Crash Course on Graph Theory

A graph is a pair (V, E), where V is a set of vertices, and $E = \{(v_1, v_2) \mid v_1, v_2 \in V\}$ is a set of edges between vertices in V.

A simple graph is a graph (V, E) in which every pair of vertices $v_1, v_2 \in V$ is connected by at most one edge $(v_1, v_2) \in E$.

A path $(v_1, v_2, ..., v_n)$ from vertex $v_1 \in V$ to vertex $v_n \in V$ in a graph (V, E) is a set of edges $(v_1, v_2), (v_2, v_3), ..., (v_{n-1}, v_n) \in E$.

A Hamiltonian path in a graph (V, E) is a path that visits every vertex in V only once.

A semi-Hamiltonian graph is a graph with a Hamiltonian path.

A *directed graph* is a graph in which each edge is unidirectional from one vertex to the next.

A *directed acyclic graph* is a directed graph in which no path starts and ends at the same vertex.

A *source* in a directed graph is a vertex without incoming edges.

A sink in a directed graph is a vertex without outgoing edges.

An *st-digraph* is a directed acyclic graph with only one source and only one sink.

Mathematical Synopsis: Definitions and Proofs

Definition 1: An SIT code \overline{X} of a string X is a string $t_1t_2...t_m$ such that $X = D(t_1)...D(t_m)$, where the decoding function $D: t \to D(t)$ takes one of the following forms:

I-form:	$n*(\overline{y})$	\rightarrow	yyyy (<i>n</i> times	$y; n \ge 2)$
S-form:	$S[\overline{(\overline{x_1})(\overline{x_2})(\overline{x_n})},(\overline{p})]$	\rightarrow	$x_1x_2\dots x_n \ p \ x_n\dots x_2x_1$	$(n \ge 1)$
A-form:	$\langle (\overline{y}) \rangle / \langle \overline{(\overline{x_1})(\overline{x_2})(\overline{x_n})} \rangle$	\rightarrow	$yx_1 yx_2 \dots yx_n$	$(n \ge 2)$
A-form:	$\langle \overline{(\overline{x_1})(\overline{x_2})(\overline{x_n})} \rangle / \langle (\overline{y}) \rangle$	\rightarrow	$x_1y \ x_2y \ \dots \ x_ny$	$(n \ge 2)$
Otherwise:	D(t) = t			

for strings y, p, and x_i (i = 1, 2, ..., n). The code parts (\overline{y}) , (\overline{p}) , and $(\overline{x_i})$ are called *chunks*; the chunk (\overline{y}) in an I-form or an A-form is called a *repeat*; the chunk (\overline{p}) in an S-form is called a *pivot*, which as a limit case may be empty; the chunk string $(\overline{x_1})(\overline{x_2})...(\overline{x_n})$ in an S-form is called an *S-argument* consisting of *S-chunks* $(\overline{x_i})$; and the chunk string $(\overline{x_1})(\overline{x_2})...(\overline{x_n})$ in an A-form is called an *A-argument* consisting of *A-chunks* $(\overline{x_i})$.

Definition 2: A hyperstring is a simple semi-Hamiltonian directed acyclic graph (V, E) with a labeling of the edges in E such that, for all vertices $i, j, p, q \in V$:

either
$$\pi(i, j) = \pi(p, q)$$
 or $\pi(i, j) \cap \pi(p, q) = \emptyset$,

where a substring set $\pi(v_1, v_2)$ is the set of label strings represented by the paths $(v_1, ..., v_2)$ in an edge-labeled directed acyclic graph. In a hyperstring, the subgraph formed by the vertices and edges in these paths $(v_1, ..., v_2)$ is called a *hypersubstring*.

Definition 3: For a string $T = s_1 s_2 \dots s_N$, the A-graph $\mathcal{A}(T)$ is a simple directed acyclic graph (V, E) with $V = \{1, 2, \dots, N+1\}$ and, for all $1 \leq i < j \leq N$, edges (i, j) and (j, N+1) labeled with, respectively, the chunks $(s_i \dots s_{j-1})$ and $(s_j \dots s_N)$ if and only if $s_i = s_j$.

Definition 4: A diafix of a string $T = s_1 s_2 \dots s_N$ is a substring $s_{i+1} \dots s_{N-i}$ $(0 \le i < N/2)$.

Definition 5: For a string $T = s_1 s_2 ... s_N$, the S-graph $\mathcal{S}(T)$ is a simple directed acyclic graph (V, E) with $V = \{1, 2, ..., \lfloor N/2 \rfloor + 2\}$ and, for all $1 \le i < j < \lfloor N/2 \rfloor + 2$, edges (i, j) and $(j, \lfloor N/2 \rfloor + 2)$ labeled with, respectively, the chunk $(s_i ... s_{j-1})$ and the possibly empty chunk $(s_j ... s_{N-j+1})$ if and only if $s_i ... s_{j-1} = s_{N-j+2} ... s_{N-i+1}$.

Theorem 1. The A-graph $\mathcal{A}(T)$ for a string $T = s_1 s_2 \dots s_N$ consists of at most N + 1disconnected vertices and at most $\lfloor N/2 \rfloor$ independent subgraphs (i.e., subgraphs that share only the sink vertex N + 1) each of which is a hyperstring.

Proof: First, by Definition 3, vertex $i \ (i \leq N)$ in $\mathcal{A}(T)$ does not have incoming or outgoing edges if and only if s_i is a unique element in T. Since T contains at most N unique elements, $\mathcal{A}(T)$ contains at most N + 1 disconnected vertices, as required.

Second, let $s_{i_1}, s_{i_2}, ..., s_{i_n}$ $(i_p < i_{p+1})$ be a complete set of identical elements in T. Then, by *Definition 3*, the vertices $i_1, i_2, ..., i_n$ in $\mathcal{A}(T)$ are connected with each other and with vertex N+1 but not with any other vertex. Hence, the subgraph on the vertices $i_1, i_2, ..., i_n, N+1$ forms an independent subgraph. For every complete set of identical elements in T, n may be as small as 2, so that $\mathcal{A}(T)$ contains at most |N/2| independent subgraphs, as required.

Third, to be hyperstrings, the independent subgraphs must at least be semi-Hamiltonian. Now, let $s_{i_1}, s_{i_2}, ..., s_{i_n}$ $(i_p < i_{p+1})$ again be a complete set of identical elements in T. Then, by *Definition 3*, $\mathcal{A}(T)$ contains edges $(i_p, i_{p+1}), p = 1, 2, ..., n-1$, and it contains edge $(i_n, N+1)$. Together, these edges form a Hamiltonian path through the independent subgraph on the vertices $i_1, i_2, ..., i_n, N + 1$, as required.

Fourth, the only thing left to prove is that the substring sets are pairwise either identical or disjunct (see Definition 2). Now, for i < j and $k \ge 1$, let substring sets $\pi(i, i + k)$ and $\pi(j, j + k)$ in $\mathcal{A}(T)$ be not disjunct, that is, let them share at least one chunk string. Then, the substrings $s_i...s_{i+k-1}$ and $s_j...s_{j+k-1}$ of T are necessarily identical and, also necessarily, $s_i = s_{i+k}$ and either $s_j = s_{j+k}$ or j + k = N + 1. Hence, by Definition 3, these identical substrings of T yield, in $\mathcal{A}(T)$, edges (i, i + k) and (j, j + k) labeled with the identical chunks $(s_i...s_{i+k-1})$ and $(s_j...s_{j+k-1})$, respectively. Furthermore, obviously, these identical substrings of T can be chunked into exactly the same strings of two or more identically beginning chunks. By Definition 3, all these chunks are represented in $\mathcal{A}(T)$, so that each of these chunkings is represented not only by a path (i, ..., i + k) but also by a path (j, ..., j + k). This implies that the substring sets $\pi(i, i+k)$ and $\pi(j, j+k)$ are identical. The foregoing holds not only for the entire A-graph but, because of their independence, also for every independent subgraph. Hence, in sum, every independent subgraph is a hyperstring as required. Lemma 1 (Used in Theorem 2). In the S-graph S(T) for a string $T = s_1s_2...s_N$, the substring sets $\pi(v_1, v_2)$ $(1 \le v_1 < v_2 < \lfloor N/2 \rfloor + 2)$ are pairwise either identical or disjunct. Proof: Let, for i < j and $k \ge 1$, substring sets $\pi(i, i+k)$ and $\pi(j, j+k)$ in S(T) be nondisjunct, that is, let them share at least one S-chunk string. Then, the substrings $s_i...s_{i+k-1}$ and $s_j...s_{j+k-1}$ in the left-hand half of T are necessarily identical to each other. Furthermore, by Definition 5, the substring in each chunk of these S-chunk strings is identical to its symmetrically positioned counterpart in the right-hand half of T, so that also the substrings $s_{N-i-k+2}...s_{N-i+1}$ and $s_{N-j-k+2}...s_{N-j+1}$ in the right-hand half of T are identical to each other. Hence, the diafixes $D_1 = s_i...s_{N-i+1}$ and $D_2 = s_j...s_{N-j+1}$ can be written as

$$D_1 = s_i \dots s_{i+k-1} \quad p_1 \quad s_{N-i-k+2} \dots s_{N-i+1}$$
$$D_2 = s_i \dots s_{i+k-1} \quad p_2 \quad s_{N-i-k+2} \dots s_{N-i+1}$$

with $p_1 = s_{i+k}...s_{N-i-k+1}$ and $p_2 = s_{j+k}...s_{N-j-k+1}$. Now, by means of any S-chunk string C in $\pi(i, i + k)$, diafix D_1 can be encoded into the covering S-form $S[C, (p_1)]$. If, in this S-form, the pivot (p_1) is replaced by (p_2) , then one gets the covering S-form $S[C, (p_2)]$ for diafix D_2 . This implies that any S-chunk string in $\pi(i, i + k)$ is in $\pi(j, j + k)$, and vice versa. Hence, nondisjunct substring sets $\pi(i, i + k)$ and $\pi(j, j + k)$ are identical as required.

Lemma 2 (Used in Lemma 3). Let the strings $c_1 = s_1 s_2 \dots s_k$ and $c_2 = s_1 s_2 \dots s_p$ (k < p) be such that c_2 can be written in the following two ways:

$$c_2 = c_1 X \text{ with } X = s_{k+1}...s_p$$
$$c_2 = Yc_1 \text{ with } Y = s_1...s_{p-k}$$

Then, X = Y if q = p/(p - k) is an integer; otherwise Y = VW and X = WV, where $V = s_1...s_r$ and $W = s_{r+1}...s_{p-k}$, with $r = p - \lfloor q \rfloor (p - k)$.

Proof: Take q, r, V, and W as given above, and distinguish between the next three cases. (1) If 1 < q < 2, then $c_2 = c_1Wc_1$, so that $Y = c_1W$ and $X = Wc_1$. Then, too, r = k, so that $c_1 = V$. Hence, Y = VW and X = WV, as required in this case (q is noninteger). (2) If q = 2, then $c_2 = c_1c_1$. Hence, $X = Y = c_1$, as required in this case (q is integer). (3) If q > 2, then the two copies of c_1 in c_2 overlap each other as follows:

$$c_{2} = c_{1}X = s_{1} \dots s_{p-k} s_{p-k+1} \dots s_{k} s_{k+1} \dots s_{p}$$

$$c_{2} = Yc_{1} = Y \qquad s_{1} \dots s_{2k-p} s_{2k-p+1} \dots s_{k}$$

Hence, $s_i = s_{p-k+i}$ for i = 1, 2, ..., k. That is, c_2 is a prefix of an infinite repetition of Y. Now, distinguish between integer q and noninteger q as follows.

(3a) If q is an integer, then c_2 is a q-fold repetition of Y, that is, $c_2 = YY...Y$. This implies (because also $c_2 = Yc_1$) that c_1 is a (q-1)-fold repetition of Y, so that c_2 can also be written as $c_2 = c_1Y$. This implies that X = Y, as required.

(3b) If q is not an integer, then c_2 is a $\lfloor q \rfloor$ -fold repetition of Y plus a residual prefix V of Y, that is, $c_2 = YY...YV$. Now, Y = VW, so that c_2 can also be written as $c_2 = VWVW...VWV$. This implies (because also $c_2 = Yc_1 = VWc_1$) that $c_1 = VW...VWV$, that is, c_1 is a $(\lfloor q \rfloor - 1)$ -fold repetition of Y = VW plus a residual part V. This, in turn, implies that c_2 can also be written as $c_2 = c_1WV$, so that X = WV, as required.

Lemma 3 (Used in Theorem 2). Let S(T) be the S-graph for a string $T = s_1 s_2 \dots s_N$. Then: (A) If S(T) contains edges (i, i + k) and (i, i + p), with $k , then it also contains a path <math>(i + k, \dots, i + p)$.

(B) If S(T) contains edges (i - k, i) and (i - p, i), with k < p and $i < \lfloor N/2 \rfloor + 2$, then it also contains a path (i - p, ..., i - k).

Proof: (A) Edge (i, i + k) represents the S-chunk $(c_1) = (s_i \dots s_{i+k-1})$, and edge (i, i + p) represents the S-chunk $(c_2) = (s_i \dots s_{i+p-1})$. This implies that the diafix $D = s_i \dots s_{N-i+1}$ of T can be written in the following two ways:

$$D = c_2 \dots c_2$$
$$D = c_1 \dots c_1$$

This implies that c_2 (which is longer than c_1) can be written in the following two ways:

$$c_2 = c_1 X \text{ with } X = s_{i+k} \dots s_{i+p-1}$$
$$c_2 = Y c_1 \text{ with } Y = s_i \dots s_{i+p-k-1}$$

Hence, by Lemma 2, either X = Y or Y = VW and X = WV for some V and W. If X = Y, then $D = c_1Y...Yc_1$ so that, by Definition 5, Y is an S-chunk represented by an edge that yields a path (i+k, ..., i+p) as required. If Y = VW and X = WV, then $D = c_1WV...VWc_1$ so that, by Definition 5, W and V are S-chunks represented by subsequent edges that yield a path (i + k, ..., i + p) as required.

(B) This time, edge (i - k, i) represents the S-chunk $(c_1) = (s_{i-k}...s_{i-1})$, and edge (i - p, i)represents the S-chunk $(c_2) = (s_{i-p}...s_{i-1})$. This implies that the diafix $D = s_{i-p}...s_{N-i+p+1}$ of T can be written in the following two ways:

$$D = c_2 \dots c_2$$
$$D = Yc_1 \dots c_1 X$$

with $X=s_{i-p+k}...s_{i-1}$ and $Y=s_{i-p}...s_{i-k-1}$. Hence, as before, $c_2 = c_1X$ and $c_2 = Yc_1$, so that, by Lemma 2, either X = Y or Y = VW and X = WV for some V and W. This implies either $D = Yc_1...c_1Y$ or $D = VWc_1...c_1WV$. Hence, this time, Definition 5 implies that both cases yield a path (i - p, ..., i - k) as required.

Theorem 2. The S-graph S(T) for a string $T = s_1 s_2 ... s_N$ consists of at most $\lfloor N/2 \rfloor + 2$ disconnected vertices and at most $\lfloor N/4 \rfloor$ independent subgraphs that, without the sink vertex $\lfloor N/2 \rfloor + 2$ and its incoming pivot edges, form one disconnected hyperstring each.

Proof: From Definition 5, it is obvious that there may be disconnected vertices and that their number is at most $\lfloor N/2 \rfloor + 2$, so let us turn to the more interesting part. If S(T) contains one or more paths (i, ..., j) $(i < j < \lfloor N/2 \rfloor + 2)$ then, by Lemma 3, one of these paths visits every vertex v with i < v < j and v connected to i or j. This implies that, without the pivot edges and apart from disconnected vertices, S(T) consists of disconnected semi-Hamiltonian subgraphs. Obviously, the number of such subgraphs is at most $\lfloor N/4 \rfloor$, and if these subgraphs are expanded to include the pivot edges, they form one independent subgraph each. More importantly, by Lemma 1, these disconnected semi-Hamiltonian subgraphs form one hyperstring each, as required.

Parallel Distributed Processing Implementation of Dijkstra's

Shortest-Path Method

At time T = 0, a fluid starts to be poured into node 0. The fluid is such that it hardens within 1 time unit after it stops flowing. Every link between two nodes is a soft tube that expands as the fluid enters and that consists of straight segments having slopes such that the fluid takes 1 time unit to cross one segment. Every node has a separate outlet for each outgoing tube but only one inlet for all incoming tubes. An inlet has about the same cross section as one fluid-filled tube. Hence, when the fluid reaches an inlet through one or more tubes, the remaining tubes are automatically sealed off. Thus, at time T = 1, the fluid reaches node 2, sealing off the tube between nodes 1 and 2.

At time T = 2, the fluid has filled this dead-end tube between nodes 1 and 2, and the then nonflowing fluid therein has hardened at time T = 3. By then, the fluid has also already reached node 5.

Around time T = 4, there is still some filling of dead-end tubes and hardening of the fluid therein, but as of time T = 5, the only remaining flow is through the shortest path between nodes 0 and 5. Thus, in O(N) time units, a shortest path is selected from among $O(2^N)$ possible paths.