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A Framework for Analyzing Template Security and
Privacy in Biometric Authentication Systems
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Abstract—In this paper we analyze the vulnerabilities of biometric
authentication protocols with respect to user and data priacy. The goal
of an adversary in such context is not to bypass the authentition
but to learn information either on biometric data or on users that are
in the system. We elaborate our analysis on a general systemoudfel
involving four logical entities (sensor, server, databasand matcher), and
we focus on internal adversaries to encompass the situatiomhere one or a
combination of these entities would be malicious. Our goakito emphasize
that when going beyond the usual honest-but-curious assunipn much
more complex attacks can affect the privacy of data and users

On the one hand, we introduce a new comprehensive frameworkhat
encompasses the various schemes we want to look at. It presera
system model in which each internal entity or combination ofentities is
a potential attacker. Different attack goals are considerd and resulting
requirements on data flows are discussed. On the other hand,endevelop
different generic attacks. We follow a blackbox approach inwhich we
consider components that perform operations on biometric dta but
where only the input/output behavior is analyzed. These a#ick strategies
are exhibited on recent schemes such as the distributed protol of
Bringer et al. (ACISP 2007), which is based on the Goldwassévlicali
cryptosystem, the related protocol of Barbosa et al. (ACISR2008), which
uses the Paillier cryptosystem, and the scheme of Stoiano8RIE 2010),
that features the Blum-Goldwasser cryptosystem. All thesechemes have
been developed in the honest-but-curious adversary modelnd show
potential weaknesses when considered in our malicious imkr attack
model.

Index Terms—Biometrics, template protection, authentication, proto
cols, blackbox security model, malicious adversaries

. INTRODUCTION

Although biometric template protection is a relatively pgudisci-
pline, already over a decade of research has brought mappsgats.

has been intensively analyzed, e.g., inJF[13]. On a second level
one can use hardware to obtain secure systems, €4, [[L5].
Finally, at a third level biometric authentication can baiaged from
protocols that rely on advanced cryptographic techniquesh sas
Secure Multiparty Computation, homomorphic encryptiorPavate
Information Retrieval protocolslf, Ch. 9] [L7]-[24]. The focus of
our work is on this third level.

Our contributions are the following. We extend the blackbox
framework initiated in 25] with the distributed system model of ]
in a way that it can handle different existing proposals fiamnietric
authentication. We show how this blackbox approach can tead
attacks against these proposals, that have generally leericed
to only resist non-colluding honest-but-curious entitid%e describe
in detail our analysis of three existing protocols9], [20], [27].

In the framework we propose, we develop generic attackegfies
in the malicious adversary model. We list all the possibléstexg
attacks points and the different internal entities that tzad the
attacks, and we reveal the potential consequences. Some aftacks
that are presented in this paper can easily be solved or miesle
It should be noted, however, that the objective of this warkta
demonstrate that existing solutions suffer from certairakmesses.
Moreover, the generic attacks that are defined in this paper c
be used by developers and reviewers as a first evaluationefer n
protocol proposals.

As our aim is privacy leakage analysis, it justifies our focus
on internal adversaries: they are stronger than exterratlars
when challenging the privacy properties of a system. Moggowur
framework models the internal components of a biometritesgsnto
four logical entities, namely the sensor, the authenticasierver, the
database and the matcher. This is an important aspect agemsys
without any separation between these entities would nothbe ta
ensure the highest privacy properties against internaradvies such
as malicious administrators. However the division in foutitees
cannot be considered as the sole warranty: so we study &menar

The main objective of template protection methods — and thénm where several entities are malicious or collude; and we tinde

difficulty — is to prevent an attacker to compromise privaéyusers
or biometric data and not necessarily to thwart bypassinghef
biometric authentication itself. These methods can beraégmh in
three levels. The first one is to have biometric data coming self-
protected form. Many algorithms have been proposed: cratitn
schemes 1], [2] for continuous biometrics; fuzzy extractors] [and

that some entities are more powerful than other in such tgins
Note finally that this representation of a biometric systechia
tecture is not superficial: it is easy to imagine an applaratin
which the authentication server is a service provider tkties on
a third party to provide a biometric reference databasei(fstance
government owned) for authentication or identificationstbbuted

other fuzzy schemes/H 6] for discrete biometrics; and cancellablebiometric systems and the sharing of biometric databadsscisming
biometrics []-[9]. The security of such template-level protectionmore and more common, see for instance the joint projéc} [
between the Department of Defence (DoD) and the Departmfent o
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The rest of the paper is organized as follows. The framewsrk i
developed in Sectiorl, which introduces the system and attack
model. Generic attack strategies are proposed and foradaliz
Sectionlll. These are then applied to existing protocols in Sedtign
where detailed attacks are described. Sectiotoncludes the paper

(e-mailwith a discussion on the problems that need to be solved tigazh

the optimal privacy properties.

Il. FRAMEWORK

In this section we present a framework that forms a basisHer t
security analysis of biometric authentication protocdlbe frame-
work models a generic distributed biometric system andititerfal)
adversaries against such system. We define the roles of ffeecdi
entities that are involved and their potential attack goaism these
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roles and attack goals we derive the requirements that gpesied
on the data that are exchanged between the entities.
Biometric Notation: Two measurements of the same biometric 92(V,0)
characteristic are never exactly the same. Because of éhavior, ‘/f/({bf}) Aa
a biometric characteristic is modeled as a random varid&hlevith b}, ID; F1(b%), 91(IDy)
distributionpp over some rangé8. A sample is denoted ds Two @ - @ - Fo (5 i)
3(0;, 04
A

samples or templates are related if they originate from t@aes '
R (A4) Ay
~ < fa(d(b

characteristic. In practice, we will say that they are edaif their

mutual distance is less than some threshold. Thereforestandie ) AN I (o) @
function d is defined oveB and for each value in the range of d that T T -
is used as the threshold when comparing two samples a fald ma As

rate (FMR) and a false non-match rate (FNMR) can be derived.
Fig. 1. System model with indication of generic informatitows and attack
points A;. Userl;'s biometric is sampled by sens&. The sampleb; and
A. System Model U;’s identity are forwarded to the authentication servéf, who requests

) the corresponding referenég from databaséDBB. AS combines the sample
Our system model follows to a large extent the model defined l%}ﬁd the reference and forwards the result to mateherwho performs the

Bringeret al.[19], which was also used to define new schemegii [ actual comparison and returns the resulti§. The solid arrows represent the
and 29). This model is motivated by a separation-of-duties pplei messages exchanged between the system entities. The @asivedepresents

the different roles for data processing or data storage @masare the implicit feedback on the authentication result to therds;, i.e., access
separated into three distinct entities. Using distribugadities is a o the requested service is granted if the sample matcheeixence.
baseline to avoid one to control all information and it is alistic
representation of how biometric systems work in practide [(&]).
System EntitiesThe different erjtltlgs involved in the systemg, that one of the matching references has index
are a usetf;, a sensoiS, an authentication servedS, a database  \yg define the minimal logical functionality to be provided by
DB and a matcheM. Userl(; wishes to authenticate to a particulary - system entities in terms of generic information flowsjolbare
service and has, therefore, registered his biometric #atduring jncjyded in Fig.1. In this functional model, we represent the result of
the enrollmentprocedure. In the context of the service the user hage piometric comparison as a function of the distad@, b; ). This
been assigned an identifiéD;, which only has meaning within this js 5 generic representation of the actual comparison methédan
context. The biometric reference dataare stored byDB, who links o aiuate simple distances but also run more complex cosgei
the data to identifief. The mapping from/D; to i is only known by 4 will output either similarity measures or decisions #re based
AS, if relevant. Note that in some applications it is possitiatthe ,, some threshold. The information flows are as follows.
same user is registered for the same service or in the sarabadat Userl; presents a biometric characterisiit; that will be sam-

with different samplesh; andb;, and different identities, i.eID; # pled by the sensoS to produce a samplé. When operating in
IDj in the service context of # j in the database context. The,grification model4; will claim an identity ID; :

property of not being able to relate queries under theseereifit
identities is theidentity privacyrequirement as defined i {]. U,
During theauthenticationprocedure the sensd& captures a fresh
biometric samplé; from userl4; and forwards the sample #4S. The
authentication servedS manages authorizations and controls access f1(6%)
to the service. To make the authorization decisidi& will rely on § AS or s AS. )
the result of the biometrigerificationor identificationprocedure that In general g1 (ID;) = ID; but it can also be a mapping to an
is carried out by the matchetM. It is assumed that there is noencrypted value to hidéD, from AS. If applicable, AS resolves
direct link betweenM andDB. As such,AS requests fronDB the  the mappingg: (ID;) to identifier: and requests reference data for
reference data that are needed. by and forwards them to\1. Itis  one or more users fro3 by sending at least one reques{b;, 7) :
further assumed that the system accepts only biometricentids. (bL0)
This means that the user provides his biometric data andighp$ss AS 2220, pR. 3
identity, but no user-specific key, password or token. Eighows
the participating entities.

Functional Requirements:Enrollment often involves offline
procedures, like identity checks, and is typically carr@mda under
supervision of a security officer. During verification (oeidification)
the system typically runs in an automated and non-supehvrisade.
Therefore, we assume that the system entities are trustedgdu AS M DB. (4)
enrolment, hence users are enrolled properly and only atitia¢ion o
procedures are analyzed in our framework. A distinction foabe 1he authentication servedS forwards the fresh sampl and the
made between verification and identification. Verificatiatraduces 'eference daté; in some combined form tov1 :

a selection stepwhich implies thatDB returns only one of its f3(b7,{b;})

references, namely thi that corresponds to the identifiérthat AS M. ©®)
is used in the context of the database. The entity that does thote thatAS has onlyf:(b;) and f2(b;) at his disposal to compute
mapping betweerdD; and i, when applicable, is generallAS. In  f5(b;, {b:}) .

identification mode DB returns the entire set of references, in some The matcherM performs a biometric comparison procedure on
protected form, taAS. The database can then be combined With the receivedbh; and {b;} and returns the result tolS. The result
and forwarded toM. The matchetM has to verify that; matches may contain decisions or scores or different identities dhduld at

with one or a limited number df; in the received set of references

b« B;

bl By, ID;
) or U, ——5

S. )
The sensoiS forwardsb; and ID; in some form toAS:

f1(8}) 91 (ID;)
T

Note that the functior. does not necessarily use all the information
in its arguments, e.g., the fresh sampjemay be ignored.

DatabaseDB provides AS with reference data for one or more
users in some form. It is possible tHaf3 returns the entire database,
e.g., in case of identification:
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TABLE |
= relevant ; ? = relevant if designed to hide
relevant if ID; and: are hidden fromAS).

least be based on one distance calculation between thedagsple  a11ack coal RELEVANCE (V
b; and a referencs; :

references fronDB; *

fa(d(b;,{b:1))
%

AS M. (6) Attack goal AS DB M

Learnb; Vv ? W

Different data are stored by the different entities. Theabase Learn®/ YV, Vv Vv
stores referencef; }. The authentication service stores the informa- Traceld; with different identities ~ V ? \Y
tion needed to map: (ID;) to i, if applicable. The matchers can Tracey; over different queries  V* V.V

store non-biometric verification data, e.g., hashes of lexgacted

from biometrics, or decryption keys that are use to recaverresult such, they clarify what the big issues are that may remairtdates

of combining sample and reference. Also, the sensor cae &®y of-the-art schemes. They also underline what the hardedtedges

material to encrypt the fresh sample. are when designing a secure biometric authentication gobt&ig. 1

sums up the different attack points from our attack model.

B. Adversary Model Attack Goals:The security of a scheme is expressed in terms of
Attacker ClassificationBased on the physical entry point of anSpeCIfIC attack. goals or advgrsary objectives. The attaeksgstem

attack a distinction is made between two types of attacketsrnal from the security and privacy issues that are commonly asleuged

- in the literature, e.g., in7] or . In fact, our framework is
attackers are corrupted components in the systenearsinalattack- g I [51]

» o quite similar to that proposed by Ratle al. [7], but with two
ers are entities that only have access to a communicatioamehaNe . . ok
) ) . o . major differences. As opposed td][the objective of the attacker
will consider here only the issue of an insider attacker. Aaseline,

. . in our framework is not to get authenticated fraudulentlyf ko
we make the following assumption. compromise the template security and user privacy. Momrems
Assumption 1:The protocol ensures the security of the sche '

: rn(()Epposed to T the communication channels between the different
against any external attacker.
As this can be reached by classical secure channel teclsniyen

modules are assumed to be secure.
. . e Typical issues are that biometric data can be used to recahst
external security layer independent of the core protocetiigation, yp on
we study further only the internal layer.

artifacts (fake samples) to impersonate other users orbilbatetric
A second distinction is made based on an attacker’s capesili data might reveal sensitive (medical) mformatllon. SO .
. . . data, both references and samples, should be hidden. Them,ife
Passive or honest-but-curious attackers only eavesdeopaimmuni- . : .
- . . . the data are hidden, it should not be possible to abuse pedtec
cations in which they are involved and can only observe tha tieat - o . . L
. references as identifiers for cross-matching, i.e., ligkifata from
passes through them. They always follow the protocol spatifins, . L . -
" L different applications. Hence, users that are registenedhultiple
never change messages and never generate additional cocatimm o . L .
. - . applications, thus having multiple identities, should hettraceable
Active or malicious attackers are internal components tiaat also o : . .
. - . . over these applications. Finally, privacy-enhanced appbns that
modify existing or real transactions passing through thaththat can . . .
2. ; rely on properly authenticated users, e.g. anonymous tefstior
generate additional messages. We mainly focus on malidcnesal
attackers and we formulate the following additional asstionp

online auctions where identities are hidden for all but thanmng
. . bid, should not lose their privacy-enhancing propertie the
Assumption 2:The protocol ensures the security of the SChen}%tr’oduction of biometrics P 4 g prop 8 to
against honest-but-curious entities, i.e. internal sgst®mponents : ) .
e These issues lead to the following global attack goals.
that always follow the protocol specifications but eavegdraernal

communication. « Learn reference b; . A scheme providebiometric reference

We will explain in Sectionll-C how this has a direct impact on the
properties of the different functionalities in our model.

Finally, we put aside the threats on the user or client sigesdn-
centrating the analysis on the remote server’s side. Thanrdtion
leakage for the user and the client is generally only theemittation
or identification result. They can, however, try to gain kifexnlge on
the reference data by running queries with differerit, e.g., in some
kind of hill climbing attack. The difficulty can highly varyehending
on the modalities, the threshold and the scenario. A basi df
defense is to limit the number of requests, to ensure theradiss of
the biometric inputs provided by the user and to hide the hiagc
score, if possible. Although it is important to implementisulefense
mechanisms, the threats are inherent to any biometric atith&on
or identification system. So we do not take the user or theosento

privacy if it resistant to an attacker that wants to learn some
information about a referendg .

Learn sampleb; . We call the security property associated with
this attack goabiometric sample privacy

Trace users with different identities. This attack can be
achieved when different references from the same useribghpss
coming from different applications, can be linked. A systat

is resistant to such attack is said to providentity privacy[29].
Trace users over different queriesThis attack refers to linking
gueries, whether anonymized or not, based iprb; or b.
The property of a system that prevents such attack is called
transaction anonymity29). An attacker that is able to leart

can automatically trace users based on the learned sample.

With these attack goals we aim to analyze how the optimahpyiv

account as an attacker in this model and the primary attagkspo properties with respect to the privacy-by-design priresp[32] can
are AS, DB and M. Nonetheless, there may be inside attackers thlé achieved. Although this is not always currently requifedall
also control the biometric inputs to some extent. We modslwlith biometric applications, it is a challenging issue to be aleuse
a secondary attack point at the sensor. biometrics fully anonymously and many researches are aiaduo
Assumption 3:The usel/; or the sensoS cannot be attackers on this aim. Of course, adding more information to be able taekse
their own but they can act as a secondary attack point in awatibn  the level of privacy on behalf of some more trusted entity,,@inder
with a primary attack point atdS, DB or M. If this is the case a legal warrant, is a feasible option that allows addressiragge
an attacker can choose the input samiglehrough S and observe applications in the same framework.
whether the authentication request was successful throfigh The formulated attack goals apply to the different interagl
Of course, the baseline assumptions have to be checkedebefaickers as shown in TABLE. Attack goals can be generalized for
proceeding with a full analysis of the security of a schemé,ds combinations of inside attackers, e.gdS and M, and they are
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relevant for the combination if they are relevant for eadackier possible adversary combination, including both the cagbout S

individually. As a counterexample, learnibg is not always relevant being involved and the case wighinvolved. Recall from Sectiohi-B

for the combinationAS-DB. In some schemes it is assumed thathat S is not considered to be an autonomous attacker. However, an

DB stores references in the clear so the attack “léafrbecomes attacker that has control over is very powerful and, therefore, this

trivial. It is important, however, that such schemes exjienention is a necessary additional dimension that should be analyzed

the assumption thabB is fully trusted. It will become clear in the

further sections that thg main focu§ of our work is d& who is A. Blackbox Attack Model

a powerful attacker. This way of thinking is rather new andnypa

protocols are not designed to be resistant to such attacker. The different attacks that can be carried out by the attackee
It should be noted that there are many more security andqyfivamOdele‘j adblackbox attacksfollowing recent results fromZ[]. This

issues relevant for biometric systems in general. Infuasre, de- @allows us to clearly specify the focus of the attack. Our kitax-

ployment context, application setting, human factors, @atermine attack model consists of two logical entities:

the different risks that are to be taken into account. Werrede 1) The attacker, i.e., one or more system entities that dig fu

the work of Jain et al. 3] for a comprehensive treatment and under control of the attacker: internal data are known, ages

categorization of general biometric system vulnerabtiti can be modified and additional transactions can be generated
2) The target or the blackbox, i.e., the combination of aleot

C. Requirements on Data Flows system entities. The attack is focused on the data that are

. . G protected by the system components within the blackbox.

Coming back to the functionalities in our system model (cf. ]

Sectionll-A), we use the attack goals defined in TABLEo impose ' he target is modeled as a blackbox because the attackemban o
requirements on the data that are being exchanged. observe the input-output behavior of the box. This adedyiaédlects
remote protocols where only the communication can be sedhéy
attacker. No details are known about the internal state efréimote
components. During the attack, the attacker will “tweakplts to
the blackbox. However, all communication must comply witte t
protocol specification. Any messages that are malformedhatr dre
sent in the wrong order are rejected by the blackbox.

As explained in Sectionl only malicious internal attackers are
considered, i.e. AS, DB, M and combinations of these entities.
Userl; and the sensaf have been excluded as individual attackers.
However, it should be noted that there are cases in whichttaekar
cannot generate additional transactions because he haliaw the
protocol specifications. E.g., 8 is attacking he has to wait until a
request is received fromdS. When analyzing protocols it should be
assumed that this will occur with a reasonable frequenaglévant,
attack complexities can be expressed in function of thigueacy.
Similarly, if the attacker isAS, he receives inputs frons and
communicates withDB and M. In this case we excludé/; and
S from the blackbox. It should be assumed, though, that a numbe
of inputs fromS is available toAS. This does not necessarily imply
that S is under control ofAS. The analysis of the attack can take
into account the amount of data that is available.

« AS should not be able to learti hence f; is at least one-
way, meaning thab; should be unrecoverable froifi (b;) with
overwhelming probability. To prevent tracirig; over different
queries it could also be required thatis semantically secure.
Semantic security is a security notion that might be toongtro
but it ensures a minimum leakage of information.

« AS should not leary;, hencef is at least one-way. To prevent
tracing users with different identities it may be requirbdttf:
is also semantically secure.

« If applicable, AS should not be able to track; by linking
queries onlID; or ¢, and thusg; should be semantically secure.

« If applicable, DB may not learnb;, henceb; would be stored
in a protected form using some semantically secure function

« DB may not learnb}, hencegs is one-way on its first input. It
should also be semantically secure to prevent trating

« DB may not be able to link the queries at all, hergeshould
also be semantically secure on its second input.

« M may not learn the individuab; or b; and must not be able
to link references or queries from the satdg hencefs should
be semantically secure on tuplds, b,)

Because we demand tha¥t returns a result toAS that is

a function (f1) of d(b;,b;) some operations must be malleable.

Malleability refers to the property of some cryptosysternattan B. Generic Attacks fordS

attacker can modify a ciphertext into another valid ciptrthat is  The following three generic attacks are specific for the entica-
the encryption of some function of the original messagehatit the tjon server and will be demonstrated in Sectidh

attacker knowing this message. Depending on when the catituin Decomposed Reference Attacket’s assume that only one
of b; andb; is realized, eithegs, f> or f; would be malleable. In reference; is returned byDB. The goal of this attack is to leatn.
the following section, we will show the impact of this fundantal  Bjometric samples or references are often represented ssiag®,

limitation and how it can be exploited to attack existingtpmwls. e, a concatenation (Iétdenote concatenation) of (binary) symbols.
Let's assume thajf2(b;) is the concatenation of a subfunctigh
IIl. GENERICATTACK STRATEGIES that is applied on each of the components; ; of b; individually.

The goal of this section is to explore the different attackrseios |f AS has to combinefz(b;) and fi(b}) without knowing either
in our framework that can be used for analyzing actual paitocthe sample or the reference, it is likely thé and f3 will also
specifications. First, a blackbox attack model is explaifiéen some be the concatenation of component-wise applied subfumstioe.,
generic attacks withAS as adversary are derived which will befs(bi,b;) = f3(bi,1, b5 1)l .- .|| f3(bin, b ). Note that in our model
demonstrated in the examples in SectignFinally,we briefly discuss AS can generate the valug;(b; ;, b, ;) but this value should not
the attack goals from Sectiolt-B and potential attacks for every reveal to.AS whether the inputs are the same or not. This decompo-
sition of references leads to the following attack.

||1Ab crypéozyséem is Setm?”“ca'f'y secure if it is ;”f‘iastib:;ﬁ?’?p“tattipn' Suppose thatdS is able to generate a value that is valid output
ally bounded adversary to learn from a given ciphertex information 2 . “ .

about the underlying plaintext. It implies that an adveydaais no significant of f3 yvhen the two component inputs,; and b; ; are the Same
advantage over random guessing when trying to distinguishencryptions and similarly when they are not the same, e.g., the outpuheés t

of the same message from the encryptions of two differentsagzs. encryption of one or zero. IfAS can also computef;, then AS
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can fully reconstruch;. To do so.AS choose the first component ofthe center-search attack, only nedsS will not flip bits but simply
b; at random, combines it with the first componentbpfand sends replace them with a known value, e.g., one. He will do thisluhe
the result toM. The other components that are sent\b are such sample no longer matches. Thai$ already knows that the last bit he
that ¢ of those are an output qf; that reflects different inputs and replaced was not one and he will restore that bit. Then heroges to
then — t — 1 remaining components are outputs that reflect equalibstitute the bits one by one, carefully observing whettheesample
inputs. Note that is the comparison threshold. If the guess4# for matches or not and learning all the bits. The first bits thaevilgpped
the first component is correct thes will return a positive match. to invalidate the sample can be learned simply by restotiegnt
Otherwise the guess is wrong aptlS can try again. This process
can be repeated until all componentsbpfare recovered. For binary
samples, this requires queries toM and 1 query taD5.

A similar attack can be executed if the biometric data are rep We iterate the attack goals from SectidrB for every possible
resented as real-valued or integer-valued feature veckwever, adversary combination, not involving the sensbrWhen attackers
additional queries are required to fully recover the refees;. are combined they inherit the potential attacks from thaviddal

Center Search Attack Using: In this attack,S is also com- attackers. For example, AS is able to learrb; then the combination
promised and under the control of the attacker. The attaekiggo ©f AS and DB will also be able to lear,.
learn the full referencé; from a close sample. The input sample is 1) Attacker =AS:
obviously always known toAS andS. Thus at some point in timig; « Learn b;: Potential attacks for achieving this goal have been
will present a sampl&; that matches referende. This sample will lie described in Sectiofil-B .
at some distance from the reference. In the case where biocmate « Learnbd): The same attacks as for learnibgcan be used.
represented as binary strings and the system implementsaing « Trace U; with different IDs: This goal could be achieved if
distance matcher the attacker can recover the dxaas follows. AS can access different databases that have compatible system

The sensor flips the first bit ob; and sends the new sample parameters. This would imply that samples from one system
to .AS who performs the whole authentication procedure. If the could be used for comparison in another system. Howeveh, suc
authentication succeeds, flips the second bit, leaving the first bit issue is unlikely if, e.g., encryption is used and the keys ar
also flipped, and sends the sample46§ who follows the procedure generated per application.
again. This continues until the sample no longer matdhe§ hen « TraceU; over different queries: This attack is trivially achieved
the sensor starts again by restoring the first bit of the sarhalt is if the system operates in verification mode add does the
no longer accepted and forwards it #S. If it gets accepted this mapping fromID; to i in the clear. If AS does not know the
means that the first bit of the original samplewas the same as the mapping but can influence the valughat is sent toDB5 in a
first bit of b;. If not, then the first bits were different. One by one deterministic way thendS can trigger an identification mode
the bits inbd; that are different from those ib; can be corrected. by repeatedly queryin@B3 and iterating over all values af

We call this the center search attack because we start frample 2) Attacker =DB: The attacker is the databa®¥ who commu-
that lies in a sphere with radius the matching threshold, and thepjcates with the authentication serviges only. The attacker cannot
reference as center point. The goal of this attack is to mgample achieve any of the attack goals individually because hiskbiax
to the center of the sphere. The worst-case complexity efattack gives output, which he cannot influence, before receivingutinif
for bitstrings of lengthn is the greatest o + ¢ +n and 4¢. The  thjs entity does not collude with other entities then it imply a
complexity is2 + ¢ + n if there aret —1 bit-errors in the beginning passive attacker and by Assumptidrit cannot mount any attacks.
and one at the end of the string. The fitst 1 errors get corrected 3y Attacker =.M: The matcher alone cannot achieve any of the
by flipping them and additional bits need to be flipped to invalidateyoa|s for the same reason 8. By Assumption2 it cannot attack
the sample. Locating the bit-errors requires searchimghtl end of - pacause its blackbox provides output before input andcannot
the string where the last error is. The complexity4isif there are trigger any additional transactions.

t — 1 correct bits followed byt wrong bits. So2¢ flips are needed 4) Attacker =.AS and DB: Achieving the attack goals depends
before the queries no longer match and therpositions need to be 5, how the functionality of>3 is implemented.

searched. In practice,< n/2 and thus the worst-case complexity is .
P <n/ P y « Learnb;: The attacker can learn the entire database becRifse

2t +n. - . .
An obvious limitation of this attack is that the matcher migh will retlfrn any_bi and AS can manipulate any transactions.
« Learnbd;: Inherits the attacks afdS.

easily detect suspicious transactions, e.g., consecitpets that . . ) .
have structures deviating from normal input. However, clirig such ¢ ;rf? ce U dw'thb dn‘feren'ij IDs: The_ a_t;acki_r can easgy search
inputs may not always be feasible if a system is fully aut@dat ffferent databases an o.perate In ident |c§t|0n mo @M‘
and an attacker can alternate malicious transactions il wnes. the protocol cou.ld be deS|gn.ed o op.erate in verification enod
Moreover, depending on the techniques that are used, thetste . Trace UL over dlfferent. queries. Agldmg)B as an a_d versary
in the inputs may be easy to mask. makes it easier to run in identification mode or to learif not
Unknown Matching Sample Attackthe goal of this attack is already known byAS.
to learnd; from a matching sample that is unknown to the attacker. 5) Attacker =AS and M: Depending on howM implements its
This attack combines ideas from the previous attacks. Tteekatr functionality this can be a very powerful attacker, e.gMfpossesses
is AS, not includingS, and.AS does not know how to compute andecryption keys for encrypted samples/templates.
output of f5 that reflects equal (or different) inputs. It is assumed, « Learnb;: BecausedS can forward taoM any data received from

C. Attack Discussion (n& involved)

however, that the attacker can replace the components of the
value he received fron$, i.e., f1(}). This is definitely the case if

f1 is a concatenation of subfunctions andA4fS can compute such

subfunction f; .
The actual attack proceeds as follow. The attackeér waits until
a genuine user presents a valid sample. The attack is siaslan

‘DB without necessarily combining it it with a new sample, this
is practically trivially achieved.

« Learnbd}: For the same reason as the previous attack goal, this
is practically trivially achieved.

« TraceU,; with different IDs: Assisted byM, AS may be able
to more easily compare references from different databases
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« Trace U; over different queries: This is practically trivially mapped on one or more functional components, irrespectiadudly
achieved from learning; andb;. distributed implementation or a client-server settingedén attackers
6) Attacker =DB and M: In this combination of attackergy3 ~ are at first sight consistent with the adversary model iniSect-B.
will manipulate its output so that it can be of use to thé. The The presented schemes also have in common that they areddefine
attacker is, however, limited in generating additional ripse in the honest-but-curious adversary model. However, iiskmown
o Learnb;: This combination of attacker most likely results in aWha,t .the impact is when one or more of the logical e““,“e,som
situation that is equivalent to having all references in ¢tear. malicious. How ogr framewor}( can be used to assess this impc
« Learnb;: This is not necessarily achievable, becautg can be demonstrateq n t.h's secgon. .
transform the combination df; andb; before it is sent toM. Th? atta}cks n this section are based_ on the generic attacks
« TraceU; with different IDs: As a consequence of the ability todescnbgd in Sectiofl . We apply them aga}mst two cpmplex cryp-
learn b, this is practically trivially achieved. tographic protocols that use homomorphic encryption, rmanire

« TraceU; over different queries: Most likely this attacker is ablefsectlonlk\]/'A foga;chsm; b3|’ Brlng;e\)t atlf.l[ ]dand 'E Sectlct)rr]iv-i. d
to learn for whichi the reference was requested and tréage or a scheme by Barboset al. [20]. We then describe another kin

) . of attacks by looking at a scheme by Stoian@¥][in SectionlV-C.
7) Attacker = AS and DB and M: In this particular case, the

attacker is a combination oflS, DB and M, and the attacker has, A. Bringeret al. ACISP 2007
in principle, no limitations with regard to learnirtg, tracingi/; over
different queries or linking different IDs off;. For example, the
attacker is in no way limited to perform a search (identifmat on
the database. The main attack goal that remains is to kéarn

1) Description: In [19)], Bringer et al. presented a new security
model for biometric authentication protocols that sepgrdhe tasks
of comparing, storing and authorizing an authenticatioquest
amongst different entities: a fully trusted sensgran authentication
serverAS, a databas®B and a matching servic#1. The goal was
D. Attackers includingS to prevent any of the latter three to learn the relation betwsome

Two of the attack goals are trivially achieved & is included. identity and the biometric features that relate to it. Thmeadel forms
Obviously, the attacker learns the sampje At the same time this the basis of our current framework and in this model they qutexl
implies that the attacker can trabe over different queries by storing @ scheme that applies the Goldwasser-Micali cryptosystef Let
and usingb; as a unique identifier. Eam(m, pk) denote encryption of a message hitunder public key

1) Attacker =.AS including S: pk and letDgw (¢, sk) denote decryption of a ciphertextvith private

. Learn b;: Besides the attacks witho& (cf. supra), AS can XeYsk.Foranym,m'e {/07 1} we have the tlomomorphic property
perform a center-search attack from a matching sample shatfem(Eem(m, pk) x Eem(m’, pk), sk) = m@m'. The scheme ini[]

known throughsS. goes as follows.

. TraceU; with different IDs: The attacker can use a matching DUring enroliment; registers withAS. He then gets an index
sample and start looking that up in different databases. and a pseudonyniD;. Let N denote the total number of records in

the system. DatabaseB receives and store®;,:) whereb; stands

2) Attacker =DE including S: for U;’s biometric template, a binary vector of dimensiad, i.e.,
« Learnb;: The same center-search attack can be performed agin— (p,, b,,,...,b; ). In the following, we suppose thatis
the case wherglS andS are the attacker. However, a matchingy|sg the ’inde’x of the ’recorbi in the databas®23.
sample is required. A key pair is generated for the system. Matchet possesses the
« TraceU; with different IDs: Unless references are stored in thggcret keysk. The public keypk is known by S, AS and DB.
clear this is most likely not achievable. The authentication servedS stores a table of relationdD;, ) for
3) Attacker =M including S: i€ {1,...,N} and DB contains the enrolment data, ..., by .

« Learnb;: The same center-search attack can be performed as ifVhen userl/; wants to authenticate himsel§ will send an
the case wheredS and S are the attacker. Because the sensdtncrypted sampl€em(b;, pk) and ID; to AS. The authentication
can send any input and any identity, the attacker does nettoav Server AS will request the encrypted referené&w (b:, pk) from
wait for a matching sample. Because will most likely learn DB and combine it with the encrypted sample. Because of the
some information about the result of the comparison progeduhomomorphic propertyAS is able to obtairfeu (b; & bi, pk). Note
this goal is pracitally trivially achieved. that the encryption is bitwise sdS will permute theM encryptions
. TraceU; with different IDs: Most likely not achievable becauseand forward these to\i. BecauseM has the secret keyk, M
there is no direct access to or little control over the refees Ccan decrypt the permuted XOR-ed bits and compute the Hamming
from different DB. distance between the sample and the reference. Let the mmaxim
allowed Hamming distance ke
The security of this protocol is proved inq] under the assumption
that all the entities in the system will not collude and aredsi-but-
curious. It is this assumption that we challenge in our fraorg,
which leads to the following attack.

4) Attackers combiningdS, DB or M includingS: The individ-
ual attackers AS, DB or M) including S are already very powerful
and it is considered that the combinations of these are ableatn
b;. Tracingl/; with multiple IDs seems harder to achieve unlesS

is involved. o .
2) Authentication Server Adversaryl€.AS): The following at-
tack shows how a malicious authentication serve$ can learn

IV. APPLICATION TOEXISTING CONSTRUCTIONS the enrolled biometric templatk; corresponding to some identity

The system model in SectidirA introduces a logical distinction ID;. To do so the authentication servelS requests the template
in functionality and promotes a distributed implementatiaf these b; without revealing ID; and receives fromDB the encrypted
functionalities as a baseline to ensure the protection ombiric template that was stored during enrolment, i&wm(b:, pk) =
data. The schemes that will be analyzed in this section can f&sw(bi 1, pk),...,Eom(bi,n, pk)).
defined in this system model. As such they all have in commanh th The attack consists of a bitwise search performed4sy in the
they try to protect biometric references against attackeats can be encrypted domain. FirsdS computes the encryption of a zero bit
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Eaom(0, pk). Now AS will take the first encrypted bi€em(bi 1, pk), we have thaDpailer(Epailer(m1) X Epailler(m2)) = m1+mz2 mod n.
repeat itt + 1 times and add\/ — ¢ — 1 encryptions of a zero bit. Note thatZ,, is the plaintext space of the Paillier cryptosystem.
Note that the ciphertexfom(b;,1, pk) can be re-randomized so that The SVM classifier takes as inpdf classes (or users) anfl
it is impossible to detect that the duplicate ciphertexts “@opies”. samples per class, and determines support veétors and weights
If b;,1 is one, the total Hamming distance as computedMywill —«; ; for1 <i < Sandl < j < U. Following the notation inf0], let
bet + 1 and M will return “not ok”. If b; 1 is zero, M will return v = (v1,...,vx) = b; denote a freshly captured biometric sample.
“ok”. This process can be repeated for all bitsbef hence, AS can For this sample the classifier computes
learnd; bit by bit in M queries. To further disguise the attagkS s k
can apply permutations and add uptt@ncryptions of one-bits to d),(v) = Zai’j ZUL(SVM)L forj=1,...,U. (7)
make the query look genuine. i=1 1=1

3) Matcher and Sensor Adversarf¥ M+S): A bitwise search with this vectorciswm(v), it is possible to determine which class is
similar to the previous attack allows to leabnin M queries. Note the most likely forv or to reject it. The support vectoisV; ; and
that the sensaf can sends arbitrary inpUtS to the System. The attackﬂfe We|ght Coeﬁicient&i’j are the references that are Storedzw_

repeats the following steps for each bittin Briefly, the scheme of Barboset al. works as follows:

« S sends the encryption d@f = (0, ...,0); 1) The sensotS captures a fresh biometric sample and encrypts

« M receivesh; © 0 bitwise but permuted and records the weight each of the features of its template = (v1,...,vx) with

of b; ®0; Paillier’s cryptosystem and sends it to the authenticasienver
« S toggles a bit in thé) vector in positionr and sends it to4S; AS. Let auth= (Epaitier(v1), - - - , Epaillier(Vk)).
« M observes the changed weight (+1 or -1) and learns the bit a?) The database DB computes an encrypted version
positionz in b; . of the SVM classifier for this biometric data:
. . . . . _ S k [SVi,jliyey s

4) Discussion: What makes the first attackdEAS) feasible is G = [Ti=: (IT= [auths]; ) 7 where []; denotes
that all bits are encrypted separately. Moreover, it is miforeed the [™' component of a tuple. Thig; corresponds to the
that AS combines the input from the sensor and from the database. €ncryption of thecl§) with Paillier’s cryptosystem as defined
To counteract this threat, one could requiseto sign the input above. The database returns the valueso AS.
and forceDB to merge the input with the reference. In this way 3) The authentication serveAS scrambles the values; and
AS does not receive the referen€em(b;, pk) but the combination forwards them tQM-Z- _
Eem(b] @ b, pk). However, AS can still learnd; and b, @ b;. 4) The matcherM, using the private key of the system, decrypts
Additional measures have to be taken to prevent this, &g, the components of the SVM classifier and performs the classi-
could be required to sigdem(b] ® bi, pk), which will be verified fication gfv. The classification returns the class for which the
by M. Note that in the case wherdS and DB collude, these value el is maximal.
countermeasures are not sufficient anymore. 5) Based on the output o#1, AS determines the real identity of

The second attack4=M +S) is more difficult to prevent. Each U; (in case of non-rejection).
authentication transaction can be expressed in our systedelnas ~ 2) Authentication Server Adversaryl¢.AS): The following at-
follows. tack shows howAS can learnb;. In this scheme, the biometric

. S AS: fi(B) reference data that are stored BY5, i.e., the support vectorSV; ;

and the weight coefficients; ;, represent hyperplanes that are used
for classification. Thesé-dimensional hyperplanes are expressed as
M AS: fa(bi, bs) linear combinations of enrolment samples (the supportovert We

. S : fa(d(bj, b; . . : : .
M= AS: fald(bi, b)) ] ~will show how they can be recovered dimension by dimension.
The attack can be executed as soou\dss able to learn from a pair | ot ys rewrite 0 as

f3(bi, b;), f3(b,b;) how the distanced(d;, b;) and d(b7, b;) relate s s
to each other (i.e., greater than, smaller than or equal ttjout P (v) = vy ZO‘" i(SVij), + -+ ZO‘" (SVij)
necessarily knowing the actual distances. svm A DINT Ik

i=1
=v16j1+ -+ vk -

B. Barbosaet al. ACISP 2008 By sending a vectop = (1,0,...,0) to DB, AS will retrieve the

1) Description: In [20] Barbosaet al. presented a new protocol for Ncryption of 3,1 = 3=, a;(SVi,;), for each user, indexed by
biometric authentication, followingl[] (see previous Sectiofv-A). J» in the database.
A notable difference between these two comes from the fat[th] Instead of sending akt; = Epaitier(3;,1) to M, only one value
compares two biometric templates by their Hamming distahegeas Will be kept by AS, e.g.,c1 = Epaiiier(f1,1). The authentication
[20] classifies one biometric template into different classsisgian Server will setc; = Epaiier() for some valuer € Z, and all other
SVM classifier (support vector machine, se&][for details). Bio- ¢i = Erailier(0). The matcherM will return the index of the class
metric templates are represented as features vector whendeature With the greatest value, which isif 1,1 > z and2 if 11 < z.
is an integer, i.e.b; = (bi1,...,bix) € N*. Barbosaet al. encrypt The initial value.of:c =n/2.If f11 >z thenAS wn!l adjust z to
this vector, feature by feature, with the Paillier cryptsteyn [6]. In  7/2+n/4, otherwiser = n/2 —n/4. By repeating this process and
particular, they exploit its homomorphic property to corepits SYM ~ adjusting the value,, the exact valugy,, can be learned aftéog, n
classifier (think of a sum of scalar products) in the encrytemain. 9ueries. Hence, the reference data of a single user can ivedein

However, as the features are encrypted one by one, an adveesa 108, 7 queries to the matcher. _
do something similar as the attack described in Sedtioa . 3) Discussion: As in SectionlV-A this attack succeeds because

Let Epaiier (resp. Draiier) denote the encryption (resp. decryption)features are encrypted separately and there is no checletid ge
with Paillier's cryptosystem. This cryptosystem enjoysamiomor- sample and the reference were really merged.

phic property which ensures that the product of two enciypl@in- 2| [20], the entity that makes the decision is refered to as thdieation
texts corresponds to the encryption of their sum: #or, m2 € Z,,  server. To be consistent with our model we continue to useettne matcher.



8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,QL. X, NO. Y, MONTH 200Z

C. Stoianov SPIE 2010 3) Authentication Server AdversaryA€.AS): In the current
1) Description: In [27], Stoianov introduces several authenticatio?cheme, bits are not encrypted bit per bit independently.eber,
schemes relying on the Blum-Blum-Shub pseudo-random gesrer they are masked with streams generated via Blum-Blum-Simab a

We focus on the database setting from the paper (cf. Sectioh 7& codeword so attacks as in SectidisA and [V-B are no longer

[27]. In this setting there is a service provider SP that perfotive possible. Nevertheless, there is still a binary structbeg AS may
verification. Consistent with our model, we will call thistiép the ~€XPloit.

matcherM. Sample and reference are combined before being sent td‘ssume thatdS knowsS’&b’ that leads to a positive decision, i.e.,
M and although this is not explicitly mentioned if’] we designate M acceptsh’ because (b, ) < t. Then AS can start froms’ & ¢’
this functionality to the authentication servdS in our model. and add progressively some errors until he reaches a negasuit.

In the schemes of’}, the biometric data are binarized and are Then, he backtracks one step by decreasing the error weygbhé
combined with a random codewoectoming from an error-correcting {0 come back to the last positive result. This givés an encrypted
code to form a secure sketch or code offset. When a new capture templateS” @ b”. Consider now the vecto§’ @ b” @ S @ c@ b and
v is made, whenevel is close tob (using the Hamming distance) replace the first bits (say of small lengthby al bits vectorz.
it is possible to recover. from b ® b’ @ ¢ using error correction.  « For all possible values of, AS sends the resulting vector (the
This technique is known as the fuzzy commitment scheme déJue first block is changed by the value) to M who acts as a
and Wattenberg5). An additional layer of protection is added by decision oracle.
encrypting the secure sketch using Blum-Goldwasser. « If several values give a positive result, thet§ increases the

The Blum-Blum-Shub pseudo-random generafof |s a tool used errors on all but the first block.
in the Blum-Goldwasser asymmetric cryptosysteid][From a seed « This is repeated until only one value efgives a positive result.
xo and a public key, a pseudo-random sequefide generated. In  « When this step is reachedlS has found the value with no
the following, S is XOR-ed to the biometric data to be encrypted. By  errors, i.e., he learns the first block 6f @ S @ c.
doing so, the state of the pseudo-random generator is uptiaie, ;. « AS proceeds to the next block.

Fromz,11 and the private key, the sequenSecan be recomputed.  Following this strategy, it is feasible to recover all thestf b@b'.

In this system of StoianowM generates the keys and sends thg AS colludes withS, he can retrieve the full reference template
public key toS. On enroliment b as soon asS knows one sample that is close to This attack

1) SensorS computes(S @ b @ ¢, x¢+1) Where: corresponds to the center search attack (cf. Sectiobelow).

« Sampleb is the freshly captured biometric data, 4) Discussion:In a way similar to the inherent traceability of users

« String S is a pseudo-random sequence and; is the DYy M, there are no mechanisms described that protect agRifist
state of the Blum-Blum-Shub pseudo-random generator H8cingl/; over different queries, i.e., by tracking+c+b lookups.
described above, and We note that the matche¥1 is very powerful because he knows

« ¢ is a random codeword which makes the secure sketéfe secret key, which allows computir§f, and S. As soon asM
cob: colludes with one of the other entities he is able to learmyhing

2) SensorS sendsS @ b & ¢ to DB; from a genuine match or a false accept.

3) SensorS sendsz:+1 and H(c) to M where H is a crypto-
graphic hash function.

Using the private keyM computesS from x;41 and stores it along

V. CONCLUSION
Biometric authentication protocols that are found in theréture

H(c). Periodically, M (resp.DB) updatesS (resp.S & b & c) to s
(resp.S @ ¢ @ b) with an independent stream cipher.
During authentication sensa$ receives a new samplg and

are usually designed in the honest-but-curious model asguthat
there are no malicious insider adversaries. In this paperhave
challenged that assumption and shown how some existingqmist

forwards (S’ @ ', z;, 1) to AS, where S’ is a new pseudo-random are not secure against such adversaries. Such analysisrésneky

sequence. Itis assumed that there is some sort of authi@isarver relevant in the context of independent database providdisch

AS that retrievesS @ ¢ @ b from DB and merges it withS’ ¢ b’.  attention was given to an authentication server attackhiciwis a
Finally S’ @b © S bdcandx, ., are sent toM. Using the private central and powerful entity in our model.

key M recoversS’. From S’ and S, M computesc ® b @ ', tries Clearly, there are still a number of problems that must beesbl
to decode it and verifies the consistency of the result \#ifz). before fully anonymous biometric authentication can beieeu.

2) Matcher AdversaryA=M): Let M be the primary attacker. It To prevent the attacks that were presented, stronger emhert
is inherent to the scheme thatt can always trace a valid user overof the protocol design is needed: many attacks succeed $ecau
different queries by looking at the codewardwhich is revealed after transactions can be duplicated or manipulated. For example
a successful authentication. Depending on the entity tbdtides cannot verify whethedS has correctly merged the input frafhand
with M additional attacks can be deviced. DB. Moreover, DB cannot verify whethetdS is executing queries

If M andDB collude (A=M+DB) they learn the sketcbpb. This that originate from a query made I, The same holds foM who
implies that they can trace users with different identif@®wing the cannot verify that inputs originate from queries frénand toDB.
linkability attack based on the decoding of the sum of twatcthes Some attacks have a low complexity, e.g., linear in the size o
as described in[1]. From a genuine matchM learnsc andb. the references. This is the case for the decomposed reéesttack,

If M andS collude (4=M+S) they control and always learn thewhich particularly targets bit-wise or feature-wise emtigns. The
input sampleb’. By settingd’ = 0 they learnc @ b from a single motivation for applying encryption on the feature level askenefit
query. If a successful authentication occurred, the adwverkearns from the homomorphic properties of the applied cryptosystas a
everything. consequence, better cryptographic primitives are neekadallow

If M and AS collude (A=M+AS) they always learn the input performing computations on encrypted data without allgwito
sampleb’. They can learn the sketeh® b for any reference and thus attack individual features.
trace users with different identities as in the cade M+DB). They Since S is the entity that supposed to trigger an authentication
learn the referencé after successful authentication. transaction it is fundamental limitation that it can never \erified
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whetherS is making queries that really originate from an authenti9] J. Bringer, H. Chabanne, M. Izabachéne, D. Pointdhe9a Tang, and
cation request or is generating malicious queries. As aezprence,
the combination ofS and M as attacker requires that is able
to return the result of the comparison between a fresh saamlea
reference taAS without learning anything about the result itself.

Due to the generic design of our model, several other schemes

in the literature fit our model and might suffer from the prase

attacks. Nevertheless, as they are not always designed that

same entities, an adaptation might be required. Some o#nersot

compatible at all; for instance those for which the securitjes on

a user-secret key stored on the user side.
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