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Abstract

Modern cellular networks present many interesting challenges to the telecommu-
nication engineers of today. The idea of a static configuration with clearly defined
borders of older networks is no longer representative of the current situations,
and most certainly, will not be for the next generations of communication
technologies. Future mobile networks will involve a high number of base
stations with various capabilities and make use of a plethora of communication
technologies and access media; they will be able to recognize the dynamically
shifting network conditions and requirements. The first real step towards
an ubiquitous, high performance network, is represented by the 3GPP LTE
technology, now widespread as 4G in many countries. The successive iterations
of such technology, such as LTE-A, have permitted (and will bring) an additional
increase in performance by increasing the network density and allowing self-
organisation and self-healing.

The two main challenges addressed in this work, for the modern and future
network, are represented by, firstly,the interference management and self-
organisation of heterogeneous networks and, secondly, the minimisation of
all the signalling control information necessary for the correct functioning of
the network.

First, a heterogeneous LTE-A downlink network is analysed. The various
components of the downlink network are discussed and the effects of resource
allocation within each cell are analysed. Novel proposed scheduling methods
show that there is still improvement possible compared to the state of the art
and, by taking into consideration the practical limitations of a real network,
additional gains can be achieved.

Second, a low-complexity, distributed and cooperative interference mitigation
method, which is aware of network load and propagation conditions, is conceived
and discussed. The proposed method is fully scalable and addresses the
interference received by the different layers composing the network separately.
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Finally, the impact that the channel state information has on the network’s
performance is studied. The channel state information of the users’ channels
is necessary in order for the base station to assign frequency resources. On
the other hand, this feedback information comes at a cost of uplink bandwidth
which is traditionally not considered. The impact that reduced user feedback
information has on an LTE network, in time and frequency is studied. A
model which considers the trade-off between downlink performance and uplink
overhead is presented and novel feedback allocation strategies, which follow
the same structure as the ones in the LTE standard, are presented in order to
improve the overall performance. Intelligent machine learning solutions are
proposed to adapt the base station feedback choice based on the users conditions
and requirements. This way, the network can choose how much information it
requires from its users, in both the time and the frequency domains, to minimise
the control information overhead.



Beknopte samenvatting

Hedendaagse cellulaire netwerken bieden een groot aantal interessante uitdagin-
gen voor telecommunicatie ingenieurs. Het paradigma van statische configuraties
met duidelijk afgebakende cellen is niet langer bruikbaar bij het ontwerpen
en optimaliseren van deze netwerken. Toekomstige mobiele netwerken voor
breedbandcommunicatie zullen bestaan uit een groot aantal basisstations, met
verschillende eigenschappen die bovendien gebruik maken van een brede waaier
aan mogelijke communicatietechnologieén. Deze basisstations zullen echter
ook in staat zijn om de dynamisch veranderende toestand van het netwerk
te herkennen. De eerste stap naar een alomtegenwoordig netwerk met hoge
bandbreedte wordt gekenmerkt door de 3GPP LTE technologie, nu in veel landen
gekend onder de 4G vlag. De opeenvolgende iteraties van deze technologie,
zoals LTE-A, maken een nog grotere verbetering van de bandbreedte mogelijk,
door de densiteit van de basisstations verder op te drijven en deze basisstations
steeds meer uit te rusten met algoritmes voor zelf-optimalisatie van het dichte
netwerk.

The twee belangrijkste uitdagingen die aan bod komen in dit doctoraatswerk,
relevant voor hedendaagse en toekomstige cellulaire netwerken, zijn eerst het
beheersen van de interferentie tussen de vele heterogene basisstations door ze
hun configuratie te laten zelf-optimaliseren. Ten tweede bekijken we hoe de
controle informatie die uitgewisseld wordt tussen de verschillende gebruikers
van het zelf-optimaliserende netwerk kan geminimaliseerd worden.

Eerst analyseren we een LTE-A netwerk in de downlink. De verschillende
componenten in de downlink worden besproken en het effect van transmissiecon-
figuraties binnen elke cel geanalyseerd. Nieuwe methodes om deze configuraties
te bepalen voor de verschillende gebruikers worden voorgesteld, die aantonen
dat het mogelijk is om de bestaande technieken te verbeteren. Door praktische
beperkingen van een echt netwerk in rekening te brengen kan onze oplossing
zelfs nog bijkomende winsten halen.

Ten tweede wordt een gedistribueerde methode om interferentie te minimiseren
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voorgesteld, die bewust is van propagatiecondities en netwerkbelasting. De
voorgestelde methode is volledig schaalbaar en behandelt de interferentie
veroorzaakt door de verschillende heterogene cellen in het netwerk apart.

Ten slotte wordt de impact die de kanaalstaatinformatie heeft op de
netwerkprestatie bestudeerd. Het basisstation heeft de kanaalstaatinformatie
van de verschillende gebruikers nodig om de transmissieconfiguraties op
de verschillende frequentiebanden te bepalen. Het versturen van deze
kanaalstaatinformatie kost echter belangrijke bandbreedte in de uplink. In
dit werk wordt de impact van het beperken van de feedbackinformatie bekeken.
A model dat de afweging tussen downlink prestatie en uplink overhead wordt
voorgesteld en nieuwe optimalisatiestrategieén voor het optimaliseren van deze
feedback in functie van netwerk parameters worden voorgesteld. Deze strategieén
zijn gebaseerd op technieken uit het domain van de machine learning, die
een model van de situatie leren en op basis daarvan de feedback informatie
optimaliseren.
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Chapter 1

Introduction

1.1 Motivation: The Challenge of Sharing Resources

The concept of mobile device has changed considerably in recent years. The call-
only cellular phone of the past has become a device able to communicate with
a plethora of different standards and to perform advanced computations. This
has brought the mobile networks providers to design new infrastructures able
to carry the large quantity of data required by the modern user. The concept
of Long Term Evolution (LTE) was first introduced in 2008 and is now the de
facto standard for 4" generation cellular network [1]. The network was designed
with the idea to improve over the previous generations by increasing spectral
efficiency at the physical layer and exploit multi-user and spacial diversity.
These objectives have brought the realization of a network where every cell is
able to use the whole frequency spectrum at a great improvement in spectral
efficiency but at an enormous increase in interference. Consecutive iterations on
the LTE standard (Rell0 in 2010 and Relll in 2012) have generated the LTE
Advanced (LTE-A) project [5]. LTE-A includes the presence of heterogeneous
cells in order to guarantee optimal service also in areas normally difficult to serve,
such as heavily trafficked junctions or inside buildings. These heterogeneous
networks are composed of base stations, with different sizes and capabilities,
sharing coverage areas and frequency spectrum. These base stations have to be
flexible, scalable, smart, aware of their environment and the users’ requirements
in order to guarantee high quality of service in variate working conditions
without creating additional interference. Future communication networks will
have to deal with the same set of problems, exacerbated by even higher datarate
requirements and by a massive explosion of the number of served devices [6].
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Novel concepts such as machine to machine communication (M2M) force a
network to be aware of nearby transmissions happening within the its coverage
area. Such communications may use the transmission technology of the umbrella
network and have to be countered in order to minimise impact on the cellular
users. As mobile devices increase in number, particular attention has to be
paid to the overhead generated by the management of all these connections.
The control information necessary to manage the network has to be carefully
calibrated to allow many concurrent transmissions without saturating the
network completely.

The radio resource management (RRM) problem, in modern and future cellular
networks, consists then in finding a way to best share the available resources in
order to maximise performance and to minimise the control signalling overhead.
In a network composed by many cells, each serving a large number of users, it
is, thus, important that each base station must be able to determine its best
transmission settings in order to maximise the overall network capacity. In order
to achieve this, knowledge needs to be shared between the network entities in
order to minimise interference. This knowledge exchange has to be relevant and
limited, so not to saturate the network with signalling information. Solutions to
these problems have to also be achieved keeping in mind the practical constraints
of a real-life cellular network.

1.2 Scope of this thesis

The main objective of this doctoral work is to find a good, practical solution
for the radio resource management problem of a future heterogeneous network
serving a massive number of mobile users. This dissertation finds solutions for
the two following questions:

e« Can a practical and implementable solution be found to allow an
heterogeneous network to maximise overall performance by minimising
overall interference?

o Can the total amount of control information necessary to allocate resources
to the user be reduced without sacrificing payload performance?

Based on these two main goals, more specific issues are addressed in this work:

e How does the introduction of heterogeneous networks influence the
effectiveness of interference management solutions?
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e What happens if the different base stations have different capabilities and
cannot communicate with one another?

e Can a base station achieve interference minimization locally when inter
base station communication is unavailable?

e How much information does a user need to provide so that the network
can assign resources most efficiently?

e Can the control information be reduced, in time and frequency, without
loss?

The methods and results presented in this work are obtained with the usage of a
system level LTE simulator purposefully modified to fit the LTE-A requirements.
Specifically, the simulator chosen was designed by TUW and is thus named
the VIENNA simulator. The choice of a simulation bound approach has been
dictated by the limited access to actual LTE and LTE-A technologies at the
beginning of this doctoral work. The simulation framework has been chosen
because of its design in accordance with the LTE standard specifications and
because it has already been used in a wide array of research on LTE network
performance and has proven itself to be very good in modelling complex network
behaviour [7-10], thus allowing for repeatability. The simulation environment
also makes use of the WINNER, propagation model, which has been validated
in the field for various propagation scenarios in the LTE frequency range [11].
Furthermore, parts of the analysis performed in this work, such as the energy
and power consumption of base stations, are obtained using the sophisticated
energy model developed by imec for the EARTH project [12], designed to provide
a very good representation of the power usage of an actual LTE-A base station.

It is important to notice that, even though the various aspects of the LTE-A
downlink network studied in this dissertation are all simulated with the same
software, the simulation parameters do vary from section to section, this is
mostly due to the more computational intense nature of some simulations
and to the nature of some of the problems studied, in which a more or less
complex simulated environment may be necessary to determine the impact of
the proposed methods. In any case, detailed tables containing the simulation
parameters are included in each chapter.

1.3 Contributions

The contributions presented in this dissertation tackle three aspects of the RRM
in a heterogeneous LTE-A network. The first part of the dissertation (Chapter



CONTRIBUTIONS 5

2) introduces the LTE and LTE-A network properties and focuses on the RRM
within a cell. The second part analyses the inter-cell interference problem and
finds a dynamic, distributed solution (Chapter 3), while the third part proposes
methods to decrease the amount of signalling information necessary to operate
the network (Chapters 4 and 5).

Specifically, the contributions are here listed and divided per chapter and related
areas.

A In Chapter 2, the intra-cell resource allocation methods are presented and
discussed, both in term of downlink performance and energy efficiency
and the first minor contributions of this work are:

1 the performance analysis of commonly used scheduling methods,
discussed in Section 2.3.1 and presented in [13].

2 the analysis of transport block limitations in LTE downlink and the
proposal of a transport-block aware scheduler, discussed in Section
2.3.1 and presented in [14].

B Chapter 3 provides a solution to the RRM problem in a heterogeneous
LTE-A network by utilising a low-complexity, distributed interference
coordination solution. The effects of various base station properties and
communication capabilities are first addressed. The proposed solution
reaches excellent performance at low complexity. The conceived method
makes use of combinatorial optimization techniques (i.e. the Hungarian
algorithm [15]) to ultimately determine which frequency resources each
cell has to restrict in order to maximise overall network performance. The
proposed solution is fully distributed as it does not require a centralised
network controller and takes advantage of communication capabilities
between base stations, when this is possible, or makes use of local spectrum
sensing techniques when it is not. Specifically the contributions in this
area can be listed as:

1 A distributed, low-complexity interference management solution
presented in [16].

2 The extension of the interference management method to hetero-
geneous networks, published as a first major journal contribution
in [17].

3 A digital front-end for spectrum sensing presented as a journal
publication in [18].

C Chapter 4 presents the effects of control information on the overall users’
performance in the frequency domain. A solution to reduce the amount of
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control information in the frequency domain, is presented. Such solution
makes use of unsupervised machine learning techniques, in this case
Q-Learning [19], to find an optimal amount of signalling information
dynamically. The amount of control signal is adjusted based on a user’s
channel quality and requirements. The specific contributions of this
chapter are:

1 the effects of feedback information reduction on performance
presented in [20].

2 The static and multi-user solutions to the feedback allocation problem,
presented as a journal publication in [21].

3 The effects of limited feedback on the interference management
solution of Chapter 3, presented in [17].

D In Chapter 5, the amount of control overhead in the time domain is
also addressed. The effects of reducing the users’ channel information in
time are analysed. In order to limit throughput loss due to the control
information limitation a channel quality prediction based on Gaussian
Process Regression (GPR) is presented. The same GPR framework is also
used to determine an optimal channel prediction time-window in order
to limit packet loss. A Dual Control with Active Learning [22] solution
is used to determine such prediction window. The contributions of this
chapter are outlined in the following list:

1 the Gaussian process regression method to estimate channel quality
behaviour, presented in [23].

2 the Dual Control model to determine the optimal channel quality
prediction window based on packet losses, published as a journal
publication in [24].

Figure 1.1 shows how the different chapters (the blue rectangles) are related
to one another and which chapter contains which contributions (the orange
rectangles).
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1.4 Structure of the following chapters

Chapter 2 presents an overview of the structure of an LTE-A network. The
capabilities of the various base station types are discussed. The system model
structure, from how a user reports channel quality to how a base station allocates
resources is included. This chapter includes both an overview of the SoA and
some additional minor contributions on the properties of resource allocation
mechanisms in LTE-A.

Chapter 3 presents a low-complexity evolved distributed inter-cell interference
coordination solution for an LTE-A heterogeneous downlink network.

Chapter 4 presents an analysis of the effects of frequency quantization on the
users’ channel quality control information. A reinforcement learning solution
is presented in order to determine dynamically the optimal amount of channel
information necessary for a user to be allocated efficiently. The effects of the
frequency quantization techniques on the interference coordination technique
introduced in Chapter 3 are finally presented.

Chapter 5 presents a solution of the quantization of channel control information
in time. Firstly, the increasing time sampling intervals for channel information
on the resource allocation performance is analysed. A GPR channel quality
prediction technique is presented and a Dual Control solution to determine the
appropriate duration of such prediction is given.

Chapter 6 concludes this doctoral dissertation. The summary of the current
problems and results presented are discussed. Finally, the still open R&D
challenges and the future necessary steps in order to achieve optimal RRM
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solutions are examined.
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Chapter 2

Setting the Scene

The first part of the chapter describes the structure of the LTE-A network
considered in this work. The RRM problem in a cellular network is then framed
and split into three sections. First, the intra-cell resource allocation mechanisms
normally used in LTE-A are discussed and their impact on network performance
is analysed. Secondly, the interference management problem is stated and the
most used solutions in literature are presented. Lastly, the signalling overhead
problem is presented.

2.1 LTE Architecture

The general structure of the LTE network can be divided into three main
categories as shown in Figure 2.1.

EUTRAN

st SERVING PACKET DATA NETWORK P
GW GW NETWORK

S1 mme MOBILITY HOME
MANAGEMENT 2R SUBSCRIBER
ENTITY SERVER

AN

Figure 2.1: LTE network architecture
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The Evolved Packet Core (EPC) is responsible for the overall control of the
network and all the functions that do not related to radio access. The EPC
builds the IP packet connection circuit between the mobile user and the internet
and takes care of the network’s mobility management. The Evolved - Universal
Terrestrial Universal Radio Access Network (E-UTRAN), on the other hand,
is responsible for all the radio access operations between the users and the
base stations and between base stations. Figure 2.2 shows the functionalities of
these blocks. The E-UTRAN takes care of the resource allocation within each
cell and the inter-cell RRM; it defines the users’ channel quality measurement
protocols and manages the overall connections between terminals and base
stations. Finally, the mobile terminal or User Equipment (UE) represents the
last element of the network. The UEs are responsible to collect local information,
such as their channel quality, report whether they receive the correct packets
and other variables which influence the resource allocation. Since the main
focus of this work falls on downlink RRM the two blocks considered here are
the UE and the E-UTRAN.

NB
Inter Cell RRM
RB Control
Connection Mobility Cont.
Radio Admission Control
eNB Measurement
Configuration & Provision

Dynamic Resource
Allocation (Scheduler)

)

NAS Security

Idle State Mobility
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EPS Bearer Control
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Figure 2.2: LTE EPC and E-UTRAN functionalities [1]

2.2 The E-UTRAN

The E-UTRAN is composed by the base stations responsible to send and receive
transmissions to the UEs. These base stations are referred to as e-NodeBs or
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eNBs. Each eNB is able to communicate with the EPC through an S1 link and
can be connected with other eNBs through the X2 interface. The e-NodeB is
responsible for the RRM, which includes tasks such as: the radio bearer control,
the uplink and downlink resource allocation and dynamic scheduling and the
mobility control [25]. There are different categories of eNBs within the LTE and
LTE-A frameworks; each category of base station has different characteristics;
these will be presented in section 2.2.2.

2.2.1 The Physical Layer

The LTE physical layer, or PHY, is tasked with the transportation of signals
between the base stations and the mobile users, with high spectral efficiency.
The two key enablers to achieve such results are the Orthogonal Frequency
Division Multiplexing (OFDM) and the multiple-antenna technology (MIMO).
OFDM consists in dividing the available spectrum into equally spaced, mutually
orthogonal, narrow band sub-carriers. This brings the advantages, among others,
of an absent inter symbol interference as each sub-carrier is orthogonal to the
other ones, and simple receiver structures as each sub-carrier witnesses flat
fading [26].

Orthogonally spaced overlapping subcarriers

Subcarrier Peaks.__‘ .

&~ “h

¢ Closely spaced subcarriers overlap

* Mote that subcarrier nulls correspond
to peaks of adjacent subcarriers for
Zero Inter-Carrier-Interference.

Sinc function
side lobes

S

Frequen
= quency

. o

~ T -
subcarrier Nulls

OFDM Signal Frequency Spectra

Figure 2.3: OFDM sub-carriers [2]

The LTE PHY layer makes use of OFDM in two different flavours for uplink
and downlink. Orthogonal Frequency Division Multiple Access (OFDMA) is
the key radio access technology for the downlink while Single Carrier Frequency
Division Multiple Access (SC-FDMA) is used for the uplink.
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Downlink OFDMA

OFDMA makes full use of the subdivision of the frequency bandwidth in
sub-carriers given by the OFDM. These sub-carriers are then grouped into
sub-channels. Furthermore, the time domain is also divided into consecutive
slots, called OFDM symbols. OFDMA has then a time-frequency nature as
it allows a base station to allocate specific groups of sub-channels - OFDM
symbols pairs to different UEs. Figure 2.4 ventures to illustrate how OFDMA
is used to split the time and frequency resources into a resource grid. Each

15 kHz
Ead

~— eSS S S S S S S S

\\\ 1 resource block:
12x7=84
resource elements

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

12 sub-carriers (180 kHz)

Figure 2.4: LTE downlink time-frequency resource grid

element of this grid is composed by one sub-carrier lasting for an OFDM symbol
and is defined as a resource element (RE). A rectangular block of these resource
elements composed by 12 adjacent sub-carriers and 7 OFDM symbols ! is called
a resource block (RB) and represents the smallest unit an e-NodeB is able to
allocate to an UE. The amount of RBs depends on the bandwidth of the LTE
downlink network. Table 2.1 presents the LTE physical parameters defining the
number of RBs. LTE frames have duration of 10 ms and each is split into 1 ms
sub-frames [27].

1A cyclic prefix is placed between each OFDM symbol to reduce inter-symbol interference.
If a short cyclic prefix is used, then there are 7 OFDM symbols per RB, otherwise, a long
cyclic prefix is employed lowering the amount of symbols to 6.
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System Bandwidth
MHz 1.25 | 2.5 5 10 15 20

Number of
subcarriers 75 | 150 | 300 | 600 900 | 1200

Subcarrier
spacing 15 kHz

Subcarriers
per RB 12

y FFT size | 128 ] 256 [ 512 [ 1024 | 1536 | 2048 |
| Numberof RBs | 6 [ 12 ][ 25 ] 50 | 75 [ 100 |

Table 2.1: LTE downlink parameters

LTE Frame Types

LTE allows for two modes of communication: Frequency Division Duplexing
(FDD) and Time Division Duplexing (TDD). In FDD uplink and downlink
transmissions happen on separate frequencies and can be carried out
simultaneously. FDD is also the most used transmission method used in
LTE [28].

TDD, on the other hand, uses only one carrier frequency and uplink and
downlink are multiplexed in time. This brings the advantage of being able
to exchange uplink for downlink bandwidths whether necessary, to limit the
spectrum usage and have simpler receivers.

Adaptive Modulation and Coding

LTE supports different modulation and error coding schemes and allows the
e-NodeB to select the most appropriate for each transmission to a user. This
Advanced Modulation and Coding technique (AMC) increases the reliability of
transmissions by adapting the transmission to the variable channel conditions
witnessed by the user on each RB. For example, a robust Modulation and
Coding Scheme (MCS) can be used by the e-NodeB when an UE reports poor
channel conditions on a RB. Table 2.2 shows the possible modulation and coding
schemes used in LTE. In order for the e-NodeB to choose a most suitable MCS,
the channel quality at the receiver must be known.
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MCS SINR | CQI | modulation | code rate | spectral

(x 1024) | efficiency
MCS1 -6.93 1 QPSK 78 0.1523
MCS2 -5.14 2 QPSK 120 0.2344
MCS3 -3.18 3 QPSK 193 0.3770
MCS4 | -1.25 4 QPSK 308 0.6016
MCS5 0.76 5 QPSK 449 0.8770
MCS6 2.69 6 QPSK 602 1.1758
MCS7 4.69 7 16QAM 378 1.4766
MCS8 6.52 8 16QAM 490 1.9141
MCS9 8.57 9 16QAM 616 2.4063
MCS10 | 10.36 10 64QAM 466 2.7305
MCS11 | 12.28 11 64QAM 567 3.3223
MCS12 | 14.17 12 64QAM 666 3.9023
MCS13 | 15.88 13 64QAM 772 4.5234
MCS14 | 17.81 14 64QAM 873 5.1152
MCS15 | 19.82 15 64QAM 948 5.5547

Table 2.2: SINR and CQI mapping to the MCSs

Channel Quality Indicators

Each UE has to measure the quality of the channel between itself and the
serving base station. The universal figure of merit for such a measure is the
Signal to Interference and Noise Ratio (SINR). The SINR for each RB k is

given as:
m G"L

P’r' kM k
,_Yk — Ly Liv (21)
o? + Zn;ﬁm Pg,kGZk
where P™ and G™ are the transmit power and transmission gains of base
station m serving user x; on RB k while P™ and G™ are the transmit power
and transmission gains of the interfering base stations n and o? is the additive
Gaussian noise.

The SINR measured by the mobile user is mapped onto a respective Channel
Quality Indicator (CQI) value [29]. Each CQI represents the highest possible
Modulation and Coding Scheme the terminal can process with a block error
rate lower than 10%. This MCS defines then the instantaneous throughput the
user would achieve per RB. The SINR to CQI mapping is shown in Table 2.2.

Each user then has to report this Channel State Information (CSI) containing
the CQI values. Once the e-NodeB has the CQI for all the users over the whole
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bandwidth, the MAC scheduler is able to allocate resources (RBs in this case)
in order to maximise the cell’s capacity or other figures of merit.

Channel Quality Information Reporting

The CQI values have to be reported to the e-NodeB frequently. This process is
normally referred to as the CSI feedback (FB). The CQI information, although
necessary for AMC, is not transmitted for every RB and every sub-frame as
this would create an unsustainable overhead of control signals [30]. The FB
information is then quantized in frequency, where each UE reports information
only on portions of the bandwidth or for groups or RBs, and in time, where
UEs report CQI values at specific time intervals larger than the LTE sub-frame.

e Frequency domain feedback
The three FB reporting techniques allowed in the LTE standard are
presented in [31].

— Wideband: each user transmits a single 4-bit CQI value for all the
RBs in the bandwidth.

— Higher Layer configured or sub-band level: the bandwidth is divided
into g sub-bands of k consecutive RBs and each user feeds back to
the base station a 4-bit wideband CQI and a 2-bit differential CQI
for each sub-band. The value of k is bandwidth dependent and is
given in table 2.3, where NFZ is the total number of downlink RBs
in the bandwidth (table 7.2.1-2 in [31]).

System bandwidth | Sub-band size
NEg (k)
6-7 NA
8-10 4
11 - 26 4
27 - 63 6
64 - 110 8

Table 2.3: Sub-band size (k) vs. System bandwidth for sub-band level feedback

— User-selected, or Best — M: each user selects M preferred sub-bands
of equal size k and transmits to the base station one 4-bit wideband
CQI and a single 2-bit differential CQI value that reflects the channel
quality over the selected M sub-bands. Additionally, the user reports
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the position of the selected sub-bands using Prp bits, where Ppp,

as given in [31], is:
NDL
PFB = |:lOgg< ]@B>:| . (22)

The value of M and the amount of RBs in each sub-band are given
in table 2.4 (table 7.2.1-5 in [31]):

System bandwidth | Sub-band Size | M
NEg (k)
6-7 NA NA
8-10 2 1
11 - 26 2 3
27 - 63 3 5
64 - 110 4 6

Table 2.4: Sub-band size (k) and Number of Sub-bands (M) vs. System bandwidth
for user-selected feedback

Amongst the three standard compliant feedback schemes only the sub-
band level technique allows the base station to investigate the channel

quality of the complete bandwidth with equal amount of detail between
sub-bands.

e Time domain feedback

The periodicity of CQI reporting is determined by the base station and
the CQI signalling is divided into periodic and aperiodic reporting [32].
In case of aperiodic CQI signalling, the eNB specifically instructs each
user on which frequency granularity to use and when the reporting has
to occur. With aperiodic reporting, the eNB can make use of any of
the CQI standard compliant feedback methods discussed above. Periodic
CQI reporting, on the other hand, is more limited and only Wideband
and User-selected feedback methods can be used. In this case, the CQI
messages are transmitted to the base station with constant periodicity,
e.g. in case of periodic wideband feedback in an FDD system, each user
can report its CQI values every 2, 5, 10, 16, 20, 32, 40, 64, 80, 160 ms.
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2.2.2 Extension of LTE to LTE-A

The introduction of LTE release 10, also known as LTE-Advanced, has brought
some technological modifications in order to improve the overall capacity [33].
With the exception of carrier aggregation (CA), which is outside the scope of
this dissertation, the PHY layer remains largely unchanged. Heterogeneous base
stations have been introduced to the E-UTRAN to improve the overall spectral
efficiency [34,35]. LTE-A includes small cells to the existing e-NodeB network
to increase the network capacity and to remove indoor and outdoor coverage
holes. These small cells have to operate in co-channel deployment, sharing the
spectrum with the pre-existing e-NodeBs [36]. The implementation of such
a multi-tiered network presents complex challenges in terms of coordination
between the entities, in order to avoid interference and to maximise the downlink
performance. The following sections describe the properties of the different
base station types discussed in this work and present the set of advantages and
challenges they impose.

Diverse Cell Categories

Three different kinds of base stations are considered in this work, they are
summarized in Table 2.5.

Base Transmit Cell Communication
Station power radius interface
Macrocell 20W 500m - 30km X2
Picocell | 50mW - 1W 50 - 200m X2
Femtocell < 100mW < 20m None

Table 2.5: Heterogeneous cells present in LTE-A considered in this work

The PHY layer seen by each base station remains identical; they differ mainly
in transmit power and how they communicate with the core network. The
Macrocells are the pre-existing e-NodeBs present in the LTE network. They
are positioned at fixed locations and posses the largest cell radius and highest
transmit power. As seen in Figure 2.1 e-NodeBs can communicate with one
another using the X2 backhaul interface. The X2 interface is a high data-
rate, low latency peer-to-peer communication link that allows a base station
to perform handovers and for the rapid coordination of radio resources [37].
Picocells are smaller, lower power base stations positioned, usually, in hotspots to
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increase the overall coverage. These small cells, also make use of the X2 interface
and can coordinate with one another [38]. Picocells are normally positioned
within, or close by, the coverage area of one or more macro base stations. The
final base station type, the femtocells, are the smallest cell available and are
designed to use low transmission power to serve few, closely positioned users,
in an indoor environment. These cells are owned by private customers and
connect to the EPC via a dedicated gateway using private broadband links for
backhaul; they do not posses the X2 interface and thus cannot be used for radio
resource management like macro- and picocells. Furthermore, in this work the
femtocells will operate in a closed subscriber group fashion, which doesn’t allow
macro and pico users to connect to a femto base station unless they are already
part of that femtocell admissible users [39]. This is chosen as such conditions
represent the worst case scenario regarding interference generated to macro and
pico users. Figure 2.5 depicts the three base stations and their connections.

Figure 2.5: Heterogeneous network in LTE-A

Heterogeneous networks: a new layer of complexity

A multi-tiered network, where small cells work in a co-channel deployment
together with underlying macrocells, presents both great advantages and
challenges when compared with a single layer solution [39]. Small cells are
intended to remove coverage holes and to compensate for naturally poor channel
conditions, such as in indoor environments. The addition of user managed
access points, i.e. femtocells, can also provide an increase in coverage without
the cost of owning, positioning and managing a network operated base station.
The main ordeal is the increment of inter-cell interference (ICI). As all base
stations in LTE and LTE-A are designed to take advantage of a full spectrum
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configuration, the amount of interference witnessed by a cell from its neighbours
is a great limitation to the overall network performance [40]. Furthermore,
as femtocells are not capable of communicating with a fast, dedicated link to
neighbouring base stations, these cannot be taken into account for the RRM
and alternative solutions have to be implemented [35,41].

2.3 The RRM problem in the LTE-A framework

This section introduces the RRM problem in LTE-A networks and discusses
the most common solutions present in literature. Radio resource management
of a cellular network involves creating and maintaining a good radio connection
between a base station and its mobile users (taking into account those users
requirements), handling communication between cells so that the overall system’s
performance is maximised, being generally aware of the spectral conditions and
being able to compensate for the network’s loads variations. Figure 2.6 presents
a view of some of the sub-problems of the RRM.

Scheduling
Interference |
coordination o
/ MIMO Control Admission
\ | / Control
\ |

Rate allocation

Moblllty
management,

load balancing

@ E“' E E S Power control,

Figure 2.6: RRM: the big picture [3]

Using an OSI multi-layer convention, the RRM makes use of algorithms operating
in all the layers, as shown in Figure 2.7. This work focuses on the RRM functions
present in the PHY and MAC layer of the LTE radio protocol.

These algorithms, such as MAC scheduling, link adaptation and FB management
are dynamic in nature, require constant monitoring and actions to be carried
out frequently, usually every millisecond [27].
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Figure 2.7: The RMM functions split by OSI layer

Generally speaking, the downlink RRM can be explained mathematically by a
combinatorial optimization problem where the overall network performance is
maximised with respect to some constraints.

The following section presents the MAC schedulers used in LTE and LTE-A.
Their characteristics are explained and their differences analysed. Section 2.3.2
introduces the inter-cell interference problem in LTE-A and therein the most
common solutions present in literature are discussed.

2.3.1 Downlink resource allocation in LTE-A cells

Once the base station registers the presence of a user, the resource allocation
performed within an LTE-A cell is composed of multiple steps:

e Each UE transmits the channel quality information per RB and its
requirements to the base station.

e The base station, then, converts the CQIs into the datarate each UE
would witness using AMC, specifically Table 2.2.

e A scheduling algorithm allocates specific RBs to particular UEs so to
maximise a particular figure of merit, which could be the cell capacity,
the fairness or other QoS requirements.
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There are many flavours of algorithms used to schedule downlink resources.
Generally, they tend to maximise the cell’s sum-rate while maintaining some
fairness constraints. The next section describes the most common multi-user
schedulers used in LTE-A and in the following section, the inherent energy-
fairness-capacity trade-off present in these algorithms is explained.

Scheduling algorithms
In this section some of the used resource allocation mechanisms are presented.

¢ Round Robin (RR)

The round robin scheduler assigns a RB per user and then rotates the
users in its queue until all RBs are allocated. This way each user gets an
equal amount of resources (excluding the remainder if the ratio between
RBs and UEs is not integer). This scheduler makes no use of the UEs CQI
feedback and thus it has no control on the quality of the resources assigned,
making this algorithm the least preforming regarding the achievable user
throughput [42].

¢« Max-Min (MM)
The Max-Min scheduler takes into consideration all the resources available
to the users and makes use of convex optimization strategies to determine
a solution where no user can have an increase in datarate at the expense
of another. This scheduler maximises thus the minimal rate each user can
achieve [43].

o Proportional Fair (PF)
This scheduler is designed to aim for high throughput while maintaining
fairness amongst users. PF schedules users when they are at their peak
rates relative to their own average rates, at a given time instant t, PF

schedules user z; = arg max TEF(%), where r; 1, () is the instantaneous data

rate of user z; on RB K at time ¢ and R;(¢) is the average throughput
computed, with moving window T as, R;(t) = & Z;:FT (7). [44].

o Resource Fair (RF)
The main characteristic of this scheduler is to assign an equal amount of
RBs to each served user. The scheduler, then, through convex optimization,
determines which set of RBs grants maximum user rate [45].

o Iterative Hungarian Scheduler (IHS)
This scheduler uses the Hungarian assignment method [15] in its iterative
form. The Hungarian assignment method is optimal when the number
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of users equals the number of RBs. In case this identity is not valid, the
scheduler has to reiterate and assign one RB per user per iteration until
all the RBs are exhausted. The THS has been deemed a good sub-optimal
solution that trades off some performance for reduced complexity [46].

« Best-CQI (BC)
This scheduler, also called max-rate, is a greedy algorithm which allocates,
on each RB, the user that presents highest channel quality. The cell
throughput is maximised but the scheduler does not attempt to assign
resources equally and thus the fairness between users is minimised [42].

Fairness-Capacity-Energy trade-off

The effects of scheduler choice on a base station’s performance are modelled
in literature. As an initial contribution, in this dissertation, the energy
consumption, on the other hand usually ignored, is modelled and studied. A
new set of simulations have been carried out to present the behaviour of a
modern LTE-A base station when different resource allocation mechanisms are
used and the results are included in the papers [13]. To show the difference
between the schedulers, three figures of merit have been chosen: the average user
rate, the fairness and the energy-per-bit. The average sum-rate is computed
directly form the LTE-A downlink system level simulator. The fairness of each

M 2
( Rpm)
:F = Q ey Bm)” -, Where

M'Zf=1 R

M is the total number of users and R,, is the datarate of user m.

scheduler is expressed using Jains’s fairness index [47]

The energy consumption of the base station using the different schedulers has
been modelled with a reliable power consumption model. Such model takes into
account the power spent in RF circuits, base band processing, power amplifiers
and overheads such as cooling and dc/dc energy transformation [12].

Throughout this thesis, all the results presented are obtained via the open
source VIENNA LTE downlink system level simulator [45]. This simulator has
been chosen for its openness, wide distribution and support in the research
community and for its compliance with the 3GPP LTE standard. The simulator
has then been opportunely modified to fit the LTE-A characteristics necessary
for this work, such as the implementation of small cells and feedback control
mechanisms.

Simulations have been performed for varying numbers of served users in an
LTE e-NodeB cell in a full buffer configuration. When operating in full buffer,
the average sector throughput and fairness, presented in figure 2.8 (a) and (b)
do not variate much with the number of served users, this is expected and in
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accordance with [48]. The main exception is the Best CQI scheduler, which is
designed to take advantage of user diversity and therefore performs better as
the number of users increases. The small fluctuations present in these results
are due to the diverse channel gains experienced by the different sets of users.
Figure 2.8 (¢) presents the power drawn by the average e-NodeB when different
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Figure 2.8: Average e-NodeB throughput, fairness and power consumption in a
full load scenario
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((c)) Power

schedulers are in use. The differences between resource allocation mechanisms
are minimal because of the full buffer configuration. Since all the resources are
used, the base station transmits on the whole bandwidth and the variations
between schedules can be ascribed to different baseband processing. For a
more meaningful comparison the energy-per-bit has been chosen to present the
different energy efficiency of each scheduler; see figure 2.9.
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To fully comprehend the trade offs between the different schedulers, when a
full buffer configuration is used, it is useful to analyse the relation between
the throughput each scheduler can achieve and the fairness it grants to the
users. Figure 2.10 shows the behaviour of the schedulers, in terms of fairness
as a function of the normalized throughput (using the round robin as basal
scheduler). From figure 2.10 it is possible to extrapolate that the Best CQI

Throughput vs Fairness comparison
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Figure 2.10: Throughput over Fairness

scheduler performs, by far, better than the other ones in terms of throughput
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but severely lacks in fairness. The Max-Min is exactly the dual, achieving almost
perfect fairness but at the cost of reduced data rate. The other algorithms,
with an exception for the Round Robin scheduler, which is a poor outlier,
perform similarly and present both increased throughput and fairness compared
to the Round Robin. Since the energy-per-bit is inversely proportional to
the throughput, the latter does indeed suffice as a figure of merit to gauge
qualitatively the power efficiency of scheduling algorithms in full buffer.

Transport Block Awareness in Resource Allocation

Another interesting, although normally overlooked, characteristic of the LTE
and LTE-A downlink PHY layer is that although in principle, AMC can be used
on every RB independently, only one MCS may be used for each transmission
to an UE at a given time. This means that independently of how many RBs
a user is assigned only one modulation and coding scheme can be used for
transmission to that user [49]. This effect can cause a reduction in overall
performance if a user is allocated a group of RBs with inhomogeneous CQIs [14].
The group of allocated RBs forms a transport block (TB) and, in fact, an
effective CQI quality is assigned to each TB so that the corresponding MCS can
guarantee correct transmission. In LTE and LTE-A, the base station chooses the
transport block’s MCS by performing an Effective Exponential Signal-to-noise-
ratio Mapping (EESM) [49,50]. As a second novel contribution, the effects of
using only one CQI value for the whole TB on the downlink performance are
discussed, furthermore, a TB-aware scheduler is presented to take advantage
of this structural limitation in LTE and LTE-A. The effective transport block
SINR .y, obtained with EESM, is computed with:

1 k*
eff = —A-1 —_ By 2.3

where )\ is a parameter empirically calibrated by the base station as a function
of the MCS and k* represents the selection of RBs composing the TB. The
throughput of each user, and the power spent by the base station, per
transmission interval, then, are not the aggregate ones of the combined RBs,
but they are non-linear functions of the SINRs of the assigned RBs. The
lowest quality CQIs will then dominate the overall TB BLER significantly,
and will drive the base station decision towards a lower AMC, reducing so
the user’s overall throughput. By adjusting the size of the transport block,
removing or adding RBs, it is then possible to take advantage of the non-linear
mapping described above and design a scheduler that can maximise the cell’s
rate, minimise its power or be tuned to fit the network’s loads.
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Algorithm 1 TB aware scheduler

1: Phase One: perform internal scheduling with the algorithms of
Section 2.3.1

2: Phase Two:TB aware assignment

3: % loop for each scheduled user

4: for u € pool of users do

5. RBs, = RBs assigned to user u from phase one;

6: CQIs, = CQI values relative to RBsy;

7. reorder CQIls, and RBs, from worst to best

8 for k € RBs, do

9: % determine the effective CQI for the assigned TB, from (2.3)
10: CQI, 1B, = EESM(CQIs,(i: end));

11: % compute the effective rate for the iteration

12: CQIu,TBu — RZ,TB“;

% remove the 1st RB from the TB and repeat until the TB is empty
13:  end for
14: % find max data rate value
15:  find i such that R’ = max R;
16: % remove all the RBs that lower the rate
17: RBs,(1: i) = empty;
18: end for
19: =0

The TB aware scheduler can be constructed by adding a second computation
on top of the previously shown LTE MAC schedulers. Algorithm 1 shows a
scheduler where, after the traditional resource allocation is performed, checks
whether all the RBs in the assigned TBs contribute positively to the UE’s
datarate. If not the RBs are removed, thus possibly increasing throughput and
decreasing overall power consumption as portions of the bandwidth are freed.
Figure 2.11 presents the improvements by applying the TB aware scheduling
onto LTE resource allocation mechanisms. The figure shows the throughput of
an e-NodeB over the consumption power normalized for a full load base station.
The figure shows the average e-NodeB’s throughput over the average power
gain for the different resource allocation mechanisms. In order to guarantee a
fair representation, the power results obtained by each scheduler are expressed
as fractions with respect to the maximum power consumed by a base station
in full load with highest MCS. The empty markers represent the schedulers in
their RB only configuration and the full markers the TB aware version of the
same schedulers. Every scheduler presents an improvement when TB aware
allocation is considered, showing that taking into consideration the intrinsic
limitations of the network can play a great role in determining the final user’s
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Figure 2.11: Throughput over Power comparison for different state-of-the-art
schedulers with and without TB awareness.

performance. Table 2.6 shows the improvements in throughput and power for
each scheduler.

Scheduler Throughput Power
increase Reduction

Round Robin 6.61% 23.21%
Max Min 3.47% 9.56%
Proportional Fair 4.46% 7.2%
Resource Fair 2.29% 9.46%
Iterative Hungarian 8.02% 12.31%
Best CQI 7.54% 9.35%

Table 2.6: Improvement in datarate and power consumption for the different
implemented schedulers.

The round robin scheduler shows the largest gains. This comes from the fact that
it randomly assigns RBs to users, leading to more diversity in CQI values for
the RBs of a given user. Hence, suppressing low-CQI RBs enables a significant
gain of the TB effective CQI while not wasting power on poor RBs. The
improvement seen over its performances caused by the TB aware scheduling
is directly dependent on the amount of poorly assigned RBs present in the
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first phase of the resource allocation. All the other schedulers present decisive
improvement as well. The Iterative Hungarian scheduler assigns RBs to users
such that each user receives a mixture of high quality and low quality resources.
The improvement in datarate given by the TB awareness is indicative then of
how influential the EESM mechanism is on the user’s throughput. The TB aware
scheduler will always improve over a state-of-the-art one, the improvement would
be avoided only if each allocated user would witness perfect channel quality
on each RB. The TB aware addition allows then the resource allocation to be
carried more efficiently, achieving superior datarate while using less resources.

2.3.2 Resource Allocation Between Cells

Together with the per-cell resource allocation, the other aspect of the radio
resource management problem is to maximise the overall network performance
by making sure all the cells are able to operate efficiently. In past homogeneous
cellular networks, this was obtained with careful network planning. In more
modern networks this is not possible any more as every cell uses the full spectrum,
furthermore with the introduction of small cells the position and capabilities of
some base stations might be unknown [40].

Full reuse networks such as LTE and LTE-A are thus severely limited by
interference [51] and the introduction of small cells exacerbates the problem as
these are normally placed within larger cell’s coverage area. The absence of
real-time communication between femtocells and the rest of the network also
adds a new layer of complexity to the RRM problem. The two main technical
challenges, regarding inter-cell RRM, this work is addressing are then:

e How to manage the spectral resources of each cell dynamically so that the
inter-cell interference (ICI) is minimised and the network’s load balanced.

e How to assure that cross-tier interference is mitigated without the
implementation of a communication link between cells of different tiers.

The following sections will give an introduction on the practices normally used
to reduce the ICI and how such solutions can be extended to an heterogeneous
network.

A Historical Perspective on Inter-Cell Interference Management

Interference management in a full reuse network is, generally, not an easy task.
Historically, methods have been divided into these major families: interference
randomization, cancellation, avoidance and multi-antenna techniques [8].
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In interference randomization the transmission is spread over a large portion
of the bandwidth in order to average the effect of interference on the desired
signal and achieve diversity gain [52]. The interference is not actually removed
but spread over the spectrum.

In interference cancellation, a receiver is able to reject the unwanted signal
by first decoding it and subtracting it from the desired one [35]. This could
allow a network to operate effectively even with high levels of interference.
Although feasible in LTE, cancellation techniques require a complex receiver,
able to perform adequate signal processing, normally not found in UE devices,
thus forcing such methods to be used only in uplink [53]. These limitations
may be overcome in the future as more powerful baseband processors may be
implemented cheaply within mobile equipments [18].

Multi-antenna techniques can be used to increase SINR at the receiver by beam-
forming the desired signal. Multi user MIMO can also be used between base
stations to coordinate transmission to a specific UE thus annulling interference;
the main challenge to such technique is imposed by the relatively high latency
time present in the X2 link (20 ms) which is much higher than the internal
scheduling time (1ms) [8,53].

Finally, interference avoidance consists in creating conditions in the network
in which interference is prevented by reducing the amount of collisions due
to concurrent transmissions over the same frequency resources. This can be
obtained in the frequency domain, by dividing the available spectrum among
cells, in the time domain, by allowing base station to transmit to their users
at different intervals or in the power domain by shaping the transmit power
of each base station to limit the generated interference [40]. Combinations
of the above interference avoidance methods can be integrated into inter-cell
interference coordination (ICIC) techniques in which cells communicate with
one another and reduce their resources in order to maximise the overall network
performance.

ICIC schemes cover a wide range of techniques, from low complexity static
methods in which the spectrum division between cells is decided a priori, to more
complex dynamic and distributed techniques, where a cell is able to adapt the
amount of spectrum used (and transmit power) to specific network’s conditions.

Static interference avoidance schemes

The simplest interference avoidance schemes are the frequency reuse mechanisms.
Each cell is able to access only a limited portion of the available spectrum in
order to remove interference completely or to reduce it [54]. Different power
levels can also be used in various coverage areas within a cell to minimise the
interference [55-57]. Reuse 1 represents the case in which every cell makes use
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of the complete spectrum, as shown in Figure 2.13 (a). In this case there is no
ICIC and the interference is not limited. Reuse 3 techniques split the available
spectrum into thirds, Figure 2.13 (b); the interference is completely removed but
the spectral efficiency of the network drops considerably as the users normally
positioned close to the base station, which are not interference limited, can only
access a severely limited portion of the spectrum; the aggregate throughput
of a Reuse 3 scheme is about 75 percent of the aggregate throughput of an
equivalent system using Reuse 1 [53].

Figure 2.13: Frequency Reuse Schemes [4]

More advanced techniques such as Soft Frequency Reuse (SFR) divide the
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spectrum into three parts and assign two to users positioned close to the base
station while the last third is assigned to users positioned at the edge of the cell.
Neighbouring cells assign non-overlapping sections of the spectrum to the cell
edge users. Furthermore, transmissions on the resources dedicated to center-cell
UEs use reduced power, as shown in Figure 2.13 (c) [568]. Partial Frequency
Reuse (PFR), functions similarly to SFR, only the spectrum dedicated to cell-
edge users is further split into three parts and only one third is assigned in each
cell. This removes overlap in spectrum as shown in Figure 2.13 (d)

Static techniques were designed to be applied on networks with known and
stable cell planning. They are, in fact, unsuitable in networks in which loads
change dynamically and especially where small cells might be placed within the
coverage area of larger base stations [40,59,60]. Furthermore, optimal settings
for static ICIC methods are dependent on network geometry and irregular cell
layout can penalize cells which receive more interference and are unable to
modify their bandwidth allocation [61,62].

Dynamic interference avoidance schemes
ICIC can be enhanced by taking into account the actual interference received by
the users. By using actual UE measurements it is possible to optimise spatial
utility, as not every user witnesses interference, and network load, as some cells
might need to serve more UEs than others [63].

Dynamic ICIC solutions can then shape the frequency-time-power functions
in order to maximise the overall network performance. As shown in Figure
2.12, dynamic ICIC can be divided into centralised, cooperative distributed and
autonomous distributed categories.

In centralized schemes, a single control unit is responsible to manage the
ICIC of the whole network. This Radio Network Controller (RNC) can be used
to control the actual RB allocation of every user in every cell [64,65], or to
leave the internal resource allocation to each e-NodeB and just shape each cell’s
frequency /power resources to maximise performance [46,66-68]. In the first
case, each e-NodeB has to forward instantaneous CQI packets to the RNC and
receive the allocation information. Because of the extremely high bandwidth
costs of the increased signalling in the backhaul such centralized schemes are
not often proposed [69].

The second family of centralized controllers, on the other hand, uses the RNC
just to solve the ICI without considering the RB-UE allocation. Graph theory
based approaches have been proposed in [66-68], in these methods an interference
graph is generated with the information collected by the UEs. Graph colouring
is then used to adapt spectrum allocation in the cells. A centralised ICIC
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method based on resource negotiation was presented in [46]. In this work each
UE is able to measure the power received by the two highest interferers and this
information is sent back to their serving e-NodeB. Based on this information,
each e-NodeB creates a list with the most interfered RBs and utility measures
which quantify the effect of such interference, such as SINR difference with
and without interference. This information is then relayed to a RNC via the
X2 link and the controller applies convex optimization algorithms to solve the
ICI problem and thus determines the set of RBs each cell can transmit on in
order to maximise total downlink throughput.The system keeps transmit power
constant over the whole spectrum. In [70] the authors introduce a multi-level
centralized controller to reduce the computational complexity inherent in a
network wide optimization. The proposed solution consists of two layers of
control, first the throughput maximization between few cells (in the article,
the authors refer to 3) is modelled as a mixed integer-linear problem. The
result of such problem gives the resource allocation of the cells considered with
minimised interference. A second layer of control builds an interference map
between the groups of already allocated cells and limits the resources each group
of cells can access. Both control layers are implemented and make use of convex
optimization techniques to obtain a solution. The computational complexity
of a network wide ICIC and RRM carried out by a single controller and the
extremely high amount of signalling necessary make centralised solutions poor
candidates for this class of problems [§].

When a central controller is discarded in favour of a distributed solution,
coordination between cells becomes considerably more important, specially if
effects such as fast channel fading and high mobility users have to be taken into
account given the non-negligible latency of the X2 interface [71].

Cooperative distributed ICIC solutions allow to reduce the computational
complexity of a centralized problem by increasing the signalling between cells.
Most of these solutions are based on a form of adaptive frequency and power reuse
where base stations limit the RBs accessible for communication and modulate
their transmission power in order to reduce interference to specific users. These
schemes divide the multi-cell optimization problem into simpler single-cell
optimization ones solved by each e-NodeB; then information is exchanged with
interfering neighbours to reduce ICIC [4,72-77].

In [4] the authors propose an ICIC scheme similar to [46] in which the e-
NodeBs exchange CQI and utility information with only the closest neighbours
and perform an optimization process based on this limited exchange. This
approach reduces the performance of the solution, when compared to [46].
In [72] a dynamic, distributed resource allocation algorithm is presented, where
users are allocated only on high gain RBs. Subsequently, neighbouring cells
communicate their edge users’ resource allocation to each other in order to
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minimize interference. Power control is then applied onto the assigned RBs. The
method provides increased cell edge performance without, however, analysing
the degradation at the cell’s center. Typically, techniques that improve cell
edge performance have large penalty on cell center, so it should be studied.

The solution proposed in [73] consists of a dynamic version of SFR. The method
selects cell-edge bands based on interference measurements and network’s load
information coming from exchange between cells. A limitation of such scheme
is that each e-NodeB selects a limited number of RBs for its edge bands, which
reduces the impact of such technique in case of variable amounts of cell-edge
users. [74,75] propose solutions similar to [73] in which the base stations are not
limited in the amount of RBs allocable in each band but only contiguous RBs
may be assigned in each band. In [75] the base stations use variable frequency
reuse when the network is experience low load. As the load increases the amount
of available bandwidth also increases and priority scheduling limits the power
on the RBs more likely to cause interference.

In [76] the authors explore the effect of combining power control, fractional
frequency reuse and fractional load (switching off completely bands of the
available spectrum). The results show that while power control and FFR
present the best results, fractional load is technologically simpler. Furthermore,
solutions in which power control has been added to fractional load have been
shown to outperform the traditional fractional load methods. The authors of [77]
propose a solution based on channel muting. Each base station mutes parts of
their resources if this increases the sum-rate of a group of neighbouring cells.
In order to limit the backhaul’s latency problems they assume each e-NodeB is
equipped with fast optic connections able to transfer data between cells at no
cost.

Even though cooperative distributed ICIC techniques can achieve performance
very close to the more complex centralised methods, they have to rely on
communication exchange to converge to an efficient solution. This is not always
practical, as such links might either be too slow [78] or might not even be
present, such a in a femtocell network.

To compensate for these shortcomings, a lot of attention has been paid to
autonomous distributed interference avoidance methods [79-86]. In these
solutions, each cell minimises interference without interaction with its neighbours
but relying solely on local information or by minimising communication. The
solution proposed in [79] and [80] use power allocation algorithms to set
autonomously the transmit powers to highly interfered users using limited
inter-e-NodeB communication. The ICIC is presented in a form of a multi-
armed bandit problem in [81]. Each cell deduces the spectrum occupancy of its
neighbours by applying a set of rules which steers the base station into finding,
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for each UE, the RBs with lowest interference, over a time period, while also
considering the neighbours resource utilization pattern. The algorithm converges
to a solution in which each cell avoids certain RBs if they are frequently used by
the neighbours and uses only the ones which present consistent low interference.

Efforts on game theoretic autonomous ICIC approaches have been performed
in [82,83,85]. In these works the ICIC is modelled as a non cooperative game
with the objective to reach a Nash equilibrium in which the interference is
minimised. In [82], the network operates in full reuse and the throughput is
maximised by finding the optimum transmit power for each user using game
theory based schemes. The authors of [83] divide the ICIC into two subgames
in which each player is composed by a UE-e-NodeB pair. In the first subgame,
the RBs are allocated while avoiding interference, while the second game has
the objective to further reduce interference by modifying the power allocation
on the pre-assigned resources. The approach proposed in [85] is based on a
congestion game. FEach e-NodeB starts with a random set of RBs and modifies it
by removing or adding, if possible, RBs and re-allocating RBs to different users
iteratively, until the system converges to a Nash equilibrium and interference
is minimised. In [86], on the other hand, two algorithms aimed to minimize
the dissatisfaction of the users in terms of datarate and to minimize the cell’s
transmit power are proposed. The solutions are reached by using harmonic
search algorithms where the RB allocation and power selection are improved
iteratively, searching possible future RB and power allocations based on previous
assignments.

ICIC for HetNet LTE-A

When a multi-tier structure is considered, the solutions to the ICIC problem
found in literature tend to combine some of the previously described ICIC
categories [35,40,87,88]. Considering an LTE-A deployment with co-channel
femto, pico and macro network, cooperative distributed solutions are often
proposed for femtocell deployment even though no communication is designed
between layers [89, 90]. These solutions though effective are of difficult
application. Autonomous methods such as [91-93] present self-organizing
solutions for co-tier femtocell deployment. These solutions, generally, ignore
the ICI of the higher macro and pico layer.

Particularly interesting is the concept of the cognitive femtocell, where the
femto base station is able to overhear either uplink communication from nearby
macro or pico users, or is able to decode the downlink of macro/pico cells in
order to minimise interference [94-99].

This thesis presents a simple, elegant solution to the ICI problem in heterogeneous
LTE-A networks. The solution presented in chapter 8 combines cooperative
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distributed and autonomous distributed algorithms to solve interference at
macro/pico level and femto level orthogonally. The proposed method makes
use of frequency domain techniques to split resources dynamically, based on the
network’s load and UE requirements. Power domain techniques are implemented
in the small cells and femtocells possess cognitive and self-organizing capabilities.
In chapter 4 the effects of signalling overhead are analysed and the impact of
CQI FB reduction on the proposed ICIC solution is quantified.

2.4 Signalling control information overhead

The final part of the RRM problem analysed in this dissertation consists in
the reduction of the signalling overhead naturally present with the internal
resource allocation and the ICIC techniques. For the AMC scheme to work
efficiently, reliable and frequent CQI feedback is requested from the UEs. This
information can occupy a large amount of a user’s uplink bandwidth. In fact,
full feedback in LTE is completely infeasible in a multi-user context as, just the
CQI information would saturate the cell’s uplink resources with just 80 served
users [20]. The effects of imperfect and partial channel information on the
resource allocation in OFDMA systems have been studied extensively [100-103].

Different feedback reduction techniques have been proposed for OFDMA systems,
in [104] the authors discuss and compare a number of frequency feedback
reduction methods; these can be divided into two categories: threshold-based
and subband grouping [104]. The first method allows a user to feed back CSI,
for an RB, only if the channel quality exceeds a pre-determined threshold. This
method reduces indeed the amount of feedback information sent by the users
but at the cost of reduced datarate [105]. In order to determine how many bits
are necessary for a multi-user downlink network to maintain high capacity, the
authors in [106,107] show that 1-bit CSI feedback can achieve near maximum
capacity if the number of users is sufficiently high.

The second method, allows the users to transmit CSI only on groups of RBs
instead of single ones. This is the technique normally implemented in LTE as
seen in section 2.2.1. A lot of attention has been paid especially to the Best — M
reporting scheme. The Best — M policy has been proven to be efficient when
paired with opportunistic resource allocation [108] and to reach performance
close to the more demanding “sub-band level feedback” when the number of
served users is sufficiently high [109,110]. Although these methods can achieve
good performance, it has been shown that greater improvement can be obtained
by tailoring the amount of feedback based on each user’s channel conditions and
requirements [111,112]. Other works show that (close to) optimal scheduling can
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be achieved with imperfect CSI [113-115]. These works, nevertheless, provide
an information theoretical bound that does not take into account the limitations
of a practical cellular downlink network.

On top of AMC requirements coming from the internal resource allocation, the
amount of CSI present does influence also the efficiency of ICIC techniques
where the e-NodeBs or a central controller, need to receive detailed information
on the channel conditions of all the users to coordinate properly. Limited CSI
feedback impacts ICIC considerably [116-119] and has to be addressed.

Finally, another aspect to consider is that CSI information has to be relevant
still relevant when received by the base station. It is possible to reduce the
signalling overhead by applying time domain quantization but the delayed
channel quality information will impact the downlink performance [120]. Even
though delayed feedback is better than none at all [121]; it is important to
develop strategies to predict the channel quality of each UE properly. In [122]
the authors implement and compare various SINR, prediction algorithms and
conclude that high gains can be expected with covariance based predictors
for low mobility users. In [123], the authors present a prediction method
used to compensate for CSI delay. The estimation is performed at the mobile
user side and the predictor takes into account the Doppler shift of each user
for more accurate estimation. Both works make use of the users’ Doppler
shift to determine the time duration of the channel quality estimation; this
procedure, although well established, might lead to erroneous predictions, even
though a negative correlation is generally present between prediction quality
and Doppler shift, the SINR is dependent also on interference and the overall
channel conditions. A high mobility user might witness a better, less variable
channel than a low mobility user. Furthermore, users have to predict the SINR
themselves, depleting battery life. In [124] the authors propose a dynamic
CQI allocation method predicted at the base station. The CQI allocation time
of each user is adapted based on the instantaneous packet loss of each user.
In [125] the same authors expand their results by including CQI prediction at
the base station. They use a linear predictor and compensate for errors by
reducing or increasing the prediction windows based on the users’ packet loss.
In [126] the authors present a non predictive signalling reduction scheme where
only users with low SINR are allowed to feed back expensive instantaneous CQI
information while high SINR users only transmit wideband information. Even
though the method decreases the signalling information, it is carried out for a
limited and fixed time window (2 ms) and is studied in a single cell scenario,
ignoring the underlying network dynamics due to interference, traffic load, etc.

In this dissertation, the impact of CSI feedback quantization on the network’s
RRM is considered. Both resource allocation and inter-cell coordination are
considered. Nowel and practical solutions in the frequency and time domain
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are discussed to combat the loss of performance due to limited CSI feedback in
chapters 4 and 5.



Chapter 3

Interference Coordination in
Heterogeneous LTE-A
Downlink Networks

In this chapter, the general inter-cell interference minimization problem in
heterogeneous networks is described. The problem is first framed and a heuristic,
distributed solution suitable for a heterogeneous LTE-A network is further
presented.

The method here proposed takes into consideration the capabilities of the various
base station types and is able to minimize the interference while keeping a very
high quality of service to the UEs. Large consideration is given to the fact
that no communication is possible between tiers and that a practical solution
has to adapt to this necessity. For this reason, the ICIC method splits the
interference reduction into two parallel algorithms targeting the co-tier and
cross-tier interference respectively. Further, power control is possible for pico
and femto base stations allowing for flexibility in the resources power allocation.
The proposed method makes use of the concept of the cognitive femtocell, where
information exchange is avoided but the base station is able to sense relevant
information from nearby cells and interfered users.

39
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3.1 The Multi-Cell Rate Maximization Problem

The usual network optimization procedures have the objective to maximise the
overall system throughput. In a generic multi-cell OFDMA network with C
cells, each cell ¢ serving X, users and where the bandwidth is split into K parts,
this is accomplished by a sum-rate problem such as:

C X. K

maxZZermk, (3.1)
c z. k

where 7, ; is the rate user u. experiences on frequency resource k. The overall
rate is then the sum of the throughput of every user over all the frequency
resources assigned to those users. The throughput is, generally, function of
the channel quality and proportional to the SINR a user witnesses on that
specific frequency resource. In the LTE system model in Section 2.1, it was
discussed that the LTE-A downlink makes use of slotted frequency resources,
where the smallest unit assignable to a single user was defined as resource block
RB. Furthermore, the throughput attainable is not a continuous function of
the SINR but is function of the discrete CQI values and their mapping onto
discrete modulations and coding rates. The CQIs are implicit channel quality
measures that take into account the SINR a terminal is witnessing and the
actual properties of that terminal [127]. This means that a more advanced UE
may have the same SINR as a less advanced one but might feed back a higher
CQI value if able to perform better signal processing. The network’s sum rate,
then, depends on two factors:

1. Which RBs are going to be allocated to which UE

2. The SINR each user has on each RB

The first factor is function of the internal resource allocation discussed in Section
2.3.1. Each scheduling algorithm maximises different figures of merit, thus in
this work, each base station is able to use a preferred method on top of the
interference coordination method proposed.

The SINR that each UE sees on each RB is function of the power received
by the UE from its serving base station, the noise present in the channel and,
finally, the interference caused by the neighbouring cells. The equation for the
SINR is re-proposed here:

% %
P:Ci,k? : Gx,,k
2 ) Jj I
o+ ZJ,:l. mek Gxi,k
J#i

Yk = (3.2)
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where the interference witnessed is itself function of the resource allocation and
transmit power used by the neighbouring base stations. The rate optimization
problem is then combinatorial in nature and very difficult to solve optimally [128].
If, instead of a generic OFDMA network, one considers the specifics of an LTE-
A system, the problem can be deconstructed and sub-optimal but practical
solutions might be achieved by considering the inherent limitations of a real-life
network.

The following section presents the system model discussed in this work and
adapts the generic sum-rate problem for the LTE-A downlink network. Section
3.3.1 presents the proposed solution for the macro- and pico- cells while the
solution for femtocells is discussed in Section 3.3.2. The results are presented
in Section 3.4 and, finally, conclusions are drawn in Section 3.5.

3.2 System Model of LTE-A Downlink Network

Figure 3.1 presents the interference scenario studied in the considered downlink
LTE-A network.

| Desired signal

i Interference

Figure 3.1: LTE-A interference scenario

From the figure it is possible to recognize that not every user in a cell is affected
by interference. Users positioned in areas where the desired signal is strong are
in fact bandwidth limited and their performance does not improve by limiting
interference but either with better resource allocation or by increasing the
frequency spectrum. The performance of these users is sometimes ignored in
ICIC methods as these target the interfered UEs but do not take into account
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the performance loss that reducing interference may cause on the users with
excellent channel conditions [72]. Furthermore, even in a homogeneous network,
where each cell is designed to have a well defined coverage region, as depicted
in figure 3.2 (a), it is impossible to predict the area in which a user is certain
to experience good channel conditions. While it is reasonable to assume that
the closest neighbours contribute to the largest part of the interference, it is
also important to notice that when phenomena like shadowing and channel
fading are considered, the geometry of the network varies drastically. Figure
3.2 (b) shows how the cells coverage areas may be affected. Hence, the concept
of neighbour needs to be redefined, not as spatially close but as a base station
that influences substantially the SINR.

((a)) Sectors coverage areas ((b)) Sectors coverage areas with 10
dB shadowing and fading

Figure 3.2: Coverage Areas

The sum-rate is good indicator of the overall network capacity but doesn’t
allow for a fair network-wide resource allocation as only the users with excellent
rate would be assigned. The maximisation is, thus, generally bounded by a
set of constraints selected to assure a correct network behaviour. In fact, the
maximisation procedure is either a modified version of the sum-rate, where
some fairness parameter is included with the rate, or the fairness is used as a
constraint to the optimisation process. The methods presented in this work are
based on the one presented by Rahaman in [46].

Let us consider a heterogeneous LTE-A downlink OFDMA network composed
of C' macro base stations. Each macro base station is composed by S orthogonal
sectors; each sector is responsible to serve a portion of the overall cell area.
There are, thus, a total of M = C'- S macrocell sectors in the network. There are
also P picocells and F' femtocells. These small cells contain only 1 sector each.
Each macrocell’s sector serves X,, terminals while each pico and femto base
station serves X, and X users respectively. K physical RBs can be allocated
per sector. Given that the datarate 75, , possible for each UE z; on RB k can
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be directly determined from its SINR ~,, %, the maximisation process for the
considered network becomes:

M+P+F X; K

max Z Z Zmi,k : dxi C O,k (3-3)
i T; k

where
1 when user z; is assigned on RB k
’ 0 otherwise
X;
> as,k <1VEEK, (3.5)
K;
Z Py, < Ppax for each base station ¢ (3.6)
k.

i

where d,, is called a demand factor, it is introduced to add some fairness to
the allocation; d,, = £ }% where R is the average rate received by the user over
a past time window and p,, is the requested rate. The users that have received
the lowest rate in the previous transport blocks are then advantaged in the
resource allocation process. Constraint (3.5) makes sure that one RB k might
not be assigned to multiple users in a cell. Constraint (3.6), on the other hand,
makes sure that the sum of the power transmitted by a base station on all the
RBs remains below the maximum allowed power; the power in (3.6) is then the

same as in (3.2).

A computational solution for this problem is difficult to find [129]. The
Hungarian Algorithm (HA) was firstly proposed by Kuhn [15] as a simple
solution to binary integer problems under specific conditions, and its iterative
version [46] has been studied as a good sub-optimal solution for the assignment
problem in homogeneous networks. The proposed algorithm to solve (3.3 - 3.6)
is presented in Section 3.3.

Before introducing the scalable solution presented here, it is important to note
the difference between the various base station categories which motivate specific
design choices in the proposed method and the assumptions made on the UEs.
Macrocells and picocells are able to communicate with the EPC via the X2
interface. This allows for coordination between the base stations and exchange
of the CSI collected by the users. The main difference between a macrocell
and a picocell, except for the transmit power, is that the smaller base stations
are able to perform power optimization, generally unavailable to bigger base
stations [127]. Thus, the solution implemented for macrocells optimises the
RBs each base station has to restrict in order to maximise performance while
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the solution for picocells allows a base station to waterfill transmit power on
the resources that would have been otherwise restricted. Femtocells, on the
other hand, do not allow communication for coordination, with neither other
femtocells nor macro/pico base stations. For these reasons the maximisation
process (3.3) cannot take into account the rate coming from the femto users as
there is no way for a distributed controller to know it. Nevertheless, a femtocell
has still the duty to minimize interference to macro or pico users as these
form an underlying network managed by the operator [39]. For this reason the
femtocell considered in this work possesses "cognitive capabilities’, is able to
sense the environment, overhear communication between macro or pico UEs
and their serving base stations and to determine whether it is interfering and
how much.

The vast majority of ICIC techniques makes the assumption that the users are
able to determine their channel conditions for the whole bandwidth with a high
resolution. Furthermore, each user is supposed to be able to differentiate between
the interfering base stations. In a practical system, however, there is a limit in
CSI estimation accuracy as well as feedback bandwidth availability. The users are
only able to report CSI information on a limited subset of the overall bandwidth.
They might not be able to identify the highest interferer, and this interferer’s
power, on the complete bandwidth, as assumed by traditional ICIC schemes. The
work proposed in this chapter makes use of the common perfect CSI knowledge
at the receiver to showcase the strengths and weaknesses of the ICIC; in Chapter
4 a framework to study the impact of this CSI signalling information is presented
and the ICIC method proposed here is modified accordingly and results will
show that the proposed solution is able to guarantee high performance even
when the CSI information is incomplete.

The proposed method on how macro- and pico-cells can coordinate information
in order to reduce interference and maximise the sum-rate is presented in
Section 3.3.1. Further expansion on the nature of the cognitive femtocell and
the proposed solution to reduce interference from femto base stations to macro
and pico UEs are presented in Section 3.3.2.

3.3 Proposed Scalable Interference Management
Approach

The scope of this section is to present a distributed interference management
scheme which solves problem (3.3 - 3.6), is not computationally intense and
can be applied to practical HetNets. The proposed scheme is divided into two
parallel parts. The first part deals with interference coming from neighbouring
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macro or pico base stations while the second part deals with the interference
generated by femto base stations.

3.3.1 Macro and Pico interference management

The ICI mitigation technique is composed of two phases. Firstly, in the
"restriction definition" phase, each sector determines locally which other sectors
are producing harmful interference on specific resource blocks and generates
a list of resource blocks that the interfering sectors would have to restrict or
limit transmit power in order to improve on that sector’s throughput. This is
done concurrently with the sector’s internal resource scheduling. Secondly, the
sectors exchange information with the interfering sectors and in the "restriction
negotiation" phase each sector computes which resource blocks it has to restrict
in order to maximize the overall network throughput. The IHA algorithm will
be used here to determine which restrictions make sense from a system point
of view. Below, the details of the algorithms are explained and summarised in
Algorithm 2.

Before the actual introduction of the algorithm, a clarification of the notations
used in this work is necessary. Every scalar used in this work is being expressed
using a lower case italic letter, i.e. x; an array is presented by a lower case bold
italic letter, such as 1 and a matrix is written using a bold capital letter: Y 4.p
where a and b represent the rows and columns of the matrix. Each entry of
such matrix is expressed with the same letter used to name the matrix, but in
lower case.

Restriction definition

A sector receives the CSI packets containing the CQIs from all the attached
users and the interference power received by each user on each resource block
from all the neighbouring base stations. The CSI packets also contain the rate
requested by each user and the set of RBs assigned to each user by the base
station scheduler. The base station ¢ then, computes the SINR that each user
x; experiences on all the resource blocks: '731” and the SINR ’yi the user would
experience if the highest interfering sector on each resource block is forced to
zero. Only the highest interferer is considered because of two main reasons, first,
the effects of interferers above the second on the SINR become negligible [46]
and, second, it is very impractical for a receiver to decode signal coming from a
an interferer if there is already a stronger one present [17].
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These SINR values are then mapped into their relative data rates, rlv and r2

, for each user z; using the MCS schemes from table 2.2. The rate vectors of
each user are then converted into utility vectors ug,! and u,,? defined as:

1 1 2 _ .2 )
Uy, ) = To, Aoy and uy =75 4 - dy; (3.7)

where d, is the demand of user x;. All the utility vectors u},

and ui are then
collected in two utility matrices U' and U? of dimensions X; - K, where X; is
the number of users served in the cell (either X, or X,,). The restriction choice
of a specific resource block k is performed by comparing the utility u;/, i USer T;

experiences on RB k with the higher utility ui . and a threshold value th,, i

Iful, o >up g+ the,, (3.8)

then user x; would see an improved data rate on RB k if the highest interfering
sector would be restricted; th,, can be dynamically adjusted, in this work it is
equal to the minimal rate requested (see table 3.1). If a user is well placed (i.e.
in the cell center), or does not witness interference, the improved utility uil
would not be considerably higher than the measured one uflﬂl

This criterion, then, targets users which see an improvement when the
interference is reduced, generally speaking these are referred to as "starved
users".

Not all the resource blocks that fulfil the above criterion will actually be blocked
or used at limited power by the neighbours but only the ones that maximise
the utility of the sector when all the attached users are scheduled on all the
available resource blocks: each sector generates a restriction list R by applying
the Tterative Hungarian Algorithm onto the utility matrix U'. At each iteration
h the THA determines which set of RBs kj, can be assigned to the attached
users X, as defined in the system model section, so that the utility of the
scheduled users for that transport block is maximized. This optimisation
considers interference, pathloss and shadowing.

If there is improvement by restricting the ass1gned resource blocks, i.e. if

user x; is assigned RB kh o, at iteration h and uz o > um A + thy, then
EL i h x;

the corresponding entry of the restriction list R is updated Wlth the highest
interferer for that RB kh,zi, with the corresponding ideal utility u? o for the

i Nh,z;

same RB and the user x; scheduled on that RB and with the difference between
the ideal and measured SINR 72 ; — v, . This information becomes relevant
in the case of picocells as they are able to perform power control. The columns
of U, corresponding to the assigned set of resource blocks kn, , are deleted and
the process is repeated until all the resource blocks have been assigned. The
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Hungarian Algorithm has been proven to be optimal in an assignment problem
where the number of resource blocks is equal to the number of users [15]. In
case this identity is not valid the IHA provides a good suboptimal solution that
trades off performance for lowered computational complexity when compared
with traditional convex optimisation techniques.

Restriction negotiation

We define as a cluster the group of cells interfering with each other. A cluster
can then have variable size depending on the propagation conditions as shown in
Figure 3.2 and how the users are distributed within each cell. If there are many
users in the cell edge, these will witness higher interference coming from the
surrounding cells. Each sector exchanges with all the other sectors in a cluster
its restriction list R. The entries of the restriction lists contain information on
which RB k each sector would like the interfering sectors to block, the ideal
utility ui ;. user z;, scheduled on RB k, in sector s would achieve and difference
between the ideal and measured SINR 'yi_k — 7;1_7 ;- From now on we refer
to utility u? , as the utility the sector would achieve on RB k: uZ ;. Then
each sector generates a cluster utility matrix Z in this manner: Each row of
Z represents each sector in the cluster. If RB k is marked for restriction in
the restriction list of sector s then z, j is equal to the utility “i,k- If multiple
sectors request the same RB then the utilities uik are organized in descending
order. For each conflicting sector a new column, corresponding to the RB k is
generated to account for multiple RB assignments. Each entry of these columns
is zero except for the utility of the sector. If two or more of these utilities are
equal they remain on the same column. The cluster utility is then at most
S-S K large in the absolute worst case scenario where all sectors interfere with
all other sectors on all the resource blocks. Each sector possesses its cluster
utility matrix Z and proceeds in assigning resource blocks to each sector using
the THA described previously. The base station can use the same process in
the "restriction definition" as well as in the "restriction negotiation" thus the
complexity of the overall algorithm is just function of the size of Z. Once all
the resource blocks are assigned to the sectors, these represent the resources
each sector needs to maximise the global cluster rate and are stored in the
final assignment matrix A. Subsequently, the highest interferers present in the
restriction list, corresponding to each entry in A, have to be restricted.

Each macrocell sector, then, determines from its A and the restriction list which
resource blocks it has to restrict and avoids transmission on those resources thus
maximizing the capacity in its cluster. A picocell, on the other hand, makes use
of the difference between the ideal SINR and the measured one ng,f =2 = Vak
exchanged by the interfered sector s. If RB k is then scheduled to be restricted,
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the transmit power of the picocell, on that RB, is reduced by the same difference
in SINRs: ‘
Py = max(Pras — 727, 0), (3.9)

where P4, is the maximum transmit power per RB in dB. In this way, if the
SINR difference is lower than the maximum transmit power on the RB, the

pico base station can re-use that RB for additional transmission otherwise it is
restricted in the same way as for the macro base station.
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Algorithm 2 Algorithm for macro and picocell interference coordination

1: Phase One: Restriction definition
2: % Base station’s sector receives CSI information from the served users
and maps it into received and ideal utility as defined in (3.7)
: for x € X do
for k € K do
'Yik — T;,k — ualc,k
end for
end for
: % The sector applies IHA on U'! and compares entries with to U? to
find Restriction List R
10: K=K
11: while U' # 0 do
12:  HA = hungarian(U")
13:  for r € rows of HA do

© PN DT W

14: if the entry kp of HA is allocated and uikh > u,ﬂkh + threshold, then
ty, =[1; uikh; max interferer for RB kn; 72 — Vo x |

15: end if

16: Delete colums of U'? corresponding to allocated RBs

17: Delete entries of K}, corresponding to allocated RBs

18:  end for

19: end while

20: % Sector shares matrix R with all the interfering neighbours
21: Phase Two: Restriction negotiation

22: % Build cluster utility matrix Z

23: % Maximise Z to find restricted RBs

24: K = K

25: while Z #( do

26:  HA = hungarian(Z)

27:  for r € rows of HA do

28: if the entry ks of HA is allocated then

29: Arg, =1

30: end if

31: end for

32:  Delete columns of Z corresponding to allocated RBs

33: Delete entries of K, corresponding to allocated RBs

34: end while

35: % Now the sector knows which RBs is supposed to use from A and
determines which ones it has to restrict restrict

36: for s € Interfering Neighbours do

37: for ke K do

38: if asr = 1 and the max interferer of sector s on RB k is current sector
then

39: if current sector is macrocell then

40: P, = 0;

41: else if current sector is picocell then

42: Y =22 = ven

43: P, = max(Ppmas — 'yji,{, 0)

44: end if ,

45: end if

46: end for

47: end for

=0
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3.3.2 Femto interference management

An independent algorithm at the femtocell side is proposed to limit the
interference introduced by these unplanned and uncontrolled small cells. Since
no fast backhaul communication between the tiers is assumed each femto access
point has to be able to determine whether it creates interference to macro (or
pico) cell users. In this work femto base stations possess sensing capabilities
and are able to overhear uplink communication between close by macro and
pico users to their serving base stations.

Enabling the cognitive femtocell: the digital front end

The assumption that a femtocell is able to sense its environment and react
accordingly is gaining a lot of interest in the wireless community [94-99].
Generally, the literature refers to generic capabilities of the device without
considering technological limitations. In this work, on the other hand, the
assumptions made in the ICIC method are easily achievable technologically by
employing the digital front-end DIFF'S presented in [18] and included as another
contribution to this dissertation. The Digital Front-end For Sensing and
Synchronization (DIFFS) is a low-power, multi-mode, multi-standard flexible
digital front-end (DFE) able to perform simultaneous sensing and reception,
allowing the radio to acquire real-time channel information and take an informed
decision.

A DFE is an essential building block of a reconfigurable radio, as shown in
Figure 3.3. The reconfigurable radio can adapt and be reprogrammed easily to
fit a vast number of applications. This flexibility is granted by its three building
blocks: the analog front-end (AFE) is with the reception of the RF signals and
their conversion to the digital domain, it can have either a fixed design or it
might be flexible and reconfigurable such as [18]. The DFE receives data from
the AFE and performs sensing and synchronization. If desirable information is
found, the DFE sends it to the baseband processing unit (BPU). The DFE is
then tasked with determining whether the signals received can be used by the
radio; this tasks makes it ideal in analysing interfered signals.

AFE DFE BPU

Figure 3.3: Reconfigurable Radio Block Diagram



PROPOSED SCALABLE INTERFERENCE MANAGEMENT APPROACH 51

The structure of the proposed DFE is shown in Figure 3.4. The various building

AGRAC
Compensation

Halfband Flexible
filter filter
branch branch

[ Py

N2

Figure 3.4: DIFFS Structure

SensePro

blocks composing the DIFFS are responsible for the correct behaviour of the
structure and are hereafter briefly explained.

The communication between the AFE and the DFE is controlled by the
Automatic Gain and Resource Activity Controller (AGRAC). As the name
suggests, the AGRAC is responsible for certain front-end settings that require
a short control loop, such as the front-end gain and the remaining DC offset
(DCO) compensation. The AGRAC is also responsible for controlling the mode
of operation of the DFE; it can enable or disable the other blocks of the DFE
as needed: in normal receive mode, the AGRAC activates the SensePro to
carry out signal synchronization and if found it activates also the baseband
processor. In sensing mode, the AGRAC can activate the SensePro to perform
signal processing if no power is sensed, if a signal is otherwise detected, the
sensing is stopped or receive mode is initiated.

Once the incoming samples have gone through the analog non-idealities
compensation block they reach the filtering stage. This stage consists of two
filter branches that can operate on the data in parallel. One filter branch is
a power-optimized set of halfband filters/downsamplers that allow low-pass
filtering and downsampling by factors 2 and 4. The second branch is composed
of fully programmable filters capable of down-conversion, band selection, and
non-integer rate conversion. In order to guarantee narrowband performance
with strict out-of-band attenuation flexible CIC filter in conjunction with
programmable FIR filters have been selected. All filter blocks are implemented
in full precision, and a quantization selection block after each stage allows the
algorithm designer to select the most relevant bits from the output of the filter.
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The reason is that the quantization for strong signal reception is different from
the quantization for faint signal detection as used in sensing. The parallel filter
branch design allows trading off power and performance at software-level by
merely selecting a specific filter branch, and allows operation on one or multiple
radio channels in parallel depending on the objectives of the cognitive radio or
femtocell. More specifically, it allows sensing/reception in different bands in
parallel.

After passing through the filters, the data is acquired by the SensePro.
The purpose of this block is to execute both the advanced spectrum
sensing algorithms and the coarse time synchronization. The SensePro is
a programmable logic processor used for all the flexible numerical operations
required by the different sensing algorithms, such as min/max, averaging and
thresholding, for loop control. It is also able to perform 128-point Fourier
transform, vector rotation and correlation operations. Together with the
parallel filter branches, the SensePro allows the DFE to sense the channel
and receive signals simultaneously. For example, figure 3.5 shows an LTE
spectrum containing two bands. If the radio is programmed in receive mode
and already possesses the necessary parameters to receive the LTE signal in
the lower frequency band the AGRAC instructs the SensePro to perform signal
synchronization. The received signal is then sent through the halfband filter
branch and sent to the baseband processor without any further interaction with
the AGRAC or the SensePro. During normal reception, the SensePro can be
loaded with new firmware that enables LTE sensing, and the reconfigurable
filter branch is programmed and activated to transfer the content of the upper
frequency band to the SensePro. This way, the cognitive femtocell can scan the
upper band while receiving the lower band.

Active band Scanned band
20Mhz (100 RB) 20Mhz (100 RB)
...... = ——y— ‘ﬂ—’.,,::’d .\“-\..«

Active resource blocks (RB)

Figure 3.5: Parallel reception and sensing for LTE

The output buffer is a key element in the architecture when the DFE is used
for data reception. When synchronization is required, both the SensePro and
the buffer are enabled simultaneously by the AGRAC. The SensePro then
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searches for sync while the received and filtered samples are being stored in
the buffer. When synchronization is detected, the SensePro passes the absolute
synchronization index to the buffer to update the read pointer. Subsequently,
the AGRAC interrupts the platform controller to notify that data is available
for reading. When the radio platform starts reading out samples from the buffer,
only the samples starting from the synchronization point on are transferred to
the baseband engine.

This design allows the DFE to be used for a various array of applications, from
simply sensing if a channel is occupied to detecting specific signals and decoding
whether they are LTE or not. A key example for the application proposed in
this dissertation is the feature detection of LTE control signals. The DIFFS can
be implemented onto a femto base station to overhear and decode the signal a
neighbouring base station or UE is transmitting and regulate its parameters
accordingly. The DFE has been used successfully already to perform multiband
energy detection and synchronization-aided sensing [18]. The second case is
particularly interesting for the investigated scenario as it allows the DFE to
detect the specific LTE channels carrying the information of which RBs are
going to be occupied in the following scheduling intervals. In [18] the DIFFS
was used to detect the Physical Downlink Shared Channel of an LTE over the
whole downlink bandwidth. Without the knowledge of the exact position of
the PDSCH, the Reference Signal (RS) and the Primary Downlink Control
Channel (PDCCH) will generate a constant False Alarm making the Energy
Detection based sensing of available resource blocks not useful. The Primary
Synchronization Channel (P-SCH) time reference will allow the sensing engine
to build a resource map containing both time and frequency information of the
amount of resources available in the band.

To showcase the effectiveness of the DIFFS on detecting neighbouring LTE cells,
a downlink LTE signal using 20 MHz bandwidth has been detected. Two types
of sub-frames are transmitted: a sub-frame containing control information and
a non-control information sub-frame. A small degradation is observed in the
Probability of Detection (PD) for the control sub-frame due to the lower number
of observation windows. The Probability of False Alarm (PFA) remains well
below the targeted 10% for both types of sub-frames. The results are shown in
figure 3.6.
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Figure 3.6: Probability of detection of LTE signals

Femtocell interference management solution

The femto access point then determines the channel gain between itself and
the macro or pico neighbouring base stations; it also determines the channel
gains between itself and the macro (or pico) users near by. The femtocell is
then able to use water-filling to reduce the transmit power on the RBs assigned
to the macro (or pico) user. Algorithm 3 presents the interference management
solution implemented on the femto base station.
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Algorithm 3 Algorithm for femtocell interference avoidance

1: % Each femto base station determines the channel between itself and
a nearby UE by sensing the environment

2: % The femtocell decodes the channels and determines whether the UE
is going to be scheduled

3: for k€ K do

if RB k is assigned to sensed UE then
% The femtocell determines the SINR the UE would have if femto
transmission power is lowered
VI =2 — e

Py, = max(Ppax —727,0)

end if

end for

=0

3.3.3 Notes on the lterative Hungarian Algorithm

The Hungarian algorithm was found to be an optimal solution method for the
assignment problem for square matrices in strongly polynomial time. This
method remains optimal as long as the number of workers is identical to
the number of resources to be assigned. If this is not the same, as in the
problem considered, the optimal solution cannot be found so readily. One either
strives for optimality using algorithms for complete searches in combinatorial
optimisation, such as the branch-and-bound [130], or applies a sub-optimal
solution, such as the THA. In [131], the authors have compared these two methods
and have noted that the ITHA is able to reach a solution close to the optimal
one found by the branch-and-bound (up to 96.5% of the optimal solution) at
a significantly reduced computational complexity (the IHA converges in 3.8%
of the time required by the optimal method). In [132], the authors compare
the THA with an optimal myopic search for dynamic spectrum access. They
show that the former reaches solutions very close to the optimal method but
the computational complexity reduced by 25 times. The THA is then able to
reach a good sub-optimal solution at the fraction of an exhaustive search.
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Figure 3.7: Network simulated with hexagonal macrocells (o) and pico (A) and
femtocells (O) disseminated within their coverage area

3.4 ICIC Results

In this section the simulation scenarios and performance results are presented
and discussed. A downlink heterogeneous LTE network has been simulated with
7 macrocells and 5 picocells placed around the central macrocell. A fixed number
of 10 randomly placed femtocells is used. The number of cells and the other
simulation parameters were chosen so that at least a ring of macrocells would
be simulated around a central cell subject to interference from its neighbours
and small cells, while, at the same time, keep the overall computational load
manageable. Users are randomly scattered over the area and feature constant
mobility for the whole duration of the simulations. Figure 3.7 presents the
network under test, where the hexagons represent the sectors of the macrocells,
the triangle represent the picocells and the squares represent the femtocells.

The network operates in full buffer and full CSI accuracy is assumed. The
throughput, the signal power received by each user and the behaviour of each
cell are recorded and analysed. A mixed indoor-outdoor environment has been
considered for the pathloss, with the parameters presented in [45]. For all the
simulations the internal cell resource allocation is performed with the Iterative
Hungarian Scheduler [13]. The simulation parameters are contained in table
3.1.
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’ Parameters \ Symbols \ Values
Number of macrocells M 7
Sectors per macrocell S 3

Inter macrocell distance 500 m
Macrocell radius 150 m
Macro users per sector X 20
Macro transmit Power 46 dBm
Number of picocells P 5
Picocell radius 20 m
Pico users per sector X, 4
Pico transmit Power 20 dBm
Number of femtocells F 10
Femtocell radius 10 m
Femto users per sector Xy 2
Femto transmit Power 10 dBm
System bandwidth 20 MHz
Available Resource Blocks 100
Carrier frequency 2.1 Ghz
Propagation model WINNER IT model [11]
Internal base station scheduler Hungarian scheduler
Antenna configuration SISO
Traffic model Full buffer
Minimal throughput requested th 1 Mbps

Table 3.1: System parameters for LTA-A ICIC simulations

3.4.1 Results for homogeneous networks

The average throughput of the macrocell users in a homogeneous LTE downlink
network is analysed; the users are organized in percentiles, these represent the
portions of the users in the bottom % of their categories: the 5" percentile
users are the bottom 5% of the overall users, usually referred to as "cell edge
users". The 100*" percentile, on the other hand, represents the average cell
rate. In these simulations the proposed method is compared to the standard
resource allocation (where no interference coordination is applied and only the
internal allocation is performed) and the frequency reuse 3 where each cell uses
one third of the available bandwidth, not overlapping with the neighbours, thus
avoiding interference. The gains of the proposed method and the frequency
reuse 3 technique over the non-coordinated solution are presented in Figure 3.8,
where ICIC is the proposed method.



58 INTERFERENCE COORDINATION IN HETEROGENEOQOUS LTE-A DOWNLINK NETWORKS

= 2
=}
£
[=2 Reuse 3
3 1.8¢ b
2 —e—|CIC
£
c
2 16r b
]
Q
o
® 1.4+ b
[
IS
=}
3 1.2+ 8
QL
o
3 1f oo ooo
c
‘©
(O]
08 I I I I |
0 20 40 60 80 100

Percentiles

Figure 3.8: Average gain of ICIC and Reuse 3 methods over no coordination in
a homogeneous network

Figure 3.8 shows that, since the proposed ICIC method is designed to target
mainly the users which suffer from interference and are poorly served (lowest
5-10%), it achieves high gain for low percentiles and no loss for high ones. On
the contrary the "Reuse 3" method targets the whole bandwidth achieving high
gain for the poorest served users but very high losses for all the other ones. The
proposed method reaches, then, 86% of the gain of the other solution without
any of its drawbacks.

3.4.2 Results for heterogeneous networks

Once the solution is extended to a heterogeneous network, with the parameters
contained in Table 3.1, the impact of the proposed method on macrocell users
decreases as the macro users now witness additional interference coming from
the pico- and femto-cells and there are more cells which have to coordinate for
the same amount of resources and the method can only address the highest
interferer. Figure 3.9 presents the gains of the proposed solution for macro,
pico and femto users (without any power control on pico or femto cells but only
restricting the interfering RBs completely).

It is noticeable that both macro and pico cell edge user performances increase
considerably, with a slight (4%) loss for the highest performing macrocell users;
this is due to the fact that picocells still interfere for those users but they
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Figure 3.9: Gains of proposed method for macro, pico and femto users over
resource allocation without any power control

do not get selected by the proposed method because of their good channel
quality conditions (as the proposed solution only targets starved users). The
combined gain for macro and pico users is shown in the black curve. On the
other hand, femtocell users witness a lower performance due to the absence of
communication between the tiers.

If power water-filling is allowed for pico and femto base stations in order to
minimize losses, while still reducing overall interference the gains improve as
shown in Figure 3.10. At the price of a very slight loss for macrocells users (2%)
due to the minimal increase in interference due to the non complete restriction
in transmission power we see an increase in performance in both pico and femto
users (10% and 4% respectively). The effect on the combine macrocell and
picocell users shows that the picocell users tend to have higher throughput
than the macrocell ones and thus the gains at lower percentiles are higher when
compared to the previous implementation in Figure 3.9 but less than for just the
picocell users. On the other hand, the complete gain shows also an improvement
for the high percentiles, reducing the loss to 3%. The results show that the
proposed method works well and allows for a consistent increase in performance
for the macro and pico users which outperforms traditional static solutions.
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Figure 3.10: Gains of proposed method for macro, pico and femto users over
resource allocation with power control

3.5 Conclusions

In this chapter a cooperative distributed heuristic algorithm for interference
management in heterogeneous LTE networks was presented. The proposed
scheme efficiently allocates resources and reduces interference as it adapts to
the network conditions. The method proposed here is scalable and adapts well
to the dynamic behaviour of HetNets. Comparisons to well known reference
methods show that the proposed method delivers a consistent gain for the
starved user’s data rate in both homogeneous and heterogeneous networks. The
scheme requires only communication between macro and pico base stations
while the femtocells operate autonomously. It generates a gain of 45% for the
combined macro and pico edge users at a very small cost for the cell center
lower than 4%. It optimises greatly picocell performance, with improvements of
more than 50% at a small cost for femtocell users (15%).

In the next chapters a new framework to study the effects of CSI quantization
on the resource allocation and ICIC are presented.



Chapter 4

Reducing the Signalling
Overhead in the Frequency
Domain

In this chapter, the influence of signalling information on the downlink and
uplink throughput is quantified and solutions which allow to lower the amount of
CSI information in the frequency domain, while maintaining high performance,
are presented. First, the standard compliant LTE-A signalling mechanisms
are analysed and the need for a novel, flexible feedback scheme is discussed;
such scheme is presented and a model to determine the impact of signalling
on the system’s performance is introduced. In order to provide the base
stations with the means to assign a flexible and on-demand amount of feedback,
reinforcement learning solutions are presented in order to find optimal operating
points. Furthermore, the proposed signalling reduction method is applied to
the ICIC solution presented in the previous chapter and results show that
performance can be increased overall in the network by transmitting the control
information with higher accuracy where it is most useful rather than using
averaging methods.

4.1 CSI feedback in LTE and its limitations

As introduced in Section 2.2.1, the LTE standard allows for three different CSI
reporting techniques in the frequency domain:

61
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o Wideband: each user transmits a single 4-bit CQI value for all the RBs
in the bandwidth.

e Higher Layer configured or subband level: the bandwidth is divided into
subbands of consecutive RBs and each user feeds back to the base station
one 4-bit wideband CQI and a 2-bit differential CQI for each subband.

o User-selected, or Best — M: each user selects M preferred subbands of
equal size and will transmit to the base station one 4-bit wideband CQI,
a single 2-bit differential CQI value that reflects the channel quality only
over all the selected M subbands and the positions of these subbands
in the bandwidth. The number M of selected subbands is bandwidth
dependent and fixed.

The three standard compliant feedback schemes do limit the amount of overhead
information transmitted by the users but they do not allow the base station to
request a variable amount of feedback to the user. This could be particularity
interesting to, first, study the impact that control information has on the data
rate and, secondly, enhance multi-user diversity by allowing different quantities
of CQI feedback to users based on their channel conditions. On top of the
standard compliant feedback schemes, two extra FB allocation mechanisms
have been implemented in order to understand the effects that feedback scarcity
has on the downlink capacity.

e Full feedback scheme: each user transmits a 4-bit wideband CQI value
and a 2-bit differential CQI for each RB. This scheme gives an indication
of the maximum capacity the network can achieve when full feedback
resolution is available.

e Variable Best — M: This scheme is a flexible implementation of the user-
selected one above. The number of subbands M is adapted as a function
of the number of users and the system’s conditions. Also, there will be a
2-bit differential CQI value fed back for each subband instead of a single
one valid across all subbands.

These two different reporting schemes can provide a large amount of feedback
information, in case of the former, and can deliver this information where more
necessary in case of the latter.

In the following section, a model to determine the impact of feedback information
on a cell’s performance is introduced.
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4.2 Feedback Model

In this section, the amount of resources required by the feedback is quantified
and a mathematical model is provided. This model will be combined with
simulation results providing spectral efficiency obtained by scheduling with
reduced feedback, in order to optimise the amount of signalling for the maximal
network net capacity. Table 4.1 includes the bit cost of the different feedback
allocation methods presented in the previous section for a number of served
users Ny and for N L downlink RBs .

’ Feedback Scheme \ Bit cost

Wideband 2-
Subband level

2-
User-selected 2.
Full feedback 2-

2-

Variable Best-M

1+2-NPL) Ny
442 M + [logs(“F#)]) - Ny

(4
(
(4+2+ Hogz(NRB)D - Ny
(
(

Table 4.1: Bit cost of the various feedback schemes

The equations expressed in table 4.1 refer to a single stream of data. If the
system makes use of Multiple Input Multiple Output (MIMO), the amount of
feedback necessary is multiplied by the number of streams. This does not affect
the relation to the network’s capacity since it is also scaled by the same factor,
if UL MIMO is also used for transmitting the feedback information.

Figure 4.1 shows the amount of feedback required for the different schemes
as a function of the number of users with a 20MHz (100 RBs) UL bandwidth
using QPSK modulation. The Figure shows that the full feedback scheme is
practically not achievable but also the standard compliant methods can utilise
more than 20% of the overall uplink bandwidth for 100 users.

In order to quantify the portion of resources required by the feedback, it is
beneficial to redefine the number of feedback bits into modulation symbols since
the uplink and downlink channels can carry only a specific number of symbols
per RB.

The uplink bandwidth of the LTE system, even though it makes use of SC-
FDMA instead of OFDMA, also uses RBs and contains an identical number of
modulation symbols per physical resource block as the downlink. Each RB can
carry 84 modulation symbols and has a duration of 0.5 ms. The symbol rate is
then S = S,; = Sq = 168 - 10 - NEL, in the downlink and in the uplink [32].
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Figure 4.1: Portion of Uplink used by FB

The relation between Baud rate S and the bit rate T is given by:

T
S > (4.1)
where ~ is a coefficient which determines how many bits are carried in a
symbol; it depends on the modulation and the code rate used. The modulations
supported by uplink LTE are QPSK, 16QAM and, only for a highest category of
mobile users, 64QAM [32]. Which means that each uncoded modulation symbol
can carry either 2, 4 or 6 bits for QPSK, 16QAM and 64QAM respectively.

The amount of feedback can then be expressed in modulation symbols, and is
here called Syy.

The total amount of data transmitted, per second, is defined as:
Tiot = Tyt + T = Tar + Tut,data + Tt 1o, (4.2)

where Ty and T,; represent the amount of bits being transmitted in the downlink
and the uplink at each frame. T, 4qt4 is the amount of payload-only throughput
in the uplink and 7T’y sy is the feedback throughput obtained by multiplying the
bit values expressed in table 4.1 by 103 as each frame is 1 ms long.

Using Equation (4.1) it is possible to define (4.2) as:

Ty = Yar - Sar + Yur - St — Vb - Sut,fbs (4.3)
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where T}, = Ty + Thui,data is the throughput of the payload data in both uplink
and downlink. v,; and ~s, are considered, generally, different as the system
might request a more robust modulation for signalling information over payload
data. Since S = S,; = Sg;, Eq. (4.3) can be written as:

Ty = (Yar +yut) - S =Yg - Sut,o- (4.4)

One of the main problems in determining the uplink channel parameters, is that
uplink and downlink are generally not symmetrical. In case of TDD LTE uplink
and downlink bandwidth could be exchanged if more traffic is demanded on one
of the two, making the trade-off very relevant. If FDD LTE is used, on the other
hand, the downlink and uplink frequency bands are separate. Nevertheless, the
amount of feedback information is still reducing the amount of uplink bandwidth
available. In order to model the impact, on the uplink performance, of feedback
signalling in a downlink simulator we impose v4 = 4.1, as the LTE downlink
spectral efficiency can be up to 4 times higher than the LTE uplink spectral
efficiency [32]. Equation (4.4) becomes then

5
Ty = Jvar S = o Sut,po- (4.5)

Finally, 74 is obtained directly from (4.1):

5
Tp = Zle - 'be . Sul,fb- (46)

Using equation (4.6) it is possible to determine whether adding feedback to the
system actually improves its performance. More feedback would, on the one
hand, reduce the amount of symbols available for the payload (higher Sy; f3)
but, on the other hand, increase the downlink throughput T,;. In order to
quantify the effect of each user on the total useful throughput 7}, is possible to
redefine it as the sum of the contribution of each user u:

NU NU
5 u
1, = ZT; = Z <4T;z - ’V}Lb ) Sul,fb) . (4.7)
u=1 u=1

For the remainder of this paper a value of v, = 2 has been chosen; this is
indicative of a 16QAM modulation with a coding rate of 1/2.
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4.3 Feedback Impact

4.3.1 Schedulers

In order to determine the impact of the resource allocation mechanisms on
the feedback amount, three different schedulers have been implemented: the
Best-CQI (BCQI), Proportional Fair (PF) and Max-Min (MM). The first is a
maximum throughput scheduler in which only the users with best channel quality
are served and the last one is the ultimately fair algorithm which allocates the
same amount of RBs to all users in order to maximise their worse rate. The PF,
on the other hand, is somewhere in between and allocates resources in order to
maximise downlink throughput while maintaining a certain amount of fairness.

4.3.2 Simulation Parameters

The system has been simulated using the open source VIENNA system level
simulator [45]. An urban multicell environment is considered to include the
effects of multipath propagation and interference. Adaptive modulation and
coding are used by the base station to allocate resources to the users. To model
the impact of feedback on a cell’s resource allocation, no cooperation between
cells is initially considered. ICIC techniques are then introduced to investigate
how feedback scarcity can influence the whole network’s performance. The
simulation parameters are included in table 4.2.
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’ Parameters \ Values
Number of Macrocells 7
Sectors per Macrocell 3

Inter-cell distance 500 m
Macro antenna gain 15 dB
Macro Transmit Power 46 dBm
Macro users per sector 2 to 100
Frequency 2.1 GHz
System Bandwidth 20 MHz
Number of RBs 100
Access technology OFDMA FDD
Number of antennae 1(Tx and Rx)
Channel model Winner Channel Model 1T [11]
Block fading mean 0 dB
Block fading deviation 10 dB
Fast fading 10 dB
Thermal noise density -174 dBm/Hz
Users speed 1m/s

Table 4.2: System parameters for the LTE-A feedback reduction in frequency

4.3.3 Impact of resource allocation on FB selection

The influence of the different FB allocation strategies for the three schedulers is
presented in figures 4.2 - 4.4. These figures show the throughput 7}, gain of the
different strategies over the subband-level allocation for a varying number of
served users. The x-axis shows the feedback method used for the simulations,
where BM 1 indicates the Variable Best-M with M =1 and BM?2 the Variable
Best-M with M = 2 and so on. UES and SBL are instead representative of
the user-selected and subband-level feedback mechanisms.

When the BCQI scheduler is employed, the eNodeB maximises the downlink
capacity; the best FB allocation strategy allows the users with best channel
quality to obtain the highest throughput. As the number of cell users increases,
the impact of FB information becomes increasingly relevant and with 100
concurrent users, the highest number of concurrent transmissions in an LTE
cell, choosing the Variable Best-M with M = 1 FB allocation brings about a
6% gain in total throughput. This limited effect can be ascribed to the BCQI
scheduler exploiting multi-user diversity and selecting few users which might
contribute to most of the downlink throughput.
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Figure 4.2: Throughput gain for BCQI Scheduler for various FB allocation strategies

The results for the PF scheduler are presented in Figure 4.3. In this case a much
larger gain of 20% with 100 users can be achieved. This gain can be attributed
to the inherent trade-off between throughput and fairness of the PF scheduler.
As the number of users increases, each individual user gets allocated less RBs,
thus less knowledge of the complete bandwidth is necessary.

Furthermore, if a limited amount of RBs are assigned, the Variable Best-M
FB allocation allows the base station to have a better information of the users’
channel quality only in the portion of bandwidth most likely to be assigned.: i.e.
if only 3 RBs are going to be assigned a Variable Best-M with M = 1 strategy
averages the CQIs over 4 RBs instead than over 8, like with the subband level
strategy.

Finally, Figure 4.4 presents the results for the MM scheduler. This scheduler
tries to maximise the fairness by improving each user’s worst-RB throughput.
Even though this algorithm is the opposite of the BCQI, the impact of FB
allocation on the throughput is similar. This is due to the fact that, even
though more reliable information is available in the M best subbands fed
back by the users, the scheduler is designed to maximise the worst rate and
thereby to increase the likelihood that the users are scheduled on a portion of
the bandwidth that only reports the wideband CQI. Thus there is not a real
improvement in the downlink rate but the gain comes from not having a loss



FEEDBACK IMPACT 69

while reducing FB overhead.

Throughput gain over subband FB allocation with PF scheduler
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Figure 4.3: Throughput gain for PF Scheduler for various FB allocation strategies
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Figure 4.4: Throughput gain for MM Scheduler for various FB allocation strategies

The Variable Best-M feedback strategy allows a then base station to vary the
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amount of feedback necessary to maximise payload throughput according to the
number of served users and to the fairness of the resource allocation method.

If the base station were to allocate the FB dynamically to each user differently,
the multi-user diversity could be better exploited. Figure 4.5 presents a
comparison between a homogeneous and a dynamic multi-user FB allocation.
The curves in the continuous line represent the best gains for the different
number of users of Figures 4.2 - 4.4. The curves with dotted line represent
the improvement obtainable by performing a dynamic multi-user resource
allocation. In order to obtain the results for a dynamic multi-user FB allocation,
the simulations have been run at full feedback and the resource allocation
decisions of the base stations have been recorded. Afterwards, the simulations
have been re-run and only the appropriate amount of FB, computed with the
previously obtained results, has been allocated.

As the BCQI is the scheduler that better makes use of multi-user diversity, it is
also the one that benefits the most from a dynamic FB allocation. Since the
MM scheduler maximises fairness, the amount of RBs allocated to each user
tends to be equal; this way the benefit of a dynamic FB resource allocation is
lost. The PF scheduler makes use, albeit to a lesser extent than the BCQI, of
multi-user diversity, and thus sees an improvement with dynamic FB allocation.
The gains of the dynamic FB allocation over the static one, in percentage, are

Static VS Dynamic FB allocation

1.25 w w
FB Allocation
MM homogeneous
19} MM multi-user
—— PF homogeneous
= = = PF multi-user
——BCQI homogeneous
£ 1.15r|- - - BCQI multi-user
O]
®
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@ 11r
1.05 Xy mmzza==>
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Figure 4.5: Gain of dynamic FB VS static FB allocation
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presented in table 4.3. The results for the Max Min scheduler are omitted as
the performance improvement was within 0.5% for all users configuration.

| Users/Schedulers | Best CQI | Proportional Fair |

2 0.25 0
8 1 1.2
30 1.6 2
50 2.2 2.2
70 3 2.7
80 3.8 3
100 5 3.3

Table 4.3: Percentage gain of dynamic FB allocation over static one for BCQI and
PF schedulers

4.4 Reinforcement Learning Solutions

A dynamic controller, capable of positioning the eNodeB in an optimal operating
point with respect to the FB allocation, is a desirable device. In the previous
section, the proposed variable best-M FB strategy has been proven effective but
the system is not able to adjust the number of subbands necessary dynamically
with an unknown resource allocation strategy.

Such system has to learn from the cell’s current and previous behaviours and
makes an informed and intelligent decision on the amount of FB to be allocated
to the users. Learning methods have been used successfully in wireless networks
and reinforcement learning (RL) is a family of techniques which seems to work
particularly well in the context of self-organization and resource allocation
problems in LTE [133-136].

Differently than the ICIC problem from the previous chapter, the problem
considered here is not just an optimization problem but it concerns a system
with unknown properties. The IHA has shown to provide a good solution to
the resource allocation problem but the weight of each assignment had to be
known before hand. The effects of feedback allocation on a user, on the other
hand, depend on that user’s channel quality and on which, unknown, resource
allocation method used by the base station. A learning approach, thus, has
been selected to reduce the assumptions on the nature of the environment and
allow an agent to reach a solution with limited previous knowledge.
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A great advantage of RL over other learning techniques is its model-free nature.
It does not require an extensive representation of the environment and it learns
incrementally, without a teacher, until enough information is obtained by the
agent.

4.4.1 Reinforcement Learning Structure

Reinforcement learning allows an agent to learn from its environment by acting
upon it and observing the effects of such actions. The general structure of RL
is depicted in Figure 4.6.

evaluation |

State R Action

Figure 4.6: RL structure

In order for RL to be applied, the system has to be described as a Markov
Decision Process (MDP). An MDP is a discrete time stochastic control process
useful for systems where the outcome of a decision is partly in control of the
agent and partly random. Such process is defined by a 5-tuple :

o A discrete number Ng of states S: at each time ¢ the agent monitors the
environment via a set of states S(t) = s'(t), s2(t), s3(t)...sVs (¢).

o A discrete set of actions A: once the condition of the environment is
known, the agent performs a different action according to the values of
the input states.

e A reward function R: after the actions have been taken, the environment
has changed and the states have now shifted from S(t) to S(¢ + 1).
Associated with this state changes is then a reward r(¢ + 1) indicative of
the benefit of such change.

o A state transition function Pé(t),s(t +1) (a) which maps the probability that

environment’s state will shift from S(¢) to S(t + 1) given that action a(t)
is taken at step .
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e A discount factor v which determines the influence of future rewards over
the current ones.

The purpose of RL is to find the optimal policy 7} that maximises the reward
for each state s. In the case of infinite horizon model, where the lifetime of the
agent is unknown a priori, the value function that determines which 7% is the
optimal policy is defined as:

Ve = mgxIE <Z ~(¢) -r(t)) ) (4.8)

where E is the expected value operation and 7 is the complete decision policy
and ~y(t) € [0, 1] is a discount factor which limits the influences of future rewards.
VS*(t) is then the maximum infinite sum of the discounted rewards that the
agent would obtain if it started from state S(¢) and followed policy mg ;). Using
Bellman’s analysis [137] it is possible to determine that such policy exists and
that the solution to the value function is unique and given by:

Vs = max | r(t+1)+( Z Psys+1)(a(?)) - Vg | (4.9)
S(t+1

The value given to the current state S(t) is then equal to the reward for taking
action a(t) summed with the discounted value of the next state when the best
action is taken. The optimal policy is then the argument that maximises (4.9):

TS(t) = argrmax {7 r(t+1)+7(t Z Py, s+1)(a(t) Vg | - (4.10)
S(t+1

For each policy, the value of taking action a(t) in state S(t) following policy s
can be determined. The action-value function qr~(S(t),a(t)) obtained with the
optimal policy Wg(t), is then defined as:

q" (S(t),a(t)) = [ r(t+1) +(t Z Pswysarn(alt) - Ve |- (411)
S(t+1)

Generally, it is rarely possible to generate optimal policies. It is very
computationally and memory intense to find the state-transition probabilities
in the MDP 5-tuple. A different flavour of reinforcement learning, Q-learning,
avoids this problem by exploring the search space without requiring the state-
transition probabilities.
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4.4.2 Q-Learning Structure

Q-learning (QL) is one method of the reinforcement learning family designed
to find an optimal action-selection policy by acting upon the environment
and determining the impact the action has caused on the following state. By
taking and action in a given state, the QL agent learns an action-value function,
from which an optimal policy is constructed. Specifically, the QL agent finds
a function Q(s(t),a(t)) which converges to an optimal value ¢™ (s(t), a(t))
independently of which policy is followed [138].

The system consists of an agent and its environment. Each agent can be in any
state s € S, can perform any action a € A to pass from the current state to the
next one. Once the action is performed and the new state acquired, a reward
r is obtained. The objective of the agent is to maximise the total expected
reward. The optimal action, for each state, is the one that presents the highest
long term reward. The learned action-value function Q(s(t),a(t)), also called
Q-value, is defined as:

QUs(t). (1)) + Q(s(t), a(t))+5 [r(t +1) + (1) max Qs(t + 1),a) ~ Qs(). a(1))]

(4.12)
where the learning factor 5 € [0, 1] weights the influence of previous experiences.
The smaller the learning factor, the higher is the effect of previous Q-values. A
high value of v weights greatly the influence that the best action taken for the
state s(t + 1) has in taking the current action a(t). The system builds, thus,
a Q-Table of size S - A and updates the Q-values at each time interval ¢. All
that is required for the convergence of the function is that all state-action pairs
are visited [19]; this requirement forces the design of an exploration-exploitation
policy so that the Q-Table can be completed. In the most common strategy,
named € — greedy, the agent chooses an action a(t + 1) such as:

argmax, Q(s(t + 1),a), with probability (1 — €)

. o (4.13)
random, with probability e

a(t—l—l)—{

This method allows for continuous exploration with a non-zero e. The value
has to be carefully selected so that the systems has enough randomness to
visit every action-state pair but is able to exploit the Q-Table so to converge
to the optimum. Alternatively, an other frequently used solution assigns high
exploration at the beginning of the learning process and gradually diminishes
the value, increasing exploitation. A common example of such strategy is given
by
Q(s(t+1),a(t+1))
e T

Pr(a(t+1)) = (4.14)

Qs(t+1),a) ?

Zae
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where 7 is a temperature function which decays with time [137]. At the beginning
the actions are all equally probable and, as time progresses and the Q-Table
is built, the actions with highest Q-values will be selected more often. In this
work, the problem of determining the correct FB allocation in an LTE network
is approached. Since the base station has to decide on the next allocation based
on the information fed back by the users, without loss of generality, instead of
the transition between times t and ¢ + 1, the transition ¢ — 1 to ¢ is evaluated
and the action analysed is a(t — 1) instead of a(t).

4.4.3 Q-Learning homogeneous FB allocation

For this implementation the learning agent is placed in the eNodeB and has to
select a single FB allocation strategy based on the number of served users.

In order to determine the reward for each action, the value of 7},, determined in
Eq. (4.6), is chosen. T,depends on the users’ channel quality and on the resource
and FB allocation strategies. This means that different channel qualities can give
very different results even though the FB allocation strategy remains unchanged.
For these reasons the payload throughput is not used as an input state but as
the reward function. The state, actions and rewards of the algorithm are here
defined.

States

The state of the base station at time ¢ is defined as

S(t) = {CQ[cwg(t), NUE(t)} . (415)

Where CQI,.4(t) is the average CQI reported by all the users; this is used
in order for the base station to account for channel fluctuations normally
occurring in a wireless scenarios and for other effects such as user mobility and
interference. A finite number Scgr of quantized CQI states is available for
CQI,ug(t) € {1...Scqr}. Each user’s reported CQI is partially function of the
feedback allocation method chosen, as seen in previous sections, the feedback
allocation method will have a user report on portions of the bandwidth with
more or less accuracy. Ny g is the number of users served by the eNodeB.

Actions

The set of actions A the agent can take are the different FB methods described
in section 4.2; There are then 7 possible actions as shown in table 4.4.
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action a \ FB allocation ‘

1 Var. Best M with M =1
2 Var. Best M with M = 2
3 Var. Best M with M =3
4 Var. Best M with M =4
5 Var. Best M with M =5
6 User-select

7 Subband-select

Table 4.4: Possible actions and their relative FB allocation strategies

Reward

The throughput T, (t) determines if the action taken in the previous interval
a(t —1) has been beneficial or not. An impact matrix I which puts in relation
the system’s state, the actions and the throughput T,(¢), is used. This matrix
has size Scqr - A- Nyg and each entry has value:

T,(t), if T,(t) > I(CQIaug(t),a(t — 1), Nyg(t))
I(CQI4g(t),a(t — 1), Nyg(t)), otherwise
(4.16)
The condition that the current value has to be greater than the previous one, in
order for the matrix to be updated, is taken from [139], where the authors have
shown a greater convergence when this condition is enforced in reinforcement
learning.

I(CQIavy(t), a(t—1), Nyg(t)) = {

The reward r(t) is then assigned based on the entries in I:

r(t) = I(CQIuug(t),a(t — 1), Nug(t))
maxI(CQIavg(t),:,NUE(t)) ’

(4.17)

Learning

The Q-Table QT has then the same dimensions as the impact matrix I and
is updated at every time step t following equation (4.12). Once QT has been
updated a new action is selected at instant ¢ based on equation (4.14) for ¢ + 1.
The algorithmic representation of this implementation is shown in Algorithm 4.
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Algorithm 4 QL implementation for homogeneous FB allocation

10:
11:

12:

13:

14:

15:

1: Initialization:
2:t=0

3: Q — Table + ()
4 T+ 0

5:
6
7
8

choose random action a(0)

: for ¢t do

(1) Receive feedback from the users;
Evaluate input state:

S(t) = {CQlavg (1), Nur(t)}

(2) eNodeB performs resource allocation with one of the schedulers
described in Section 2.3.1 .

(3) Measure the payload throughput T),(¢).

(4) Update impact matrix I as in (4.16):

[ Tp(2), if Tp(t) > I(CQIgqvg(t),a(t — 1), Nug(t))
I(CQIavy (1), a(t—1), Ny g (t)) = {I(CQIQVUQ(Q’W ) Nos(®)). therwise vE
(5) Compute reward r(t) based on (4.17)

r(t) = I(CQIavg(t),a(t = 1), Nug(t))
- max [ (CQIqvg(t),:, Nug(t)) ’

(6) Update the Q-Table QT as described in (4.12):

Q(S(t=1),a(t—1)) += Q(S(t—1), a(t—=1))+8 |r(t) + ymax Q(S(t),:) — Q(S(t — 1), a(t - 1))} )

(7) Choose action a(t) which determines which FB strategy will be used
in the next iteration (4.14):

Q(S(t),a(t))

e T

Pr(a(t)) = ——a@Ema
2. T

end for=0
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4.4.4 Q-Learning multi-user FB allocation

In case of a dynamic multi-user FB allocation, different users will be able to
use different FB methods based on how much they contribute to the system’s
throughput and how their channel qualities are distributed within the cell.
This implementation is built directly from the homogeneous one, the structure
remains almost unchanged, the major difference is given by the input states
which have now to consider, on top of the absolute channel qualities, the data
rates of each user and their distribution with respect to each other.

The design of the QL system is explained in the following subsection.

States

The purpose of the agent is to assign a specific FB allocation method to a user

given its channel quality. A new, relative channel quality value CQI},, is then
introduced to compare the users to each other:
CQRIY; = CQI"(t) — CQI (1), Vuser u (4.18)

The users are then divided into Ng = 5 categories using the thresholds in
table 4.5. The number of channel quality categories has been fixed to 5 as this
was found to bring a good compromise between being able to differentiate the
channel quality witnessed by the users with enough accuracy (i.e. by being able
do capture the overall quality spread) without having to make a category for
all possible CQI values.

Channel | Very Low | Low | Average | High | Very High
Quality (VL) (L) (M) (H) (VH)
cQrt -5 -2 0 +2 +5

rel

Table 4.5: Channel quality categories and CQI thresholds

The state of the base station at time t is then defined as

S(t) = {CQIavg(t)a Qchannel(t)} . (419)

Where CQIq.4(t) is the average CQI of all the users and Qchanne(t) indicates
whether users of each category are present (e.g. if there are users with channel
qualities "Average" and "Very High" then Qcpanner(t) = [00 10 1)).
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Actions

The set of available actions is the same as defined in section 4.4.3. The only
difference with the previous implementation is that now N¢ actions are chosen
at each time ¢ instead of 1.

Rewards

Differently than in the single FB allocation algorithm, here the throughput
contribution of each user category, T (t) is considered. The value is obtained
from T};'(t), defined as:

To(t) = — > T (t),¥Q =1---Ng (4.20)

where Ny, is the number of users belonging to the category Q. T () represents
the throughput contribution of the users in the different quality categories,
normalized for one user. The range of these values can vary considerably since
it is dependent on the absolute channel quality; it is further impossible to infer
if users in a specific category are served consistently more than users in other
categories. For example, a user with CQI“(t) equal to 10 might be in a "Very
Good" channel quality group if the average cell CQI C'QI,4(t) is 4, but the
very same user would have "Low" channel quality if CQI,.4(t) were 13. For
this reason the contribution of the different channel quality categories to the
rate is expressed in relative form:

RRq(t) = TQi(t); (4.21)

At each time ¢, the agent can then build an impact matrix I, of size Scq; -
Ng- A, which relates the input states (average cell CQI and relative user channel
quality) with the rate contribution of each category of users and the actions
taken. Each entry of I has value:

RR(t), i QQenannet (1) # 0

’ (4.22)
, otherwise

I(1)(CQIavg(t),Q, aq(t — 1)) = {

Similarly, the reward associated with each action (for every channel quality)
ro(t) is equal to the same entries of the impact matrix I. This way, if users
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in a specific category are contributing highly (poorly) to the throughput, that
category will receive a high (low) reward or will receive no reward if not
scheduled.
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Algorithm 5 QL implementation for dynamic multi-user FB allocation

10:

11:

12:

13:

14:

15:

Initialization

t=20

QT + 0

I+0

choose random actions ag(0) VQ =1: Ng

for ¢
(1 ) Recelve feedback from the users and divide them into different channel

quality categories; evaluate input state

S(t) = {CQIavg(t), Qehannel (t)}

(2) eNodeB performs resource allocation with one of the schedulers

described in Section 2.3
(3) Measure the payload throughput for each category T (t) (4.20):

NUQ

1
To(t) = - ZTH*(t),VQ: 1---No
Q *

(4) Create categories in which to divide the different channel quality
categories based on their throughput contribution (4.21):

Tq(t)

RRp(t) = —————"—;
Q(t) Z:,flTQ(t)

(5) Update impact matrix I for each category as in (4.22):

if Qgchannel(t) # 0
otherwise

H(CQTany (1), O e 1)(8) = {(I)%R(t)(TQ(t)),

(6) Compute each category’s reward R(t):

T‘Q(t) = I(CQIQ,Ug(t),Q,aQ(t — 1)7VQ =1-- ~NQ

(7) Update each category’s Q-Table QT as described in (4.12):

Q(S(t—1),a(t—1)) + Q(S(t—1),a(t—=1))+8 |r(t) + ymax Q(S(t),:) — Q(S(t — 1), a(t — 1))} )

(8) Choose action a(t) which determines which FB strategy will be used
in the next iteration for each category Q (4.14):

Q(S(t),a(t))
e T
Pre®) = ——geme
[E1EI0¥)

€
a

end for=0
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Learning

The Q-Table QT has then the same dimensions as the impact matrix I and
is initialized to zero at ¢t = 0, QT is updated at every time step ¢ following
equation (4.12). After the update the actions for the following time slot
ag(t + 1) are chosen using equation (4.14). The algorithmic representation of
this implementation is shown in Algorithm 5.

4.5 QL Results

Static solution | Dynamic solution
State space 30 - 100 30-5
Action space 7 7
Learning Factor 0.8 0.8
Discount Factor 0.9 0.9
Exploration temperature 200 200

Table 4.6: Channel quality categories and CQI thresholds

In this section convergence results for the two proposed Q-Learning algorithms
are presented. Simulation settings for the methods are contained in Table 4.6 In
Figures 4.7 (a) - (d) the actions taken, at each time interval for a base station
using a PF scheduler for subsets of 2, 30, 50 and 100 users respectively are
shown. This sample of users has been chosen because they require different
homogeneous FB allocation actions as shown in Figure 4.3;

The effective actions taken by the agent are presented in blue, they are selected
randomly at the beginning of the simulations. After the initial exploratory
phase, each base station converges to the optimal FB allocation determined
experimentally in Section 4.3. This convergence is visible if the action function
is smoothed with a moving average filter as the red curve in the figures shows.
To further show the convergence and stability of the proposed method to the
optimal solutions determined in Section 4.3.3, the root mean square (RMSE) of
the actions taken, with respect to the optimal solutions, is presented in Figure
4.8. For all the studied user configurations, the proposed solution converges to
the optimal static solution and maintains it stably.

In case of multi-user FB allocation strategies, only the results for the BCQI
scheduler are presented. The agent has to select the best FB allocation based on
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Action taken for 2 users and PF scheduler Action taken for 30 users and PF scheduler
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Figure 4.7: Action taken and smoothed action with PF scheduling for 2 (a), 30 (b),
50 (c) and 100 (d) users

the channel quality of the users. Figure 4.9 (a) - (¢) shows the action taken, and
thus the FB allocation chosen, for users with different channel qualities. Since
the BCQI only allocates resources to the users with the best channel quality, the
agent learns to allocate only minimal feedback to the users in categories "very
low", "low" and "average", while the others get more depending on how good
their channel is and how much they contribute to the cell’s payload throughput.
Users with "very high" channel quality obtain the most feedback. Like in the
previous case, the RMSE has been used to verify the convergence and stability
of the proposed dynamic solution. Figure 4.10 shows that the RMSE decreases
with each QL iteration and that the final results are very close to the optimal
actions. The small oscillations present in the RMSE after convergence is reached
are due to the discrete nature of the action-state space. In fact, the proposed
method might oscillate between two equally good actions or equally distant
from the actual optimal solution.
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RMSE for static Q—Learning
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Figure 4.8: RMSE convergence for the proposed static QL solution

Finally, in Figure 4.11 the average results for the QL multi-user FB allocation
in case of a BCQI scheduler are compared with the homogeneous allocation of
Section 4.3 and the ideal dynamic FB allocation of Figure 4.5. The proposed
dynamic multi-user method outperforms the homogeneous allocation and follows
asymptotically the ideal solution. The dynamic nature of the multipath
propagation environment with mobility users make perfect and reliable allocation
very difficult and thus the ideal value is never reached, nonetheless, the proposed
solution provides a close to optimal gain (80% of the ideal solution).
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Figure 4.9: Action taken and smoothed action with a BSQI scheduler for users with
for "very low", "low" and "average" channel quality (a), "high" channel quality (b) and

"very high" channel quality (c)
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Comparison of QL dynamic and static FB allocation for BCQI scheduler
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Figure 4.11: Comparison for QL dynamic FB allocation with static and ideal dynamic
FB allocation

4.5.1 Notes on Complexity

In this section, the complexity of the proposed methods is compared to other
operations normally carried out within an LTE base station. It is interesting to
note that the proposed solutions make use of information already necessary for
the AMC and dynamic frequency scheduling, such as the downlink throughput
and the CQI values. This information comes, then, at no extra cost for the
eNodeB. In this section, to show the implementation cost of the reinforcement
learning methods the memory requirements and the computational complexity
are analysed [140-142].

Memory Requirements

The amount of memory of the static and multi-user QL algorithms is directly
correlated with the amount of states and actions. The data required is, in fact,
contained within the Q-Table and the Impact Matrix, both of dimensions S - A,
where S represents the number of states and A represents the number of actions.
The memory size is then linear in both the number of states and the number
of actions: O(SA). Specifically, for the static QL algorithm, the number of
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states is S = Scor - Nug, and the Q-Table has dimensions S - A. Given the
worst case scenario of Ny g = 100 and where each entry of the Q-Table is bound
to 1 Byte, the total size of the Q-Table is then (30 - 100 - 7)8 = 168kb. Thus
the total memory space requested by the Q-Table and Impact matrix is 336kb.
Considering instead the dynamic QL algorithm, the Q-Table size is not function
of the number of served users but only of the channel quality categories. The
number of states is is then § = Scqr - Qchannel- If the same conditions as
above are considered, The Q-Table size becomes (30 - 5 - 7)8 = 8.4kb. The total
memory requirement is then 16.8kb.

Computational Complexity

The computational complexity of QL algorithms is limited by the amount of
operations necessary to update the Q-Table. Since at any given moment the
agent can be in only one state, the complexity increases linearly with the amount
of actions available to the agent [143]. For the problem at hand, the QL agent
needs then to determine the current state, update the impact matrix, compute
the reward, update the Q-table and finally choose the appropriate action. In
a form similar to [142,144], Tables 4.7 and 4.8 present the total number of
operations required by each steps of the static and dynamic solutions respectively.
The static method requires only 97 overall instructions per iteration. The
dynamic method requires considerably more, 3797 instructions if the absolutely
worst case scenario of all 5 categories are present while serving 100 users.

The complexity of the proposed methods is actually negligible if compared with
other operations normally carried out in an eNodeB base band processor. In
fact, at every transmission interval, the base station computes one iteration of
the FB reduction methods proposed. At the same time, the base stations has
to compute 1 FFT for each of the 14 OFDM symbols present in the frame. For
each FFT 2- Nloga(N) MAC operations need to be carried out, where N = 2048
if the bandwidth is 20 MHz [32]. The total amount of operations is thus 630784.
Given the computational requirements of such a necessary operation as the
FFT, the impact of the proposed solutions on the processing power of an LTE
base station is negligible.



REDUCING THE SIGNALLING OVERHEAD IN THE FREQUENCY DOMAIN

Steps \ Instructions

Identification of current 2 read

and previous states 30 comparisons
Update of impact matrix | 1 read

1 comparison

1 write
Compute reward 6 read

7 comparisons
1 division
Update Q-Table 10 read

6 comparisons
5 MAC

1 write

Choose next action 8 read

3 divisions

7 MAC

8 exponentiation
Total 97

Table 4.7: Computational requirements for the static QL method
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’ Steps \ Instructions
Identification of current 2 read
and previous states 100 - 30 comparisons
Measure payload for each category | 5 - 100 MAC
5 divisions
Create categories 5 MAC
5 division
Update of impact matrix 5 read
5 comparisons
5 write
Compute reward 5 read
Update Q-Table 50 read
50 comparisons
25 MAC
5 write
Choose next action 40 read
15 divisions
35 MAC

40 exponentiation

Total

3797

Table 4.8: Computational requirements for the dynamic QL method
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4.6 Variable Feedback and ICIC

In order for any ICIC mechanism to work, the users need to communicate some
identifying information on the interferers to their serving base station. This
procedure can be quite costly, in terms of bandwidth as a global cell identifier in
LTE is set to be 28 bits long [145]. It is reasonable to assume that much fewer
bits might be necessary for the system to operate as each base station can build
a look-up table where the identities of the interfering neighbours are stored and
each user simply feeds back the relative entries in the table. This additional
overhead is not considered in this analysis as it is beyond the scope of this work
to develop a compression scheme for the cell identifying information.

Furthermore, the assumption that each user is capable of determining the
identity of all the interfering base stations and to differentiate between the
power received by them is a very common but weak one. In reality a mobile
user would not be capable of sensing the power of a signal with power very
much lower than the wanted signal; an alternative solution is for a user to
determine the identity of a wideband interferer by collecting the synchronization
information over time.

Resolution Percentiles gain | FB amount Uplink
Useful Signal | Interference [ 57 [ 507 [ 95 (bits) percentage
y Full |  Full  [865]221[177] 408 [ 49 |
y Full \ SL [ 61 [1.78[144] 264 [ 28 |
y Full \ W |56 [ 17 [ 14 ] 2006 [ 24 |
y SL \ SL [ 1T T 1 [ 1 [ 120 [ 071 ]
y SL \ W | 0.8 1099 ]0.99 | 62 | 038 |
y BM | BM  [094][103]101] 148 [ 08 |
y BM \ W 1086 [ 1.01 | 1 | 76 | 046 |
y B5 | W | 21 ] 12 [112] 84 | 05 |
y B4 \ W | 2 [112]1.05] 70 | 043 ]
y B3 | W \1 [ 11 ] 1 ] 58 | 035 |
y B2 \ W [ 1.65] 09 ] 09 | 44 | 027 |
y Bl \ W | 146 [ 09 |o. 9\ 26 | 018 |

Table 4.9: Effects of CSI quantization on desired and interference signals and relative
amount of signalling bits and uplink portion used per user

Table 4.9 presents the throughput results for the 5th, 50th, and 95th percentiles
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normalized over the standard compliant "subband level" feedback method. The
different quantizations are applied to the useful signal in order to determine
the user’s channel quality and to the interference signals in order to determine
the impact of the CSI quantization on the proposed ICIC method. In the
table the acronyms Full, SL, BM and W refer to full resolution (per RB, no
quantization), subband level, Best M and wideband (only one CQI value is
transmitted associated with the highest interferer) respectively. The variable
Best-M method is indicated instead with Bx where x represents the amount of
subbands used in the method. The throughput gains (or losses) are normalized
over the subband level method as it represent the default method chosen in the
LTE standard. Since acquiring information on the interference is more difficult
than on the wanted signal, the CSI on the former is assumed to have, generally,
lower resolution than for the wanted signal. The last two columns in the table
represent the cost of this signalling information on the uplink bandwidth in bits
per single user and the amount of uplink bandwidth used by each user (with a
1/2 code rate and a 16QAM modulation for a 20MHz bandwidth).

The full resolution scenario is the one with the highest performance but in
practice it cannot be used as it requires almost 4 times the amount of signalling
information; this means that with only 20 users a uplink 20 MHz uplink
bandwidth would be exhausted [20].

Interestingly, methods such as variable Best — M can successfully increase
performance for low performing users over the subband level state-of-the-art
while decreasing the overall amount of signalling. This is due the fact that, with
this method, users are able to allocate high resolution feedback to the subbands
which present the highest quality and are thus most likely to be scheduled.
A universal solution should take into account the practical limitations of the
network and adapt the amount of signalling information necessary by each user
accordingly to their relative performance.

4.7 Conclusion

In this chapter it is shown that the feedback overhead cannot be overlooked as
the number of connected devices keeps increasing. The proposed model shows
that a trade-off is indeed possible between downlink performance and uplink
overhead. Such trade-off is determined by the downlink resource allocation
strategy, the number of users served within a cell and their channel quality
with respect to the average channel quality of the users. The results show that
the gain can be considerable if the proposed feedback allocation techniques
are implemented. The proposed Q-Learning techniques allow the base station
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to achieve such gains in a dynamic environment and do not require external
controllers and coordination. Furthermore, if the feedback allocation strategy
is incorporated with ICIC techniques, there is clear improvement over SoA
standard-compliant methods as more relevant information can be gathered
rather than averaged values.



Chapter 5

Reducing the Signalling
Overhead in the Time
Domain

In the previous chapter, it has been shown that, by limiting frequency channel
state information, a gain in performance is achieved as the freed uplink
bandwidth is allocated for payload communication. In this chapter, the impact of
reducing CSI feedback in the time domain is analysed. Timely CSI information
is extremely important to allow a base station to correctly assign a modulation
that reflects the actual user’s channel characteristics. CSI packets, on the other
hand, are not fed back continuously but there is a time interval between the
discrete feedback points. This means that the CSI information received might
not be relevant as the user’s channel conditions may have varied in the mean
while. Tt is, then, interesting to study how the channel quality behaves in
the time domain and try to estimate this behaviour. By predicting a user’s
channel quality, it would then be possible to use the estimated values in between
the feed back intervals with the dual gain of delivering higher performance or,
by increasing the intervals, minimising the amount of required feedback. A
Gaussian Process CSI prediction is here presented and the results show that the
proposed solution is able to well estimate the user’s evolving channel conditions.
The same estimation process is then later used to adapt the prediction window
in order to limit each user’s packet loss due to the mis-estimation of the channel
conditions.
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5.1 CSI Time-domain feedback

Time-domain feedback in LTE, as introduced in Section 2.2.1 can be divided in
periodic and aperiodic. Aperiodic CQI signalling entails that the base station
can instruct each user on which part of the bandwidth to feed back and how
often. With aperiodic reporting, the base station can make use of any of the
CQI standard compliant feedback methods discussed in Section 2.2.1. On the
other hand, periodic CQI reporting is limited to only Wideband and User-
selected feedback methods. In this case, the CQI messages are transmitted to
the base station with constant periodicity. For the remainder of this chapter, it
is assumed that aperiodic feedback is used, as this allows the eNB controller to
adapt the CQI transmission time more freely than with periodic reporting.

Amongst the three standard compliant frequency feedback models discussed in
the previous chapter, only the subband level technique allows the base station
to investigate the channel quality of the complete bandwidth with equal amount
of detail between subbands. For this reason it has been chosen, in this chapter,
as the preferred FB method.

In the following section, the bases for channel prediction in LTE and LTE-A
are introduced. The Gaussian Process Regression (GPR) technique is discussed
and its benefits for channel estimation are illustrated.

5.2 CQI Prediction

In this section, the CQI estimation method used in this dissertation, is described.
The estimation process is carried out to compensate for the reduction in CQI
reporting in time. Given the relationship between CQI and SINR described in
Section 2.2.1, predicting the CQI is equivalent to predicting a noisy function of
the relative effective SINR. Due to the Gaussian nature of the SINR distribution
and the inherent flexibility of Gaussian Processes for regression, these have been
selected.

5.2.1 Gaussian Process Regression

The objective of GPR is to estimate a function f in an online manner with low
complexity. A Gaussian Process (GP) is defined as a probability distribution
over some variables, where any finite subset of these variables forms a joint
Gaussian distribution [146]. This means that, instead of making assumptions
on the elements of a dataset a GP infers their distribution. Let us consider
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a dataset D = {x;,y;} with i = 1,2,...N, where each z; and y; represent the
input and output pairs. The relation between the target value y and the input
vector x is defined as

y=f(x)+n, (5.1)

where n is a zero-mean Gaussian noise with variance 02. A GP is defined as
a collection of random variables, such that any finite set has a joint Gaussian
distribution. Since a Gaussian distribution is completely defined by its mean
and covariance matrix, a GP is completely defined by its mean function m(x)
and covariance function k(x, &), expressed as:

fl®) ~GP(m(x), k(xz, &)), (5.2)
where (@) = E[f(a)
b(x,7) = E[(f(z)—m(x)(f(&) — m(&))]. (5:3)

The output can be defined by a GP, such that:

y ~ GP(m(x), k(x, &) + o2I) , (5.4)

By aggregating the outputs into a vector Y and renaming the input vector as X,
the GP estimates the value of § at a future point x,, assuming a multi-variate
distribution:

(e PR R ]) e

K (X, X) is the matrix representation of the covariance functions of the input
samples and K (X, z,) is the covariance matrix of the overall input dataset
and k(z.,z.) is the autocorrelation of the future data point. The posterior
probability §|Y is given by [147]:

gy ~ N(K(X7:c*)[K(X7 X)4ooI7Y, ke, 2.)—K (X, z.)[K(X, X)+o2I] ' K(X, a:*)T>,
(5.6)

The best estimate for ¢ is given by the mean of such distribution

m(Y) = K(X,2,)[K(X,X)+02I]"'Y and the variance

Var(Y) = k(zy, x,) — K(X,2.)[K(X,X) + 02I] ' K(X, )" represents the
uncertainty of the current estimate. The GP is then fully defined by its
covariance and mean functions and their parameters.
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5.2.2 Covariance function selection

In order to obtain a good estimate of the future measure and its underlying
distribution, a covariance function that best fits the nature of the system has
to be selected. As the mean can easily be set to zero if some pre-processing is
carried out, it is usually ignored [147]. Although the covariance function K is
limited to positive semi-definite functions, many choices are present in literature
able to fit to dynamic, time-varying systems [146]. The most important feature
when choosing a covariance function is its smoothness, i.e. how much the value
of the function sampled at a point x, correlates with the same function at
points close to x,.. A function that presents high smoothness might not be
representative of a fast-varying system. It could be possible, in theory, to
observe a large realization of an input dataset and generate a specific covariance
function which models the witnessed behaviour very closely. This is normally
not performed as a few families of covariance functions are present in literature
which adapt quite well to a large selection of problems in which the data can be
modelled as a multivariate Gaussian distribution [147]. For this reason, in the
current task of modelling the channel quality for users with varying mobility a
Matérn class covariance function has been selected [148]:

) e

where /C, is the modified Bessel function. The Matérn covariance functions, such
as the one selected in this work, include both the exponential autocorrelation (if
the smoothness v is equal to %) and the Gaussian autocorrelation (with infinite
smoothness). These conditions make the Matérn class of covariance functions
very flexible as they are able to strike a balance between the two extremes [149].
The variables h, v and w are defined as hyperparameters of the covariance
function. They determine the shape of the covariance function and have to
be fine-tuned in order for the GP to converge to an appropriate solution. By
increasing the smoothness hyperparameter v, the function becomes smoother
in time and fast variations of datapoints are ignored. By increasing the width
hyperparameter w, the covariance function considers a wider set of datapoints
and by increasing the height hyperparameter h, larger variations in datapoints
values are allowed. Once the covariance function is selected, the following
step is to determine the values of the hyperparameters. This is performed by
maximising the marginal likelihood of the Gaussian Process. Since GPR is a
form of Bayesian regression, the marginal likelihood is equal to the integral over
the product of the prior and the likelihood function. Since both are Gaussian,
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the marginal likelihood is also Gaussian and is expressed in analytical form:

p(Y]X.0,0%) = / oY, X,0,0%)p(f|X, 0)df
=/NmﬁﬁN@Kw (5.8)
1

1 _
xp(—5y" (K +0%I)"'y)

€
(27)% | K + 021|2

Where 0 is the set of hyperparameters. Generally speaking, for simplicity, the
log marginal likelihood is maximised [147]:

1 1
I%MHXﬁ%>EYWK+ﬁD”Y—ibgK+ﬁﬂ—gbﬂm (5.9)

By using any multivariate optimization algorithm, the set of hyperparameters
0 can be estimated analytically. After the optimization process has reached
the analytical solution, the numerical values of the hyperparameters are simply
obtained by using the measured input and output signals. This is a great
advantage over other types of regression as it allows the system to evolve without
pre-specifying the parameters and thus limiting the range of estimations [150].

5.2.3 GPR for CQI prediction

In this work, the eNB makes use of GPR to predict the CQIs values for every
subband seen by each user. In order to make realistic predictions, the input
vector X is used to train the GP. For each user, the base station receives
the CQI information for the complete bandwidth, using the subband-level FB
quantization scheme discussed in Section 2.2.1 and in the previous chapter,
every tsgmp = 2ms. The value of the sampling window t4,,, is chosen as the
minimum allowed by LTE standard to acquire a high number of samples in a
short time [151]. For a fixed prediction window t,,, the GPR has he objective
to estimate the CQI values of each user over all the frequency subbands, for
the duration of such prediction window. After the observation time elapses,
say at instant tg, the eNB uses GPR to predict the future CQI values in each
subband for the duration of the pre-imposed prediction window, as shown in
Algorithm 6. The duration of the prediction window is going to be optimised in
the following sections, for each user, based on the quality of the prediction.
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Algorithm 6 CQI estimation with GPR
1: for each user u do
2:  for each subband s € ¢ do
3: Initialization: Input vector cqisamp, Output vector cqgipred,
Covariance function K, Noise level o, Prediction window %,

4: while t < tg do

5: Build historical dataset cqipist(t) = cqisamp(t).

6: end while

7 while t > t¢ do

8: if t <t, then

9: (1) The GP is trained with the vector cqipist-

10: (2) The hyperparameters are found by maximising the log-
likelihood (5.9)

11: (3) The predicted CQIs vector cqipreq of length t,, is generated
using GPR.

12: (4)The base station uses cqipreq to allocate the users for the next
t., intervals as seen in Chapter 3

13: else

14: Update the input dataset with the new sampled value eqip;st(t) =
cqisamp(t)

15: end if

16: end while

17:  end for
18: end for=0

5.3 Dynamic time-window Optimisation

In this section, a control mechanism to determine the appropriate duration
of the CQI prediction window is presented. Such technique allows the eNB
to maintain each user’s performance within a specified loss margin. Firstly
the dual control system based on active learning is introduced and, secondly,
its implementation in an LTE base station for time windows optimisation is
presented.

5.3.1 Dual Control with Active Learning

A dual control agent is tasked with controlling a system based on the current
knowledge of its behaviour and to perturb it in order to minimise the uncertainty
and make better predictions. By their nature, these objectives are conflicting.
In this work, the adaptive dual control framework proposed in [22], is used.
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This framework provides a solution to the control problem while also limiting
the amount of overhead.

The Dual Control with Active Learning is a supervised learning technique.
Even though Reinforcement Learning can also be qualified as a dual control
method, it reaches a solution autonomously by determining a policy to follow
through exploration. In this chapter, the GPR, which is also supervised learning,
is used to model the behaviour of a user’s channel quality. Because of this,
the estimation of the loss due to the imperfect CQI prediction leverages the
same GPR for robustness. Furthermore, the Active Learning component allows
the agent to determine which part of the search space to explore in order to
maximise impact, which is a strong feature of this technique.

Let’s define a dynamic, non-linear, partially observable system described by:

y(t+1) = h(y(t), c(t)) +n(t), (5.10)

where y(t 4+ 1) is the value of the output system at time ¢ + 1, which is a
function of the system behaviour h(-) given the past observation y(t) and a
control function ¢(t). n(t) is a zero-mean Gaussian noise. In this context, h(-)
corresponds to the function to be estimated (f) in equation (5.1), according to
the formalism of the previous section. Given a reference signal r(t), the dual
control problem consists in finding the best control strategy wu(t) such that

p(t) = argmin ly(t) = r(O)] . ¥t . (5.11)

Furthermore, it is possible to limit the amount of data collected by the controller
by maximising the information collected. By steering the controller to sample
in areas of higher uncertainty, it is possible to get a better understanding of the
evolution of the system’s dynamics If h is an estimate of the system dynamics
h based on previous observations, the dual control with active learning problem
consists in finding the optimal strategy wu(t) solving the following optimisation
problem:

m(a§< I(h, c(t)) ~ arg H%lgl Var(h, c(t)) (5.12)
u(t c(t

where J represents the Shannon information of the dynamic system and Var
is the variance [22]. The objectives of the active dual controller consist in
partially identifying the dynamics of the system so that it can be kept as
close as possible to the reference signal while sampling only in the points that
minimize uncertainty for future predictions.

The dual control with active learning can be formally described as (Proposition
4 in [22]): Let the input-output relationship of a discrete-time dynamic system
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be defined as in equation (5.10). Let h be the predicted estimate of the system’s
behaviour.The predicted future value (¢ + 1) can be inferred as:

gt +1) = h (y(t), c(t)) + n(t). (5.13)
The optimal strategy g is then defined as
p(t) = arg pro 19(t +1) = r(B)|| —weVar(g(t + 1), c(t)) (5.14)

where w, and w, represent the action and exploration weights to steer the
controller towards either steepest descent to the closest optimal solution (w, = 0)
or to a complete exploratory behaviour (w, = 0). Generally the weights can be
adjusted so that the controller behaves more exploratory at the beginning of
the learning procedure and then moves to a more active controlling role. Figure
5.1 presents a block description of the dual control framework

Previous data Weights
y(0 ... t-1) w, and w,
Estimated Prediction Policy

y(t+1) u(t) DYNAMIC
CONTROLLER ST

GP MODEL
UPDATE

Reference signal Policy u(t) shifts the
r(t) system to new state

Current observation y(t) New state
OBSERVATION

Figure 5.1: Dual control with active learning framework

5.3.2 Dual Control for Signalling Reduction

In the dual control framework for dynamic time window optimisation, the same
GPR introduced for the CQI prediction is used (Algorithm 6) . In this case the
GPR is used to predict the packet losses each user incurs when different time
windows t,,, are chosen for each user u. At time ¢y the eNB receives the CQI
FB from each user u, then it chooses a time prediction window t,,, (o) and uses
GPR to predict the CQI behaviour for the duration of such window. At the
same time it uses GPR to predict the packet loss Ly (to + 1, tw, (to)) the user
will experience given the current time window. The objective of the controller
is then to solve, for every user u:

tw, (to +1) = arg min w, ,,

Lu(to+1) — rmH —we Var(Lu(to + 1), tw, (o)),
(5.15)
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where 7, 4, is the reference packet loss for user u. At time to + ty,, (to) the
eNB measures the actual packet loss suffered by the user. The controller then
corrects the CQI prediction window accordingly to provide better predictions
and the process is repeated. Figure 5.2 presents a block description of the
dual control framework for packet loss minimisation due to CQI prediction
inaccuracy.

Previous data Weights

(0 ... t-1) weand w, predicti
Estimated Loss : ’ recietion

Le+1)

window
tw, DYNAMIC
SYSTEM

) User feeds back CQls
Reference signal .
(1) every tw, instants

GP MODEL
UPDATE

CONTROLLER

User is allocated by
base station

Current Loss L(t) New state User performance is
OBSERVATION analysed wrt to the
other users

Figure 5.2: Dual control with active learning framework for packet loss minimisation

Algorithm 7 provides a concise view of the solution above.

Algorithm 7 Dual Control with Active Learning for Dynamic CQI FB
assignment

1: for each user u do

2:  Initialization: =GP hyperparameters, objective weights [wg,we],
reference signal 7, +5,

3: while t > t; do

4: (1) Receive CQI FB from user and estimate the CQI behaviour using
GPR.

5: (2) Estimate the system dynamics L using GPR.

6: (3) Determine the best time window ¢, (t + 1) by solving (5.15)

(employing Algorithm 6) and crop CQI prediction at selected time
window &, (¢ +1).
7: (4) Schedule the user for the duration of the time window t,,, (t + 1).
(4) Compute the variance Var(Ly, ty, ).
(5) Update the dataset with the newly observed point L, (t).
10:  end while
11: end for=0
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5.4 Results

In this section, the simulation environment is first defined and then the results
for the proposed models are provided.

5.4.1 Simulation Parameters

The system has been simulated using the open source VIENNA system level
simulator [45]. An urban multi-cell environment has been considered to include
the effects of multipath propagation and interference; 19 LTE macrocells are
simulated with 30 users per cell, in which only the users in the most central
cell are studied to reduce border effects. In order to model the effects of user
mobility in a city-like environment, the users have an average speed of 5, 10
or 60 km/h. The propagation model is deterministic and based on the Winner
Channel Model IT [11]. The simulation parameters are included in table 5.1.
The simulation environment differs slightly from the previous two chapters
(for this chapter 19 macrocells are simulated, while previously the macro base
stations were 7). This was done to have a bigger pool of simulated users for
training of the GPR CQI estimation.



RESULTS

’ Parameters Values
Number of Macrocells 19
Sectors per Macrocell 3

Inter-cell distance 500 m
Macro antenna gain 15 dB
Macro Transmit Power 46 dBm
Macro users per sector 2 to 100
Frequency 2.1 GHz
System Bandwidth 20 MHz
Number of PRBs 100
Access technology OFDMA FDD

Number of antennae

1(Tx and Rx)

Channel model

Winner Channel Model 1T [11]

Block fading mean 0 dB

Block fading deviation 10 dB

Fast fading 10 dB
Thermal noise density -174 dBm/Hz
Users speed 5 to 60 km/h

103

Table 5.1: System parameters for the LTE-A feedback reduction in time

5.4.2 Simulation Results

Firstly, the impact that the various frequency sampling schemes of the previous
chapter have on the packet loss experienced by users is discussed in absence of
prediction. The CQI FB messages are sampled at specific moments in time and
the previously sampled value is used until the next sampling moment. Figure
5.3 shows the normalised goodput of a user moving at 10 km/h when the full
feedback, subband-level, best-M and wideband schemes are employed.

It is visible that there is a loss in goodput when either the CSI frequency
sampling methods are used or the CSI sampling time interval is increased. On
the other hand, the effects of increasing the duration between sampling instants
are less pronounced when the CQI information is quantized in frequency. This
is particularly visible for the wideband FB scheme, where the initial goodput is
just above one third of the full feedback but the loss in time is almost null. For
large time sampling intervals, the three standard compliant FB schemes behave
better than the full feedback. For the remainder of this work, the subband
level method is employed, as it presents, for almost all the sampling delays
considered, the highest goodput gain among the standard compliant schemes.
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Goodput Loss over time sampling

1
CQI FB schemes
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Figure 5.3: Goodput Loss of CQI FB frequency schemes over time delay

The effects of GPR CQI prediction for fixed CQI time sampling are presented
in Figures 5.4 - 5.6 for users with speeds of 5, 10 and 60 km/h. The figures
show the average packet loss seen by a user when either prediction or fixed time
sampling are used. By fixed sampling, it is intended that the base station only
uses the last received CQI value until a new one is sampled. For the first two
plots, the GPR CQI prediction shows considerable gains over the alternative.

When users operate in high mobility, such as in Figure 5.6, the prediction
remains valid only for a very small time duration. This is due to the fact the
the fast varying channel does not allow for reliable estimation for extended time
intervals. Nonetheless, it is possible to exploit the GPR estimation’s gain over
the sampling if short time windows are used.
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Figure 5.4: Packet loss for user moving at 5 km/h over time sampling intervals
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Figure 5.5: Packet loss for user moving at 10 km/h over time sampling intervals

Figure 5.7 shows a comparison between the real CQI values, measured every 2ms,
and the estimated CQI values for a user moving at 10 km/h with a prediction
window of 10 ms. There is good accordance between the predicted CQIs and
the real values. The GPR is able to model the changes in the user’s channel.
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Figure 5.8 shows the root mean square error (RMSE) of the GPR predictions
for different training datasets. In case of users moving at 5 and 10 km/h, it is
possible to see that convergence is reached and a large observation window allows
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the GPR to make an accurate estimation. When users have high mobility, on
the other hand, a large training can lead to more errors as the time correlation

of the CQI values decreases as seen in Figure 5.8 (c).

RMSE of CQI prediction over observation window

RMSE of CQI prediction over observation window

06 . . . . . . . .

0 100 200 300 400 500 0 100 200 300 400
Training window [ms] Training window [ms]

(a) User speed 5 km/h (b) User speed 10 km/h

RMSE of CQI prediction over observation window

0 100 200 300 400 500
Training window [ms]

(c) User speed 60 km/h
Figure 5.8: RMSE for various observation windows and user mobility

The impact of different covariance functions on the CQI estimation process with
3

GPR is presented in Figure 5.9. The Matérn function with smoothness v = 5
behaves best. A detailed analysis of the various functions in the figure can be

found in [147].
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Figure 5.9: RMSE of different covariance functions

By using the dual control scheme, it is possible to set a maximum limit to
the user’s packet loss due to limited time feedback. If a user is selected to be
scheduled by the eNB, then a predicted packet loss can be inferred with the
proposed model and a decision is made based on equation (5.15).

In order to analyse a dynamic scenario, users with diverse requirements are
simulated together; a total of 60 users are served within the cell, of which 30
have low mobility (5 km/h), 20 have average mobility (10 km/h) and 10 are
high speed users (60 km/h). Table 5.2 shows the percentage of FB required by
the system for various packet loss threshold values for both the proportional fair
and best CQI schedulers after the model has converged to the optimal decision
compared to the state of the art where no prediction is used and the CSI is
sampled every 2 ms.

There are considerable gains for both schedulers but, as the PF maximises
fairness, every user will be scheduled in the upcoming time slots and thus the
time windows have to inferred so that the predicted packet loss is minimized.
On the other hand, since the dual-control model has as input the packet loss of
each user, if such user is not scheduled then the loss is null and a higher time
window can be selected. For this reason the best CQI scheduler allows for much
higher gains with an almost 94% reduction in FB signalling when the allowed
packet loss is contained to only 5%.
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PL threshold FB amount needed [%]
(%] Proportional Fair | Best CQI
5 40 6.2
10 23 4
20 9.7 3.3
30 6.3 3.3

Table 5.2: Percentage FB necessary with dual-control

Figure 5.10 presents the behaviour of the proposed dual control method in
Algorithm 2 for a single user. The packet loss at the sampling instants is
indicated with the X markers while the square markers indicate the average
sampled packet loss. The proposed solution then gradually builds a predicted
packet loss behaviour, indicated in Figure 5.10 by the continuous curve. At
each iteration, the model selects the next time window according to (5.15) with
weights w, = 1 and w, = 10 and predicts the packet loss behaviour for the
duration of the selected window. After the time window has passed, the eNB
samples the packet loss again, corrects its prediction and determines the next
prediction time window until it converges to the desired packet loss threshold.
In this specific realization the packet loss threshold is imposed at 10% and the
optimal inferred time window is 5 ms. It is important to notice that, because of
the time varying nature of the channel, the measured loss can oscillate even if
the time windows sampling is kept constant. The GPR takes this into account
as measurement noise and is still able to approximate the system dynamics.

Figures 5.11 (a) and (b) show the prediction error calculated at each iteration
and the variance of the prediction model; in both cases the proposed approach
reaches the desired behaviour after only 5 iterations.
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Figure 5.10: Predicted packet loss and measurements for different prediction time
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Figure 5.11: Prediction error and variance

In Figure 5.12 the packet loss threshold is 5%. In this case, the base station
has to choose a very small prediction window of 2ms for a high mobility user
with high packet loss.

Figures 5.13 (a) and (b) show the prediction error computed at each iteration
and the variance of the prediction model. As in the previous case, convergence
is attained after 5 iterations.
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Figure 5.13: Prediction error and variance

The proposed model’s behaviour in case of a low mobility user with a good
channel is presented in Figure 5.14 where the packet loss threshold is imposed
at 30%. In this case, the base station can choose a large prediction window of
27ms.

Figures 5.15 (a) and (b) show the prediction error committed at each iteration
and the variance of the prediction model. In this case, convergence is attained
after 3 iterations.
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5.5 Conclusion

In a previous chapter, it was shown that the feedback overhead cannot be
overlooked as the number of connected devices keeps increasing. Some solutions
are implemented in the frequency domain to limit the impact of this signalling
information on the uplink bandwidth but additional restrictions in the time
domain are also necessary.
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An elegant GPR technique is proposed to predict the users’ channel quality for
various speeds limiting the loss incurred by increasing the time sampling period.
The proposed CQI prediction method is able to estimate a user’s channel with
good accuracy.

Furthermore, a dual control method based on active learning was presented.
Such method is able to determine the optimal prediction window given a packet
loss threshold. The same method is also able to probe the system in such a way
that an optimal solution is reached while also limiting the system’s exploration
by maximising the impact of the information collected. The proposed method
shows gains of up to 94% in signalling reduction if best CQI scheduler is used
when compared with state of the art if the packet loss is capped to 5%.



Chapter 6

Conclusions and Future Work

In this chapter the dissertation is concluded and the results are summarised.
Firstly, an overall discussion on the achievements regarding the radio
resource management problem in modern heterogeneous network is presented.
Afterwards, analyses of the achievements obtained in each chapter are presented.
Finally, prospectives on future work are discussed.

6.1 Conclusion

The main focus of this work has been on the design of practical, effective and
implementable solutions to solve the RRM problem in a modern heterogeneous
network, with an eye to future trends and their challenges. The main objectives
of radio resource management are to allow a network to operate at the optimum
of its capability and to shift to a new optimal point as the network’s conditions
vary. This entails a consistent monitoring of the overall network performance
and a perfect knowledge of all the conditions and settings of any element within
the network, from a mobile user to a base station and the controlling gateways.
As the practical implementations of a cellular network impose limitations on
the scope of monitoring and control, less general and more concrete questions
have been the specific interest of this work.

The two main topics addressed in this dissertation have been on how to share
resources in a full reuse network in way that maximises overall performance and,
once a solution is found, how can the total amount of information overhead be
limited without moving from the optimal point.

114



CONCLUSION 115

Both questions remain very relevant in modern networks and will become even
more so in future technologies. The increase in heterogeneity and in connected
devices will force the network operators in finding more efficacious dynamic
solutions in place of the static ones used to day which stem from previous, less
flexible cellular technologies.

All the solutions achieved in this work can be easily implemented in modern
networks and adapted for future requirements. The solutions address the RRM
problem from the intra-cell resource allocation to the inter-cell interference
minimisation and address both channel prediction and the inherent trade-off
present in the dichotomy between the desired data and the signalling information
necessary to deliver such payload efficiently. Hereafter, the contributions of
each chapter are exposed and the main achievements discussed.

6.1.1 Chapters discussion

The results obtained for each chapter are here discussed and a summary of each
contribution is presented.

Chapter 2: SoA and challenges

The challenges present in the modern cellular networks and their state-of-the-art
solutions have been discussed. The SoA analysis has painted a picture of the
radio resource management as a large scale problem encompassing various layers
of the LTE-A network, from the PHY to the transport layers at least. In this
work, a general view of a downlink LTE-A network has been portrayed and
aspects relative to internal resource allocation, inter-cell communication and
signalling overhead have been specifically examined.

An analysis of resource allocation schedulers has been presented and the, usually
not explored, aspect of energy efficiency has been analysed. One first interesting
result is thus the presence of an energy-throughput-fairness trade-off, which
is possible depending on the choice of scheduling algorithm. Furthermore, on
top the SoA resource allocation mechanisms, a novel transport block aware
scheduler has been conceived. This scheduler takes into consideration the
practical limitations of an LTE base station and is able to increase performance
(as in higher throughput and lower energy consumption) at no cost for the base
station.

Finally, the chapter ended with a study of inter-cell communication and overhead
reduction techniques which served as introduction for the works presented in
later sections of this dissertation.
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Chapter 3: ICIC and solutions for LTE-A

In this chapter a flexible, scalable solution to the interference coordination
has been designed. The nature of high mobility in LTE-A forces the network
controller to look for an interference management solution able to adapt to a
varying environment where users connect and disconnect rapidly. Furthermore,
such solution has to account for the different base station configurations and
for the impact that the inter base station communication has on the ICIC.

The iterative Hungarian algorithm, as the basis of the proposed interference
coordination method, was chosen as it allows for a good sub-optimal solution
while keeping the complexity of the solution to an acceptable level. This way,
each base station could reach an operating point in considerable less time than
an optimal solution would require.

The distributed nature of the conceived solution also allowed the method to be
scalable and to adapt to sudden changes. The information exchange protocol
between base stations in a cluster, granted that the operational solution is very
close to the network-wide optimum while requiring considerably less information
than a centralised solution.

The properties of cognitive femtocells, lastly, have allowed the method to
overcome the final hurdle of small cells unable to coordinate with the network.
The cognitive femtocell was then able to sense the presence of nearby users and
the amount of interference caused.

The solution presented in this chapter achieved gains of 45% for the combined
macro and pico edge users at a very small cost for the cell center (less than
than 4% loss ) and has improved picocell users performance by 50% at a small
cost for femtocell users (15%).

Chapter 4: Frequency domain quantization of the CSI information

In Chapter 4, a model to determine the impact of CSI signalling on the overall
payload throughput has been presented. From such model it was possible to
determine the trade-off between reducing the CSI overhead and having more
spectral efficiency. The results show that it is indeed possible to limit the
CSI information without loss, and with actual improvements, depending on
the scheduling algorithm and the number of served users. Additional gains
can be achieved by tailoring the mount of feedback to each user based on its
requirements and contributions to the cell’s throughput.

Two reinforcement learning solutions have been designed to allow a base station
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to reach the optimal static (one FB allocation for all users) and dynamic
(different FB allocation based on user’s performance) operating points. The
static method is able to reach its optimal solution while the dynamic one
approximates its considerably well. The convergence of both methods was
obtained with complexities well below the ones required by other standard
operation performed in an LTE base station.

Additionally, the ICIC solution developed in Chapter 3 was incorporated within
the signalling reduction framework. A clear improvement over SoA solutions
was thus shown; it is indeed possible to double the cell edge throughput without
any loss for the cell centre and only require half of the feedback information.

Chapter 5: CSI Time prediction and adaptive prediction window

Finally, the time domain analysis of the CSI behaviour and its impact on a
user’s performance were discussed in Chapter 5. A GR framework was presented
as a channel quality estimation technique able to predict the CQI behaviour
as an approximation of the SINR. Such method has shown itself to work quite
well and possess the great advantages of being extremely flexible and requiring
no a-priori choice of its parameters, except for the nature of the covariance
function.

By using the GPR, it was possible to predict, with very good accuracy, the
channel behaviour of users moving with low and average urban speeds of 5 and
10 km/h. The channel of users moving at 60 km/h was also estimated albeit
with less preciseness.

A new dual control framework with active learning was also designed and
implemented. Such method allowed the base station to tailor the CSI prediction
window of each user based on the packet loss generated by erroneous estimation.
In this way, the eNB could use very long prediction windows for users with
extremely good channel conditions and, conversely, restrict the prediction if a
user experiences poor channel or has very strict throughput requirements.

The solution is, in fact, able to limit the CSI information to only 40%, of the
amount required by SoA if a proportional fair scheduler is used, and to about
6% of the respective SoA amount if Best CQI scheduling is employed.

6.1.2 Final conclusions

As it was discussed on the previous sections, only a relatively small part of
the RRM was addressed in this work. The problems of inter-cell coordination



118 CONCLUSIONS AND FUTURE WORK

and overhead reduction are indeed very relevant but certainly not exhaustive.
The results achieved show that it is possible to reach a very good operating
point in a heterogeneous network and that overheads may be reduced without
loss in performance, even with gains if transmission settings are tailored to
the network’s conditions. The choice of these two particular problems was
dictated by the principle that future cellular networks will have to provide
extremely high datarates for a very large set of devices [?]; extensive analysis in
the industry has brought to the realisation that, of all the possible evolutions
in technology, the biggest advantages will come from the increase in available
spectrum, the densification of the networks and the introduction of small,
low-power cells [152-154]. The topics here discussed are, then, particularly
interesting seen the directions the community is taking. However, all these
advancements do come at a cost. The increase of spectral bands will bring
the development of more complex transceivers and the network densification
comes at the great cost of risking to saturate the empty spaces by creating
an interference ridden network [155], which in turn will force the design of
interference aware mobile devices. There is thus no low hanging fruit available
in the cellular network and trade-offs will have to be studied and manufactured.

Nonetheless, the results here achieved represent a good starting point for the
study and, particularly, the development of future networks. The methods
here conceived allow to be build upon as a the basis for future network design
strategies.

6.2 Future Work

The RRM in modern, high throughput, low latency networks such as LTE-A is
becoming an increasing limiting factor in high capacity, dense networks. This
is particularly true today as the networks, with the tendency to move towards
5G become more complex and massive. The resource allocation, interference
coordination and signalling overhead management problems tackled in this work
are certainly not exhaustive in delivering a comprehensive solution. In the
following two sections, future works based on this dissertation of this work are
going to be discussed. The first section describes possible extensions of this
work within the same scope of interests, while, in the second section, a broader
analysis of the RRM beyond LTE-A is provided.
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6.2.1 RRM: alternative views and other solutions

It would be very interesting, in the future, to analyse the RRM at every layer,
from the physical to the application, and try to find a framework able to
optimise a cellular network with information pertaining to all the layers. This
idea, normally known as cross-layer optimisation, allows information to seep
through between the, normally opaque, layers and to perform partial analysis
of such data in order to optimise the performance at higher layers. This is no
easy task as it is extremely difficult to determine which processes might benefit
by this additional processing and where the trade-off might lay. The first step
would then be to perform an extensive research on which information might
be passed from a layer to the next and what impact it might have, machine
learning tools, such as simulated annealing, could perform this task well.

On a more specific task, it could certainly be very interesting to extend the
findings in this dissertation to a MIMO network. Both the ICIC and feedback
overhead reduction have been performed in a SISO network. Although, in
principle, the behaviour should remain largely the same, the presence of multiple
streams increases the degrees of freedom and allows for extensions of this work
in unexplored directions. Furthermore, the increase in antennas would also
increase the amount of feedback required thus pushing the trade-off discussed
in this work to an even more favourable point.

Another direct step from the results of this work would be to study and
implement more learning techniques to the RRM problem. Such methods would
allow, first, a direct comparison with the ones developed in this work and,
secondly, could lead to a better understanding of complex network dynamics.

6.2.2 Beyond LTE-A: designing 5G

If attention is paid to the direction in which future networks seem to be going,
another interesting extension of this work, especially in the context of cognitive
radios, would be to implement machine to machine communication (M2M).
M2M allows users to communicate directly with one another, in a peer to peer
fashion, under a large umbrella transmission technology such as LTE. The
objective of the mobile radio would then be communicate by causing the least
interference possible to the nearby users connected to a base station. Conversely,
a base station should be able to detect such radios, monitor their behaviour
and schedule resources in a way that maximises overall performance.

Another very pressing point, given the tendency to move towards network
densification, would be to build interference aware transceivers. This would
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require the design of completely new PHY interfaces and communication
protocols that do not treat interference as noise, but are able to either exploit
it or cancel it completely [156].

The two more direct PHY changes being studied for future network include
millimetre wave propagation and massive-MIMO. The former makes use of
extremely high carrier frequencies (in the order of tens of GHz) to deliver
very high throughputs. They can be extremely effective in a range optimal for
urban small cells (such as 20 - 30 m) but require the design of new, efficient
and steerable antennae and, more importantly, necessitate of good statistical
propagation models for urban environments [157]. Massive-MIMO, instead,
represents a new transmission technology in which a very large number of
antennae is used to deliver an extremely directed beam towards a user. This
allows for a very high gain at the receiver and for an uncomplicated transmitter
thanks to the large antenna array [158]. On the other hand, massive-MIMO
still requires intensive study of the practical implementation of thousands of
antennae in a single array and of the compatibility of such technology in the
context of a cellular network.

Generally speaking, it would very interesting to further study how machine
learning and artificial intelligence techniques could be applied to a 5G cellular
network in order to allow true self-organization capabilities. The true intelligent
network should be able to recognize its local and global states and steer itself to
an optimal operating point without the necessity of external input. Furthermore,
the ideal self-managed network should be able to reach global optima by having
only local information and assess or infer how this influences the whole network.
If these are the properties of the ideal network, the reality of things is definitely
a long way from this view. Nonetheless, the application of machine learning
techniques could bridge the gap and, finally, bring the community to develop a
network which is distributed, self-configuring, self-healing, not saturated with
redundant data, energy efficient and, hopefully, accessible and fair.
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