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Abstract Electronic devices may undergo attacks go-

ing beyond traditional cryptanalysis. Side-channel anal-

ysis is an alternative attack that exploits information

leaking from physical implementations of e.g. crypto-
graphic devices in order to discover cryptographic keys

or other secrets. This work comprehensively investi-

gates the application of a machine learning technique
in side-channel analysis. The considered technique is

a powerful kernel-based learning algorithm: the Least

Squares Support Vector Machine (LS-SVM). The cho-
sen side-channel is the power consumption and the tar-

get is a software implementation of the Advanced En-

cryption Standard. In this study, the LS-SVM tech-

nique is compared to Template Attacks. The results
show that the choice of parameters of the machine learn-

ing technique strongly impacts the performance of the

classification. In contrast, the number of power traces
and time instants does not influence the results in the

same proportion. This effect can be attributed to the us-

age of data sets with straightforward Hamming weight
leakages in this first study.
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1 Introduction

Security in electronic devices must not only rely on

cryptographic algorithms proven to be mathematically

secure. An attacker may use information leaked from
side-channels [14] resulting from physical implementa-

tions. This is called side-channel analysis (SCA) and it

may endanger the overall security of a system. The ever
increasing demand for security on a number of applica-

tions, including the internet of things, financial trans-

actions, electronic communications and data storage,

should drive designers to strongly consider the possibil-
ity of physical attacks in addition to attacks on cryp-

tographic algorithms, as most of these applications re-

quire the use of embedded devices.

In cryptography, SCA usually aims at revealing cryp-
tographic keys. The underlying hypothesis for SCA as-

sumes that physical observables carry information about

the internal state of a chip implementing some crypto-

graphic algorithm. In this context, useful key-related
information can often be obtained from side-channels

such as: processing time [13], power consumption [14]

and electromagnetic emanation [17,8].

In this work, we focus on power analysis. Given a

set of power traces measured from a chip implementing
a cryptographic algorithm, the ultimate goal is to tell

which cryptographic key has been processed internally.

This problem is frequently addressed using a divide-
and-conquer approach. This approach breaks down a

problem into practically tractable sub-problems. For

example, parts of the cryptographic key, also known as
subkeys, may be attacked at a time. Each attack may

be formulated as a classification problem intending to

discover which subkey is linked to a given power trace.

Machine learning [16] is often used to solve classifi-

cation and regression problems. Machine learning con-
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cerns computer algorithms that can automatically learn

from experience. As a number of side-channel analy-
sis related problems can be formulated as classification

problems, it turns out that machine learning represents

a potential, useful tool for side-channel analysis.

Machine learning techniques have already been ap-

plied in cryptanalysis [19]. Furthermore, Backes et al.[2]

used machine learning techniques for acoustic side-chan-
nel attacks on printers. To the best of our knowledge,

there has not been further thorough investigation on

the application of machine learning techniques in side-
channel analysis.

This contribution lies in the context of profiled at-

tacks, such as Template Attacks (TAs) [5]. These at-
tacks comprise two phases: profiling and classification.

In machine learning terms, these phases are respectively

known as training and testing. In TAs, multivariate

Gaussian templates of noise within power traces are
generated either for all possible subkeys or for the re-

sults of some particular function involving them. Sub-

sequently, power traces are classified under a maximum
likelihood approach. The TA is regarded as the strongest

form of side-channel attack possible in an information

theoretic sense [5]. Although TA can be seen as a ma-
chine learning technique, we refer to TA and machine

learning techniques separately in this work.

In our work, the machine learning technique used
is the Least Squares Support Vector Machines (LS-

SVMs) [20], which is a kernel-based learning algorithm.

LS-SVM classifiers have achieved considerable results

in comparison to other learning techniques, including
standard SVM classifiers, for classification on 20 public

domain benchmark data sets [9].

We trained LS-SVM classifiers by supervised learn-
ing. In the training phase, a number of power traces

were provided to the classifier in order to teach it the

most important features of the data set. In the test-
ing phase, one unseen power trace was presented to the

classifier at a time.

To get insight on the behavior of all the LS-SVM
parameters, we focused on binary classification prob-

lems. Artificial data were created based on power traces

extracted from a software implementation of the Ad-
vanced Encryption Standard (AES) without counter-

measures. We considered one single S-Box lookup. In

this first study, there was no actual key recovery yet.

Three experiments were conducted. We first inves-

tigated the influence of changing the parameters of the

LS-SVM classifiers in order to learn their effects. Anal-

yses varying both the numbers of power traces and their
components (time instants possibly preprocessed) were

also performed. In addition, we examined the impact

of three feature selection techniques (Pearson correla-

tion coefficient approach for component selection [18],

sum of squared pairwise t-differences (SOST) of the
average signals [10] and principal component analysis

(PCA) [12]) and one preprocessing technique (outliers

removal).

Our approaches were compared to TAs in terms of

effectiveness in order to provide a known reference. TAs
strongly rely on parametric estimations of Gaussian dis-

tributions. Machine learning techniques are able to by-

pass restrictive assumptions about probability density

distributions.

This paper is organized as follows. Section 2 de-

scribes the feature selection techniques used in this work.
In Section 3, our selected machine learning technique is

explained. The results of the experiments are presented

in Section 4. The preprocessing technique is also ex-
plained in this section. Section 5 presents the conclu-

sions. Section 6 is dedicated to future work.

2 Feature Selection

Generally, machine learning approaches make use of a

preliminary step before tackling the classification prob-
lem to be solved. This step is called feature selection.

It filters out and/or preprocesses the components of a

given data set in order to extract the intrinsic parts of
the data containing the most relevant pieces of infor-

mation under some criteria. The two main advantages

of using the feature selection step are: 1) it allows for

the reduction of the computational burden of classifiers
with respect to processing and memory issues; and 2)

it avoids confusing or teaching the wrong features of

the data to the classifier. High-dimensional data can
prevent classifiers from working in practice.

Power traces have thousands or millions of samples
in time, which are here regarded as components. In

this work, each component is represented by t. Many

of them do not carry relevant information related to

the targeted subkeys. They rather represent noise and
ideally should not be presented to the classifier.

The following sections present: the Pearson correla-
tion coefficient approach for component selection (mos-

tly used in this work); the sum of squared pairwise t--

differences (SOST) of the average signals; and the prin-
cipal component analysis (PCA).

2.1 Pearson Correlation Coefficient Approach

A straightforward way to select the N most relevant

components of the power traces concerns finding the

N points which have the largest correlations with re-
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spect to a function of the targeted subkey, as shown by

Rechberger et al. [18].
The Pearson correlation coefficient is given by

ρ(t) =
cov(x(t), y)

√

var(x(t)) · var(y)
,−1 ≤ ρ(t) ≤ 1,

where cov(·, ·) represents the covariance, var(·) repre-

sents the variance, x(t) is the vector with the compo-
nent t of all power traces in the training set, and y is a

vector containing the target values.

2.2 SOST

Chari et al. [5] originally proposed the following method
to choose the most relevant components of the power

traces, as part of TAs. Let Mi be the statistical av-

erage of the power traces associated to the subkey i,
i = 1, . . . , S. The N most relevant components would

be those at which large differences show up after com-

puting the sum of pairwise differences between the av-
erage signals Mi.

Gierlichs et al. [10] showed that this feature selection

method was not optimal. Better results were achieved

using the Sum Of Squared pairwise T-differences (SOST)
of the average signals. SOST is based on the T-Test –

a statistical tool to distinguish signals. The T-Test is

expressed by the ratio

T =
Mi(t)−Mj(t)
√

σ2

i
(t)

ni
+

σ2

j
(t)

nj

. (1)

The denominator of the formula weights the differ-

ence between Mi(t) and Mj(t) according to the vari-

abilities σ2
i (t) and σ2

i (t), in relation to the number of

signals ni and nj associated to the sets i and j. Eq. (1)
can also be seen as an analogy to the signal-to-noise

ratio, in which the difference between the averages is

the signal and the denominator is a measure of disper-
sion, being interpreted as noise. This noise may make

the distinction between the distributions with averages

Mi(t) and Mj(t) hard, but it should vanish if ni and nj

are large.

The most relevant components will be those at which

the sum of squared pairwise T-differences,

SOST(t) =

S
∑

j>i=0
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,

presents the N highest peaks.

2.3 PCA

Principal Component Analysis (PCA) [12] is a well-

known orthogonal, non-parametric transformation that

provides a way to efficiently select relevant information
from data sets. The core idea is to compute a new basis

that better expresses the data set, revealing its intrinsic

structure.

By assuming linearity, the set of new plausible bases
is significantly reduced and the problem turns into find-

ing an appropriate change of basis. PCA also assumes

that mean and variance are sufficient statistics.

Presuming that the directions with largest variances

contain most relevant information, PCA sorts the trans-

formed, most important components of a vector with

regard to their variances.

In addition to maximizing the signal, measured by

the interclass variance, PCA also intends to minimize

the redundancy within components of the data set. This
can be achieved by setting all off-diagonal terms of the

covariance matrix of the transformed data to zero, mak-

ing the components uncorrelated to each other.

After estimating the covariance matrix C of the
original data set x ∈ R

M , where M is the number

of components of x, the N < M eigenvectors related

to the largest eigenvalues λt from the eigenvector de-
composition Cut = λtut should be selected. The trans-

formed, lower dimensional variable will be given by

zt = uT
t (xt − µt), t = 1, . . . , N, where µt is the mean

of the t-th component of x. The error on the new data
set resulting from the dimensionality reduction is de-

termined by
∑M

t=N+1 λt. For the transformed variable,

t does not have a time connotation anymore.

3 Classification

The classification technique used in this work is the

Least Squares Support Vector Machine (LS-SVM). LS-
SVM tackles linear systems rather than solving convex

optimization problems, typically quadratic programs,

as in standard support vector machines (SVM) [7]. This

is done by both introducing a least squares loss function
and working with equalities, instead of the intrinsic in-

equalities of SVM formulations. One advantage of this

reformulation is complexity reduction.

(LS-)SVM classifiers are originally formulated to per-

form binary classification. In the training phase, the

(LS-)SVM classifier constructs a hyperplane in a high

dimensional space aiming to separate the data accord-
ing to the different classes. This data separation should

occur in such a way that the hyperplane has the largest

distance to the nearest training data points of any class.
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These particular training data points define the so-called

margin.

Let Dn = {(xk, yk) : xk ∈ R
N , yk ∈ {−1,+1}; k =

1, . . . , n} be a training set, where xk and yk are respec-

tively the k-th input (power trace after feature selec-

tion) and output (subkey related) patterns.

The classifier in the primal weight space takes the
form

y = sign[wTϕ(x) + b],

where sign(x) = −1 if x < 0, else sign(x) = 1, and

ϕ(x) : RN → R
Nf maps the N -dimensional input space

into a higher, possibly infinite, Nf -dimensional space.

Both the weights w ∈ R
Nf and bias b ∈ R are param-

eters of the classifier. These parameters can be found
by solving the following optimization problem having a

quadratic cost function and equality constraints:

min
w,b,e

L(w, e) =
1

2
wTw +

γ

2

n
∑

k=1

e2k

s.t. yk[w
Tϕ(xk) + b] = 1− ek, k = 1, . . . , n, (2)

which is a modification of the basic SVM formulation.
In Eq. (2), e = [e1, . . . , en]

T is a vector of error vari-

ables, tolerating misclassification, and γ is the regular-

ization parameter, determining the trade-off between
the margin size maximization and the training error

minimization.

After constructing the Lagrangian,

L(w, b, e;α) =
1

2
wTw + γ

1

2

n
∑

k=1

e2k −

n
∑

k=1

αk{yk[w
Tϕ(xk) + b]− 1 + ek},

and taking the conditions for optimality, by setting

∂L

∂w
= 0,

∂L

∂b
= 0,

∂L

∂ek
= 0,

∂L

∂αk

= 0, k = 1, . . . , n,

the classifier formulated in the dual space is given by

y(x) = sign

(

n
∑

k=1

αkykK(x, xk) + b

)

,

where K(x, xk) = ϕ(x)Tϕ(xk) is a positive definite ker-
nel matrix, αk ∈ R are the Lagrange multipliers, or

support values. Both αk and b are the solutions of the

following linear system

(

0 yT

y Ω + 1
γ
In

)(

b

α

)

=

(

0
1n

)

,

with 1n = (1, . . . , 1)T and Ωkl = ykylϕ(xk)
Tϕ(xl). The

solution is unique when the matrix corresponding to

the linear system has full rank.

According to Mercer’s theorem [1], a positive defi-

nite K guarantees the existence of the feature map ϕ,

which is often not explicitly known.

From ∂L
∂ek

= 0, we have αk = γek, meaning that

the support values are proportional to the errors cor-

responding to the training data points. As αk 6= 0,

k = 1, . . . , n, every data point is a support vector, im-
plying lack of sparseness. High αk values suggest high

contributions of training data points on the decision

boundary created by the classifier to distinguish the
different classes.

3.1 Practicalities

Roughly, when working with (LS-)SVMs one usually

chooses the kernel K between the linear kernel,

K(x, xk) = xT
k x,

and the radial basis function (RBF) kernel,

K(x, xk) = exp{
−||x− xk||

2
2

σ2
},

where || · ||2 is the L2-norm and σ2 ∈ R
+ is a parameter

to be chosen. Other kernel options, such as the polyno-

mial kernel and the multilayer perceptron (MLP) ker-

nel, are beyond the scope of this work.

Kernel-based models usually depend on parameters

controlling both their accuracies and complexities. When

using linear kernels, the only parameter to be tuned is

γ. If γ → 0, the solution favors margin maximization,
putting less emphasis on minimizing the misclassifica-

tion error. RBF kernels require tuning an additional

parameter σ2, which is directly related to the shape of
the decision boundary.

Considering RBF kernels, both parameters γ and

σ2 should be optimized in order for the classifier to
maximize the success rates concerning the analysis of

unknown power traces from the testing data set. A com-

bination of a cross-validation and a grid search algo-

rithm is recommended in the literature [20] for param-
eter tuning. Cross-validation can help preventing over-

fitting. However, its computation may be computation-

ally costly.
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Many classification problems have more than two

classes. As (LS-)SVMs are designed to perform binary
classification, a typical approach to cope with a multi-

class problem is to split the problem up into binary

classification problems using some coding technique.
For example, a multi-class problem comprising p classes

may be broken down into ⌈log2 p⌉ binary classification

tasks. Subsequently, the results of the binary classifiers
should be combined in order to reconstruct a valid re-

sult for the original multi-class problem. In this work

we only deal with binary classification problems.

4 Results

This section investigates the potential that LS-SVMs
have to work as robust power traces analyzers. We chose

to get started with a thorough investigation on the ma-

chine learning technique behavior. To this end, several

tests were performed using both linear and RBF ker-
nels. We are one step behind of the actual discovery of

cryptographic subkeys. In this work, our attacks distin-

guish between 2 different classes related to the output
of one AES S-Box.

4.1 Experimental Settings

Preliminary tests were performed on real measurements

from an implementation consisting of the subpart of

the AES algorithm composed by the XOR between an
8-bit subkey and the input word, followed by the ap-

plication of one S-Box. The LS-SVM supervised learn-

ing classifiers have been implemented using the LS-
SVMlab1.7 [4].

Our data set contains 5 000 power traces with 2 000
components each. In this work, attacks distinguish only

between 2 different classes, in order to help us initially

build a solid understanding about the techniques in-
volved. These 2 different classes were chosen in 3 ways.

The first two approaches considered the relationship
between the power traces and the internal state of the

cryptographic algorithm to be represented by the Ham-

ming weight model [15]. The threshold approach divided
the data set into two classes depending on the Hamming

weights of the outputs of the S-Box (less than or greater

than 4). The intercalated approach divided the data set
depending if the Hamming weights were even or odd.

The third approach, named bit(4), focused on the 4-th

least significant bit of the output of the S-Box, since it

was the bit leaking more information. Both intercalated
and bit(4) approaches were created so that their classes

would not be as trivially separable as those from the

threshold approach.

In the training phase, a number of inputs from the

training set were provided to the classifier in order to
teach it the most important features of the data set.

In the testing phase, one input of the test set was pre-

sented to the classifier at a time. Success rates were cal-
culated as percentages of correct classifications among

the power traces from the test sets.

Section 4.2 investigates the impact that the vari-
ation of the parameters γ and σ2 have on the suc-

cess rates. In Section 4.3, we analyzed the influence of

varying both the numbers of traces and components on
the classification. The most relevant components of the

power traces were selected by the Pearson correlation

coefficient approach in these two sections. Lastly, Sec-
tion 4.4 examined whether removing outliers or using

either the SOST or PCA feature selection techniques,

instead of the Pearson correlation coefficient approach,

would increase the success rates. All these sections pro-
vide a brief comparison of our results to TAs in terms

of effectiveness.

4.2 Influence of the LS-SVM Parameters

In this part, the training and test sets comprised re-
spectively 3 000 and 2 000 power traces. At first, only 2

components, out of 2 000, were selected by picking those

having the largest Pearson correlation coefficients and
not belonging to the same clock cycle. Working with 2-

dimensional inputs allowed visualization of the decision

boundaries created by the classifiers with respect to the
components.

The parameters γ and σ2, in case of using the RBF

kernel, assumed the following values: 0.1, 1 and 10. Af-
ter analyzing all their combinations, we verified that the

success rates for the threshold approach were as high as

99.3%, regardless of the type of kernel used. This is be-
cause the classes assigned by the threshold approach are

easily distinguishable.

The intercalated approach led to results sensitive
to both the type of kernel and the tuning parameters.

When using RBF kernels, the success rates showed a

direct relation to σ2. Success rates as high as 99.0%,

94.0% and 82.7% were achieved for σ2 = 0.1, 1 and 10,
respectively. Although γ did not influence the results as

much as σ2, high values of γ slightly increased the re-

sults. Linear kernels yielded success rates around 49.9%,
performing as well as random guesses. The reason be-

hind this is that a linear function cannot separate non-

linear, intercalated data.

The Bit(4) approach achieved success rates of 74.0%,

regardless of both the kernel type and the values of the

tuning parameters. These results, despite being worse



6 Gabriel Hospodar et al.

than those from both the threshold and intercalated ap-

proaches, are yet clearly better than random, consider-
ing that only one out of 8 bits from the output of the

S-Box was taken into account.

Figs. 1-3 show how the classification in the threshold,

intercalated and bit(4) approaches, respectively, occurs

in relation to the tuning parameters. The horizontal

and vertical axes are respectively the two considered
power traces components. Figs. 1-3 (a) present the two

classes for each approach: the square-shaped points be-

long to one class, whereas the circle-shaped points be-
long to the other class. Figs. 1-3 (b) concern the deci-

sion boundaries (dark lines scattering the space in two

regions: light and dark colored) of the linear kernel-
based classifiers for γ = 1. Varying γ for the linear

kernel does not influence the decision boundary consid-

erably. Figs. 1-3 (c)-(f) concern the decision boundaries

of the RBF kernel-based classifiers for the combinations
of γ ∈ {0.1, 10} and σ2 ∈ {0.1, 10}.

We verified that underfitting arises for low values of
γ, whilst overfitting occurs for high values of γ. This

conclusion is supported by Eq. (2). When using the

RBF kernel, low values of σ2 make the decision bound-

ary fit the data, whilst high values of σ2 spread the
decision boundaries.

Particularly, the orientations of the decision bound-
aries shown in Fig. 2 (d) for γ = 0.1 and σ2 = 10 seem

counter-intuitive. The reason behind this is twofold: 1)

the low value of γ favored underfitting; and 2) the rela-

tively high value of σ2 favored the spread of the decision
boundary in the wrong direction, which has been poorly

chosen due to underfitting. However, as γ increases, the

direction of the decision boundaries tend to fit the ori-
entation of the data more suitably, as shown in Fig. 2 (f)

in comparison to Fig. 2 (d).

TAs using 2 templates led to success rates of 99.6%,
50.3% and 73.7% for the threshold, intercalated and

bit(4) approaches, respectively. Except for the interca-

lated approach, results were similar to those obtained
with LS-SVMs using RBF kernels. Results on the inter-

calated approach were poor, as in LS-SVMs with linear

kernels. The Gaussian-based templates did not fit well
the distributions of the intercalated data. This was be-

cause the intercalated data was actually drawn from a

Gaussian mixture.

4.3 Varying the Number of Traces and Components

Since the classes defined by the threshold approach are
trivially separable, this section deals only with the in-

tercalated and bit(4) approaches. The first part of the

experiments consisted in varying the number of power
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(e) RBF kernel: γ = 10, σ2 = 0.1.
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(f) RBF kernel: γ = 10, σ2 = 10.

Fig. 3: Bit(4) approach: decision boundaries of the LS-

SVM classifiers.

traces within the training and test sets. Out of 5000,

4000, 3000, 2000, 1000 and 500 randomly chosen power
traces, 70% were assigned to the training set and the

remaining were assigned to the test set. The parame-

ters γ and σ2 were kept constant. For the intercalated
approach: γ = 10 and σ2 = 1. For the bit(4) approach:

γ = 1 and σ2 = 0.1.

Interestingly enough, the results did not vary no-

ticeably when contrasted with those from Section 4.2.

However, in the bit(4) case, the success rates dropped

approximately 10% when using the minimum number of
power traces, though. For these first experiments with

binary classification problems a relatively small amount

of power traces seemed to be enough, as far as the rele-
vant components of the power traces have been selected.

TAs behaved likewise.

The second part of the experiments in this section
attempted to raise the success rates (SR) in the bit(4)

approach by increasing the number of components. Ta-

ble 1 shows the result for γ = 1 and σ = 0.1 using
respectively 3 500 and 1 500 power traces for the train-

ing and test sets.

Table 1: Success rates (SR) for the bit(4) approach.

Method Number of components SR (%)

LS-SVM: RBF 3 74.7
LS-SVM: RBF 4 67.1
LS-SVM: RBF 6 52.7
LS-SVM: Linear 3 75.5
LS-SVM: Linear 4 75.5
LS-SVM: Linear 6 75.1
TA 3 73.0
TA 4 75.8
TA 6 75.0

When using the RBF kernel, the success rates drop-

ped as more components were included. It means that

the added components did not bring additional, valu-

able information to the classifier. On the other hand,
they represented noise, making the classification task

even harder. The contemplation of a search method for

more suitable parameters may help improve the results.
In both the linear kernel and TA cases, the success rates

did not vary as a function of the considered number of

components.

4.4 Outliers Removal, SOST and PCA

In this part, we examined whether removing outliers or

using either the SOST or PCA feature selection tech-
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niques, instead of the Pearson correlation coefficient ap-

proach, would increase the success rates.

Traces were drawn as outliers if the value of one of

its selected components subtracted by the mean of this
component yielded a value larger than 2.7 times the re-

lated standard deviation. The threshold 2.7 was chosen

ad hoc. It assured 99.3% of data coverage. Still focus-
ing on the bit(4) approach, this preprocessing technique

did not improve the previous results.

Concerning the SOST, even with this feature selec-
tion technique not choosing exactly the same compo-

nents as those from the previous section, the success

rates also did not change in comparison to the prior
results.

The scenario did not change remarkably when us-

ing PCA either. By keeping the features representing
more than 98.0% of the variance of all the features, the

results remained similar to the ones from Section 4.2.

When saving respectively 98.0%, 99.0% and 99.5% of
the variance, the number of selected features were 4, 5

and 7, respectively.

5 Conclusions

Side-channel analysis is a powerful and feasible way of

attacking secure systems. In this novel work, we started

a comprehensive study on the application of machine
learning in side-channel analysis. One of the main mo-

tivations to use machine learning techniques is their

outstanding results in different domains.

We focused on power analysis. Power traces often

leak meaningful amounts of information about the pro-

cessed cryptographic key. Power traces extracted from
a software implementation of the AES without coun-

termeasures were used for initial analysis. To help us

better understand the behavior of the machine learn-
ing technique, we created three simple arrangements

of class distributions: threshold, intercalated and bit(4).

All of them contained two different classes.

In this work, we chose the LS-SVM as our clas-

sification technique. We performed three experiments.

Firstly, experiments examining the influence of the pa-
rameters of the machine learning technique on the accu-

racy of the classifiers were performed on data sets with

obvious Hamming weight leakage. Secondly, we inves-
tigated the consequences of varying both the number

of traces and their components. Thirdly, we ran tests

considering feature selection (Pearson correlation coef-

ficient approach, SOST and PCA) and preprocessing
(outliers removal) techniques. The results were com-

pared to the relatively simple, strong and well-known

template attacks.

The success rates obtained in the threshold approach

were high regardless of the type of kernel used, mainly
because the data set was easily separable. Results for

the intercalated approach showed that the RBF ker-

nel is more suitable for nonlinear problems. Since the
choice of the LS-SVM parameters directly affected the

results, applying an automatic parameter tuning tech-

nique should be considered in future works.

The influence of varying the number of power traces

for training could only be noticed when using as few

as 500 power traces, which yielded lower success rates.
When increasing the number of components of the in-

puts of the classifiers, the results got worse due to lack

of valuable information within the additional compo-
nents. Likewise, the application of a preprocessing tech-

nique did not contribute. All the feature selection tech-

niques inspected in this work performed similarly.

TAs performed similarly to LS-SVM classifiers us-

ing linear kernels. This similarity was clarified in the

analysis on the intercalated approach, which generated
comparable (poor) results for both LS-SVM classifiers

with linear kernels and TAs. LS-SVM classifiers with

RBF kernels were able to produce reasonable results in

the intercalated approach. They outperformed TAs in
this case.

6 Future Works

LS-SVM It would be interesting to look further at the

functioning of kernel-based learning algorithms. It may
be that other possibly tailored kernels improve the re-

sults. As a short reminder, the kernel is responsible for

mapping the data into a feature space in order to facil-
itate the distinction between different classes.

Efficiency comparison Future works should include an

assessment of the efficiency of machine learning ap-

proaches in comparison to TAs. We observed that LS-

SVMs are significantly heavier than template attacks,
especially in the training phase. This observation is

likely to hold for other elaborated machine learning

techniques.

Other cryptographic algorithms and implementations
Any implementation of any cryptographic algorithm

may be attacked. The more attacks are performed, the

more can be learned about using machine learning tech-

niques in side-channel analysis. Here the attacker is free
to attack either software or hardware implementations

of cryptographic algorithms such as the AES, 3DES,

etc.
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Attacks on protected implementations A more realistic

attack scenario should consider attacks on protected
implementations. Some designers make use of counter-

measures such as masking [6], for instance. Also, more

noisy data should be considered.

Other machine learning techniques One is basically free
to use any off-the-shelf machine learning technique or

even some other approach. Examples of other machine

learning techniques include artificial neural networks [3,

11]. Machine learning techniques that learn in an unsu-
pervised way (by not making use of any labeled data:

e.g. clustering) are able to perform non-profiled attacks,

which were out of the scope of this work.
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