to real-

istically capture all the aspects of the University Hos-

pital Leuven’s scheduling setting that we deemed to

be important. For example, a Markov decision process

(MDP) or mathematical programming (MP) are, in our

setting, not suitable to solve the task at hand.

We think that an MDP based solution method is

not suitable as it does not allow to model some of the

more complex mechanisms of the OR department. For

instance, one problem with an MDP type of solution

method is that OR capacities are defined on the basis

of single surgery slots. Because of the large variance in

surgery durations within each discipline (Fig. 5) using

one average slot size would be a large oversimplifica-

tion of the real setting. A large number of different slot

sizes would however generally lead to computational

problems.

A MP based solution method is also not suitable

in our setting. A mathematical program is a tool that

produces a schedule for the surgeons. However, in re-

ality, such a program would only be used by very few

surgeons. Instead, we found that it is more effective to
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show surgeons some of the implications their scheduling

decisions generally have on the OR department and on

their patients. This helps them to make more informed

scheduling decisions in the future.

We created the DES model in MATLAB and

Simulink [24]. The combination of MATLAB with

Simulink yields an environment where generic simula-

tion building blocks can be used and, as part of the sim-

ulation model, regular MATLAB code can be executed.

Simulation blocks are used to model, for instance, the

surgery process in the OR, while MATLAB code is used

to create models of more complex decision making pro-

cesses, such as the process of patient scheduling and

patient rescheduling.

We analyzed and imitated the real mechanisms en-

countered at the hospital. We made a minimal amount

of modeling assumptions and used real data as the basis

of all submodels. In cases where the data did not reveal

enough about a process, we were helped by our con-

tacts at the hospital who provided us with the missing

knowledge.

The attributes of patients generated in the model

realistically reflect the attributes of the inpatient pop-

ulation of the hospital. Patient attributes are: surgeon

ID, arrival rate for each weekday, estimated and real-

ized surgery duration and DT category. Discipline re-

lated attributes are: surgery start time bias (for the first

surgeries of the day) and turnaround time.

The statistics for patient attributes are measured

for each discipline separately. In the model, all patient

attributes are generated on the basis of empirical dis-

tributions. Exceptions are the non-elective inter-arrival

times and the realized and the estimated surgery du-

rations. Non-elective inter-arrival times, for modeling

purposes, are assumed to follow the exponential dis-

tribution for a given period. A period depends on the

weekday and the daytime (daytime: 6 am to 10 pm,

nighttime: 10 pm to 6 am). The relation between the

estimated and the realized surgery durations is modeled

using a statistic that is based on copulas [42].

3.2 Factors

The DT is one of the major scheduling related concepts

at the University Hospital Leuven. We therefore tested

how different scheduling factors impacted on it.

In our model, we imitate the reality of the hospi-

tal where patients are scheduled to a final surgery date

during their consultation session. The surgeon or the

administrative people with the input from the surgeon,

find a suitable date and OR without a scheduling al-

gorithm. Only those dates are considered on which the

surgeon is assigned an OR. In the simulation model, as

in reality, we ensure that, firstly, only patients associ-

ated to the same surgeon can be assigned to a particular

OR and, secondly, a surgeon can only be assigned to one

OR a day.

At the University Hospital Leuven an OR can be en-

tirely filled up but is preferably not overbooked. How-

ever, there will be disciplines that occasionally overbook

for a few hours. This is particularly true for CAH, NCH,

THO, TRH, URO and NKO. These disciplines are in

the model allowed to overbook, CAH by 2 hours and

the remaining five by 1 hour. All other disciplines can-

not overbook, i.e., the sum of the expected surgery du-

rations assigned to their ORs can sum up to its total

capacity (9 hours) but cannot exceed it.

Booking rules can vary from hospital to hospital. At

some hospitals, ORs may never be fully booked or, con-

versely, can be overbooked. For example, at the Eras-

mus Medical Center in the Netherlands ORs are not

fully booked and slack time is included. This ensures

that the probability of overtime stays below a certain

level [14].

In our setting, a surgery schedule is not necessar-

ily fixed as surgeries can be replanned before the day

of their surgery. Surgery replanning to earlier surgery

dates can, for instance, be used to improve the usage

of ORs. In reality, this is applied to 5.2% of the to-

tal patient population. Other reasons why surgeries are

brought forward in the schedule are, for instance, the

worsening health condition of the patient or hospital

related logistic reasons. We will focus on the capacity

related advantages and investigate whether patient re-

planning, by utilizing unclaimed free short-term OR ca-

pacity, can improve OR usage. As the hospital generally

tries to avoid excessive replanning, we also investigate

whether the unused OR capacity can be filled up with

new arrivals.

We grouped the different aspects of the patient

scheduling process into three factors (Table 3). The first

factor tests the use of the first come, first serve (FCFS)

strategy which assigns patients to the earliest possible

surgery date regardless of their actual DT. The second

factor tests the use of pushing lower urgency patients

into the future leaving capacity free for higher urgency

DT categories. The third factor tests the use of filling

up unclaimed short-term free capacity. This is tested

in two ways, firstly, by using patients arriving one day

in advance, i.e., patients are allowed to be scheduled

to exactly one day after their arrival, and secondly, by

replanning patients from future dates to earlier dates.

Replanning is done before any new elective arrival is

registered for the current day.
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Factor 1 (F1) is used to investigate whether it is ben-

eficial to allow patients, up to certain DT categories, to

be served FCFS. As table 3 shows, the factor can take

6 values: (1) none of the patients are served on a FCFS

basis, (2) only DT category 4, (3) DT categories 4 and 5,

(4) DT categories 4 to 6, (5) DT categories 4 to 7 or (6)

DT categories 4 to 8 (all) patients are served FCFS. The

factor allows patients of the included DT categories to

be served as quickly as possible. Indirectly it also means

that the patients of all DT categories served FCFS are

treated equally. For example, if FCFS applies to pa-

tients up to DT category 6, then, from a scheduling

perspective, DT category 5 and 6 are regarded to be

equally urgent as DT category 4.

Similarly as done by Vijayakumar et al. [45] and

Niu et al. [29] patients served FCFS will be assigned

to the first date that has a suitable open OR available.

In case that such an OR is not available, a new OR is

opened. In our model, surgeries can only be allocated to

ORs that are assigned to the corresponding discipline

and to the corresponding surgeon. A surgery can be

allocated to a new empty OR if the OR is assigned to

the respective discipline in the MSS. The newly opened

OR will be assigned to the surgery’s surgeon and only

accept those additional future surgeries that belong to

the same surgeon.

Factor 2 (F2) is used to postpone less urgent surg-

eries, thereby creating short-term buffer capacity that

can be used by more urgent patients. There are three

strategies: schedule patients into the early, center or

late part of their DT interval. With the early strategy,

patients are assigned into the closer end of their DT in-

terval. This is similar to FCFS with the restriction that

patients can only be served after a certain reference pe-

riod. With the center strategy, patients are scheduled as

close to the middle of their DT interval as possible, i.e.,

the temporal distance between the selected date and

(DT end + DT start) / 2 is minimized. With the late

strategy, patients are scheduled into the end of their

DT interval, that is, patients are served as late as pos-

sible while still within their DT. If there is no such date

available, then a date after the patient’s DT is chosen.

It is interesting to explicitly incorporate the DT into

a scheduling strategy as serving patients closer to their

due date is a concept that can intuitively feel advanta-

geous to surgeons. This approach is also tested by Rizk

and Arnaout [33].

Factor 3 (F3) is used to quantify the benefits of fill-

ing up unclaimed free short-term capacity. This is ca-

pacity that in the morning of the preceding day is still

shown to be unclaimed and is therefore regarded to be

in danger of being wasted. For example, if Wednesday

morning the OR plan for Thursday shows 5 hours of

Table 3 As the table shows, each factor can take several val-
ues. The combination of the three factors forms a scheduling
scenario. A scheduling scenario is, for example, to serve pa-
tients up to DT category 5 on a FCFS basis, schedule the rest
(DT categories 6 to 8) to the center of their respective DT
interval and fill up next day capacity with fresh arrivals up
to DT category 6. If a scheduling scenario selects more than
one surgery date, always the earliest is chosen.

Factor Values

F1 FCFS None, ≤ DT 4/5/6/7/8

F2 Into DT interval Early, center, late

F3 Next day None

Fresh arrivals ≤ DT 4/5/6/7/8
Replanning patients ≤ DT 4/5/6/7/8, APQ

unclaimed capacity, then we say that 5 hours of OR ca-

pacity is in danger of being wasted. We will refer to this

type of capacity as next day free capacity. Next day free

capacity can be occupied by patients from two different

sources: firstly, fresh arrivals and, secondly, replanned

patients. Replanning works similarly to a waiting list,

where the replanning policy determines which patients

to pick first from the list [23].

Factor 3, similarly to factor 1, applies to certain DT

categories. It is, in case of replanning, used in combina-

tion with the best-fit strategy. This means that from the

list of eligible patients assigned to future dates (waiting

list), those patients are replanned that make best use of

the available free capacity. We use a replanning routine

that is likely to be most often used in reality. We first

replan the patient with the longest estimated surgery

that still fits the next day free capacity. The second pa-

tient chosen will need to fit the remaining capacity. We

continue this process until the left over free capacity

does not allow to accommodate any further patient.

Next to best-fit, we also implemented a patient se-

lection strategy that is based on an accumulating pri-

ority queue (APQ). In the APQ, patients accumulate

priority as a linear function of their time in the queue

and their priority [16, 38], i.e., their waiting time and

their DT. The weight vi associated to each patients is

therefore:

vi =
(si − ai)
dti

(1)

where ai is the arrival day, si is the surgery day and

dti is the due time in days of patient i ∈ I.
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4 Hospital setting, modeling assumptions and

validation

This section contains a description of the hospital set-

ting. We describe patient attributes, the MSS, the non-

elective allocation schema and the way patients are

rescheduled. In order to validate the simulation model,

we compare OR related performance measures to ac-

tual measurement data from the University Hospital

Leuven.

4.1 Patient arrivals

The arrival time of elective patients is the time point

when their surgeon determines the need for surgery.

This generally happens on weekdays anywhere during

daytime. The arrival time of non-elective patients repre-

sents the time point when they are physically registered

at the hospital. This can happen at any day and at any

hour.

We model elective patient arrivals on the basis of

a statistic that is based on rates, e.g., 5 CAH patients

request surgery on a Monday (Fig. 3). For non-electives,

a statistic is used that is based on inter-arrival times.

This defines an exact time instance, e.g., a non-elective

CAH patient arrives Monday at 2.21 pm.

Table 4 shows that the mean number of electives

registered weekly for surgery is 240.35 with a standard

deviation of 32.53 (column ∪ in the table). The average

number of arrivals for an elective discipline is 18.49 with

a standard deviation of 5.6 (column µ in the table).

As Table 4 shows, patient arrival numbers are highly

variable. This is true for week to week (e.g., first week

to second week of the year), day to day (e.g., Monday

to Tuesday) and weekday to weekday (e.g., Tuesday to

Tuesday) based comparisons. It is especially surprising

to note that the weekday to weekday variation of pa-

tient arrivals is high. This might be counterintuitive as,

given that surgeons have consultation times on a fairly

regular basis (e.g., every Monday), one could assume

that patient arrival numbers for the same weekday are

more stable.

It is interesting to note that the week to week ar-

rival variability differs strongly between disciplines. For

MKA and Tx it is very high in relation to the mean.

This explains the large CV. For instance, for MKA the

weekly OR capacity assigned to each discipline is fairly

fixed, consequently one might wonder whether it is pos-

sible to provide timely service to MKA patients. For-

tunately, MKA patients are generally not urgent (DT

score of 0.31, Table 2). This allows to spread out ar-

rivals from weeks with high loads to weeks with lower

loads. The same could not be done by TRH as most

EMG 67.5

SFTWTMS

NKO 15.2

SFTWTMS

MKA 5.6

SFTWTMS

VAT 11.6

SFTWTMS

URO 30.2

SFTWTMS

TRH 33.1

SFTWTMS

THO 19.1

SFTWTMS

RHK 14.6

SFTWTMS

ONC 13.1

SFTWTMS

NCH 16.8

SFTWTMS

CAH 19.8

SFTWTMS

ABD 36.7

SFTWTMS

Tx 2.8

SFTWTMS

GYN 21.9

SFTWTMS

Fig. 3 The average arrival rate of the 13 elective disciplines
and non-electives. The number in gray represents the average
weekly number of arrivals. The height of the column repre-
sents the % of patients served on that day from the weekly
volume.

of their patients must be served within 1 week. Fortu-

nately, TRH has one of the most stable patient inflows

and will therefore less frequently encounter weeks with

very high loads.

One could assume that in reality disciplines with a

patient mix that contains higher urgency patients or

a larger arrival variability would generally provide less

timely service to their patients when compared to the

rest of the disciplines. Interestingly, we did not find any

indications in the data that would support this theory.

It is worth to note that, in case a discipline cov-

ers a large population of DT 4 patients, not only the

weekly but also the daily arrival variability is impor-

tant. Consequently, in the model, both discipline de-

pendent weekly and also daily arrival variability needs

to match reality. We ensure this by generating patients

in two steps. In the first step, we determine for each

discipline the total number of weekly arrivals. In the

second step, the number of arrivals for each weekday is

determined (Monday to Friday). This is done by select-

ing a realization of a week from a pool. The weeks in

the pool were pre-generated using the empirical distri-

butions from Fig. 3.
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As a consequence of this two step procedure, for all

disciplines, the difference between the model and the re-

ality of arrival means and standard deviations are min-

imal (Table 2). A difference is present only if the union

of all patients is considered. This difference can be ex-

plained by holidays. In reality, holidays in a week result

in lower arrival numbers for all disciplines, this results

in a large combined variance. In the model, holidays af-

fect each discipline independently, therefore there is no

combined effect. In regards to the results, this discrep-

ancy will not matter because patients of different dis-

ciplines are scheduled into their own OR capacity, i.e.,

while the individual arrival variability of each discipline

is important, this is less the case for the combined one.

In Table 2 it is interesting to observe that arrival

means are generally not equal to their variance. This

is the case for most disciplines, for the averages across

disciplines (denoted in the table by µ) and for com-

bined elective arrivals (denoted in the table by ∪). Fur-

thermore, this is true for weekly arrival numbers, daily

arrival numbers and weekday specific arrival numbers

(Fig. 3). The fact that the arrival means and variances

are not equal means that the arrivals, contrary to what

is sometimes assumed in the literature, do not follow

the Poisson distribution. Interestingly, this is even true

for non-elective weekly arrival numbers. The two elec-

tive categories that seem to be exceptions are Tx and

NKO.

A factor that has an influence on arrival variance are

holidays. As Table 4 shows, the number of arrivals (first

row) on holidays is lower than on normal days but is by

far not zero, i.e., patients are also on holidays scheduled

for surgery. Important to note is the fact that exclud-

ing holidays will decrease the arrival variability only to

a limited extend (e.g., the average standard deviation

drops from 35.0 to 31.5). That is, excluding holidays

will not yield arrival patterns that follow the Poisson

distribution.

4.2 Non-electives

Every week around 70 non-elective patients, using

around 160 hours of OR time (Fig. 6), get surgery at

the hospital. This means that, if scheduled into regular

OR time, they would occupy 3 to 4 ORs a day. This is a

large number which explains their fundamental impact

on the hospital’s OR department. In order to realisti-

cally model this impact, we analyzed both their arrival

patterns and the discipline dependent way they are al-

located to ORs (Fig. 4).

Non-electives arrive with the highest rate during

daytime on weekdays. We call those time intervals high

Discipline

of the OR

Discipline

of the non-elective

NKO
URO

GYN
Tx
ONC

ABD
THO

TRH
MKA

RHK
NCH

VAT
CAH

∅

NKO
URO

GYN
Tx
ONC

ABD
THO

TRH
MKA

RHK
NCH

VAT
CAH

93.9 %

Fig. 4 During high impact periods, non-electives are gener-
ally assigned to an OR that serves electives of the correspond-
ing discipline (diagonal columns). Occasionally, non-electives
can be served in ORs that are not assigned to any discipline
(marked with ∅). Disciplines in the figure are grouped on ba-
sis of their kern. Kerns are 4-6 ORs that form a physical unit.
The figure shows that non-electives can sometimes enter ORs
that serve a discipline the same kern.

impact periods as this is also the time when non-

electives have the largest impact on the elective sched-

ule.

In the DES model, we explicitly model high impact

periods, i.e., non-elective inter-arrival times will depend

on the day of the week (Fig. 3, last histogram) and the

time period of the day. There are two time periods, (1)

daytime is between 6 am and 10 pm and (2) nighttime is

between 10 pm and 6 am. Arrival ratios will be around

3.4 times higher during daytime than nighttime.

Another important component of the model is

the discipline dependent non-elective OR allocation

schema. As shown in Fig. 4, non-electives of all DT

categories are during high impact periods generally as-

signed to an OR of the corresponding discipline. For

example, an open wound patient brought to the hospi-

tal is generally assigned to an OR that is occupied by

electives from TRH. Non-elective ONC patients are the

only exception to this rule as they are frequently served

in ORs allocated to ABD or Tx.

In the DES model, non-electives can during high

impact periods generally only enter an OR that serves

patients of their discipline. An exception is made for

MKA, ONC and Tx as there will be weekdays on which

they have no OR assigned to them. In those cases MKA

patients are assigned to empty ORs. Tx can always oc-

cupy OR number 7 even if the OR was originally closed

on the day, whereas ONC patients can enter ORs of

ABD and Tx. Those exceptions are based on our find-

ings in the hospital data and thus imitate the real prac-

tice.
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Table 4 As the table shows, the arrival model will produce results that are close to reality (∆ values are small). The table
also shows that arrivals generally do not follow the Poisson distribution (mean and variance are not equal). Weekly means
are calculated on the basis of the 104 weeks of the years 2012 and 2013. Daily means are calculated on the basis of 520 days
(5*104) whereas the values of weekdays are calculated on the basis of the corresponding 104 weekdays (e.g., all Tuesdays in
2012 and 2013). In the table, as an example, only Tuesday is shown. The mean value of all elective disciplines is denoted by
‘µ’, whereas the value considering electives in general is denoted by ‘∪’.

Non-
Elective

Elective

G
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N
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H
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H
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H
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O

V
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M
K

A

N
K
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µ ∪

W
ee

k
ly

a
rr

iv
a
ls

re
a
l

µ 67.6 21.9 2.8 36.7 19.8 16.8 13.1 14.6 19.1 33.1 30.2 11.6 5.6 15.2 18.5 240
var 118 38.8 2.9 84.7 50.1 36.7 15.9 39.1 39.4 51.8 46.1 20.8 9.9 18.5 35.0 1058
σ 10.9 6.2 1.7 9.2 7.1 6.1 4.0 6.3 6.3 7.2 6.8 4.6 3.1 4.3 5.6 32.5

CV .16 .28 .61 .25 .36 .36 .30 .43 .33 .22 .22 .39 .56 .28 .35 .14

m
o
d

el

µ 67.4 22.1 2.7 36.6 19.6 16.8 13.4 14.9 19.2 32.8 30.4 11.6 5.7 15.0 18.5 241
var 75.1 40.5 2.7 85.4 45.4 38.4 16.5 41.6 39.7 51.9 44.8 21.8 9.8 18.0 35.1 481
σ 8.7 6.4 1.6 9.2 6.7 6.2 4.1 6.5 6.3 7.2 6.7 4.7 3.1 4.2 5.6 21.9

CV .13 .29 .60 .25 .34 .37 .30 .43 .33 .22 .22 .40 .55 .28 .35 .09

∆

µ .20 -.16 .07 .04 .14 -.06 -.27 -.29 -.06 .23 -.21 -.07 -.11 .18 -.04 -.58
var 43.1 -1.7 .20 -.68 4.6 -1.7 -.59 -2.5 -.24 -.08 1.3 -1.1 .06 .47 -.14 577
σ 2.2 -.13 .06 -.04 .34 -.14 -.07 -.20 -.02 -.01 .09 -.11 .01 .05 -.01 10.6

CV .03 .00 .01 .00 .01 -.01 .00 .00 .00 .00 .00 -.01 .01 .00 .00 .04

D
a
il
y

a
rr

iv
a
ls

re
a
l

µ 10.7 4.3 .53 7.2 3.9 3.3 2.6 2.9 3.8 5.7 5.9 2.2 1.1 3.0 3.6 46.5
var 11.6 6.1 .59 10.8 6.7 4.6 4.3 4.3 6.1 7.9 8.3 2.9 1.4 3.4 5.2 122
σ 3.4 2.5 .77 3.3 2.6 2.2 2.1 2.1 2.5 2.8 2.9 1.7 1.2 1.8 2.2 11.0

CV .32 .58 1.5 .46 .66 .65 .79 .71 .66 .49 .49 .76 1.1 .61 .72 .24

m
o
d

el

µ 10.5 4.3 .51 7.2 3.9 3.3 2.7 3.0 3.8 5.7 6.0 2.2 1.1 3.0 3.6 46.7
var 11.0 6.6 .56 11.6 7.5 5.3 4.5 5.1 6.8 8.0 8.3 3.3 1.5 3.4 5.6 97.3
σ 3.3 2.6 .75 3.4 2.7 2.3 2.1 2.3 2.6 2.8 2.9 1.8 1.2 1.9 2.3 9.9

CV .31 .59 1.5 .47 .70 .69 .80 .76 .69 .50 .48 .81 1.1 .62 .74 .21

∆

µ .16 -.03 .02 .01 .02 -.02 -.06 -.06 -.01 .03 -.05 -.02 -.02 .03 -.01 -.15
var .65 -.46 .03 -.80 -.85 -.66 -.27 -.87 -.63 -.09 -.02 -.39 -.12 -.01 -.40 24.7
σ .10 -.09 .02 -.12 -.16 -.15 -.06 -.20 -.12 -.02 .00 -.11 -.05 .00 -.08 1.2

CV .00 -.02 -.01 -.02 -.04 -.04 -.01 -.05 -.03 -.01 .00 -.04 -.02 -.01 -.02 .03

W
ee

k
d

a
y

a
rr

iv
a
ls

(T
U

E
)

re
a
l

µ 10.8 4.6 .60 7.3 5.9 4.0 4.8 3.5 3.4 7.0 7.9 2.6 1.4 3.1 4.3 56.1
var 12.5 5.8 .63 9.1 8.8 4.6 5.4 4.2 3.6 8.4 7.9 2.9 1.7 2.8 5.1 106
σ 3.5 2.4 .79 3.0 3.0 2.1 2.3 2.0 1.9 2.9 2.8 1.7 1.3 1.7 2.2 10.3

CV .33 .52 1.3 .41 .50 .54 .48 .59 .56 .41 .35 .66 .96 .54 .61 .18

m
o
d

el

µ 10.6 4.7 .62 7.2 6.0 4.1 4.9 3.5 3.3 7.0 7.7 2.5 1.4 2.9 4.3 55.9
var 10.2 6.2 .69 10.4 11.4 5.4 5.3 4.3 3.9 8.2 8.5 3.3 1.8 2.4 5.5 76.7
σ 3.2 2.5 .83 3.2 3.4 2.3 2.3 2.1 2.0 2.9 2.9 1.8 1.3 1.6 2.2 8.8

CV .30 .53 1.4 .45 .56 .56 .47 .59 .61 .41 .38 .71 .96 .54 .62 .16

∆

µ .19 -.10 -.02 .09 -.06 -.15 -.08 -.03 .14 -.01 .22 .03 -.01 .18 .01 .20
var 2.3 -.42 -.06 -1.3 -2.6 -.76 .08 -.12 -.32 .22 -.55 -.42 -.05 .39 -.45 29.1
σ .34 -.09 -.03 -.21 -.41 -.17 .02 -.03 -.08 .04 -.10 -.12 -.02 .12 -.08 1.5

CV .03 -.01 -.01 -.03 -.06 -.02 .01 .00 -.05 .01 -.02 -.05 -.01 .01 -.02 .03

In the model, we also distinguish between DT cat-

egory 1 and DT categories 2 and 3. DT category 1 pa-

tients have to be served immediately and are assigned

to the next possible suitable open OR that serves their

discipline, that is, at the next break-in-moment [21].

Contrarily, DT category 2 and 3 patients will be left to

the end of the elective schedule. This is also often hap-

pening in reality and serves the interest of the surgeons

as it allows them to finish all their electives before any

non-elective is started.

4.3 Surgery duration

The surgery duration of a patient is defined as the time

that elapsed between the moment the patient is rolled

into the OR and the time when the patient leaves the

OR (Fig. 5). It does not include cleaning time. If the
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Est.(h)

0 15.42.1

17.7

2.4

EMG

Real.(h)

Est.(h)

0 9.92.9

14.6

3.1

NKO

0 11.73.2

18

4.2

MKA

0 122.6

14

2.8

VAT

0 13.31.7

13.3

1.9

URO

Real.(h)

0 8.12.1

13.3

2.4

TRH

0 14.83.6

18.7

4

THO

0 122.6

16.8

3.3

RHK

0 121.9

14.3

2.4

ONC

Real.(h)

0 103.7

19.3

4.2

NCH

0 11.45.2

12.6

5.4

CAH

0 92.1

21.7

2.9

ABD

0 7.72.1

16.3

2.8

Tx

Real.(h)

0 15.32.8

12.4

3.1

GYN

Fig. 5 Points on the same vertical line are either surgeries of
the same type or they are discrete values that were selected
manually by surgeons (e.g., such as 1 hour and 30 min). The
numbers in gray represent the mean values.

patient is in the OR, it includes the setup time. If the

setup time is specific to the patient, then it is generally

included into the surgery duration.

The estimated surgery duration (Table 5), suggested

to the surgeon, is based on the mean of the realized

surgery durations of previous similar OR sessions. The

surgeon can then accept or overrule this value.

Each discipline performs different types of surgeries.

Each of those surgery types is assigned a unique iden-

tifier that generally contains an ICD-9 code and a local

component. ICD-9 codes on themselves can be too re-

strictive to accurately describe a procedure and thus

need this additional local component. Surgeries with

the same identifier will represent similar procedures and

will consequently have a similar length.

As Table 6 shows, the log-logistic distribution pro-

vides, starting from the tested parametric distributions,

the best fit on surgery types. In the literature some-

times the log-normal distribution is used as it provides

a better fit than the normal distribution [39]. Also in

our setting, the log-normal distribution clearly domi-

nates the normal distribution. Interestingly, however,

the log-logistic distribution outperforms both of them.

Firstly, the log-logistic distribution fits all of the surgery

types, whereas the log-normal distribution fits 97.7% of

the surgery types. Additionally, based on the AIC crite-

rion, the log-logistic distribution provides, amongst the

tested distributions, the best fit in 31.8 % of the cases.

For the log-normal distribution this is true for 2.7 %

of the cases whereas the normal distribution never pro-

vides the best fit.

Despite the fact that surgery types seem easy to

work with, there is a factor that prevents their use. We

will often not have a sufficiently large enough sample

size to reliably estimate the parameters of a distribu-

tion. The problem would remain if we would analyze

more than 2 years of data. A larger total sample size

would likely include new unseen surgery types which

might again have a low sample count.

Because of the aforementioned factors, we model

surgeries on a higher level, namely on the level of

the discipline (Fig. 5). This avoids the problem of low

counts but unfortunately it also introduces a new prob-

lem, namely multimodality. This is the case when disci-

plines cover several surgery types, which typically have

a different mean duration. Unimodal parametric distri-

butions (such as described in Table 6) do not work well

on multimodal data. Methods that do work are based

on, e.g., a kernel density estimator (KDE) or a Gaussian

mixture model (GMM).

As Fig. 5 shows, the estimation error (which is the

difference between the realized and the estimated dura-

tions) tends to increase with the length of the surgery.

This aspect, amongst others, is captured by a bivari-

ate distribution. In Table 7 we compare the goodness

of fit of a few bivariate models on the data. The first

distribution in the table is a purely parametric model,

the bivariate GMM. The remaining models are based

on the theory of copulas.

Both GMMs and copula based models have their

benefits and drawbacks. A GMM assumes that all the

data points are generated from a mixture of a finite

number of Gaussian distributions. In reality, this as-

sumption might not be true for surgery durations.

Copulas are not constrained to distributions with

Gaussian mixes. Copulas provide a way to describe

joint distributions by separating the estimation of the

marginal distributions of the random variable from

the dependencies between them. Unfortunately, copu-

las such as the Gaussian- or (Student) t-copula come

with their own set of restrictions as they can perform

less well on multimodal data [40].

In order to model realized and estimated surgery

durations, a model is needed that can handle multi-

modality and is flexible with regards to the assumptions

made on the underlying distribution. Such a model was

developed by Tewari et al. [40] and is a combination

of GMMs and copulas using a class of functions called

Gaussian Mixture Copula (GMC) functions. In Table 7

we compare such a GMC based model with a bivariate

GMM, a Gaussian copula and a Student-t copula.
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Table 5 Surgery durations can often not be accurately estimated (high standard deviation of the error) and generally, as in
Travis et al. [41], are often underestimated. This is a problem as large estimation errors lead to OR overtime, case cancellations
and generally decreased efficiency of OR resources [44].
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µ ∪

R
ea

li
ze

d µ 2.4 3.1 2.8 2.9 5.4 4.3 2.4 3.3 4.0 2.5 1.9 2.8 4.2 3.1 3.3 3.2
σ 2.0 1.8 2.0 1.6 1.7 2.4 1.9 2.8 2.5 1.3 1.4 1.8 3.4 1.8 2.0 2.1

CV .86 .56 .70 .54 .32 .55 .78 .86 .62 .53 .75 .63 .80 .57 .63 .67

E
st

. µ 2.1 2.8 2.1 2.1 5.2 3.8 1.9 2.6 3.6 2.1 1.7 2.6 3.2 2.9 2.8 2.7
std 1.8 1.6 1.4 1.1 1.3 1.7 1.5 2.4 2.1 .89 1.2 1.5 2.1 1.5 1.6 1.8
CV .84 .57 .68 .52 .25 .45 .77 .93 .59 .42 .71 .59 .67 .49 .59 .65

µ .29 .30 .70 .78 .16 .50 .48 .69 .46 .33 .18 .20 1.0 .15 .46 .42
∆ std 1.2 1.2 1.2 1.2 1.3 1.4 1.0 1.1 1.3 1.0 .77 1.1 1.9 1.1 1.2 1.2

CV 4.0 4.0 1.7 1.5 8.0 2.9 2.1 1.6 2.9 3.1 4.2 5.7 1.9 7.3 3.6 2.8

Table 6 The fit of a distribution on a surgery type is evalu-
ated by the Kolmogorov-Smirnov test. For each surgery type,
a ranking is created using the Akaike information criterion.
Only those surgery types were included into the analysis that
were performed at least 10 times during the years 2012-2013.
This covers 78% of all surgeries.

Distribution Fits Best fit (AIC)

log-logistic 100 31.8%
logistic 98.5 3.5%
log-normal 97.7 2.7%
gamma 96.7 5%
birnbaumsaunders 96.3 8%
inverse gaussian 96.2 26.6%
nakagami 94.5 5.3%
weibull 92.8 9.7%
rician 92.2 1.3%
normal 91 0%
extreme value 75.2 4.3%
rayleigh 41.1 1.8%

From Table 7 we see that the bivariate GMM per-

forms well with regards to some disciplines. For the dis-

ciplines where the bivariate fit is bad, the marginal fit

on estimated durations is bad as well. The bad fit is

likely a consequence of the fact that estimates can have

a discrete component.

On the contrary, as Table 7 shows, copula models

can provide a good fit on the marginals but do not per-

form well with regards to the bivariate fit. This shows

that the method fails to correctly capture the connec-

tion between the realized and the estimated durations.

More specifically, both the Gaussian and the t-copulas

seem to fail because of the multimodal aspect of the

data. The same is true for other copula types such as

the Clayton, Frank or Gumbel copulas.

A method that provides a good fit on both the bi-

variate distribution and on the marginals is the GMC

model. As generally with copula methods, it is also in

this case of critical importance to chose the suitable

marginals. For example, choosing the log-normal distri-

bution as a marginal for the realized durations clearly

yields a bad fit (Table 7). Two marginals that work

well are the univariate GMM and the KDE. The KDE

we found to work well is the fixed bandwidth method

described by Shimazaki and Shinomoto [37].

In the simulation model, we use the described GMC

model with a univariate GMM for realized and a KDE

method for estimated marginals. Alternatively, a purely

empirical distribution could be used. This, however,

would provide us with a less general model as the du-

ration generator for some of the disciplines with lower

sample counts (e.g., Tx) would produce reoccurring du-

ration values. Methods that do not seem to work are

based on the bivariate GMM and all copula methods

where other than GMM or KDE marginals are chosen.

4.4 Capacity allocation

In the literature, the OR planning process is commonly

divided into three levels: strategic, tactical and oper-

ational [5]. At the strategic level, a certain amount of

OR capacity is allocated to each discipline. This relates

to the patient case mix as the hospital decides for each

discipline on the number of future patients it wants to

serve. At the tactical level, the MSS is created, this is a

1 or 2 week cyclic plan where to each weekday and OR

a specific discipline or surgeon is assigned to. At the

operational level, surgeons assign patients to their own

OR sessions. There are hospitals where the ORs are

planned differently, generally however a schema similar

to the one described is followed. A more detailed schema

of the OR planning process is provided by Cardoen et

al. [6].
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Table 7 The table shows the goodness of fit of different bivariate models. As the Kolmogorov-Smirnov test is only applicable
to continuous distributions, we use a χ2 test. For the joined, bivariate distribution, a two-sample two dimensional χ2 is
used whereas for the marginals (realized and estimated) a two-sample one dimensional χ2 test is used. The bins in the two
dimensional case are based on a 10*10 grid of bins, whereas in the one dimensional case on 10 bins. Bins with count lower
than 5 are merged with neighboring bins.
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G
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M
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B
iv

joined <.001 <.001 .73 .02 .91 .19 .02 <.001 .6 .9 .79 .92 .81 .06
real. .26 .29 .53 .92 .86 .55 .22 .02 .19 .89 .13 .91 .53 .75
est. <.001 <.001 .09 <.001 .5 <.001 <.001 <.001 .03 .07 .18 .31 .11 .83

G
a
u

ss
. joined <.001 .05 .11 .02 <.001 <.001 <.001 <.001 <.001 0 <.001 <.001 <.001 .37

GMM-real. .47 .15 .99 .22 .51 .65 .94 .47 .2 .08 .51 .46 .73 .07
KDE-est. .64 .76 .19 .52 .83 .72 .52 .86 .95 .72 .72 .3 .54 .3

S
tu

d
.-

t joined <.001 .08 .06 .16 <.001 <.001 0 <.001 <.001 .4 <.001 .43 <.001 .51
GMM-real. .53 .53 .86 .51 .12 .26 .95 .53 .26 .47 .48 .48 .79 .26
KDE-est. .83 .58 .23 .88 .78 .93 .43 .56 .98 .58 .43 .34 .48 .46

G
M

C
M joined <.001 .2 .1 <.001 <.001 .04 .03 <.001 <.001 <.001 <.001 .13 <.001 4

logN-real. <.001 .06 .12 <.001 <.001 .15 <.001 <.001 <.001 <.001 <.001 .14 <.001 <.001
KDE-est. .64 .74 .62 .88 .97 .88 .94 .87 .82 .75 .23 .38 .68 .84

G
M

C
M joined <.001 .05 .87 .13 .14 <.001 .01 .31 .98 .29 .65 .38 .86 .32

GMM-real. .99 .29 .68 .95 .33 .87 .63 .46 .75 .38 .99 .49 .8 .71
GMM-est. <.001 0 .01 <.001 <.001 .35 .11 <.001 .04 .05 .64 .45 .52 .27

G
M

C
M joined .37 .95 .9 .12 .56 .33 .91 .23 .93 .19 .43 .11 .25 .55

KDE-real. .95 .99 .71 .31 .88 .41 1 .58 .22 .41 .92 .67 .56 .79
KDE-est. .51 .84 .76 .24 .66 .93 .86 .45 .84 .56 .94 .62 .88 .88

G
M

C
M joined .4 .75 .75 .95 .81 .41 .31 .92 .48 .69 .11 .6 .73 .3

GMM-real. .59 .79 .91 .36 .28 .86 .68 .8 .8 .72 .58 .85 .9 .91
KDE-est. .98 .56 .35 .61 .8 .61 .93 .58 .56 .78 .09 .58 .8 .85

There are many criteria that can guide the creation
of the MSS. Typically, the arrival caseload average and

its variability are factors that are considered [15]. Addi-

tional factors can relate to tradition, i.e., if a discipline

generally received a lot of capacity, they might also get

more capacity in the future.

In the simulation model the MSS is predetermined

and therefore static. This also means that the total

weekly capacities assigned to each discipline are fixed.

The fixed capacities are equal to the average capacities

of the University Hospital Leuven’s final MSS. For ex-

ample, if in reality on average 5.5 ORs a week are used

by NKO then in the simulation model an MSS with 2

cycles is used where NKO in one week is assigned 5 and

in the other week is assigned 6 ORs.

Slack capacity is used to protect against uncertainty.

The slack capacity shown in Table 8 is based on du-

ration estimates and therefore relates to the planning

phase. The table also shows that if non-elective capacity

arriving during high impact periods is deducted from

the available OR capacity then the total slack capacity

is reduced to 10%. Interestingly, this is also the value

that is suggested to work best by M’Hallah and Al-

Roomi [25].

Table 8 shows that we allocate to some disciplines

a different amount of capacity in the model as is in

reality. For instance, the weekly capacities assigned to

CAH and VAT were both reduced by 2 ORs (18h). This

is done to get a more up to date system as also in reality,

from the second half of 2013 on, their assigned capacity

decreased.

On a side note, it is also from a capacity perspective

important to create a realistic model of the non-elective

OR assignment schema. Fig. 6 shows that the elective

load on different kerns is different. A balanced load on

kerns is only observable if non-electives are included.

This is fair to do as non-electives usually enter ORs that

are assigned to the elective discipline itself or to the dis-

ciplines kern (Fig. 4), i.e., they either way contribute to

the kerns’ load. This shows that also from a modeling

perspective it is important to allocate non-electives re-

alistically as, e.g., a random assignment would yield a
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Table 8 The table shows that the total capacity available at all ORs are 823 hours a week. Out of this capacity, 20% is
slack capacity. Slack capacity is based on the available OR capacity and the estimated caseload (caseload based on estimated
durations). The slack capacity that remains after reducing available OR capacity with the expected non-elective caseload is
denoted by a ‘*’.
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Real
open cap. 67.8 46.3 97.5 128 68.0 32.1 55.1 73.8 74.3 57.0 57.1 20.9 46.0 63.4 824
slack % 8% 87% 21% 19% 8% 22% 31% 7% 6% 9% 47% 14% 3% 22% 20%

slack % * 6% 58% 3% 11% -4% 17% 26% -4% -5% 4% 39% 10% 0% 14% 10%

Model
open cap. 68.0 18.0 97.5 110 68.1 32.1 55.3 74.0 74.5 57.2 39.3 21.0 46.1 58.5 761
slack % 9% 67% 21% 6% 8% 22% 32% 7% 6% 9% 23% 15% 4% 18% 14%

Non-electivesElectives

100%100% h161.3h760.9

h23.1h in Kern E139.3

10%14% CAH 16.2106.6

4%4% VAT 6.832.7

h26.3h in Kern D143.5

12%9% NCH 19.371.5

3%6% RHK 4.748.1

1%3% MKA 2.223.9

h38.9h in Kern C159.0

12%11% TRH 18.681.3

13%10% THO 20.377.6

h63.3h in Kern B145.6

25%14% ABD 39.6106.4

1%4% ONC 2.431.4

13%1% Tx 21.47.9

h9.7h in Kern A173.5

2%9% GYN 2.568.9

3%8% URO 4.157.7

2%6% NKO 3.246.8

Fig. 6 The values are based on realized durations and show
how much average weekly capacity is used by elective and
non-elective disciplines. For planning purposes less capacity is
booked since duration estimates are generally underestimated
(Table 8).

false load on kerns and disciplines. This would lead to a

false view on rescheduling and OR and patient related

performance outputs.

4.5 Rescheduling

There are two major reasons why regular OR time is

not enough to serve all planned electives. Firstly, it fre-

quently happens that surgeries take longer than esti-

mated (Fig. 5). Secondly, a non-elective, generally DT

category 1, arrival can demand immediate access to an

OR and thus postpone the execution of the OR’s elec-

tive schedule (Fig. 4). In those cases, in order to avoid

excessive overtime, it can become necessary to resched-

ule elective patients.

We distinguish between two basic types of

rescheduling actions: surgery reassignment and surgery

cancellation. A surgery is reassigned if, on the day of

the surgery, it is moved from the originally planned OR

to another OR. The surgery is still performed on the

originally planned date. On the contrary, a cancelled

surgery will be performed on a later date and is as-

signed to the surgeon’s next OR session. This is done

even if the next session is already fully booked.

We make a clear distinction between rescheduling

and replanning. Rescheduling is done on the day of the

surgery itself and is used to avoid excessive overtime.

It is not part of the patient scheduling process but a

component of the simulation model. We therefore do

not test different rescheduling policies and only model

the current practice found at the hospital. In contrast,

replanning a surgery is done before the actual surgery

date and is therefore as such part of the patient schedul-

ing process.

Surgeries are rescheduled in order to control some

aspect of OR overtime. In some hospitals, a limit in

hours is enforced. For instance, in a Spanish setting

described by Pulido et al. [31] this limit is 2 hours.

For work beyond that, surgeons and nurses are not

paid, this gives them an incentive to rather reschedule

a surgery than to go over the set time limit. Other hos-

pitals may control the risk of going into overtime, that

is, they ensure that an OR goes into overtime only in a

certain percent of cases. Therefore, e.g., nurses will only

occasionally have to work longer hours. Other, mostly

profit oriented, hospitals may trade off the cost of pay-

ing for overtime staffing and the profit gained from per-

forming a surgery in overtime. At the University Hospi-

tal Leuven, depending on the hour of the day, a limit is

set on the number of the ORs that are allowed to stay

open in overtime, i.e., 8 ORs out of the 22 ORs may be
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running overtime at 6 pm, 4 at 7 pm and only 2 from 8

pm on. Those 2 ORs will remain open the entire night

and serve incoming non-elective patients.

At the hospital, cancellations are less often carried

out than surgery reassignments. Understandably, the

hospital’s head anesthesiologist is more reluctant to

cancel a surgery than to reassign it to another OR. This

is the case as it is frustrating for patients to be cancelled

as it means that they physically and mentally will need

to prepare for the surgery all over again. Patients being

reassigned to another OR is not a problem. As a matter

of fact, they might not even notice it.

At the hospital, on a daily basis between one and

two patients are cancelled and more than 6 are OR reas-

signed. For an elective patient this means a probability

of 3.4% to be cancelled and 13.1% to be reassigned (Fig.

7). The hospital targets a cancellation rate of 2% in the

future.

In the simulation model, we imitate the behavior

of the hospital’s head anesthesiologist. The head anes-

thesiologist makes rescheduling decisions continuously

throughout the day. Therefore, in the model, each full

hour from 8 am to 9 pm we identify those ORs that are

expected to run into overtime. From the identified ORs

it is then checked whether surgeries can be moved to

other ORs. An OR can only accept a surgery if, includ-

ing the new surgery, the OR is still estimated to close

before 4.45 pm. In case a surgery cannot be reassigned

to another OR it may get cancelled.

Whether it is believed that an OR goes into overtime

depends on the OR closing time estimate and on the

reliability of this estimate. The estimate is more reliable

if it is later in the day as consequently a larger number
of surgeries will have already been performed.

In the simulation model, the degree to which it is

believed that an OR will go into overtime depends on

two functions. Their product will determine whether

a patient can only be OR reassigned or may also be

cancelled. The first function increases linearly with the

time of the day, while the second function represents

the OR closing time estimate. In other words, the later

it is in the day, the more it is believed that the OR

closing time estimates are correct and consequently, in

case the OR closing time estimates indicate overtime,

the more likely it becomes that a rescheduling action is

carried out.

It is important to note that surgeries cannot freely

be moved between two ORs. In the simulation model

(as in reality) a strict hierarchy is followed. Firstly, it

is preferred to reassign a patient to an OR that serves

the same discipline. Alternatively, a surgery can be re-

assigned to another discipline as long it is within the

kern. Less favorable but possible is to move surgeries

 

 

hour of the day

2118151296

Cancellations
OR reassignments

Fig. 7 Rescheduling decisions are made throughout the date.
The peaks of the PDFs are at 2 pm and 3 pm for OR reas-
signment and cancellation respectively.

across kerns A, B, C and D (Fig. 6). CAH can only be

reassigned to its own ORs and NCH surgeries will not

leave the kern to which they are assigned.

4.6 Model assumptions and validation

Our results are usable in the real setting as we ensured

that the model is credible and valid. Model credibil-

ity is concerned with “developing in potential users the

confidence they require in order to use a model and

in the information derived from that model” [35]. We

created the model based on the data of the University

Hospital Leuven and through numerous meetings with

the management (head surgeon, head nurse, etc.) con-

firmed that we have the right understanding of both

the data and the setting. Our model is consequently

credible to the people at the hospital.

Model validation is the “substantiation that a com-

puterized model within its domain of applicability pos-

sesses a satisfactory range of accuracy consistent with

the intended application of the model” [36]. We vali-

dated our model by comparing the simulation results

with real hospital data. We think that there are 3 as-

pects that are of key importance and thus have to be

validated: (1) a realistic capacity to discipline allocation

schema (Table 8), (2) a realistic arrival caseload process

(Table 9) and, in order to ensure that the hospital pro-

cesses are modeled accurately, (3) the validation of key

hospital related performance measures (Fig. 8). As we

already dealt with the first point, we will only focus on

points 2 and 3.

The arrival caseload is the amount of OR hours that

have to be scheduled for surgery in the current or fu-

ture weeks, which is different from the actual surgery
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caseload assigned to that week. Whereas the surgery

caseload depends largely on the fixed MSS and is thus

fairly stable and predictable, the arrival caseload is

more variable as it depends both on stochastic patient

arrival numbers and on their stochastic surgery dura-

tion lengths.

Table 9 shows that the model is realistic as both

averages and standard deviations reflect reality (small

∆). This is true for the realized arrival caseload, for the

estimated caseload and for the error between them. The

error is important as it contributes to the uncertainty

that differentiates a planned from a realized schedule.

In order to ensure that the hospital processes are

modeled accurately, we validate some of the key hospi-

tal related performance measures (Fig. 8). The results

confirm that the model is valid. There are four mea-

sures where there is a statistical difference. In reality

(1) lower utilization, (2) less overtime, (3) more under-

time and (4) more daily open ORs are experienced.

In case of measures (2 and 3), the difference is sta-

tistically speaking significant but small enough to not

be of practical relevance. The reasons for (1 and 4) can

be explained by the fact that in reality less than 9 hours

of capacity might be allocated to an OR-day. However,

as it is difficult to identify those OR-days, we will as-

sume they are always assigned the full 9 hours. The

measured utilization in reality will thus be lower than

in the model. Similarly, as in the model and in real-

ity the same amount of total capacity is used, shorter

opening hours entail that the OR is open on more days.

4.7 Simplifications

We tried to simplify the arrival model, without success.

For instance, modeling patient arrivals with a Poisson

distribution causes the std. of the average caseload per

disciplines to decrease from 20.2 hours (measured in

reality) to 15.7 hours. For some disciplines it will be 8

hours lower than in reality, which is almost an entire

OR. This means that using a Poisson arrival process

may lead to a system that is much more stable than it

is in reality. This can lead to misleading results. This is

especially true with regards to DT 4 patients which, as

they are required to be served within a week, are more

sensitive to short term capacity shortages.

Other simplifications involve the surgery duration

model, where we tried to model durations in the uni-

variate space and fitted a parametric distribution on

both realized and estimated durations independently.

The chosen parametric distribution is, for each disci-

pline, the one with the best AIC value. The tested dis-

tributions include, amongst others, the ones described

Cancelled (%)
In reality

Simulation 8.63.230.2 8.63.230.2 8.63.230.2 8.63.230.2

OR reassigned (%)
In reality

Simulation 22.313.212.96.6 22.313.212.96.6 22.313.212.96.6 22.313.212.96.6

Throughput (per day)
In reality

Simulation 55.448.947.935.4 55.448.947.935.4 55.448.947.935.4 55.448.947.935.4

Open ORs (per day)
In reality

Simulation 19.918.516.914.1 19.918.516.914.1 19.918.516.914.1 19.918.516.914.1

UndertimeIn reality

Simulation 10.165.21 10.165.21 10.165.21 10.165.21

OvertimeIn reality

Simulation 20.914.713.68.8 20.914.713.68.8 20.914.713.68.8 20.914.713.68.8

UtilizationIn reality

Simulation 92.388.383.280.3 92.388.383.280.3 92.388.383.280.3 92.388.383.280.3

Fig. 8 The central mark represents the median and the edges
of the boxes the 25th and the 75th percentiles. If the intervals,
represented by triangular markers, do not overlap, then the
two medians are significantly different at the 5% significance
level.

in Table 6. Interestingly, this would lead to good re-

sults with regards to the average estimation error of

the weekly caseload. The problem however is the stan-

dard deviation, which increases to 14.6 hours from the

5.5 hours measured in reality.

As realized and estimated surgery durations cannot

be modeled independently, we also tested whether a

univariate fit on the mismatch between the two might

bring the desired results, i.e., fit on realized durations

and on the estimation error itself. Estimated durations

are then the sum of the two. On the positive side, this

method gives generally smaller errors than if any of the

other previously mentioned simplifications are used. On

the negative side, there will be extreme cases as, for in-

stance, the estimated weekly arrival caseload for RHK

would show a standard deviation of 42.2 hours instead

of the 23.2 hours measured in reality. This is especially

a problem for RHK as a large part of their patient popu-

lation belongs to DT 4. We consequently think that it is

not possible to include any of the previously mentioned

simplifications without substantially changing the set-

ting.
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Table 9 Caseload of weekly arrivals. The modeled arrival caseload matches the real one.
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l µ 160 68.6 7.8 106 106 71.2 31.3 48.0 77.3 80.9 57.5 32.6 23.8 46.6 58.3 758

σ 31.5 20.7 6.0 28.3 39.1 27.8 11.8 23.2 28.5 19.3 15.2 14.3 14.6 14.1 20.2 138
CV .20 .30 .76 .27 .37 .39 .38 .48 .37 .24 .26 .44 .61 .30 .40 .18

m
o
d

el µ 159 69.7 7.6 106 105 71.1 31.8 49.0 78.2 80.5 57.6 32.7 23.9 46.5 58.5 760
σ 26.4 21.5 5.5 28.3 36.6 28.2 11.6 23.6 27.4 19.3 15.1 14.2 15.1 15.1 20.1 80.3

CV .17 .31 .73 .27 .35 .40 .36 .48 .35 .24 .26 .43 .63 .33 .40 .11

µ .97 -1.0 .28 -.09 .79 .10 -.47 -1.1 -.89 .36 -.06 -.13 -.14 .14 -.17 -2.2
∆ σ 5.2 -.80 .44 .02 2.5 -.39 .25 -.36 1.0 .03 .02 .13 -.46 -1.0 .11 57.8

CV .03 -.01 .03 .00 .02 -.01 .01 .00 .02 .00 .00 .01 -.02 -.02 .00 .08
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(h
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a
l µ 141 62.1 5.9 77.3 103 62.8 25.1 37.9 68.5 70.1 52.0 30.3 18.0 44.4 50.6 657

σ 26.3 18.7 4.1 21.4 37.1 23.9 9.9 18.8 25.3 16.2 13.8 13.2 10.8 13.0 17.4 113
CV .19 .30 .70 .28 .36 .38 .40 .50 .37 .23 .27 .44 .60 .29 .39 .17

µ 138 62.5 5.7 77.2 102 62.4 25.1 38.4 68.8 69.3 51.8 30.1 18.0 44.1 50.4 656
σ 23.2 19.5 4.1 20.4 35.4 24.3 9.0 18.9 23.8 16.0 13.2 12.9 10.9 13.7 17.1 69.3

CV .17 .31 .72 .26 .35 .39 .36 .49 .35 .23 .26 .43 .60 .31 .39 .11

µ 2.1 -.39 .20 .04 .90 .40 -.06 -.59 -.28 .74 .21 .13 -.09 .34 .12 1.5
∆ σ 3.1 -.84 .05 .96 1.7 -.33 .88 -.15 1.5 .19 .58 .31 -.07 -.78 .31 44.2

CV .02 -.01 -.02 .01 .01 -.01 .04 .00 .02 .00 .01 .01 .00 -.02 .00 .07

E
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.
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(h
) re

a
l µ 19.7 6.5 1.9 28.7 3.1 8.4 6.3 10.1 8.8 10.9 5.5 2.3 5.8 2.3 7.7 101

σ 11.5 6.2 2.5 10.1 5.8 6.6 4.2 6.1 6.3 6.7 4.0 4.0 5.0 4.4 5.5 32.7
CV .58 .96 1.3 .35 1.9 .78 .67 .60 .71 .62 .73 1.7 .86 2.0 1.0 .33

m
o
d

el µ 20.9 7.2 1.9 28.8 3.2 8.7 6.7 10.6 9.4 11.2 5.8 2.6 5.9 2.5 8.0 104
σ 9.3 5.6 2.4 10.3 5.5 6.9 4.5 6.2 6.7 6.5 4.1 4.7 5.6 4.6 5.7 22.4

CV .45 .79 1.3 .36 1.7 .79 .67 .59 .71 .58 .72 1.8 .95 1.9 .99 .22

µ -1.2 -.64 .08 -.13 -.11 -.30 -.41 -.48 -.61 -.38 -.27 -.27 -.04 -.20 -.29 -3.7
∆ σ 2.2 .60 .16 -.26 .32 -.32 -.26 -.16 -.42 .25 -.14 -.69 -.59 -.15 -.13 10.2

CV .14 .17 .03 -.01 .17 -.01 .00 .01 .00 .04 .01 -.09 -.09 .10 .03 .11

5 Results

Scheduling factors were tested using a full factorial de-

sign with 216 scenarios: 6 (factor 1) * 3 (factor 2) * 12

(factor 3). As for most tested performance measures the

factors show an interaction effect at a 5% significance

level. Therefore, it does not suffice to look at their main

effect individually but their effect together as a whole

has to be interpreted. This can be done with interaction

plots.

Scenarios were compared on the basis of different

OR and patient related performance measures. OR re-

lated performance measures are, e.g., utilization, over-

time and undertime. Patient related performance mea-

sures are, e.g., patient waiting time and the ratio of

patients that are served within their respective DT.

In order to be aligned with the two week MSS cy-

cle used at the hospital, all performance measures are

batched on a two week period basis, i.e., one batch

covers two weeks. Mean values shown in the results

will therefore be the mean values of individual two
week batch means. Similarly, also the shown standard

deviations will relate to the variability between those

batches.

5.1 OR and patient related performance measures

Results are visualized using 3-way interaction plots.

Each interaction plot contains four dimensions, three

correspond to the three scheduling factors (Table 3) and

one to the respective performance value (y axis). Each

point represents one scenario, thus the combination of

three factors.

Table 10 shows that many of the scheduling fac-

tors have a significant main effect on OR related perfor-

mance measures (p-values are smaller than 0.05). Nev-

ertheless, as the standard deviation between different

scenarios is very small, those effects do not bear any

practical relevance. A similar observation can be made

in Fig. 9 for overtime. The figure shows that overtime
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Table 10 Real values are compared, in specific, to the FCFS
strategy and, in general, to all scenarios. The standard devi-
ation of the scenario means (e.g., 0.05 for utilization) has
a different meaning than the mean of the scenario standard
deviation (e.g., 1.65 for utilization). The former shows how
much the value of a performance measure differs between dif-
ferent scenarios, whereas the latter shows how much variabil-
ity is generally present between the batches within scenarios.

u
ti

li
za

ti
o
n

%

o
v
er

ti
m

e
%

u
n

d
er

ti
m

e
%

o
p

en
sl

o
t

d
a
il
y

m
ea

n

th
ro

u
g
h

p
u

t
d

a
il
y

m
ea

n

re
a
ss

ig
n

ed
%

ca
n

ce
ll
ed

%

µ 83.4 13.6 6.0 18.0 47.9 13.1 3.4
real σ 1.3 1.6 1.2 1.5 4.2 2.8 1.1

CV .02 .11 .19 .08 .09 .21 .33

µ 88.0 14.8 5.2 16.9 48.0 12.9 3.2
FCFS σ 1.8 2.1 1.5 .17 2.0 1.8 1.4

CV .02 .14 .29 .01 .04 .14 .45

µ 88.0 14.8 5.3 16.9 48.0 12.9 3.2
scen. avg. σ .05 .07 .10 .01 .03 .17 .08

CV .00 .00 .02 .00 .00 .01 .02

scen. std. µ 1.65 1.97 1.47 0.17 1.83 1.67 1.44

p-value
main effect

F1 .96 <.001 <.001 <.001 1.0 <.001 .02
F2 .01 .06 .00 .01 .40 <.001 <.001
F3 .00 .54 .03 .71 .19 <.001 .21

values change between 14.6% and 15.1%. Small differ-

ences like these are for the hospital of little practical

importance.

The reason why overtime does not depend on the

chosen scheduling strategy can be explained as follows.

As demand closely matches supply and as surgeons can

fill up their ORs fully, ORs will irrespective of the pa-

tient scheduling strategy be fully booked and therefore

highly utilized (around 87.9-88.1%). The fact that the

ORs are highly utilized is bound to lead to a substan-

tial amount of average overtime. The exact amount is

however independent of the patient scheduling strategy

(Fig. 9) but determined by factors such as the esti-

mation error of surgery durations (Table 5). This also

means that overtime might not be avoided without sac-

rificing the efficient use of OR time. And vice versa, OR

time might not be efficiently used without overtime.

Because scheduling factors practically speaking do

not affect OR related performance measures, they are

excluded from any further analysis. This allows us to

concentrate on patient related performance measures

only. We will focus on three in particular: the percent-

age of patients served within their DT, the average pa-

tient waiting time and the weighted DT cost (Fig. 10).

 

 

APQ
Fwd ≤DT8
Fwd ≤DT7
Fwd ≤DT6
Fwd ≤DT5
Fwd DT4
≤DT8
≤DT7
≤DT6
≤DT5
DT4
None

F3

F2

LCE

≤DT8

F2

LCE

≤DT7

F2

LCE

F1

≤DT6

F2

LCE

≤DT5

F2

LCE

DT4

%

15.1

14.6

F2

LCE

None

Fig. 9 The amount of overtime is, from a practical perspec-
tive, independent of the chosen patient scheduling strategy
as the minimum and maximum values are very close. Each
point in the figure represents a scenario, that is, a combi-
nation of three factors. The exact realization of each factor
1-3 is defined by: the label on the top (F1), the label on the
bottom (F2) and the marker (F3). The full markers represent
scenarios where fresh arrivals (black), existing patients (gray)
are used for replanning. For example, the most left triangle
represents a scenario where: no DT category is served FCFS
(F1), surgeries are served in the early part of their DT in-
terval (F2) and replanning uses the APQ method (F3). The
second axis shows the respective performance value, which in
this case is overtime.

Table 11 All factors have a significant main effect on all
three performance measures. Additionally, the scenario means
shows a large CV value, which means that they also practi-
cally speaking have a large influence on the results. The fact
that the average standard deviation within scenarios (indi-
cated by ’Scenario std.’) is high for all three measures, shows
that there can be large differences between different two week
periods.

DT offset Elective Weighted
(%) waiting time DT cost

µ 65.6 38.2 2.4
real σ 4.4 4.0 .43

CV .07 .11 .18

µ 86.3 7.8 .71
FCFS σ 5.3 1.1 .32

CV .06 .14 .46

µ 71.5 30.8 1.9
scen. avg. σ 8.7 12.4 .71

CV .12 .40 .37

scen. std. µ 5.97 1.86 0.55

p-value
main effect

F1 <.001 <.001 <.001
F2 <.001 <.001 <.001
F3 <.001 <.001 <.001
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Fig. 10 Patient related performance measures. The horizon-
tal line shows the real values measured at the hospital (‘r’).

5.2 Percentage of patients served within DT

The percentage of patients who are served within the

medically advised time limits set by their surgeons, the

DT, is an important indicator for the hospital. Whether

patients are served within DT depends on their arrival

and surgery date. For example, if it is on a Monday

determined that a DT category 4 patient needs surgery

then the latest date which is within the DT is the Mon-

day the following week. Later days, regardless of the

exact number, are considered to be after the DT. As

DT category 8 patients are not given any hard dead-

line, they are excluded from the calculations.

Currently, at the hospital, around 65% of patients

are served within their DT. Further decomposing this

result by DT category shows that 81.2% of DT category

4 patients are served within their DT, making it the

most efficiently served DT category at the hospital. For

patients with DT categories 5, 6 and 7, the respective

values are 52.6%, 59.5% and 67.2%.

From Fig. 10 we see that as more DT categories

are served FCFS (Factor 1), the percentage of patients

served within their DT is increasing. This means that

serving patients from a specific DT category FCFS is

beneficial as, on the one hand, it naturally helps pa-

tients from the specific DT category and, on the other

hand, seems to have at most a limited detrimental effect

on patients from other DT categories.

Similarly, also scheduling patients ’next day’ (Fac-

tor 3) is beneficial. This implies that it is crucial to

save capacity that might remain unused. OR capacity

that remains unused is wasted and cannot be recovered

anymore, scheduling patients in the very last moment

into this capacity avoids that the replanned patients

occupy future OR capacity that might be needed for

other patients.

Fig. 10 also shows that filling up next day free ca-

pacity by replanning and thus bringing patients forward

in the schedule is considerably more effective than using

fresh arrivals. This is the case as an OR can only serve

surgeries from one particular surgeon. This restricts the

number of usable new arrivals to a limited set. More pa-

tients are generally available for replanning.

In contrast, factor 2 shows only a minimal effect.

This means that scheduling patients into the early, cen-

ter or late part of their DT does not make a substantial

difference.

5.3 Patient waiting time

Patient waiting time is one of the classical performance

metrics used in the literature. The waiting time of a

patient equals the number of days between the date the

decision for surgery was made and the date the surgery

was performed. The decision for surgery is made when

the surgeon and the patient meet for consultation and

a form is filled out with the details of the surgery. This

type of waiting time which is usually measured in days

is also called indirect waiting time.

Elective patients at the University Hospital Leuven

wait 38.2 days on average (Fig. 10). Further decompo-

sition by DT category shows that for DT category 4, 5,

6, 7 and 8 it is 8 days, 21.6 days, 40.1 days, 51.7 days

and 75.1 days respectively (Fig. 11).

Improvements with regards to waiting time can

be achieved in an intuitive and straightforward way.

Firstly, by scheduling more DT categories on a FCFS

basis. Secondly, by serving patients in the earlier part

of their DT. Thirdly, by allowing patients to be served
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Fig. 11 The waiting time of each elective DT category.

next day. Replanning patients is also with regards to the

waiting time more effective than using fresh arrivals. As

shown by Fig. 11, gains apply to all DT categories.

In Fig. 10 it is interesting to note that improvements

generally remain severely limited as long as FCFS (or

next day) is only applied to patients up to DT cate-

gory 7. Real benefits are only realized once DT category

8 patients are included. This shows that the way DT

category 8 patients are scheduled is important, but it

also highlights some of the drawbacks of using patient

waiting time as a performance measure as it is heavily

determined by low urgency patients.

5.4 Weighted DT cost

The degree to which the DT is obeyed can be measured

in several ways. A straightforward method is to simply

Table 12 Waiting time by DT category.

DT4 DT5 DT6 DT7 DT8

µ 8.1 21.6 40.1 51.7 75.1
real σ 1.8 3.8 9.6 9.3 15.1

CV .22 .18 .24 .18 .20

µ 6.5 8.4 7.0 10.1 7.9
FCFS σ 1.3 1.9 1.3 2.4 1.7

CV .19 .23 .19 .23 .22

µ 10.7 16.4 16.3 33.5 68.6
scen. avg. σ 2.3 4.8 7.5 16.1 33.5

CV .21 .29 .46 .48 .49

scen. std. µ 2 3.76 1.87 2.5 1.29

p-value
main effect

F1 <.001 <.001 <.001 <.001 <.001
F2 <.001 <.001 <.001 <.001 <.001
F3 <.001 <.001 <.001 <.001 <.001

determine the ratio of patients who are served within

DT. However, this does not provide any information on

the extent to which patients are late once they are over

their DT. This information is provided by the weighted

DT cost which implicitly considers the tail of the dis-

tribution.

The weighted DT cost is based on the idea that

patients that passed their DT should be served quickly.

The more urgent the patients initial DT category, the

fewer days they should be allowed to be served after

their DT. Therefore, the cost function is proportional

to the number of days a patient is served after the DT

but inversely proportional to the patients initial DT in

days. It is defined as:

vi =

{
7
dti

(si − (ai + dti)) si − ai > dti

0 otherwise
(2)

V =

∑
i∈I vi

|I|
(3)

This cost is zero for patients that are served within

their DT. This reflects the idea that from a patient out-

come perspective the time when a patient is served does

not matter as long as it is before the DT. Moreover,

patients that are served after the DT will, at different

points in time, eventually be exposed to a similar health

risk. For example, a patient with a DT of 1 week who is

served 1 week late is associated with the same cost/risk

as a patient with a DT of 4 weeks who is served 4 weeks

late. The penalties for each day served late for DT cat-

egories 4 to 7 are 1, 1/2, 1/4 and 1/8 respectively. No

penalty is linked to DT category 8 as they are not given

a time limit and their health conditions should gener-

ally not worsen over time. A similar idea is used in Riise

and Burke [32], who describe a Norwegian setting where
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violations of due dates are regarded to be one measure

of a hospital’s efficiency.

In reality, surgeries can be performed late for other

than scheduling related reasons. We assume that this

is the case for patients who wait for a longer time than

5 times their DT. Those patients are consequently ex-

cluded from the cost formula.

From Fig. 10 we see that FCFS also performs well

with regards to the weighted DT cost. As more DT

categories are scheduled FCFS, the average weighted

DT cost decreases. This suggests that the benefit of

scheduling patients of less urgent DT categories FCFS

compensates for the resulting possible delays of more

urgent DT category patients. For example, the benefit

of providing DT category 5 patients quick access to the

OR compensates for the occasionally caused delays of

DT category 4 patients.

The benefit of FCFS is the largest if replanning is

not allowed. Similarly, replanning is able to partly com-

pensate for the case when applying FCFS is not entirely

possible. Consequently, if FCFS is not applicable in re-

ality, it is important to allow for replanning. This, as

shown by Fig. 10, should include patients from DT cat-

egory 8. This is interesting as DT category 8 does not

contribute directly to the DT measure (surgeries of the

category have a weight of 0). But their surgeries, if re-

planned, free up future capacity that can be used by

surgeries from DT categories that do contribute to the

DT cost measure.

One might wonder why FCFS outperforms replan-

ning. FCFS is a regular planning procedure and has to

obey the MSS only. Contrary, replanning is more re-

stricted than a regular planning procedure as surgeries

cannot be replanned to empty ORs, i.e., a surgery can

only be replanned into an OR that has already been as-

signed to the corresponding surgeon. Replanning surg-

eries into empty ORs would require the hospital to pro-

vide full staffing for entire ORs from one day to another.

This is something that we generally would like to avoid.

From Fig. 10 we see that the APQ does not outper-

form the best-fit strategy (the triangle and the large

gray dot overlay). This is surprising as the APQ en-

sures that urgent patients in danger of running late are

replanned first. It is thus tailored to perform well with

regards to the weighted DT cost. Further analysis shows

that the APQ and best best fit strategies are not per-

forming statistically differently with regards to any of

the three tested performance measures (Table 13). This

implies that the benefits of replanning are not a result of

cost reductions associated to individual patients saved

from running late. Instead, it performs well because it

saves capacity that otherwise would be wasted. Con-

sequently, the replanning procedure does not need to

consider the DT.

Interestingly, factor 2 will not make a difference ex-

cept if replanning is not allowed. In this case, the early

strategy will perform best. This is in line with the re-

sults of Gocgun and Puterman [12] where they show

that scheduling chemotherapy patients into earlier slots

outperforms the other tested policies.

From Table 14, showing the decomposition of the

cost by DT category, we see that the highest cost is in

the model associated to DT 4. This is to be expected.

Interestingly, however, in reality, the highest cost is as-

sociated to DT 5. This is unexpected and shows that in

reality DT category 4 is efficiently handled. It may also

mean that DT category 4 patients might be in certain

situations overly prioritized resulting in exaggerated de-

lays of patients of DT categories 5 and 6. Improving the

scheduling of those two categories might therefore lead

to the largest benefits for the hospital.

Table 14 also shows that DT category 4, in absolute

terms, is better handled in reality than in any simulated

scenario including FCFS. It seems that some surgeons

may always keep some slack capacity reserved for DT

4. The occasional capacity loss might then translate

into decreased service levels provided to DT 5 and 6

patients.

5.5 Discipline specific insights

In Table 15 we highlight some of the discipline specific

aspects of the results. As the table shows, the FCFS

strategy always performs better than the average sce-

nario (FCFS µ is always better than scen. µ). FCFS

will also generally give better results than what is cur-

rently measured at the hospital. This does not necessar-

ily mean that the FCFS strategy, if implemented, would

perform necessarily best in reality as there could be dis-

cipline specific constraints that are not captured by the

model but are important in practice. Nevertheless, it is

an indication that it could be beneficial generally for

disciplines to schedule patients to closer dates and as a

rule not to leave any capacity unused.

Interestingly, some of our specific results do not nec-

essarily apply to all disciplines. For example, there will

be disciplines for which the replanning strategies (if

they include DT category 8) will perform very similarly

or even better than FCFS (e.g., GYN).

Comparing results from the model with reality, we

see that a discipline where the performance difference

is large is ABD. As the results in Table 15 suggest,

the discipline should theoretically be able to handle its

patient load very well. This is the case as, (1) its arrival
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Table 13 One-way anova shows that the APQ and best-fit strategies do not perform significantly differently (all p-values are
> 0.05). This is true for any combination of factors 1 and 2.

F1 None DT4 ≤DT5 ≤DT6 ≤DT7 ≤DT8

F2 E C L E C L E C L E C L E C L E C L

Within DT(%) .89 .33 .02 .89 .31 .04 .48 .18 .08 .61 .55 .26 .6 .54 .32 1 1 1
Waiting time .11 .54 .04 .11 .26 .17 .32 .28 .25 .65 .73 .31 .58 .85 .66 1 1 1
Weighted DT cost .16 .23 .01 .16 .15 .03 .35 .18 .1 .67 .56 .2 .44 .46 .25 1 1 1

Table 14 Weighted DT cost decomposed by DT category.

DT4 DT5 DT6 DT7

µ 1.4 3.2 3.1 1.8
real σ .81 .77 .69 .83

CV .60 .24 .22 .48

µ 1.6 .60 .02 .00
FCFS σ .81 .61 .05 .01

CV .51 1.0 2.0 6.6

µ 3.0 2.7 .45 .09
scen. avg. σ .89 1.3 .25 .07

CV .29 .47 .56 .81

scen. std. µ 1.23 1.1 0.25 0.1

p-value
main effect

F1 <.001 <.001 <.001 <.001
F2 <.001 <.001 <.001 <.001
F3 <.001 <.001 <.001 <.001

caseload is stable (low CV value), (2) the estimated

durations are short and little variable, (3) its surgery

urgency mix is low (low DT score) and (4) it seems to

have enough slack capacity.

One of the reasons why ABD might perform worse

than expected could relate to the fact that they ac-

commodate a large amount of non-elective patients. At

the hospital, they might therefore be more wary of fully
utilizing their available capacity and instead leave more

slack.

A discipline that seems to have difficulties accom-

modating it’s surgeries is MKA. The discipline’s major

problem factor seems to be the highly unstable arrival

caseload (CV is 0.6). This explains the low amount of

patients that are served within the DT both in reality

and in the model. They could perform better if strate-

gies would be in place that allow them to effectively

control their weekly number of ORs. This might help

them to be better equipped for weeks with high loads.

5.6 Discussion

In this section, we first discuss the reasons why the effi-

cient use of OR capacity results in good patient related

performance values. Secondly, we discuss points that

relate to the practical applicability of the scheduling

factors. We regard a scheduling method applicable if,

firstly, surgeons are likely and willing to use them and,

secondly, the scheduling methods allow enough time for

patients to prepare for the surgery.

Algorithms that are most interesting to the hospital

are the ones that consider the DT and are manually us-

able by the surgeons. This is the case as surgeons pre-

fer to plan their patients themselves. This is unlikely

to change in the near future as surrendering patient

scheduling to a central authority would mean that sur-

geons would lose part of their independence and thus

influence on their own work schedule. At the moment,

there is no central hospital wide patient scheduling sys-

tem in place.

Additionally, it would be difficult to convince all

surgeons of the benefits of using a computer and op-

timization software to schedule their patients. This is

one of the major reasons why formulating the patient

scheduling problem as an optimization problem would,

in our setting, be of less use.

The scheduling methods we tested are all manu-

ally usable. More involvement is required for the APQ

driven replanning procedure. This is however not a

problem as we showed that the APQ, in our setting,

does not bring any benefits.

There are some aspects of the real setting that we

did not model, but which we also do not deem impor-

tant. They relate, on the one hand, to surgeon and

patient preference related factors and, on the other

hand, to downstream facilities. Surgeon preference is,

for example, to have only one difficult surgery (e.g., hip

replacement) on a day. Similarly, also the number of

children can be restricted. This is done as patients be-

fore their surgery are not allowed to eat for a certain

amount of time, which is more difficult to do for chil-

dren. It is therefore best to serve one child first in the

morning. Those factors are important to consider when

scheduling patients, but excluding them in the simula-

tion model is unlikely to change the conclusion of our

results in a major way.

At some hospitals, capacity problems at down-

stream facilities such as the ICU and the PACU cause

OR blocking and therefore have a detrimental effect on

OR usage. It could be interesting to include those as-

pects into a future version of our simulation model. At
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Table 15 How well a discipline performs depends on many factors, such as the arrival caseload variability and the available
slack capacity. DT related performance measures for Tx cannot be interpreted as most of their patients are from DT category
8.
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DT score .23 .02 .36 .46 .41 .34 .59 .44 .79 .24 .35 .31 .16 .41
Duration est. 2.8 2.1 2.1 5.2 3.8 1.9 2.6 3.6 2.1 1.7 2.6 3.2 2.9 2.7
CV arrival caseload .30 .70 .28 .36 .38 .40 .50 .37 .23 .27 .44 .60 .29 .17
Slack % 8% 87% 21% 19% 8% 22% 31% 7% 6% 9% 47% 14% 3% 20%

DT offset(%)
real 52.6 - 60.8 69.3 55.3 71.7 93.8 51.0 86.3 47.1 87.4 29.9 51.3 65.6

FCFS 55.0 - 99.2 72.9 86.6 84.5 89.0 91.0 86.6 95.7 92.1 65.4 95.2 86.3
scen. 37.7 - 93.5 63.9 76.3 60.5 76.3 76.9 69.8 57.5 83.1 54.1 74.0 71.5

WT
real 83.9 19.5 40.1 31.9 37.2 16.0 44.4 31.1 12.6 35.5 27.6 74.2 57.4 38.2

FCFS 15.1 3.4 3.9 13.0 8.2 6.9 4.9 6.9 4.9 5.0 7.3 20.3 9.5 7.8
scen. 50.9 62.5 17.8 25.4 20.4 39.6 24.6 21.9 17.4 50.5 23.6 42.4 44.1 30.8

Weighted DT
real 2.6 - 2.8 2.1 3.7 1.9 .20 3.3 .86 4.3 .80 5.4 3.2 2.4

FCFS 2.1 - .02 2.4 .57 .49 .46 .29 .35 .09 .37 2.9 .15 .71
scen. 5.6 - .26 3.2 1.5 3.2 1.4 1.0 1.3 3.6 1.1 3.7 1.8 1.9

the University Hospital Leuven’s inpatient OR depart-

ment, partly due to recent changes, blockage at down-

stream facilities does not pose a problem.

There are restrictions to our model that we do re-

gard as important but did not include into the model.

They mostly relate to the fact that some of the tested

scheduling factors might require that a surgery is per-

formed on brief notice, i.e., within days. This might be

a problem as the patient might need some days to men-

tally prepare for the surgery, sort out practicalities such

as getting leave from work or needs to start/stop medi-

cation. Additionally, there are cases where it is advised

to wait some time before the surgery, e.g., for some knee

surgeries it can make sense to wait some weeks before

the surgery.

We then tested whether some of the scheduling fac-

tors require a larger number of patients to be served on

a brief notice than in reality. For the sake of simplicity,

we restrict our analysis to patients that have one day

to prepare, thus need to be served next day.

Interestingly, the percentage of patients served next

day in the simulation model is never larger than in real-

ity. This is the case as all scenarios in Fig. 12 lie under

the line representing the real setting. This suggests that

all scheduling factors are valid and applicable in reality.

In order to get a more refined picture, we investi-

gated how often patients need to be ready for next day

surgery from each DT category. This will be, in real-

ity, frequently the case for DT category 4 patients. It

is also generally true that DT category 4 patients are

quicker and more efficiently served in reality than in the

simulation model.
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Fig. 12 Probability of a patient to be served next day. The
figure shows that none of the scheduling scenarios requires
an overly large proportion of patients to be available for next
day surgery.

Our analysis suggest that FCFS and next day is

consistently applicable to DT categories 4 and 5. This

might not be the case for DT category 6 and 7 (our

model suggests a larger number of patients served next

day than reality). This suggests that patients with a less

critical condition might, in reality, not always be able

or willing to get surgery quickly. Consequently, factors

FCFS and next day may only be applicable consistently

to DT categories 4 and 5.

One of the general trends observable in the results is

that the effectiveness of scheduling factors in utilizing

OR capacity will determine how good it performs. This

is shown as, firstly, FCFS which is a strategy that disre-

gards the DT but ensures good use of OR capacity, per-

forms very well. Secondly, replanning using the best-fit

method outperforms the APQ method. This means that

avoiding the waste of OR capacity is more important
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Fig. 13 The percentage of next day free capacity is observed
each day morning and relates to the amount of unplanned
capacity of the following day before any replanning was done.
Same day free capacity relates to the amount of unplanned
capacity of the same day. Same day free capacity, as patients
cannot be planned for the same day, corresponds to the day’s
final amount of unplanned free capacity.

than saving individual patients from going over their

DT. Thirdly, as shown by Fig. 13, scheduling methods

that perform well also yield the highest amount of av-

erage next day free capacity. A high amount of average

free next day capacity means that there is little block-

age and thus OR capacity is used efficiently.

Identifying the efficient use of OR capacity as the

dominant driver of patient related performances also

explains some of the seemingly counterintuitive results

we got. We noticed that including higher DT categories

to be served FCFS does not hinder fast service of lower

DT categories, e.g., scheduling DT category 5 FCFS

does generally not result in less patients from DT cat-

egory 4 served next day. In reality, there may be cases

when DT category 5 patients do hinder quick service

of DT category 4 patients. This, however, is counter-

balanced by the fact that serving DT category 5 FCFS

results in an improved use of OR capacity that in return

also benefits DT category 4 patients.

6 Future work

There are two main extensions planned to our work.

Firstly, testing scheduling methods that use protection

levels and, secondly, including a rejection mechanism

into the model.

Protection levels split OR capacity into parts that

can only be used by surgeries of certain DT categories.

This may ensure that patients, within each DT cate-

gory, will generally be served in a timely manner. For

example, assuming that on average three DT category

4 patients arrive a day, capacity to serve them could be

kept reserved on a daily basis.

Capacity can also be reserved in a dynamic way so

that the amount of capacity protected for a certain DT

category on dates in the near future is lower than for

dates further in the future. This can compensate for

cases when more than the expected number of patients

arrive, as more capacity is protected for them on later

dates. Similarly, when fewer than the expected number

of patients arrive, capacity is less likely to be wasted as

on dates in the near future less capacity is protected.

Capacity can also be fully released on ’next days’ so

that it can be used by any DT category.

It is challenging to use protection levels in an in-

patient setting as surgery durations are highly variable

(Fig. 5). For instance, it is difficult to reserve the right

amount of capacity for each DT category. If too little

capacity is reserved, patients with long surgery dura-

tions will not fit. If too much capacity is reserved, some

capacity will sometimes be wasted.

Protection levels introduce additional inefficiencies

by dividing the capacity of complete ORs. This is a

problem as surgeries will never perfectly fit them and

unused capacity within the protection levels is wasted.

This can have a strong detrimental effect on disciplines

that generally have few ORs available (e.g., MKA) or

have long surgeries (e.g., CAH). Wasting OR capacity

should be avoided by all means as it has a negative

effect on patient related performance measures. Conse-

quently, protection levels might be less suited to inpa-

tient settings in general. They might be more effectively

used in settings where patients need a regular amount

of time such as appointments at the doctor, appoint-

ments for medical imaging [30], or the scheduling of

surgeries in an outpatient setting (where surgeries are

more standardized).

The patient rejection mechanism constitutes a fur-

ther extension to our model. This would include pa-

tients into the model that originally intended to get

surgery at the University Hospital Leuven, but ended

up getting surgery at another hospital. This new model

would consequently use patient data that does not

necessarily constitute a feasible schedule, i.e., demand

might be larger than supply. Including a patient rejec-

tion mechanism into the model can also help us to assess

whether the benefits of using the FCFS strategy might

be offset by suddenly having more patients requesting

surgery.
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In the literature, the patient rejection mechanism is

generally modeled as a trade-off function where cost fac-

tors such as waiting time, OR overtime and OR opening

costs are balanced against the profit gained from surg-

eries. In order to model the patient rejection mechanism

of the University Hospital Leuven we need to overcome

three challenges.

Firstly, we need to define an appropriate cost struc-

ture. This is challenging as besides the academic and

medical relevance there are also other considerations de-

termining the value of a surgery. Such values are related

to the monetary return (defined by the reimbursement

tariff), the fact that a specific expertise is present in a

certain hospital and government related regulations.

Secondly, it is challenging to model the patient re-

jection process itself as it is only partly controlled by

the hospital. Patients can legally not be rejected. As

the University Hospital Leuven is for some surgeries re-

garded to be the most qualified hospital in the country,

patients may be reluctant to go to another hospital even

if asked to do so. On the contrary, there might be pa-

tients who registered at several hospitals and therefore

can cancel at any arbitrary time.

Thirdly, it might be challenging to get a realistic

understanding of the rejection process as we are miss-

ing the necessary data. Patients that are immediately

rejected will not enter the hospitals data system. For

example, some patients that went for consultation to a

surgeon who has a long waiting list might have been

convinced to register for surgery at another hospital.

Since they never entered the hospital’s data system, we

have no information on their number and on their at-

tributes.

A first approach to understand the rejection process

at the hospital is to get an understanding of the value

surgeons attach to each surgery type. A possible way to

get this value is by performing a Delphi study amongst

the surgeons.

7 Conclusion

In this paper, we found that non-electives need to be

included into the simulation model since they have a

large impact on the elective schedule. This is the case

as non-electives, instead of entering an arbitrary empty

or lowly utilized OR, will often be assigned to ORs that

serve the corresponding discipline. Those ORs can be

heavily utilized: adding a non-elective patient can lead

to overtime and elective rescheduling.

A component that also needs to be included into

the simulation model is elective rescheduling. Elective

rescheduling contributes to the fact that OR related

performance measures, such as overtime, will not de-

pend on the chosen patient scheduling strategy. The

rescheduling model we created determines, firstly, how

patients can be reassigned to ORs of different disci-

plines and, secondly, imitates the timing decisions found

in reality. Most surgery reassignments and cancelations

happen, in reality, continuously throughout the entire

day.

We found that a high number of patients are served

within their DT if OR capacities are efficiently used.

FCFS which is a strategy that makes good use of OR

capacities will perform well. FCFS might not always

be applicable in reality as patients from less urgent ur-

gency classes may not always be available for surgery

on a short notice.

If FCFS is not applicable to all patients, it is im-

portant to allow for patient replanning. Instead of re-

planning patients that are of high priority, it is bet-

ter to replan those ones that best fill out the avail-

able next day free OR capacity. This is the case as the

benefit of replanning stems from saving OR capacity,

i.e., a swap where valuable capacity from the originally

planned date is exchanged for less valuable next day

capacity that is in danger of being wasted.

There are straightforward implications of our results

for the surgeons of the University Hospital Leuven and

for schedulers of similar hospitals. Capacity should be

regarded as critical and its efficient use be kept as one of

the main priorities both during patient scheduling and

patient replanning procedures. This also entails that

surgeons should in a timely manner release ORs that

they do not use so that other surgeons can use them.

Additionally, it seems that DT category 4 patients

are in reality overprioritized. Assigning a higher weight

to the other DT categories could, with regards to the

weighted DT cost, lead to larger gains.

There are two major extensions planned to the

model. Firstly, the patient rejection process and, sec-

ondly, patient scheduling strategies that involve protec-

tion levels. We are currently looking into ways to get

a realistic understanding of the rejection process. Pa-

tient rejection at the hospital is difficult to model as, on

the one hand, it is only partly controlled by the hospi-

tal itself and, on the other hand, it is difficult to define

an appropriate cost structure. We are also investigating

scheduling strategies that include protection levels, that

is, scheduling strategies where OR capacity is reserved

for a given DT category.
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