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A Framework for Analyzing Template Security and
Privacy in Biometric Authentication Systems
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Abstract—In this paper we analyze the vulnerabilities of biometric
authentication protocols with respect to user and data privacy. The goal
of an adversary in such context is not to bypass the authentication
but to learn information either on biometric data or on users that are
in the system. We elaborate our analysis on a general system model
involving four logical entities (sensor, server, databaseand matcher), and
we focus on internal adversaries to encompass the situationwhere one or a
combination of these entities would be malicious. Our goal is to emphasize
that when going beyond the usual honest-but-curious assumption much
more complex attacks can affect the privacy of data and users.

On the one hand, we introduce a new comprehensive framework that
encompasses the various schemes we want to look at. It presents a
system model in which each internal entity or combination ofentities is
a potential attacker. Different attack goals are considered and resulting
requirements on data flows are discussed. On the other hand, we develop
different generic attacks. We follow a blackbox approach inwhich we
consider components that perform operations on biometric data but
where only the input/output behavior is analyzed. These attack strategies
are exhibited on recent schemes such as the distributed protocol of
Bringer et al. (ACISP 2007), which is based on the Goldwasser-Micali
cryptosystem, the related protocol of Barbosa et al. (ACISP2008), which
uses the Paillier cryptosystem, and the scheme of Stoianov (SPIE 2010),
that features the Blum-Goldwasser cryptosystem. All theseschemes have
been developed in the honest-but-curious adversary model and show
potential weaknesses when considered in our malicious insider attack
model.

Index Terms—Biometrics, template protection, authentication, proto-
cols, blackbox security model, malicious adversaries

I. I NTRODUCTION

Although biometric template protection is a relatively young disci-
pline, already over a decade of research has brought many proposals.
The main objective of template protection methods – and the main
difficulty – is to prevent an attacker to compromise privacy of users
or biometric data and not necessarily to thwart bypassing ofthe
biometric authentication itself. These methods can be separated in
three levels. The first one is to have biometric data coming ina self-
protected form. Many algorithms have been proposed: quantization
schemes [1], [2] for continuous biometrics; fuzzy extractors [3] and
other fuzzy schemes [4]–[6] for discrete biometrics; and cancellable
biometrics [7]–[9]. The security of such template-level protection
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has been intensively analyzed, e.g., in [10]–[13]. On a second level
one can use hardware to obtain secure systems, e.g., [14], [15].
Finally, at a third level biometric authentication can be achieved from
protocols that rely on advanced cryptographic techniques such as
Secure Multiparty Computation, homomorphic encryption orPrivate
Information Retrieval protocols [16, Ch. 9] [17]–[24]. The focus of
our work is on this third level.

Our contributions are the following. We extend the blackbox
framework initiated in [25] with the distributed system model of [19]
in a way that it can handle different existing proposals for biometric
authentication. We show how this blackbox approach can leadto
attacks against these proposals, that have generally been conceived
to only resist non-colluding honest-but-curious entities. We describe
in detail our analysis of three existing protocols [19], [20], [22].
In the framework we propose, we develop generic attack strategies
in the malicious adversary model. We list all the possible existing
attacks points and the different internal entities that canlead the
attacks, and we reveal the potential consequences. Some of the attacks
that are presented in this paper can easily be solved or prevented.
It should be noted, however, that the objective of this work is to
demonstrate that existing solutions suffer from certain weaknesses.
Moreover, the generic attacks that are defined in this paper can
be used by developers and reviewers as a first evaluation for new
protocol proposals.

As our aim is privacy leakage analysis, it justifies our focus
on internal adversaries: they are stronger than external attackers
when challenging the privacy properties of a system. Moreover, our
framework models the internal components of a biometric system into
four logical entities, namely the sensor, the authentication server, the
database and the matcher. This is an important aspect as a system
without any separation between these entities would not be able to
ensure the highest privacy properties against internal adversaries such
as malicious administrators. However the division in four entities
cannot be considered as the sole warranty: so we study scenarios
where several entities are malicious or collude; and we underline
that some entities are more powerful than other in such situations.

Note finally that this representation of a biometric system archi-
tecture is not superficial: it is easy to imagine an application in
which the authentication server is a service provider that relies on
a third party to provide a biometric reference database (forinstance
government owned) for authentication or identification. Distributed
biometric systems and the sharing of biometric databases isbecoming
more and more common, see for instance the joint project [26]
between the Department of Defence (DoD) and the Department of
Homeland Security (DHS) in the USA, the FBI Next Generation
Identification (NGI) project [27], or the European Visa Information
System (VIS) [28].

The rest of the paper is organized as follows. The framework is
developed in SectionII , which introduces the system and attack
model. Generic attack strategies are proposed and formalized in
SectionIII . These are then applied to existing protocols in SectionIV,
where detailed attacks are described. SectionV concludes the paper
with a discussion on the problems that need to be solved to achieve
the optimal privacy properties.

II. FRAMEWORK

In this section we present a framework that forms a basis for the
security analysis of biometric authentication protocols.The frame-
work models a generic distributed biometric system and the (internal)
adversaries against such system. We define the roles of the different
entities that are involved and their potential attack goals. From these
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roles and attack goals we derive the requirements that are imposed
on the data that are exchanged between the entities.

Biometric Notation: Two measurements of the same biometric
characteristic are never exactly the same. Because of this behavior,
a biometric characteristic is modeled as a random variableB, with
distributionpB over some rangeB. A sample is denoted asb. Two
samples or templates are related if they originate from the same
characteristic. In practice, we will say that they are related if their
mutual distance is less than some threshold. Therefore, a distance
function d is defined overB and for each value in the range of d that
is used as the threshold when comparing two samples a false match
rate (FMR) and a false non-match rate (FNMR) can be derived.

A. System Model

Our system model follows to a large extent the model defined by
Bringeret al. [19], which was also used to define new schemes in [20]
and [29]. This model is motivated by a separation-of-duties principle:
the different roles for data processing or data storage on a server are
separated into three distinct entities. Using distributedentities is a
baseline to avoid one to control all information and it is a realistic
representation of how biometric systems work in practice (cf. [30]).

System Entities:The different entities involved in the system
are a userUi, a sensorS , an authentication serverAS, a database
DB and a matcherM. UserUi wishes to authenticate to a particular
service and has, therefore, registered his biometric databi during
the enrollmentprocedure. In the context of the service the user has
been assigned an identifierIDi, which only has meaning within this
context. The biometric reference databi are stored byDB, who links
the data to identifieri. The mapping fromIDi to i is only known by
AS, if relevant. Note that in some applications it is possible that the
same user is registered for the same service or in the same database
with different samples,bi andbj , and different identities, i.e.,IDi 6=
IDj in the service context ori 6= j in the database context. The
property of not being able to relate queries under these different
identities is theidentity privacyrequirement as defined in [19].

During theauthenticationprocedure the sensorS captures a fresh
biometric sampleb′i from userUi and forwards the sample toAS . The
authentication serverAS manages authorizations and controls access
to the service. To make the authorization decision,AS will rely on
the result of the biometricverificationor identificationprocedure that
is carried out by the matcherM. It is assumed that there is no
direct link betweenM andDB. As such,AS requests fromDB the
reference data that are needed byM and forwards them toM. It is
further assumed that the system accepts only biometric credentials.
This means that the user provides his biometric data and possibly his
identity, but no user-specific key, password or token. Fig.1 shows
the participating entities.

Functional Requirements:Enrollment often involves offline
procedures, like identity checks, and is typically carriedout under
supervision of a security officer. During verification (or identification)
the system typically runs in an automated and non-supervised mode.
Therefore, we assume that the system entities are trusted during
enrolment, hence users are enrolled properly and only authentication
procedures are analyzed in our framework. A distinction hasto be
made between verification and identification. Verification introduces
a selection step, which implies thatDB returns only one of its
references, namely thebi that corresponds to the identifieri that
is used in the context of the database. The entity that does the
mapping betweenIDi and i, when applicable, is generallyAS. In
identification mode,DB returns the entire set of references, in some
protected form, toAS. The database can then be combined withb′i
and forwarded toM. The matcherM has to verify thatb′i matches
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Fig. 1. System model with indication of generic informationflows and attack
pointsAi. UserUi ’s biometric is sampled by sensorS. The sampleb′i and
Ui’s identity are forwarded to the authentication serverAS, who requests
the corresponding referencebi from databaseDB. AS combines the sample
and the reference and forwards the result to matcherM, who performs the
actual comparison and returns the result toAS. The solid arrows represent the
messages exchanged between the system entities. The dashedarrow represents
the implicit feedback on the authentication result to the user Ui, i.e., access
to the requested service is granted if the sample matches thereference.

with one or a limited number ofbi in the received set of references
or that one of the matching references has indexi.

We define the minimal logical functionality to be provided by
our system entities in terms of generic information flows, which are
included in Fig.1. In this functional model, we represent the result of
the biometric comparison as a function of the distanced(b′i, bi). This
is a generic representation of the actual comparison method: M can
evaluate simple distances but also run more complex comparisons
and will output either similarity measures or decisions that are based
on some thresholdt. The information flows are as follows.

User Ui presents a biometric characteristicBi that will be sam-
pled by the sensorS to produce a sampleb′i. When operating in
verification modeUi will claim an identityIDi :

Ui
b′i←Bi
−−−−→ S or Ui

b′i←Bi , IDi
−−−−−−−→ S . (1)

The sensorS forwardsb′i andIDi in some form toAS:

S
f1(b

′

i)−−−−→ AS or S
f1(b

′

i) , g1(IDi)
−−−−−−−−−→ AS . (2)

In general g1(IDi) = IDi but it can also be a mapping to an
encrypted value to hideIDi from AS . If applicable,AS resolves
the mappingg1(IDi) to identifier i and requests reference data for
one or more users fromDB by sending at least one requestg2(b

′
i, i) :

AS
g2(b

′

i,i)−−−−−→ DB . (3)

Note that the functiong2 does not necessarily use all the information
in its arguments, e.g., the fresh sampleb′i may be ignored.

DatabaseDB providesAS with reference data for one or more
users in some form. It is possible thatDB returns the entire database,
e.g., in case of identification:

AS
f2({bi})
←−−−−− DB . (4)

The authentication serverAS forwards the fresh sampleb′i and the
reference databi in some combined form toM :

AS
f3(b

′

i,{bi})−−−−−−−→M . (5)

Note thatAS has onlyf1(b′i) andf2(bi) at his disposal to compute
f3(b

′
i, {bi}) .

The matcherM performs a biometric comparison procedure on
the receivedb′i and {bi} and returns the result toAS. The result
may contain decisions or scores or different identities butshould at
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least be based on one distance calculation between the freshsample
b′i and a referencebi :

AS
f4(d(b′i,{bi}))←−−−−−−−−−M . (6)

Different data are stored by the different entities. The database
stores references{bi}. The authentication service stores the informa-
tion needed to mapg1(IDi) to i, if applicable. The matchers can
store non-biometric verification data, e.g., hashes of keysextracted
from biometrics, or decryption keys that are use to recover the result
of combining sample and reference. Also, the sensor can store key
material to encrypt the fresh sample.

B. Adversary Model

Attacker Classification:Based on the physical entry point of an
attack a distinction is made between two types of attackers:internal
attackers are corrupted components in the system andexternalattack-
ers are entities that only have access to a communication channel. We
will consider here only the issue of an insider attacker. As abaseline,
we make the following assumption.

Assumption 1:The protocol ensures the security of the scheme
against any external attacker.
As this can be reached by classical secure channel techniques, by an
external security layer independent of the core protocol specification,
we study further only the internal layer.

A second distinction is made based on an attacker’s capabilities.
Passive or honest-but-curious attackers only eavesdrop the communi-
cations in which they are involved and can only observe the data that
passes through them. They always follow the protocol specifications,
never change messages and never generate additional communication.
Active or malicious attackers are internal components thatcan also
modify existing or real transactions passing through them and that can
generate additional messages. We mainly focus on maliciousinternal
attackers and we formulate the following additional assumption.

Assumption 2:The protocol ensures the security of the scheme
against honest-but-curious entities, i.e. internal system components
that always follow the protocol specifications but eavesdrop internal
communication.
We will explain in SectionII-C how this has a direct impact on the
properties of the different functionalities in our model.

Finally, we put aside the threats on the user or client side, by con-
centrating the analysis on the remote server’s side. The information
leakage for the user and the client is generally only the authentication
or identification result. They can, however, try to gain knowledge on
the reference databi by running queries with differentb′i, e.g., in some
kind of hill climbing attack. The difficulty can highly vary depending
on the modalities, the threshold and the scenario. A basic line of
defense is to limit the number of requests, to ensure the aliveness of
the biometric inputs provided by the user and to hide the matching
score, if possible. Although it is important to implement such defense
mechanisms, the threats are inherent to any biometric authentication
or identification system. So we do not take the user or the sensor into
account as an attacker in this model and the primary attack points
areAS, DB andM. Nonetheless, there may be inside attackers that
also control the biometric inputs to some extent. We model this with
a secondary attack point at the sensor.

Assumption 3:The userUi or the sensorS cannot be attackers on
their own but they can act as a secondary attack point in combination
with a primary attack point atAS, DB or M. If this is the case
an attacker can choose the input sampleb′i throughS and observe
whether the authentication request was successful throughUi.

Of course, the baseline assumptions have to be checked before
proceeding with a full analysis of the security of a scheme, but as

TABLE I
ATTACK GOAL RELEVANCE (V = relevant ; ? = relevant if designed to hide

references fromDB; * = relevant if IDi and i are hidden fromAS).

Attack goal AS DB M

Learnbi V ? V
Learnb′i V V V
TraceUi with different identities V ? V
TraceUi over different queries V* V V

such, they clarify what the big issues are that may remain in state-
of-the-art schemes. They also underline what the hardest challenges
are when designing a secure biometric authentication protocol. Fig.1
sums up the different attack points from our attack model.

Attack Goals:The security of a scheme is expressed in terms of
specific attack goals or adversary objectives. The attack goals stem
from the security and privacy issues that are commonly acknowledged
in the literature, e.g., in [7] or [31]. In fact, our framework is
quite similar to that proposed by Rathaet al. [7], but with two
major differences. As opposed to [7] the objective of the attacker
in our framework is not to get authenticated fraudulently, but to
compromise the template security and user privacy. Moreover, as
opposed to [7] the communication channels between the different
modules are assumed to be secure.

Typical issues are that biometric data can be used to reconstruct
artifacts (fake samples) to impersonate other users or thatbiometric
data might reveal sensitive (medical) information. So biometric
data, both references and samples, should be hidden. Then, even if
the data are hidden, it should not be possible to abuse protected
references as identifiers for cross-matching, i.e., linking data from
different applications. Hence, users that are registered in multiple
applications, thus having multiple identities, should notbe traceable
over these applications. Finally, privacy-enhanced applications that
rely on properly authenticated users, e.g. anonymous ePetitions or
online auctions where identities are hidden for all but the winning
bid, should not lose their privacy-enhancing properties due to the
introduction of biometrics.

These issues lead to the following global attack goals.

• Learn reference bi . A scheme providesbiometric reference
privacy if it resistant to an attacker that wants to learn some
information about a referencebi .

• Learn sampleb′i . We call the security property associated with
this attack goalbiometric sample privacy.

• Trace users with different identities. This attack can be
achieved when different references from the same user, possibly
coming from different applications, can be linked. A systemthat
is resistant to such attack is said to provideidentity privacy[29].

• Trace users over different queries.This attack refers to linking
queries, whether anonymized or not, based oni, bi or b′i.
The property of a system that prevents such attack is called
transaction anonymity[29]. An attacker that is able to learnb′i
can automatically trace users based on the learned sample.

With these attack goals we aim to analyze how the optimal privacy
properties with respect to the privacy-by-design principles [32] can
be achieved. Although this is not always currently requiredfor all
biometric applications, it is a challenging issue to be ableto use
biometrics fully anonymously and many researches are conducted to
this aim. Of course, adding more information to be able to decrease
the level of privacy on behalf of some more trusted entity, e.g., under
a legal warrant, is a feasible option that allows addressingmore
applications in the same framework.

The formulated attack goals apply to the different internalat-
tackers as shown in TABLEI. Attack goals can be generalized for
combinations of inside attackers, e.g.,AS andM, and they are
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relevant for the combination if they are relevant for each attacker
individually. As a counterexample, learningbi is not always relevant
for the combinationAS-DB. In some schemes it is assumed that
DB stores references in the clear so the attack “learnbi” becomes
trivial. It is important, however, that such schemes explicitly mention
the assumption thatDB is fully trusted. It will become clear in the
further sections that the main focus of our work is onAS who is
a powerful attacker. This way of thinking is rather new and many
protocols are not designed to be resistant to such attacker.

It should be noted that there are many more security and privacy
issues relevant for biometric systems in general. Infrastructure, de-
ployment context, application setting, human factors, etc. determine
the different risks that are to be taken into account. We refer to
the work of Jain et al. [33] for a comprehensive treatment and
categorization of general biometric system vulnerabilities.

C. Requirements on Data Flows

Coming back to the functionalities in our system model (cf.
SectionII-A ), we use the attack goals defined in TABLEI to impose
requirements on the data that are being exchanged.

• AS should not be able to learnb′i hencef1 is at least one-
way, meaning thatb′i should be unrecoverable fromf1(b′i) with
overwhelming probability. To prevent tracingUi over different
queries it could also be required thatf1 is semantically secure.1

Semantic security is a security notion that might be too strong
but it ensures a minimum leakage of information.

• AS should not learnbi hencef2 is at least one-way. To prevent
tracing users with different identities it may be required that f2
is also semantically secure.

• If applicable,AS should not be able to traceUi by linking
queries onIDi or i, and thusg1 should be semantically secure.

• If applicable,DB may not learnbi, hencebi would be stored
in a protected form using some semantically secure function.

• DB may not learnb′i, henceg2 is one-way on its first input. It
should also be semantically secure to prevent tracingUi.

• DB may not be able to link the queries at all, henceg2 should
also be semantically secure on its second input.

• M may not learn the individualbi or b′i and must not be able
to link references or queries from the sameUi, hencef3 should
be semantically secure on tuples〈b′i, bj〉

Because we demand thatM returns a result toAS that is
a function (f4) of d(b′i, bi) some operations must be malleable.
Malleability refers to the property of some cryptosystems that an
attacker can modify a ciphertext into another valid ciphertext that is
the encryption of some function of the original message, without the
attacker knowing this message. Depending on when the combination
of bi and b′i is realized, eitherg2, f2 or f3 would be malleable. In
the following section, we will show the impact of this fundamental
limitation and how it can be exploited to attack existing protocols.

III. G ENERICATTACK STRATEGIES

The goal of this section is to explore the different attack scenarios
in our framework that can be used for analyzing actual protocol
specifications. First, a blackbox attack model is explained. Then some
generic attacks withAS as adversary are derived which will be
demonstrated in the examples in SectionIV. Finally,we briefly discuss
the attack goals from SectionII-B and potential attacks for every

1A cryptosystem is semantically secure if it is infeasible for a computation-
ally bounded adversary to learn from a given ciphertext any useful information
about the underlying plaintext. It implies that an adversary has no significant
advantage over random guessing when trying to distinguish two encryptions
of the same message from the encryptions of two different messages.

possible adversary combination, including both the case without S
being involved and the case withS involved. Recall from SectionII-B
thatS is not considered to be an autonomous attacker. However, an
attacker that has control overS is very powerful and, therefore, this
is a necessary additional dimension that should be analyzed.

A. Blackbox Attack Model

The different attacks that can be carried out by the attackers are
modeled asblackbox attacks, following recent results from [25]. This
allows us to clearly specify the focus of the attack. Our blackbox-
attack model consists of two logical entities:

1) The attacker, i.e., one or more system entities that are fully
under control of the attacker: internal data are known, messages
can be modified and additional transactions can be generated.

2) The target or the blackbox, i.e., the combination of all other
system entities. The attack is focused on the data that are
protected by the system components within the blackbox.

The target is modeled as a blackbox because the attacker can only
observe the input-output behavior of the box. This adequately reflects
remote protocols where only the communication can be seen bythe
attacker. No details are known about the internal state of the remote
components. During the attack, the attacker will “tweak” inputs to
the blackbox. However, all communication must comply with the
protocol specification. Any messages that are malformed or that are
sent in the wrong order are rejected by the blackbox.

As explained in SectionII only malicious internal attackers are
considered, i.e.,AS, DB, M and combinations of these entities.
UserUi and the sensorS have been excluded as individual attackers.
However, it should be noted that there are cases in which the attacker
cannot generate additional transactions because he has to follow the
protocol specifications. E.g., ifDB is attacking he has to wait until a
request is received fromAS. When analyzing protocols it should be
assumed that this will occur with a reasonable frequency. Ifrelevant,
attack complexities can be expressed in function of this frequency.
Similarly, if the attacker isAS, he receives inputs fromS and
communicates withDB andM. In this case we excludeUi and
S from the blackbox. It should be assumed, though, that a number
of inputs fromS is available toAS. This does not necessarily imply
that S is under control ofAS. The analysis of the attack can take
into account the amount of data that is available.

B. Generic Attacks forAS

The following three generic attacks are specific for the authentica-
tion server and will be demonstrated in SectionIV.

Decomposed Reference Attack:Let’s assume that only one
referencebi is returned byDB. The goal of this attack is to learnbi.
Biometric samples or references are often represented as a “string”,
i.e., a concatenation (let‖ denote concatenation) of (binary) symbols.
Let’s assume thatf2(bi) is the concatenation of a subfunction̂f2
that is applied on each of then componentsb′i,j of b′i individually.
If AS has to combinef2(bi) and f1(b

′
i) without knowing either

the sample or the reference, it is likely thatf1 and f3 will also
be the concatenation of component-wise applied subfunctions, i.e.,
f3(bi, b

′
i) = f̂3(bi,1, b

′
i,1)‖ . . . ‖f̂3(bi,n, b

′
i,n). Note that in our model

AS can generate the valuêf3(bi,j , b′i,j) but this value should not
reveal toAS whether the inputs are the same or not. This decompo-
sition of references leads to the following attack.

Suppose thatAS is able to generate a value that is valid output
of f̂3 when the two component inputsbi,j and b′i,j are the same
and similarly when they are not the same, e.g., the output is the
encryption of one or zero. IfAS can also computef1, thenAS
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can fully reconstructbi. To do soAS choose the first component of
b′i at random, combines it with the first component ofbi and sends
the result toM. The other components that are sent toM are such
that t of those are an output of̂f3 that reflects different inputs and
the n − t − 1 remaining components are outputs that reflect equal
inputs. Note thatt is the comparison threshold. If the guess ofAS for
the first component is correct thenM will return a positive match.
Otherwise the guess is wrong andAS can try again. This process
can be repeated until all components ofbi are recovered. For binary
samples, this requiresn queries toM and 1 query toDB.

A similar attack can be executed if the biometric data are rep-
resented as real-valued or integer-valued feature vectors. However,
additional queries are required to fully recover the reference bi.

Center Search Attack UsingS : In this attack,S is also com-
promised and under the control of the attacker. The attack goal is to
learn the full referencebi from a close sample. The input sample is
obviously always known toAS andS . Thus at some point in timeUi
will present a sampleb′i that matches referencebi. This sample will lie
at some distance from the reference. In the case where biometrics are
represented as binary strings and the system implements a hamming
distance matcher the attacker can recover the exactbi as follows.

The sensor flips the first bit ofb′i and sends the new sample
to AS who performs the whole authentication procedure. If the
authentication succeeds,S flips the second bit, leaving the first bit
also flipped, and sends the sample toAS who follows the procedure
again. This continues until the sample no longer matchesbi. Then
the sensor starts again by restoring the first bit of the sample that is
no longer accepted and forwards it toAS. If it gets accepted this
means that the first bit of the original sampleb′i was the same as the
first bit of bi. If not, then the first bits were different. One by one
the bits inb′i that are different from those inbi can be corrected.

We call this the center search attack because we start from a sample
that lies in a sphere with radiust, the matching threshold, and the
reference as center point. The goal of this attack is to move the sample
to the center of the sphere. The worst-case complexity of this attack
for bitstrings of lengthn is the greatest of2 ∗ t + n and 4t. The
complexity is2 ∗ t+ n if there aret− 1 bit-errors in the beginning
and one at the end of the string. The firstt− 1 errors get corrected
by flipping them andt additional bits need to be flipped to invalidate
the sample. Locating the bit-errors requires searching till the end of
the string where the last error is. The complexity is4t if there are
t − 1 correct bits followed byt wrong bits. So2t flips are needed
before the queries no longer match and then2t positions need to be
searched. In practice,t ≤ n/2 and thus the worst-case complexity is
2t+ n.

An obvious limitation of this attack is that the matcher might
easily detect suspicious transactions, e.g., consecutiveinputs that
have structures deviating from normal input. However, detecting such
inputs may not always be feasible if a system is fully automated
and an attacker can alternate malicious transactions with valid ones.
Moreover, depending on the techniques that are used, the structure
in the inputs may be easy to mask.

Unknown Matching Sample Attack:The goal of this attack is
to learnbi from a matching sample that is unknown to the attacker.
This attack combines ideas from the previous attacks. The attacker
is AS , not includingS , andAS does not know how to compute an
output of f3 that reflects equal (or different) inputs. It is assumed,
however, that the attacker can replace the components ofb′i in the
value he received fromS , i.e., f1(b′i). This is definitely the case if
f1 is a concatenation of subfunctions and ifAS can compute such
subfunctionf̂1.

The actual attack proceeds as follow. The attackerAS waits until
a genuine user presents a valid sample. The attack is similaras in

the center-search attack, only nowAS will not flip bits but simply
replace them with a known value, e.g., one. He will do this until the
sample no longer matches. ThenAS already knows that the last bit he
replaced was not one and he will restore that bit. Then he continues to
substitute the bits one by one, carefully observing whetherthe sample
matches or not and learning all the bits. The first bits that were flipped
to invalidate the sample can be learned simply by restoring them.

C. Attack Discussion (noS involved)

We iterate the attack goals from SectionII-B for every possible
adversary combination, not involving the sensorS . When attackers
are combined they inherit the potential attacks from the individual
attackers. For example, ifAS is able to learnbi then the combination
of AS andDB will also be able to learnbi.

1) Attacker =AS:

• Learn bi: Potential attacks for achieving this goal have been
described in SectionIII-B .

• Learnb′i: The same attacks as for learningbi can be used.
• Trace Ui with different IDs: This goal could be achieved if
AS can access different databases that have compatible system
parameters. This would imply that samples from one system
could be used for comparison in another system. However, such
issue is unlikely if, e.g., encryption is used and the keys are
generated per application.

• TraceUi over different queries: This attack is trivially achieved
if the system operates in verification mode andAS does the
mapping fromIDi to i in the clear. IfAS does not know the
mapping but can influence the valuei that is sent toDB in a
deterministic way thenAS can trigger an identification mode
by repeatedly queryingDB and iterating over all values ofi.

2) Attacker =DB: The attacker is the databaseDB who commu-
nicates with the authentication serviceAS only. The attacker cannot
achieve any of the attack goals individually because his blackbox
gives output, which he cannot influence, before receiving input. If
this entity does not collude with other entities then it is simply a
passive attacker and by Assumption2 it cannot mount any attacks.

3) Attacker =M: The matcher alone cannot achieve any of the
goals for the same reason asDB. By Assumption2 it cannot attack
because its blackbox provides output before input andM cannot
trigger any additional transactions.

4) Attacker =AS andDB: Achieving the attack goals depends
on how the functionality ofDB is implemented.

• Learnbi: The attacker can learn the entire database becauseDB
will return anybi andAS can manipulate any transactions.

• Learnb′i: Inherits the attacks ofAS.
• Trace Ui with different IDs: The attacker can easily search

different databases and operate in identification mode although
the protocol could be designed to operate in verification mode.

• TraceUi over different queries: AddingDB as an adversary
makes it easier to run in identification mode or to learni, if not
already known byAS.

5) Attacker =AS andM: Depending on howM implements its
functionality this can be a very powerful attacker, e.g., ifM possesses
decryption keys for encrypted samples/templates.

• Learnbi: BecauseAS can forward toM any data received from
DB without necessarily combining it it with a new sample, this
is practically trivially achieved.

• Learn b′i: For the same reason as the previous attack goal, this
is practically trivially achieved.

• TraceUi with different IDs: Assisted byM, AS may be able
to more easily compare references from different databases.
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• Trace Ui over different queries: This is practically trivially
achieved from learningbi and b′i.

6) Attacker =DB andM: In this combination of attackers,DB
will manipulate its output so that it can be of use to theM. The
attacker is, however, limited in generating additional queries.

• Learn bi: This combination of attacker most likely results in a
situation that is equivalent to having all references in theclear.

• Learn b′i: This is not necessarily achievable, becauseAS can
transform the combination ofbi and b′i before it is sent toM.

• TraceUi with different IDs: As a consequence of the ability to
learnbi this is practically trivially achieved.

• TraceUi over different queries: Most likely this attacker is able
to learn for whichi the reference was requested and traceUi.

7) Attacker =AS and DB andM: In this particular case, the
attacker is a combination ofAS, DB andM, and the attacker has,
in principle, no limitations with regard to learningbi, tracingUi over
different queries or linking different IDs ofUi. For example, the
attacker is in no way limited to perform a search (identification) on
the database. The main attack goal that remains is to learnb′i.

D. Attackers includingS

Two of the attack goals are trivially achieved ifS is included.
Obviously, the attacker learns the sampleb′i. At the same time this
implies that the attacker can traceUi over different queries by storing
and usingb′i as a unique identifier.

1) Attacker =AS including S :

• Learn bi: Besides the attacks withoutS (cf. supra),AS can
perform a center-search attack from a matching sample that is
known throughS .

• TraceUi with different IDs: The attacker can use a matching
sample and start looking that up in different databases.

2) Attacker =DB including S :

• Learnbi: The same center-search attack can be performed as in
the case whereAS andS are the attacker. However, a matching
sample is required.

• TraceUi with different IDs: Unless references are stored in the
clear this is most likely not achievable.

3) Attacker =M including S :

• Learnbi: The same center-search attack can be performed as in
the case whereAS andS are the attacker. Because the sensor
can send any input and any identity, the attacker does not have to
wait for a matching sample. BecauseM will most likely learn
some information about the result of the comparison procedure,
this goal is pracitally trivially achieved.

• TraceUi with different IDs: Most likely not achievable because
there is no direct access to or little control over the references
from differentDB.

4) Attackers combiningAS, DB orM includingS : The individ-
ual attackers (AS, DB orM) includingS are already very powerful
and it is considered that the combinations of these are able to learn
bi. TracingUi with multiple IDs seems harder to achieve unlessAS
is involved.

IV. A PPLICATION TO EXISTING CONSTRUCTIONS

The system model in SectionII-A introduces a logical distinction
in functionality and promotes a distributed implementation of these
functionalities as a baseline to ensure the protection of biometric
data. The schemes that will be analyzed in this section can be
defined in this system model. As such they all have in common that
they try to protect biometric references against attackersthat can be

mapped on one or more functional components, irrespective of a fully
distributed implementation or a client-server setting. These attackers
are at first sight consistent with the adversary model in Section II-B.
The presented schemes also have in common that they are defined
in the honest-but-curious adversary model. However, it is not known
what the impact is when one or more of the logical entities become
malicious. How our framework can be used to assess this impact will
be demonstrated in this section.

The attacks in this section are based on the generic attacks
described in SectionIII . We apply them against two complex cryp-
tographic protocols that use homomorphic encryption, namely in
SectionIV-A for a scheme by Bringeret al. [19] and in SectionIV-B
for a scheme by Barbosaet al. [20]. We then describe another kind
of attacks by looking at a scheme by Stoianov [22] in SectionIV-C.

A. Bringer et al. ACISP 2007

1) Description: In [19], Bringer et al. presented a new security
model for biometric authentication protocols that separates the tasks
of comparing, storing and authorizing an authentication request
amongst different entities: a fully trusted sensorS , an authentication
serverAS, a databaseDB and a matching serviceM. The goal was
to prevent any of the latter three to learn the relation between some
identity and the biometric features that relate to it. Theirmodel forms
the basis of our current framework and in this model they presented
a scheme that applies the Goldwasser-Micali cryptosystem [34]. Let
EGM(m,pk) denote encryption of a message bitm under public key
pk and letDGM(c, sk) denote decryption of a ciphertextc with private
key sk . For anym,m′ ∈ {0, 1} we have the homomorphic property
DGM(EGM(m, pk)×EGM(m

′, pk), sk) = m⊕m′. The scheme in [19]
goes as follows.

During enrollmentUi registers withAS . He then gets an indexi
and a pseudonymIDi. Let N denote the total number of records in
the system. DatabaseDB receives and stores(bi, i) wherebi stands
for Ui’s biometric template, a binary vector of dimensionM , i.e.,
bi = (bi,1, bi,2, . . . , bi,M ). In the following, we suppose thati is
also the index of the recordbi in the databaseDB.

A key pair is generated for the system. MatcherM possesses the
secret keysk. The public keypk is known by S , AS and DB.
The authentication serverAS stores a table of relations(IDi, i) for
i ∈ {1, . . . , N} andDB contains the enrolment datab1, . . . , bN .

When userUi wants to authenticate himself,S will send an
encrypted sampleEGM(b

′
i, pk) and IDi to AS. The authentication

serverAS will request the encrypted referenceEGM(bi, pk) from
DB and combine it with the encrypted sample. Because of the
homomorphic property,AS is able to obtainEGM(b

′
i ⊕ bi, pk). Note

that the encryption is bitwise soAS will permute theM encryptions
and forward these toM. BecauseM has the secret keysk, M
can decrypt the permuted XOR-ed bits and compute the Hamming
distance between the sample and the reference. Let the maximum
allowed Hamming distance bet.

The security of this protocol is proved in [19] under the assumption
that all the entities in the system will not collude and are honest-but-
curious. It is this assumption that we challenge in our framework,
which leads to the following attack.

2) Authentication Server Adversary (A=AS): The following at-
tack shows how a malicious authentication serverAS can learn
the enrolled biometric templatebi corresponding to some identity
IDi. To do so the authentication serverAS requests the template
bi without revealing IDi and receives fromDB the encrypted
template that was stored during enrolment, i.e.,EGM(bi, pk) =
〈EGM(bi,1, pk), . . . , EGM(bi,M , pk)〉.

The attack consists of a bitwise search performed byAS in the
encrypted domain. FirstAS computes the encryption of a zero bit
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EGM(0, pk). Now AS will take the first encrypted bitEGM(bi,1, pk),
repeat itt + 1 times and addM − t − 1 encryptions of a zero bit.
Note that the ciphertextEGM(bi,1, pk) can be re-randomized so that
it is impossible to detect that the duplicate ciphertexts are “copies”.
If bi,1 is one, the total Hamming distance as computed byM will
be t+ 1 andM will return “not ok”. If bi,1 is zero,M will return
“ok”. This process can be repeated for all bits ofbi, hence,AS can
learn bi bit by bit in M queries. To further disguise the attackAS
can apply permutations and add up tot encryptions of one-bits to
make the query look genuine.

3) Matcher and Sensor Adversary (A=M+S): A bitwise search
similar to the previous attack allows to learnbi in M queries. Note
that the sensorS can sends arbitrary inputs to the system. The attacker
repeats the following steps for each bit inbi:

• S sends the encryption of̄0 = 〈0, . . . , 0〉 ;
• M receivesbi⊕ 0̄ bitwise but permuted and records the weight

of bi ⊕ 0̄ ;
• S toggles a bit in thē0 vector in positionx and sends it toAS;
• M observes the changed weight (+1 or -1) and learns the bit at

positionx in bi .

4) Discussion: What makes the first attack (A=AS) feasible is
that all bits are encrypted separately. Moreover, it is not enforced
thatAS combines the input from the sensor and from the database.
To counteract this threat, one could requireS to sign the input
and forceDB to merge the input with the reference. In this way
AS does not receive the referenceEGM(bi, pk) but the combination
EGM(b

′
i ⊕ bi, pk). However, AS can still learn b′i and b′i ⊕ bi.

Additional measures have to be taken to prevent this, e.g.,DB
could be required to signEGM(b

′
i ⊕ bi, pk), which will be verified

by M. Note that in the case whereAS and DB collude, these
countermeasures are not sufficient anymore.

The second attack (A=M+S) is more difficult to prevent. Each
authentication transaction can be expressed in our system model as
follows.

• S → AS : f1(b
′
i)

• . . .
• M←AS : f3(b

′
i, bi)

• M→AS : f4(d(b
′
i, bi))

The attack can be executed as soon asM is able to learn from a pair
f3(b

′
i, bi), f3(b

′′
i , bi) how the distancesd(b′i, bi) andd(b′′i , bi) relate

to each other (i.e., greater than, smaller than or equal to) without
necessarily knowing the actual distances.

B. Barbosaet al. ACISP 2008

1) Description: In [20] Barbosaet al.presented a new protocol for
biometric authentication, following [19] (see previous SectionIV-A ).
A notable difference between these two comes from the fact that [19]
compares two biometric templates by their Hamming distancewhereas
[20] classifies one biometric template into different classes using an
SVM classifier (support vector machine, see [35] for details). Bio-
metric templates are represented as features vector where each feature
is an integer, i.e.,bi = 〈bi,1, . . . , bi,k〉 ∈ N

k. Barbosaet al. encrypt
this vector, feature by feature, with the Paillier cryptosystem [36]. In
particular, they exploit its homomorphic property to compute its SVM
classifier (think of a sum of scalar products) in the encrypted domain.
However, as the features are encrypted one by one, an adversary can
do something similar as the attack described in SectionIV-A .

Let EPaillier (resp.DPaillier) denote the encryption (resp. decryption)
with Paillier’s cryptosystem. This cryptosystem enjoys a homomor-
phic property which ensures that the product of two encrypted plain-
texts corresponds to the encryption of their sum: form1,m2 ∈ Zn

we have thatDPailler(EPailler(m1)×EPailler(m2)) = m1+m2 mod n .
Note thatZn is the plaintext space of the Paillier cryptosystem.

The SVM classifier takes as inputU classes (or users) andS
samples per class, and determines support vectorsSVi,j and weights
αi,j for 1 ≤ i ≤ S and1 ≤ j ≤ U . Following the notation in [20], let
v = (v1, . . . , vk) = bi denote a freshly captured biometric sample.
For this sample the classifier computes

cl
(j)
SVM(v) =

S∑

i=1

αi,j

k∑

l=1

vl(SVi,j)l for j = 1, . . . , U . (7)

With this vectorclSVM(v), it is possible to determine which class is
the most likely forv or to reject it. The support vectorsSVi,j and
the weight coefficientsαi,j are the references that are stored byDB.

Briefly, the scheme of Barbosaet al. works as follows:
1) The sensorS captures a fresh biometric sample and encrypts

each of the features of its templatev = (v1, . . . , vk) with
Paillier’s cryptosystem and sends it to the authenticationserver
AS. Let auth= (EPaillier(v1), . . . , EPaillier(vk)).

2) The database DB computes an encrypted version
of the SVM classifier for this biometric data:
cj =

∏S

i=1(
∏k

l=1[authj ]
[SVi,j ]l
l )αi,j where [.]l denotes

the lth component of a tuple. Thiscj corresponds to the
encryption of thecl(j)SVM with Paillier’s cryptosystem as defined
above. The database returns the valuescj to AS.

3) The authentication serverAS scrambles the valuescj and
forwards them toM.2.

4) The matcherM, using the private key of the system, decrypts
the components of the SVM classifier and performs the classi-
fication of v. The classification returns the class for which the
value cl(j)SVM is maximal.

5) Based on the output ofM, AS determines the real identity of
Ui (in case of non-rejection).

2) Authentication Server Adversary (A=AS): The following at-
tack shows howAS can learnbi. In this scheme, the biometric
reference data that are stored byDB, i.e., the support vectorsSVi,j

and the weight coefficientsαi,j , represent hyperplanes that are used
for classification. Thesek-dimensional hyperplanes are expressed as
linear combinations of enrolment samples (the support vectors). We
will show how they can be recovered dimension by dimension.

Let us rewrite (7) as

cl
(j)
SVM(v) = v1

S∑

i=1

αi,j(SVi,j)1 + · · ·+ vk

S∑

i=1

αi,j(SVi,j)k

= v1βj,1 + · · ·+ vkβj,k .

By sending a vectorv = 〈1, 0, . . . , 0〉 to DB, AS will retrieve the
encryption ofβj,1 =

∑S

i=1 αi,j(SVi,j)1 for each user, indexed by
j, in the database.

Instead of sending allcj = EPaillier(βj,1) to M, only one value
will be kept by AS , e.g., c1 = EPaillier(β1,1). The authentication
server will setc2 = EPaillier(x) for some valuex ∈ Zn and all other
cj = EPaillier(0). The matcherM will return the index of the class
with the greatest value, which is1 if β1,1 > x and2 if β1,1 ≤ x.

The initial value ofx = n/2. If β1,1 > x thenAS will adjust x to
n/2+n/4, otherwisex = n/2−n/4. By repeating this process and
adjusting the valuex, the exact valueβ1,1 can be learned afterlog2 n
queries. Hence, the reference data of a single user can be learned in
k log2 n queries to the matcher.

3) Discussion: As in SectionIV-A this attack succeeds because
features are encrypted separately and there is no check to see if the
sample and the reference were really merged.

2In [20], the entity that makes the decision is refered to as the verification
server. To be consistent with our model we continue to use theterm matcher.
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C. Stoianov SPIE 2010

1) Description: In [22], Stoianov introduces several authentication
schemes relying on the Blum-Blum-Shub pseudo-random generator.
We focus on the database setting from the paper (cf. Section 7of
[22]. In this setting there is a service provider SP that performs the
verification. Consistent with our model, we will call this entity the
matcherM. Sample and reference are combined before being sent to
M and although this is not explicitly mentioned in [22] we designate
this functionality to the authentication serverAS in our model.

In the schemes of [22], the biometric datab are binarized and are
combined with a random codewordc coming from an error-correcting
code to form a secure sketch or code offsetb⊕c . When a new capture
b′ is made, wheneverb′ is close tob (using the Hamming distance)
it is possible to recoverc from b ⊕ b′ ⊕ c using error correction.
This technique is known as the fuzzy commitment scheme of Juels
and Wattenberg [5]. An additional layer of protection is added by
encrypting the secure sketch using Blum-Goldwasser.

The Blum-Blum-Shub pseudo-random generator [37] is a tool used
in the Blum-Goldwasser asymmetric cryptosystem [38]. From a seed
x0 and a public key, a pseudo-random sequenceS is generated. In
the following,S is XOR-ed to the biometric data to be encrypted. By
doing so, the state of the pseudo-random generator is updated toxt+1.
From xt+1 and the private key, the sequenceS can be recomputed.

In this system of Stoianov,M generates the keys and sends the
public key toS . On enrollment

1) SensorS computes(S ⊕ b⊕ c, xt+1) where:

• Sampleb is the freshly captured biometric data,
• String S is a pseudo-random sequence andxt+1 is the

state of the Blum-Blum-Shub pseudo-random generator as
described above, and

• c is a random codeword which makes the secure sketch
c⊕ b;

2) SensorS sendsS ⊕ b⊕ c to DB;
3) SensorS sendsxt+1 andH(c) to M whereH is a crypto-

graphic hash function.

Using the private key,M computesS from xt+1 and stores it along
H(c). Periodically,M (resp.DB) updatesS (resp.S ⊕ b⊕ c) to Š
(resp.Š ⊕ c⊕ b) with an independent stream cipher.

During authentication sensorS receives a new sampleb′ and
forwards(S′ ⊕ b′, x′t+1) to AS, whereS′ is a new pseudo-random
sequence. It is assumed that there is some sort of authentication server
AS that retrievesŠ ⊕ c ⊕ b from DB and merges it withS′ ⊕ b′.
Finally S′⊕b′⊕ Š⊕b⊕c andx′t+1 are sent toM. Using the private
keyM recoversS′. FromS′ and Š, M computesc⊕ b ⊕ b′, tries
to decode it and verifies the consistency of the result withH(c).

2) Matcher Adversary (A=M): LetM be the primary attacker. It
is inherent to the scheme thatM can always trace a valid user over
different queries by looking at the codewordc, which is revealed after
a successful authentication. Depending on the entity that colludes
with M additional attacks can be deviced.

If M andDB collude (A=M+DB) they learn the sketchc⊕b. This
implies that they can trace users with different identitiesfollowing the
linkability attack based on the decoding of the sum of two sketches
as described in [11]. From a genuine match,M learnsc and b.

If M andS collude (A=M+S) they control and always learn the
input sampleb′. By settingb′ = 0 they learnc ⊕ b from a single
query. If a successful authentication occurred, the adversary learns
everything.

If M andAS collude (A=M+AS) they always learn the input
sampleb′. They can learn the sketchc⊕ b for any reference and thus
trace users with different identities as in the case (A=M+DB). They
learn the referenceb after successful authentication.

3) Authentication Server Adversary (A=AS): In the current
scheme, bits are not encrypted bit per bit independently. Moreover,
they are masked with streams generated via Blum-Blum-Shub and
a codeword so attacks as in SectionsIV-A and IV-B are no longer
possible. Nevertheless, there is still a binary structure thatAS may
exploit.

Assume thatAS knowsS′⊕b′ that leads to a positive decision, i.e.,
M acceptsb′ because d(b, b′) ≤ t . ThenAS can start fromS′ ⊕ b′

and add progressively some errors until he reaches a negative result.
Then, he backtracks one step by decreasing the error weight by one
to come back to the last positive result. This givesAS an encrypted
templateS′ ⊕ b′′. Consider now the vectorS′ ⊕ b′′ ⊕ Š ⊕ c⊕ b and
replace the first bits (say of small lengthl) by a l bits vectorx.

• For all possible values ofx, AS sends the resulting vector (the
first block is changed by the valuex) to M who acts as a
decision oracle.

• If several values give a positive result, thenAS increases the
errors on all but the first block.

• This is repeated until only one value ofx gives a positive result.
• When this step is reached,AS has found the valuex with no

errors, i.e., he learns the first block ofS′ ⊕ Š ⊕ c.
• AS proceeds to the next block.

Following this strategy, it is feasible to recover all the bits of b⊕b′.
If AS colludes withS , he can retrieve the full reference template
b as soon asS knows one sample that is close tob. This attack
corresponds to the center search attack (cf. SectionIII below).

4) Discussion:In a way similar to the inherent traceability of users
by M, there are no mechanisms described that protect againstDB
tracingUi over different queries, i.e., by trackinǧS+c+b lookups.

We note that the matcherM is very powerful because he knows
the secret key, which allows computingS′, and Š. As soon asM
colludes with one of the other entities he is able to learn everything
from a genuine match or a false accept.

V. CONCLUSION

Biometric authentication protocols that are found in the literature
are usually designed in the honest-but-curious model assuming that
there are no malicious insider adversaries. In this paper, we have
challenged that assumption and shown how some existing protocols
are not secure against such adversaries. Such analysis is extremely
relevant in the context of independent database providers.Much
attention was given to an authentication server attacker, which is a
central and powerful entity in our model.

Clearly, there are still a number of problems that must be solved
before fully anonymous biometric authentication can be achieved.
To prevent the attacks that were presented, stronger enforcement
of the protocol design is needed: many attacks succeed because
transactions can be duplicated or manipulated. For example, M
cannot verify whetherAS has correctly merged the input fromS and
DB. Moreover,DB cannot verify whetherAS is executing queries
that originate from a query made byS . The same holds forM who
cannot verify that inputs originate from queries fromS and toDB.

Some attacks have a low complexity, e.g., linear in the size of
the references. This is the case for the decomposed reference attack,
which particularly targets bit-wise or feature-wise encryptions. The
motivation for applying encryption on the feature level is to benefit
from the homomorphic properties of the applied cryptosystem. As a
consequence, better cryptographic primitives are needed that allow
performing computations on encrypted data without allowing to
attack individual features.

SinceS is the entity that supposed to trigger an authentication
transaction it is fundamental limitation that it can never be verified
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whetherS is making queries that really originate from an authenti-
cation request or is generating malicious queries. As a consequence,
the combination ofS andM as attacker requires thatM is able
to return the result of the comparison between a fresh sampleand a
reference toAS without learning anything about the result itself.

Due to the generic design of our model, several other schemes
in the literature fit our model and might suffer from the presented
attacks. Nevertheless, as they are not always designed withthe
same entities, an adaptation might be required. Some othersare not
compatible at all; for instance those for which the securityrelies on
a user-secret key stored on the user side.
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