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Crash Course on Graph Theory

A graph is a pair (V,E), where V is a set of vertices, and E = {(v1, v2) | v1, v2 ∈ V } is a set

of edges between vertices in V .

A simple graph is a graph (V,E) in which every pair of vertices v1, v2 ∈ V is connected by

at most one edge (v1, v2) ∈ E.

A path (v1, v2, ..., vn) from vertex v1 ∈ V to vertex vn ∈ V in a graph (V,E) is a set of edges

(v1, v2), (v2, v3), ..., (vn−1, vn) ∈ E.

A Hamiltonian path in a graph (V,E) is a path that visits every vertex in V only once.

A semi-Hamiltonian graph is a graph with a Hamiltonian path.

A directed graph is a graph in which each edge is unidirectional from one vertex to the next.

A directed acyclic graph is a directed graph in which no path starts and ends at the same

vertex.

A source in a directed graph is a vertex without incoming edges.

A sink in a directed graph is a vertex without outgoing edges.

An st-digraph is a directed acyclic graph with only one source and only one sink.
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Mathematical Synopsis: Definitions and Proofs

Definition 1: An SIT code X of a string X is a string t1t2...tm such that X = D(t1)...D(tm),

where the decoding function D : t → D(t) takes one of the following forms:

I-form: n ∗ (y) → yyy...y (n times y; n ≥ 2)

S-form: S[(x1)(x2)...(xn), (p)] → x1x2...xn p xn...x2x1 (n ≥ 1)

A-form: 〈(y)〉/〈(x1)(x2)...(xn)〉 → yx1 yx2 ... yxn (n ≥ 2)

A-form: 〈(x1)(x2)...(xn)〉/〈(y)〉 → x1y x2y ... xny (n ≥ 2)

Otherwise: D(t) = t

for strings y, p, and xi (i = 1, 2, ..., n). The code parts (y), (p), and (xi) are called chunks;

the chunk (y) in an I-form or an A-form is called a repeat ; the chunk (p) in an S-form is called

a pivot, which as a limit case may be empty; the chunk string (x1)(x2)...(xn) in an S-form is

called an S-argument consisting of S-chunks (xi); and the chunk string (x1)(x2)...(xn) in an

A-form is called an A-argument consisting of A-chunks (xi).

Definition 2: A hyperstring is a simple semi-Hamiltonian directed acyclic graph (V,E) with

a labeling of the edges in E such that, for all vertices i, j, p, q ∈ V :

either π(i, j) = π(p, q) or π(i, j) ∩ π(p, q) = ∅,

where a substring set π(v1, v2) is the set of label strings represented by the paths (v1, ..., v2)

in an edge-labeled directed acyclic graph. In a hyperstring, the subgraph formed by the

vertices and edges in these paths (v1, ..., v2) is called a hypersubstring.

Definition 3: For a string T = s1s2...sN , the A-graph A(T ) is a simple directed acyclic graph

(V,E) with V = {1, 2, .., N +1} and, for all 1 ≤ i < j ≤ N , edges (i, j) and (j, N +1) labeled

with, respectively, the chunks (si...sj−1) and (sj ...sN ) if and only if si = sj .

Definition 4: A diafix of a string T = s1s2...sN is a substring si+1...sN−i (0 ≤ i < N/2).

Definition 5: For a string T = s1s2...sN , the S-graph S(T ) is a simple directed acyclic graph

(V,E) with V = {1, 2, .., bN/2c + 2} and, for all 1 ≤ i < j < bN/2c + 2, edges (i, j) and

(j, bN/2c+ 2) labeled with, respectively, the chunk (si...sj−1) and the possibly empty chunk

(sj ...sN−j+1) if and only if si...sj−1 = sN−j+2...sN−i+1.
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Theorem 1. The A-graph A(T ) for a string T = s1s2...sN consists of at most N + 1

disconnected vertices and at most bN/2c independent subgraphs (i.e., subgraphs that share

only the sink vertex N + 1) each of which is a hyperstring.

Proof: First, by Definition 3, vertex i (i ≤ N) in A(T ) does not have incoming or outgoing

edges if and only if si is a unique element in T . Since T contains at most N unique elements,

A(T ) contains at most N + 1 disconnected vertices, as required.

Second, let si1 , si2 , ..., sin (ip < ip+1) be a complete set of identical elements in T . Then,

by Definition 3, the vertices i1, i2, ..., in in A(T ) are connected with each other and with ver-

tex N+1 but not with any other vertex. Hence, the subgraph on the vertices i1, i2, ..., in, N+1

forms an independent subgraph. For every complete set of identical elements in T , n may

be as small as 2, so that A(T ) contains at most bN/2c independent subgraphs, as required.

Third, to be hyperstrings, the independent subgraphs must at least be semi-Hamiltonian.

Now, let si1 , si2 , ..., sin (ip < ip+1) again be a complete set of identical elements in T . Then, by

Definition 3, A(T ) contains edges (ip, ip+1), p = 1, 2, ..., n−1, and it contains edge (in, N +1).

Together, these edges form a Hamiltonian path through the independent subgraph on the

vertices i1, i2, ..., in, N + 1, as required.

Fourth, the only thing left to prove is that the substring sets are pairwise either identical

or disjunct (see Definition 2 ). Now, for i < j and k ≥ 1, let substring sets π(i, i + k) and

π(j, j + k) in A(T ) be not disjunct, that is, let them share at least one chunk string. Then,

the substrings si...si+k−1 and sj ...sj+k−1 of T are necessarily identical and, also necessarily,

si = si+k and either sj = sj+k or j + k = N + 1. Hence, by Definition 3, these identical

substrings of T yield, in A(T ), edges (i, i + k) and (j, j + k) labeled with the identical

chunks (si...si+k−1) and (sj ...sj+k−1), respectively. Furthermore, obviously, these identical

substrings of T can be chunked into exactly the same strings of two or more identically

beginning chunks. By Definition 3, all these chunks are represented in A(T ), so that each of

these chunkings is represented not only by a path (i, ..., i+k) but also by a path (j, ..., j +k).

This implies that the substring sets π(i, i+k) and π(j, j+k) are identical. The foregoing holds

not only for the entire A-graph but, because of their independence, also for every independent

subgraph. Hence, in sum, every independent subgraph is a hyperstring as required.
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Lemma 1 (Used in Theorem 2 ). In the S-graph S(T ) for a string T = s1s2...sN , the

substring sets π(v1, v2) (1 ≤ v1 < v2 < bN/2c+ 2) are pairwise either identical or disjunct.

Proof: Let, for i < j and k ≥ 1, substring sets π(i, i+k) and π(j, j+k) in S(T ) be nondisjunct,

that is, let them share at least one S-chunk string. Then, the substrings si...si+k−1 and

sj ...sj+k−1 in the left-hand half of T are necessarily identical to each other. Furthermore,

by Definition 5, the substring in each chunk of these S-chunk strings is identical to its

symmetrically positioned counterpart in the right-hand half of T , so that also the substrings

sN−i−k+2...sN−i+1 and sN−j−k+2...sN−j+1 in the right-hand half of T are identical to each

other. Hence, the diafixes D1 = si...sN−i+1 and D2 = sj ...sN−j+1 can be written as

D1 = si...si+k−1 p1 sN−i−k+2...sN−i+1

D2 = si...si+k−1 p2 sN−i−k+2...sN−i+1

with p1 = si+k...sN−i−k+1 and p2 = sj+k...sN−j−k+1. Now, by means of any S-chunk string

C in π(i, i + k), diafix D1 can be encoded into the covering S-form S[C, (p1)]. If, in this

S-form, the pivot (p1) is replaced by (p2), then one gets the covering S-form S[C, (p2)] for

diafix D2. This implies that any S-chunk string in π(i, i+ k) is in π(j, j + k), and vice versa.

Hence, nondisjunct substring sets π(i, i + k) and π(j, j + k) are identical as required.
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Lemma 2 (Used in Lemma 3 ). Let the strings c1 = s1s2...sk and c2 = s1s2...sp (k < p) be

such that c2 can be written in the following two ways:

c2 = c1X with X = sk+1...sp

c2 = Y c1 with Y = s1...sp−k

Then, X = Y if q = p/(p − k) is an integer; otherwise Y = V W and X = WV , where

V = s1...sr and W = sr+1...sp−k, with r = p− bqc(p− k).

Proof: Take q, r, V , and W as given above, and distinguish between the next three cases.

(1) If 1 < q < 2, then c2 = c1Wc1, so that Y = c1W and X = Wc1. Then, too, r = k, so

that c1 = V . Hence, Y = V W and X = WV , as required in this case (q is noninteger).

(2) If q = 2, then c2 = c1c1. Hence, X = Y = c1, as required in this case (q is integer).

(3) If q > 2, then the two copies of c1 in c2 overlap each other as follows:

c2 = c1X = s1 . . . sp−k sp−k+1 . . . sk sk+1 . . . sp

c2 = Y c1 = Y s1 . . . s2k−p s2k−p+1 . . . sk

Hence, si = sp−k+i for i = 1, 2, ..., k. That is, c2 is a prefix of an infinite repetition of Y .

Now, distinguish between integer q and noninteger q as follows.

(3a) If q is an integer, then c2 is a q-fold repetition of Y , that is, c2 = Y Y...Y . This implies

(because also c2 = Y c1) that c1 is a (q−1)-fold repetition of Y , so that c2 can also be written

as c2 = c1Y . This implies that X = Y , as required.

(3b) If q is not an integer, then c2 is a bqc-fold repetition of Y plus a residual prefix V

of Y , that is, c2 = Y Y...Y V . Now, Y = V W , so that c2 can also be written as c2 =

V WV W...V WV . This implies (because also c2 = Y c1 = V Wc1) that c1 = V W...V WV , that

is, c1 is a (bqc − 1)-fold repetition of Y = V W plus a residual part V . This, in turn, implies

that c2 can also be written as c2 = c1WV , so that X = WV , as required.
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Lemma 3 (Used in Theorem 2 ). Let S(T ) be the S-graph for a string T = s1s2...sN . Then:

(A) If S(T ) contains edges (i, i + k) and (i, i + p), with k < p < bN/2c+ 2− i, then it also

contains a path (i + k, ..., i + p).

(B) If S(T ) contains edges (i − k, i) and (i − p, i), with k < p and i < bN/2c + 2, then it

also contains a path (i− p, ..., i− k).

Proof: (A) Edge (i, i + k) represents the S-chunk (c1) = (si...si+k−1), and edge (i, i + p)

represents the S-chunk (c2) = (si...si+p−1). This implies that the diafix D = si...sN−i+1 of

T can be written in the following two ways:

D = c2 . . . c2

D = c1 . . . c1

This implies that c2 (which is longer than c1) can be written in the following two ways:

c2 = c1X with X = si+k...si+p−1

c2 = Y c1 with Y = si...si+p−k−1

Hence, by Lemma 2, either X = Y or Y = V W and X = WV for some V and W . If X = Y ,

then D = c1Y...Y c1 so that, by Definition 5, Y is an S-chunk represented by an edge that

yields a path (i+k, ..., i+p) as required. If Y = V W and X = WV , then D = c1WV...V Wc1

so that, by Definition 5, W and V are S-chunks represented by subsequent edges that yield

a path (i + k, ..., i + p) as required.

(B) This time, edge (i− k, i) represents the S-chunk (c1) = (si−k...si−1), and edge (i− p, i)

represents the S-chunk (c2) = (si−p...si−1). This implies that the diafix D = si−p...sN−i+p+1

of T can be written in the following two ways:

D = c2 . . . c2

D = Y c1 . . . c1X

with X=si−p+k...si−1 and Y =si−p...si−k−1. Hence, as before, c2 = c1X and c2 = Y c1, so

that, by Lemma 2, either X = Y or Y = V W and X = WV for some V and W . This

implies either D = Y c1...c1Y or D = V Wc1...c1WV . Hence, this time, Definition 5 implies

that both cases yield a path (i− p, ..., i− k) as required.
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Theorem 2. The S-graph S(T ) for a string T = s1s2...sN consists of at most bN/2c + 2

disconnected vertices and at most bN/4c independent subgraphs that, without the sink vertex

bN/2c+ 2 and its incoming pivot edges, form one disconnected hyperstring each.

Proof: From Definition 5, it is obvious that there may be disconnected vertices and that their

number is at most bN/2c + 2, so let us turn to the more interesting part. If S(T ) contains

one or more paths (i, ..., j) (i < j < bN/2c+ 2) then, by Lemma 3, one of these paths visits

every vertex v with i < v < j and v connected to i or j. This implies that, without the pivot

edges and apart from disconnected vertices, S(T ) consists of disconnected semi-Hamiltonian

subgraphs. Obviously, the number of such subgraphs is at most bN/4c, and if these sub-

graphs are expanded to include the pivot edges, they form one independent subgraph each.

More importantly, by Lemma 1, these disconnected semi-Hamiltonian subgraphs form one

hyperstring each, as required.
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Parallel Distributed Processing Implementation of Dijkstra’s

Shortest-Path Method

At time T = 0, a fluid starts to be poured into node 0. The fluid is such that it hardens within 1

time unit after it stops flowing. Every link between two nodes is a soft tube that expands as the fluid

enters and that consists of straight segments having slopes such that the fluid takes 1 time unit to

cross one segment. Every node has a separate outlet for each outgoing tube but only one inlet for all

incoming tubes. An inlet has about the same cross section as one fluid-filled tube. Hence, when the

fluid reaches an inlet through one or more tubes, the remaining tubes are automatically sealed off.

Thus, at time T = 1, the fluid reaches node 2, sealing off the tube between nodes 1 and 2.

At time T = 2, the fluid has filled this dead-end tube between nodes 1 and 2, and the then nonflowing

fluid therein has hardened at time T = 3. By then, the fluid has also already reached node 5.

Around time T = 4, there is still some filling of dead-end tubes and hardening of the fluid therein,

but as of time T = 5, the only remaining flow is through the shortest path between nodes 0 and 5.

Thus, in O(N) time units, a shortest path is selected from among O(2N ) possible paths.


