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Abstract. Physically unclonable functions (PUFs) exploit the unavoidable manufacturing variations
of an integrated circuit (IC). Their input-output behavior serves as a unique IC ‘fingerprint’. Therefore,
they have been envisioned as an IC authentication mechanism, in particular for the subclass of so-called
strong PUFs. The protocol proposals are typically accompanied with two PUF promises: lightweight
and an increased resistance against physical attacks. In this work, we review eight prominent proposals
in chronological order: from the original strong PUF proposal to the more complicated converse and
slender PUF proposals. The novelty of our work is threefold. First, we employ a unified notation and
framework for ease of understanding. Second, we initiate direct comparison between protocols, which
has been neglected in each of the proposals. Third, we reveal numerous security and practicality issues.
To such an extent, that we cannot support the use of any proposal in its current form. All proposals aim
to compensate the lack of cryptographic properties of the strong PUF. However, proper compensation
seems to oppose the lightweight objective.
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1 Introduction

In this work, we consider a common authentication scenario with two parties: a low-cost resource-
constrained token and a resource-rich server. Practical instantiations could be the following: RFID,
smart cards and a wireless sensor network. One-way or possibly mutual entity authentication is the objec-
tive. The server has secure computing and storage at its disposal. Providing security is a major challenge
however, given the requirements at the token side. Tokens typically store a secret key in non-volatile memory
(NVM), using a mature technology such as EEPROM and its successor Flash, battery-backed SRAM or fuses.
Cryptographic primitives import the key and perform an authentication protocol. Today’s problems are as
follows. First, implementing cryptographic primitives in a resource-constrained manner is rather challenging.
Second, an attacker can gain physical access to the integrated circuit (IC) of a token. NVM has proven to
be vulnerable to physical attacks [22]: the secret is stored permanently in a robust electrical manner. Third,
most NVM technologies oppose the low-cost objective. EEPROM/Flash requires floating gate transistors,
resulting in additional manufacturing steps with respect to a regular CMOS design flow. Battery-backed
SRAM requires a battery. Circuitry to protect the NVM contents (e.g. a mesh of sensing wires) tends to be
expensive.

Physically unclonable functions (PUFs) offer a promising alternative. Essentially, they are binary
functions, with their input-output behavior determined by IC manufacturing variations. Therefore, they
can be understood as a unique IC ‘fingerprint’, analogous to human biometrics. They might alleviate the
aforementioned problems. Many PUFs allow for an implementation which is both resource-constrained and
CMOS compatible. Furthermore, the secret is hidden in the physical structure of an IC, which is a much
less readable format. Invasive attacks might easily destroy this secret, as an additional advantage. Several
PUF-based protocols have been proposed, in particular for the subclass of so-called strong PUFs. We review
the most prominent proposals: controlled PUFs [4–6], Öztürk et al. [17], Hammouri et al. [8], logically
reconfigurable PUFs [11], reverse fuzzy extractors (FEs) [24], slender PUFs [16,20] and the converse protocol



[12]. The novelty of our work is threefold. First, we employ a unified notation and framework for ease of
understanding. Second, we initiate direct comparison between protocols, which has been neglected in each of
the proposals. Third, we reveal numerous security and practicality issues. To such an extent, that we cannot
support the use of any proposal in its current form.

The remainder of this paper is organized as follows. Section 2 introduces notation and preliminaries.
Section 3 describes and analyzes the strong PUF protocols. Section 4 provides an overview of the protocol
issues. Section 5 concludes the work. We operate at protocol level, considering PUFs as a black box. The low-
level protocol of Hammouri et al. [8] is therefore largely discussed in Appendix B, preceded by a discussion
of PUF internals in Appendix A.

2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g. c ∈ {0, 1}1×m
. All vectors are row vectors.

Their elements are selected with an index i ≥ 1 between round brackets, e.g. c(1). The null vector is
denoted as 0. Binary matrices are denoted with a single bold uppercase character, e.g. H. Operations are
the following: addition modulo 2 (XOR), e.g. x ⊕ c, multiplication modulo 2, e.g. e ·HT , concatenation,
e.g. x||c, and bit inversion, e.g. r. Variable assignment is denoted with an arrow, e.g. d← d− 1. Functions
are printed in italic, with their input arguments between round brackets, e.g. Hamming weight HW (r) and
Hamming distance HD(r1, r2).

2.2 Physically Unclonable Functions: Black Box Description

The m-bit input and n-bit output of a PUF are referred to as challenge c and response r respectively.
Unfortunately for cryptographic purposes, the behavior of the challenge-response pairs (CRPs) does not
correspond with a random oracle. First, the response bits are not perfectly reproducible: noise and
various environmental perturbations (supply voltage, temperature, etc.) result in non-determinism. The re-
producibility (error rate) differs per response bit. Second, the response bits are non-uniformly distributed:
bias and correlations are present. The latter might enable so-called modeling attacks. One tries to construct a
predictive model of the PUF, given a limited set of training CRPs. Machine learning algorithms have proven
to be successful [21].

PUFs are often subdivided in two classes, according to their number of CRPs. Weak PUFs offer few
CRPs: their total content (2m+n bits) is of main interest. Architectures typically consist of an array of
identically laid-out cells (or units), each producing one response bit. E.g. the SRAM PUF [9] and the ring
oscillator PUF1 [23] are both very popular. The total bit-content scales roughly linear with the required IC
area. Although there might be some spatial correlation or a general trend among cells, a predictive model
is typically of no concern. The response bits are mostly employed to generate a secret key, to be stored in
volatile memory, in contrast to NVM. Post-processing logic, typically a fuzzy extractor (FE) [3], is required
to ensure a reproducible and uniformly distributed key.

Strong PUFs offer an enormous number of CRPs, often scaling exponentially with the required IC area.
They might greatly exceed the need for secret key generation and have been promoted primarily as lightweight
authentication primitives. Architectures are typically able to provide a large challenge (e.g. m = 128), but
only a very small response, mostly n = 1. CRPs are highly correlated, making modeling attacks a major
threat. The most famous example is the arbiter PUF [13], described in appendix A. The definition of strong
PUFs has shifted over the years. The original more specific notion in [7] assumes a large response space
in addition to strong cryptographic properties: resistance against modeling and tamper evidence. Although
more relevant than ever, we stick to the more practical recent notion.

2.3 Secure Sketch

The non-determinism of a PUF causes the regenerated instance of a response r to be slightly different:
r̃ = r ⊕ e, with HW (e) small. Secure sketches [3] are a useful reconstruction tool, as defined by a two-
step procedure. First, public helper data is generated: p = Gen(r). Second, reproduction is performed:

1 We consider the most usable read-out modes which avoid correlations, e.g. pairing neighboring oscillators.



r = Rep(r̃,p). Helper data p unavoidably leaks some information about r, although this entropy loss is
supposed to be limited. Despite the rather generic definition, two constructions dominate the implementa-
tion landscape, as specified below. Both the code-offset and syndrome construction employ a binary [n, k, t]
block code C, with t the error-correcting capability. The latter construction requires a linear block code,

as it employs the parity check matrix H ∈ {0, 1}(n−k)×n
. Successful reconstruction is guaranteed for both

constructions, given HW (e) ≤ t. Information leakage is limited to n − k bits. The hardware footprint is
asymmetric: Gen is better suited for resource-constrained devices than Rep [24].
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3 Lightweight Authentication with Strong PUFs

We analyze all strong PUF authentication schemes in chronological order. One can read the protocol discus-
sions in arbitrary order, although we highly recommend to read Sections 3.1 and 3.2 first. All schemes employ
two phases. The first phase is a one-time enrollment in a secure environment, following IC manufacturing.
The server then obtains some information about the PUF, CRPs or even a predictive model via machine
learning, to establish a shared secret. The destruction of one-time interfaces might permanently restrict the
PUF access afterwards. The second phase is in-the-field deployment, where tokens are vulnerable to physical
attacks. Token and server then authenticate over an insecure communication channel. In general: challenge
c and response r are required to be of sufficient length, e.g. m = n = 128, to counteract brute-force attacks
and random guessing.

3.1 Reference

For proper assessment, we define two reference authentication methods. Reference I employs a token with a
secret key k programmed in NVM, as represented by Figure 1(a). Additional cryptographic logic performs
the authentication. For ease of comparison, we opt for a hash function, hereby limiting ourselves to token
authenticity only. The server checks whether a token can compute a← Hash(k,n), with n a random nonce.
Reference II employs PUF technology, potentially providing more physical security at a lower manufacturing
cost. We employ a weak PUF2 to generate a secret key, as represented by Figure 1(b). The reproducibility
and non-uniformity issue are resolved in a sequential manner, using a FE. A secure sketch first ensures
reproducibility. Gen is executed only once during enrollment. Public helper data p is stored by the server, or
alternatively at the token side in insecure (off-chip) NVM. A hash function performs entropy compression,
hereby compensating the non-uniformity of r, in addition to the entropy loss caused by the helper data.
One could generate a key as k ← Hash(r). We perform an optimization by merging this step with the
authentication hash: a← Hash(r,n).

3.2 Naive Authentication

The most simple authentication method employs an unprotected strong PUF only [18], as shown in Figure
1(c). Figure 2 represents the corresponding protocol. The server collects a database of d arbitrary CRPs
during enrollment. We assume the use of a true random number generator (TRNG). A genuine token should
be able to reproduce the response for each challenge in the server database. Only an approximate match
is required, taking PUF non-determinism into account: Hamming distance threshold ε implements this. To
avoid token impersonation via replay, CRPs are discarded after use, limiting the number of authentications
to d. Choosing e.g. m = 128, an attacker cannot gather and tabulate all CRPs and clone a token as such.
Choosing e.g. n = 128, randomly guessing r is extremely unlikely to succeed.

2 Logic for generating challenges is implicitly present and might be as simple as reading out the full cell array.
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Fig. 1. Token representation for all protocols and the two references. The following IC logic is not drawn: expansion
of the strong PUF responses, intermediary registers (volatile) and control. A dashed line represent the interface with
the server. One-time interfaces destructed after enrollment are marked by the symbol ×.
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Fig. 2. Naive authentication protocol. The thick arrow points from verifier to prover.

Modeling Attacks Strong PUFs are too fragile for unprotected exposure, as demonstrated by a history
of machine learning attacks [21]. A predictive PUF model would enable token impersonation. So far, no
architecture can claim to be practical, well-validated and robust against modeling. Stated otherwise: no
architecture does satisfy the original strong PUF definition given in [7], as has been observed by others
(e.g. [14]). Two fundamental problems undermine the optimism for a breakthrough. First, strong PUFs
extract their enormous amount of bits from a limited IC area only, hereby using a limited amount of circuit
elements. A highly correlated structure is the unavoidable consequence. The arbiter PUF model in appendix
A.2 provides some insights in this matter. Second, the more entangled and diffusing the structure of the
PUF, the more robust against modeling, but the less reproducible the response as it accumulates more
contributions from local noise sources. Appendix A.3 provides some insights in this matter.

Limited Response Space In practice, strong PUFs provide a small response only, often n = 1. Replicating
the PUF circuit is a simple but unfortunately very expensive solution. The lightweight approach is to evaluate
a list of n challenges, hereby concatenating the response bits. Various methods can be employed to generate
such a list. The server could generate the list, requiring no additional IC logic, but resulting in a large
communication overhead [8]. A small pseudorandom number generator (PRNG), such as a linear feedback
shift register (LFSR), is often employed [8, 16, 19, 20, 24]. Challenge c is then used as a seed value: r̃ ←
PUF (PRNG(c)). A variety of counter-based solutions can be applied as well [11]. Most protocol proposals
in the remainder of this work suggest a particular response expansion method. We make abstraction of this,
except when there is a related security problem.

3.3 Controlled PUFs

Controlled PUFs [4–6] provide reinforcement against modeling via a cryptographic hash function (one-way).
Two instances, preceding and succeeding the PUF respectively, are shown in Figure 1(d). Figure 3 represents
the corresponding protocol3. The preceding instance eliminates the chosen-challenge advantage of an attacker.
The succeeding instance hides exploitable correlations due to the PUF structure. The latter hash seems to
provide full protection by itself, but requires the use of a secure sketch: its avalanche effect would trigger on
a single bit flip. CRPs stored by the server are accompanied by helper data.
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Fig. 3. Authentication with controlled PUFs.

3 Controlled PUFs were proposed in a wider context than CRP-based token authentication only.



Inferior to Reference II The proposal seems to be inferior to reference II. First, the PUF is required to
have an enormous instead of modest input-output space. This is inherently more demanding, even if one
would extend reference II with a few challenge bits to enable the use of multiple keys. Second, server storage
requirements scale linearly with the number of authentications, in contrast to constant-size.

3.4 Öztürk et al.

Öztürk et al. [17] employ two easy-to-model PUFs, as shown in Figure 1(e). Figure 4 represents the corre-
sponding protocol. The outer PUF is assumed to possess a large response space, without defining challenge
expansion logic however: it equips the token with CRP behavior. To prevent its modeling by an attacker, an
internal secret x̃ is XORed within the challenge path. A feedback loop, containing a (repeated) permutation
and an inner PUF with a single response bit, is employed to update x̃ continuously. During enrollment, the
server has both read and write access to x̃ via a one-time interface. This allows the server to construct models
for either PUF, followed by an initialization of x̃. The server has to keep track of x̃, which is referred to as
synchronization. The non-determinism of the inner PUF makes this non-trivial. One assumes an excellent
match between the responses of the inner PUF and its model. At most one bit of x̃ is assumed to be affected,
in the seldom case of occurrence. An authentication failure (violation of ε) provides an indication thereof.
One proposes a simple recovery procedure at the server side: bits of x′ are successively flipped until the
authentication succeeds.
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Fig. 4. Authentication protocol of Öztürk et al.

Issues Regarding x̃ There are several issues related to the use of x̃. First, it implicates the need for
secure reprogrammable NVM, hereby undermining the advantages of PUFs. Either read or write access
would enable an attacker to model the system, as during enrollment. Second, the synchronization effort is
too optimistic. PUFs and their models typically have a 1 − 10% error rate. The server faces a continuous
synchronization effort, not necessarily limited to a single error. Third, it enables denial-of-service attacks. An
attacker can collect an (unknown) large number of CRPs, desynchronizing x̃ and x′. Propagation of errors
across authentications makes the recovery effort rapidly infeasible.

Feedback Loop Comments The permutation has to be chosen carefully. Repetition is bound to occur,
as determined by the order k: πk = π. This would implicate x̃ to have identical bits, opposing its presumed
non-uniformity. A simple simulation confirms the significance for 64-bit vectors. The estimated probability
of a randomly chosen permutation to have k ≤ 63 equals ≈ 9%. Furthermore, the need for the inner PUF is
questionable. First, its non-determinism poses a limit on the complexity of the feedback loop, and hence the
modeling resistance of the overall system. Second, the outer PUF and the initialization of x̃ already induce
IC-specific behavior. Using a cryptographic hash function as feedback would resolve all foregoing comments.
The resulting system would then be remarkably similar to a later proposal: logically reconfigurable PUFs [12].



3.5 Hammouri et al.

Hammouri et al. [8] employ again two strong PUFs, as shown in Figure 1(f). As before, both PUFs are
modeled during enrollment. The outer PUF is an arbiter PUF. The inner PUF is a custom architecture
based on the arbiter PUF. Lin largely compensates the non-linearity of the outer arbiter PUF. Figure 5
represents the authentication protocol. The proposal is non-generic, in comparison with all other protocols:
correct functioning strongly depends on internal PUF details. We consider this a bad practice. Only a brief
summary of the issues is provided here: we refer to Appendix B for the low-level argumentation.

(1
×

)
A

u
th

.
(∞

)

Token

cI
U←− TRNG()

x̃← PUF I(cI)

r̃ ← PUFO(Lin(x̃)⊕ cO)

cI

cO

r̃

Server

Train models P̃UF I and P̃UFO

cO
U←− TRNG()

x′ ← P̃UF I(cI)

r′ ← P̃UFO(Lin(x′)⊕ cO)

Abort if HD(r̃, r′) > ε

Fig. 5. Authentication protocol of Hammouri et al.

Unusual Inner PUF, Prone to Modeling Deficiencies The inner PUF is a rather unusual extension of
the arbiter PUF. The ability to construct a model, under the given procedure, is strongly layout-dependent
and hence prone to deficiencies.

Unusual Modeling Procedure: Contradictive and Overcomplicated Reading out x̃, the response of
the inner PUF, via a one-time interface would have made the enrollment easy. This would allow to model
both PUFs separately. However, one designed a rather complicated procedure to model the inner PUF via the
response of the outer PUF. For this purpose, one did introduce a function Lin to linearize the outer arbiter
PUF. This is rather contradictive as it degrades the overall modeling resistance. Furthermore, the enrollment
might be problematic for a significant fraction of the fabricated tokens, depending on the IC-specific behavior
of the outer PUF.

Non-Functional: Error Propagation We believe the proposal to be non-functional: non-determinism of
the inner PUF is strongly amplified, leading to a persistent authentication failure. A minor modification
could resolve this issue.

3.6 Logically Reconfigurable PUF

Logically reconfigurable PUFs [11] were proposed in order to make tokens recyclable, hereby reducing elec-
tronic waste. An internal state x is therefore mixed into the challenge path, as shown in Figure 1(e). Read
access to x is allowed, although not required. There is no direct write access, although one can perform an
update: x(t+1) ← Hash(x(t)). Figure 6 represents the authentication protocol.

Exacting PUF Requirements The proposal does not aim to prevent PUF modeling attacks, despite
providing forward/backward security proofs with respect to x. Therefore, the practical value of the proposal
is rather limited: the protocol cannot be instantiated due to lack of an appropriate strong PUF.
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Issues related to NVM The proposal requires reprogrammable write-secure NVM, which is not free of
issues. First, it undermines a main advantages of PUFs: low-cost manufacturing. Second, it enables denial-
of-service attacks. An attacker can update x one or more times, invalidating the CRP database of the server.
The proposal does not describe an authentication mechanism for the reconfiguration.

3.7 Reverse Fuzzy Extractor

The reverse FE proposal [24] provides mutual authentication, in contrast to previous work. The term ‘reverse’
highlights that Gen and not Rep is implemented as token hardware, as shown in Figure 1(h). As such, one
does benefit of the lightweight potential of Gen. Figure 7 represents the protocol4. One raises the concern of
repeated helper data exposure: an attacker might collect helper data {p̃1, p̃2, . . .} for the same challenge c.
Therefore, one does recommend the syndrome construction, as there is provably no additional leakage with
respect to the traditional n− k entropy loss. One author proposed a modified protocol in [14]. A reversal of
authentication checks is stated to be the main difference, although there are two other fundamental changes
as clarified hereafter.
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Fig. 7. Reverse FE protocol (token identifier omitted).

PUF Non-Determinism Non-determinism is essential to avoid replay attacks. For tokens, one does reuse
the PUF for this purpose, hereby avoiding the need for a TRNG. A lower bound for the PUF non-determinism
is imposed, in order to avoid server impersonation. However, this seems to be a very delicate balancing
exercise in practice, opposing more conventional design efforts to stabilize PUFs. The need for environmental
robustness (perturbations of outside temperature, supply voltage, etc.) magnifies this opposition. An attacker

4 The use of a token identifier (public, could be stored in insecure NVM) is omitted for simplicity, as it seems to
have no impact on security. The server has been maintained as protocol initiator.



might immerse the IC in an extremely stable environment, hereby minimizing the PUF error rate. For
genuine use however, one might have to provide correctness despite large perturbations, corresponding to
the maximum error rate. The modified protocol proposal [14] does not discuss the foregoing contradiction,
although its use of a token TRNG provides a resolution.

PRNG Exploitation The proof-of-concept implementation expands the 1-bit response of an arbiter PUF
via a PRNG: r̃ ← PUF (LFSR(c)). Due to code size limitations, r̃ is subdivided in non-overlapping sections:
a set of helper data vectors, of length n − k each, is transferred rather than a single p̃. One employs 7
sections with k = 21, aiming at a security level of 128 < 7 · 21 bit. The proposal does not provide an explicit
warning to refuse fixed points of the LFSR, e.g. c = 0. This would have been appropriate in order to avoid
a trivial server impersonation attack. Fixed points will result in either r̃ = 0 or r̃ = 0, assuming stability
for one particular response bit. An attacker could hence then guess b with success probability 1/2. A token
impersonation threat, which is far less obvious, is described next.

First consider the unrealistic but desired case of a perfectly deterministic PUF. Consider an arbitrary
response section, denoted as r. Helper data leakage can be understood via an underdetermined system of
linear equations H · rT = pT , having n− k equations for n unknowns. Consider a challenge c1 leading to an
expanded response r1 =

(
r1 r2 . . . rn

)
. One could easily construct a challenge c2 leading to a response r2 =(

r2 r3 . . . rn+1

)
, given the use of an LFSR. Repeating the former mechanism, we can construct challenges

c3, c4, . . ., cq, with rq =
(
rq rq+1 . . . rq+n−1

)
. An attacker collects all data in a single system of equations:

A ·
(
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)T
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p2
T

...
pq
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H 0T . . . 0T

0T H · · · 0T

...
...

. . .
...

0T 0T · · · H

 .

Equation dependencies have to be considered. We performed experiments where A is transformed to
reduced row echelon form (rref ). A distinction between cyclic and non-cyclic codes seems to be crucial, as
illustrated in Figure 8. In the latter case, q can be small and an attacker is quasi able to solve the system.
The persistence of few unknowns is only a minor inconvenience. In the former case, the number of unknowns
remains k. However, a repeated machine learning attack can be performed instead, for large q, exploiting
the introduction of sections. Arbiter PUFs can be modeled with only a few thousand CRPs, so consider
e.g. q = 10000, including both training and verification data. The correct combination of unknowns (only
2k = 221 possibilities) would result in the observable event of a high modeling accuracy.
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Fig. 8. PRNG exploitation for the reverse fuzzy extractor: illustration for non-cyclic Hamming and cyclic BCH codes,
with [n = 7, k = 4, t = 1] and q = 5. Black and white represent 0 and 1 respectively.

We now consider a PUF which is not perfectly deterministic. To minimize this inconvenience, an attacker
could ensure the IC’s environment to be very stable. Code parameters, which are normally chosen in order to
maintain robustness against a variety of environmental perturbations (supply voltage, outside temperature,
etc.), become relatively relaxed then. Subsequently, we consider a transformation H? = T ·H, which selects
linear combinations of the rows of H. The transformation is chosen so that the rows of H? do have a low
Hamming weight, making it feasible to incorporate a limited set of stable bits only. One could develop a
variety of algorithms in order to find a suitable transformation.



Suboptimal Even with d = 1, the protocol still allows for an unlimited number of authentications. Token
impersonation via replay has already been prevented by the use of nonce n. This observation could result
in numerous protocol simplifications, as has been acknowledged in [24]. However, one does not state clearly
that there would a simplification for the PUF as well: the enormous input-output space is no more required,
even a weak PUF could be employed. Despite all the former, one still promotes the use of d > 1, arguing
that it offers an increased side channel resistance. We argue that this countermeasure might not outweigh
the missed advantages and that there might be numerous more rewarding countermeasures. The modified
protocol proposal [14] does not discuss the foregoing efficiency matter, although it uses d = 1, hereby
providing a weak PUF (with implicit challenge) as an example.

3.8 Slender PUF

The slender PUF proposal [16] includes three countermeasures against modeling, while avoiding the need for
cryptographic primitives, as clear from Figure 1(i). First, one requires a strong PUF with a high resistance.
A model is constructed during enrollment via auxiliary one-time interfaces. One employs a variant of the
XOR arbiter PUF for this purpose (see appendix A.3). Second, the exposure of r̃ is limited to random
substrings s̃, hereby obfuscating the CRP link. The corresponding procedure SubCirc treats the bits in a
circular manner. Third, server and token both contribute to the challenge via their respective nonces cS and
cT , counteracting chosen-challenge attacks. Figure 9 represents the protocol.
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Token

cT
U←− TRNG()

r̃ ← PUF (cS , cT )

i ∈ [1 n]
U←− TRNG()

s̃← SubCirc(r̃, i)

cS

cT , s̃

Server

Train model P̃UF

cS
U←− TRNG()

r′ ← P̃UF (cS , cT )

Abort if ∀i : HD(SubCirc(r′, i), s̃) > ε

Fig. 9. Slender PUF protocol.

A protocol extension has been proposed in [20]. One presents a fourth countermeasure against modeling.
Substring s̃ is padded with random bits before transmission, again in a circular manner: SubCirc(s̃P , j)← s̃

with s̃P ∈ {0, 1}1×nP U←− TRNG() and j ∈ [1 nP ]
U←− TRNG(). Furthermore, the optional establishment of

a session key is introduced, via concatenation of secret indices i and j. A repeated execution of the protocol
is required to obtain a key of sufficient length.

PRNG Exploitation The protocol employs a PRNG to expand the PUF response space: r̃ ← PUF (PRNG(
cS ||cT )). However, the PRNG construction of the proof-of-concept implementation might allow for token
impersonation: PRNG(cS ||cT ) = LFSR(cS) ⊕ LFSR(cT ). We assume an identical feedback polynomial
for both LFSRs, which is the most intuitive assumption5. A malicious token might then return cT ← cS ,
resulting in an expanded list of challenges all equal to 0. The server’s PUF model outputs either r′ = 0 or r′ =
0. So provided a substring s̃ = 0 (or s̃P = 0), authentication does succeed with a probability 1/2. Via replay,
one could increase the probability to 1. Eavesdropping on a single genuine protocol execution is required:

c
(1)
S , c

(1)
T and s̃(1). The malicious prover gets authenticated with the following: c

(2)
T ← c

(2)
S ⊕ c(1)S ⊕ c(1)P

and s̃(2) ← s̃(1). One can easily replay old sessions keys as well. We stress that careful PRNG redesign can
resolve all of the former.
5 The proof-of-concept implementation employs 128-bit LFSRs, with cS and cT as the initial states, without spec-

ifying feedback polynomials. Furthermore, FPGA implementation results (Table III in [16] and Table 8 in [20])
strongly suggest the use of identical feedback polynomials.



Exacting PUF Requirements The PUF requirements are rather exacting and partly opposing. On one
hand, the PUF should be easy-to model, requiring a highly correlated structure. On the other hand, CRP
correlations enable statistical attacks, due to the lack of cryptographic primitives. Such attacks exploit
the knowledge of a function P (ru = rv) = f(cu, cv) for a certain strong PUF architecture. CRPs with
|P (ru = rv) − 1/2| > 0 are correlated and hence exploitable. One might be able to retrieve indices i (and
j) as such6, circumventing the SubCirc countermeasure and hence restoring the CRP link. Although the
proposed PUF seems to offer this delicate balance (see Appendix A.4), it comes at a price: several one-time
interfaces7, high response non-determinism and a limited modeling accuracy. Furthermore, the user’s control
regarding the challenge list should be highly restricted: statistical attacks are very powerful if an attacker
has a (partial) chosen-challenge advantage. The PRNG-TRNG construction should accomplish this goal.

3.9 Converse Authentication

Figures 1(j) and 10 represent the converse authentication protocol [12]. The authentication is one-way,
in a less conventional setting where tokens verify the server. The difference vector (XOR) between two
responses is denoted as d. The restriction d 6= 0 prevents an attacker from impersonating the server, choosing
{ci = cj ,pi = pj}. Optionally, one can extend the protocol with the establishment of a session key k ←
Hash(ri, rj). The attacker capabilities are restricted: invasive analysis of the prover IC is assumed to be
impossible. Furthermore, one assumes an eavesdropping attacker, trying to impersonate the server given a
log of genuine authentication transcripts.
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.
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)

Token

d 6= 0
U←− TRNG()

ri ← Hash(Rep(PUF (ci),pi))

rj ← Hash(Rep(PUF (cj),pj))

Abort if ri ⊕ rj 6= d

d

ci, pi,
cj , pj

Server

〈ci,pi, ri〉 with i ∈ [1 d]

and ci
U←− TRNG()

Find i, j such that ri ⊕ rj = d

If none, choose random i, j.

Fig. 10. Converse authentication protocol.

Attacker Overly Restricted The attacker capabilities are unclear and overly restricted to be practical.
First, restricting invasion would automatically extend to physical attacks in general. Furthermore, this greatly
reduces the need for PUFs, with respect to the traditional approach of storing a key in NVM. It is also not
clear whether an attacker is allowed to freely query the server, as exploited hereafter. We argue that this
should be possible, as the protocol is initiated by the token.

Scalability Issues The probability of success for a randomly guessing attacker would be 1/2n, when trying
to impersonate the server. In certain sense, the server faces a similar probability, posing an upper limit on n
for practicality reasons. Successful authentication of the server relies on the availability of a given d within
its database. A scalable method to (construct and) search within a database was not discussed and seems
far from obvious. Assume a cumbersome trial and error procedure as a search method: a pairwise selection

6 The slender PUF protocol has a direct predecessor: the pattern matching key generator [19], which serves as an
alternative for a conventional fuzzy extractor [3]. CRP correlation attacks are equally dangerous for this construc-
tion and might lead to key-recovery. However, the risk has not been analyzed as thoroughly as in [16]. Furthermore,
another statistical attack of fundamentally different nature has recently been published [2].

7 Chains are modeled separately via machine learning, before XORing takes place.



has a probability of 1/2n to be usable. Memory requirements are mild compared to the search workload, as

there are d(d−1)
2 pairwise selections, although still enormous in comparison to all other proposals. A database

of size d = 225 is mentioned to be realistic. A major threat for server impersonation is the following. An
attacker might query the server and construct a personal database: 〈di, ci1,pi1, ci2,pi2〉. Authentication
will succeed, although a session key cannot be retrieved if present.

Predecessor Issues Although the protocol is in essence identical to a direct predecessor [1], it is not
described in terms of modifications. Nevertheless, a few issues have (quietly) been resolved. We observe
five modifications. First, Rep is acknowledged to require helper data. Second, one introduces the restriction
d 6= 0. However, this event occurs so seldom that an explicit check could be regarded as overhead. Third, d
is generated by a TRNG instead of a PRNG. To avoid replay, the latter construction would require secure
NVM, hereby undermining the advantages of PUFs. Fourth, the protocol is initiated by a token instead of
the server. Unfortunately, this enables exhaustion of the server database as described before. Fifth, PUF re-
sponses are reinforced by a cryptographic hash function. In its absence, we see a direct opportunity for prover
impersonation in the occasional case that HW (d) < t. Consider an arbitrary response r = Rep(PUF (c),p).
For both secure sketch constructions, an attacker might be able to produce a given d:

Code-offset construction: r ⊕ d = Rep(PUF (c),p⊕ d).
Syndrome construction: r ⊕ d = Rep(PUF (c),p⊕ d ·HT ).

4 Overview and Discussion

Tables 1 and 2 provide an overview of Section 3. We do not support the use of any strong PUF proposal in
its current form, given the numerous amount of issues. However, we do not object the use of both weak PUF
protocols: reference II and the modified reverse FE proposal [14]. We now discuss the strong PUF issues.
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Reference I × × X × × × X X × X × ∞ × × X
Reference II X × × × × X X X × X × ∞ × × X

Naive × X × × × × × × × X × d X × ×
Controlled × X × × × X X X × X × d X × ×

Öztürk et al. × X2 X6 × × × × X X X × ∞ × X ×
Hammouri et al. × X2 × X × × × X X X × ∞ × X ×
Reconfiguration × X3 X6 × × × X × X X × d X × ×

Reverse FE × X4 × × X × X X X X X ∞ X × ×
Slender × X5 × X × × × X X X × ∞ × X ×

Converse × X × X × X X X X × X ∞ X × ×
1 Including response expansion. 4 Non-determinism lower bound.
2 Easy-to-model. 5 Both easy- and hard-to-model.
3 Robust against modeling. 6 Reprogrammable.

Table 1. For all protocols: token hardware (left), the authenticity provided (middle) and the secret stored by the
server (right).

Two proposals rely on reprogrammable NVM: Öztürk et al. [17] and logically reconfigurable PUFs.
Their respective assumptions of R/W- and W-security undermine a major benefit of PUF technology: an
increased resistance against physical attacks. Furthermore, the need for reprogramming undermines a second
potential benefit: low-cost manufacturing, as CMOS-compatible fuses cannot be used. Finally, updating the
NVM state was identified as a denial-of-service attack for both proposals.



Protocol Issues

Controlled - Inferior to reference II.

Öztürk
et al. [17]

- NVM undermines the advantages of PUFs.
- Synchronization effort is presented too optimistic.
- Denial-of-service attack.
- Choice of permutation requires care: avoid low orders.

Hammouri
et al. [8]

- Unusual inner PUF, prone to modeling deficiencies.
- Non-functional: internal error propagation.
- Unusual modeling procedure: contradictive and
overcomplicated.

Reconfigu-
ration

- Unrealistic PUF requirement: robust against modeling.
- NVM undermines the advantages of PUFs.
- Denial-of-service attack.

Reverse FE
- Exacting PUF requirements to counteract replay attacks.
- PRNG exploitation, leading to token/server impersonation.
- No need for strong PUF.

Slender
PUF

- PRNG exploitation, leading to token impersonation.
- Exacting PUF requirements to counteract statistical attacks.

Converse
- Attacker model too restricted.
- Scalability issues, leading to server impersonation.
- Predecessor issues.

Table 2. Issues revealed in this work. Implementation-dependent issues are printed in italic.

PUF responses are not perfectly reproducible. Protocols employ two approaches to overcome this
issue: error correction and error tolerance. Unfortunately, two proposals struggle with the latter approach.
PUF non-determinism is greatly underestimated in Öztürk et al. [17]: the protocol synchronization effort is
presented too optimistic. We believe the proposal of Hammouri et al [8]. to be non-functional because of
internal error propagation.

In practice, strong PUFs do have a small output space. There are various methods to resolve this
issue, all imposing a certain efficiency burden. However, the protocol proposals have very little attention
for this topic. Even though system security is not necessarily unaffected. We specified attacks for the proof-
of-concept implementations of the reverse FE and slender PUF proposal, both exploiting the challenge
expansion PRNG.

In practice, strong PUFs are insecure against modeling. Two proposals are therefore too demanding:
logically reconfigurable PUFs and the slender PUF protocol. Although the latter offers some countermeasures,
there is an opposing requirement for the PUF to be easy-to-model, leading to a delicate balancing exercise.
In general, proposals not reinforced by a cryptographic hash function are much more likely to be vulnerable.

Several proposals rely on a secure TRNG. Tampering with its randomness opens new perspectives for
a physical attack. Its use seems unavoidable however if server authentication is a must, as for the converse
protocol, to avoid replay attacks. The reverse FE proposal extracts its non-determinism from the PUF in-
stead, which has been identified as a delicate balancing exercise. Two protocols without server authentication
employ their TRNG as a modeling countermeasure: Hammouri et al. [8] and the slender PUF protocol.

All proposals aim to provide lightweight entity authentication, which addresses a highly relevant need.
However, in many use cases, there will be accompanying security requests: message confidentiality and
integrity, privacy, etc. We did not consider protocol extensibility in this work, although it might be of
interest when designing a new protocol. References I and II, which employ a secret key, might benefit from
a huge amount of scientific literature. Like-minded, the establishment of a session key has been proposed as
an extension for the converse and slender PUF proposals.

5 Conclusion

Various protocols utilize a strong PUF to provide lightweight entity authentication. We described the most
prominent proposals using a unified notation, hereby creating a first overview and initializing direct compar-
ison as well. We defined two reference authentication methods, to identify the misuse of PUFs. Our analysis



revealed numerous security and practicality issues. Therefore, we do not recommend the use of any strong
PUF proposal in its current form. Most proposals aim to compensate the lack of cryptographic properties
of the strong PUF. However, proper compensation seems to be in conflict with the lightweight objective.
More fundamental physical research is required, aiming to create a truly strong PUF with great crypto-
graphic properties. If not, we are inclined to recommend conventional PUF-based key generation as a more
promising alternative. The observations and lessons learned in this work can facilitate future protocol design.
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A Arbiter PUF

A.1 Architecture

Arbiter PUFs [13] quantify manufacturing variability via the propagation delay of logic gates and inter-
connect. The high-level functionality is represented by Figure 11(a). A rising edge propagates through two
paths with identically designed delays, as imposed by layout symmetry. Because of nanoscale manufacturing
variations however, there is a delay difference ∆t between both paths. An arbiter decides which path ‘wins’
the race (∆t ≶ 0) and generates a response bit r.
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Fig. 11. Arbiter PUF (a) and its XOR variant (b).

The two paths are constructed from a series of m switching elements. The latter are typically implemented
with a pair of 2-to-1 multiplexers. Challenge bits determine for each stage whether path segments are crossed
or uncrossed. Each stage has a unique contribution to ∆t, depending on its challenge bit. Challenge vector
c determines the time difference ∆t and hence the response bit r. The number of CRPs equals 2m. The
response reproducibility differs per CRP: the smaller |∆t|, the easier to flip side because of various physical
perturbations.

A.2 Vulnerability to Modeling Attacks

Arbiter PUFs show additive linear behavior, which makes them vulnerable to modeling attacks. A decom-
position in individual delay elements is given in Figure 12. Both intra- and inter-switch delays contribute to
∆t, as represented by white and gray/black squares respectively. We incorporate the latter in their preceding
switches, without loss of generality, to facilitate the derivation of a delay model. In the end, delay elements
are important as far as they generate delay differences between both paths. Therefore, each stage can be
described by two delay parameters only: one for each challenge bit state, as illustrated in Figure 13. The
delay difference at the input of stage i flips in sign for the crossed configuration and is incremented with δt1i
or δt0i for crossed and uncrossed configurations respectively.
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Fig. 12. Arbiter PUF decomposed in individual delay elements, represented by small squares which are prone to
manufacturing variability. The interconnecting lines have zero delay.
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Fig. 13. Delay behavior of an arbiter stage.

The impact of a δt on ∆t is incremental or decremental for an even and odd number of subsequent crossed
stages respectively. By lumping together the δt’s of neighboring stages, one can model the whole arbiter PUF
with m+ 1 independent parameters only (and not 2m). A formal expression for ∆t = γτT is shown below.
Vector γ ∈ {±1}1×(m+1) is a transformation of challenge vector c. Vector τ ∈ R1×(m+1) contains the lumped
stage delays. The more linear a system, the easier to learn its behavior. By using γ instead of c as ML input, a
great deal of non-linearity is avoided. The non-linear threshold operation ∆t ≶ 0 remains however. Only 5000
CRPs were demonstrated to be sufficient to model non-simulated 64-stage arbiter PUFs with an accuracy
of about 97% [10].

τ =
1

2


δt0 δt01 − δt11

δt01 + δt11 + δt02 − δt12
...

δt0m−1 + δt1m−1 + δt0m − δt1m
δt0m + δt1m


T

and γ =


1− 2(c(1)⊕ . . .⊕ c(m))
1− 2(c(2)⊕ . . .⊕ c(m))

...
1− 2c(m)

1


T

.

A.3 XOR Variant

Several variants of the arbiter PUF increase the resistance against ML. They introduce various forms of
non-linearity for this purpose. We only consider the XOR variant. The response bits of multiple arbiter
chains are XORed to produce a single response bit, as shown in Figure 11(b). All chains have the same
challenge as input. The more chains, the more resistance against ML: the required number of CRPs and the
computation time both increase rapidly [21]. However, the reproducibility of r decreases with the number of
chains as well: each additional chain injects non-determinism into the overall system. A practical limit on
the ML resistance is hence imposed. Modifications to the architecture can improve former trade-off [15]: e.g.
a permutation of the challenge bits across chains, as employed for the slender PUF protocol [16,20].

A.4 CRP Correlations: Enabling Statistical Attacks

Machine learning attacks exploit CRP correlations in a implicit manner. Statistical attacks benefit from
their explicit exploitation, hereby assuming the knowledge of a function P (r1 = r2) = f (c1, c2). Such
functions have already been determined via simulations [15]. We are the first to derive an analytical model,
as demonstrated for the the arbiter PUF and its XOR variant in Figure 14. Modified architectures can
converge to the ideal curve f = 1/2 more rapidly. Let N (µ, σ) denote a normal distribution with mean µ
and standard deviation σ. Let φ(x, σ) and Φ(x, σ) denote the probability density function and cumulative



distribution function respectively, assuming µ = 0. We assume all δt’s to have a distribution N (0, σ1), which
is a common and well-validated practice in previous work. Although not fully correct8, we then assume the
elements of τ to have a distribution N (0, 2σ1). We introduce the variable h = HD(γ1,γ2).

PUF P (r1 = r2)

Arbiter f = P (|tSAME | > |tDIFF |) with

tSAME ∼ N (0, 2
√
m− h+ 1σ1)

and tDIFF ∼ N (0, 2
√
hσ1)

= 1− 4
∫∞
0
φ(t,
√
m− h+ 1)

Φ(−t,
√
h)dt

2-XOR f 2 + (1− f )2
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Fig. 14. Correlations for the arbiter PUF and its XOR variant. Dots represent simulations results. The mathematical
model, drawn continuously although of discrete nature, matches reasonably well. Vertical dashed lines enclose 99%
of the data for randomly chosen challenges. The more chains being XORed, the better one approximates the ideal
behavior f = 1/2, but the larger the response non-determinism.

B Hammouri et al. [8]

B.1 Unusual Inner PUF, Prone to Modeling Deficiencies

The inner PUF is a custom architecture based on the arbiter PUF. One proposes a rather unusual extension
of the challenge space. Out of two individual chains, one aims to construct a single reconfigurable chain.
For each stage, one out of two switching elements is selected, hereby introducing a second challenge s. The
proposal ignores the need to describe the reconfiguration logic: Figure 15 (right) provides a generic schematic,
including both intra- and inter-switch delays. Via reconfiguration, one aims to provide a large response space.
One does evaluate cI for a fixed list of configurations vectors {s1, s2, . . .}, hereby concatenating the response
bits. The configuration vectors are generated by a PRNG, having s1 as initial state. Note that one could
have provided a large response space with a regular arbiter PUF as well, given the use of a PRNG.

τ = 1
2


δt0 δt01 − δt11

δt01 + δt11 + δt02 − δt12
...

δt0m−1 + δt1m−1 + δt0m − δt1m
δt0m + δt1m



T

cI(i) = 1 s(i) = 0

Fig. 15. Reconfigurable stage of the inner PUF

8 We neglect dependencies within τ and we also ignore the different form of τ (1) and τ (m+ 1)



The architecture is required to be easy-to-model: the server has to construct a model during enrollment.
The overall structure is additive, as for a regular arbiter PUF, and therefore we expect modeling to be feasible.
Although one could have derived a generic (but complicated) delay model, possibly leading to an efficient
modeling method, the authors propose a shortcut. The overall delay model is supposed to be separable in
terms of the individual chains. One does construct a model τU for the upper chain, applying s = 0. Similar,
one obtains a model τL for the lower chain, applying s = 0. The overall model τ (s) selects elements from
both vectors: τ (i) = s(i)τL(i) + s(i)τU (i). The variability of intra-stage delays is being neglected, justified
by placing the stages far apart in the circuit lay-out. An approximating delay model for upper/lower chain
is derived as well, as shown in Figure 15 (left).

Although it might be possible to make all the former workable (there is no proof-of-concept implementa-
tion), the approach is strongly layout-dependent and prone to modeling deficiencies. Apart from being area
consuming: positioning stages far apart might not be sufficient to justify separability. Intra- and inter-stage
variations originate from CMOS transistors and metal interconnect respectively. We highly doubt that the
former would be per se negligible with respect to the latter. It is possible though to enhance separability:
upsizing transistors of the switches, inserting minimum-sized inverter chains in between switches, etc. Fur-
thermore, one should distinguish the metal interconnect before and after the stage selection logic, as shown
in Figure 15 (right). Variability of the latter would undermine the separability. We stress that all these
complications could have been avoided easily, e.g. by using a regular arbiter PUF.

B.2 Unusual Modeling Procedure: Contradictive and Overcomplicated

Reading out x̃, the response of the inner PUF, via a one-time interface would have made the enrollment easy.
This would allow to model both PUFs separately. However, one designed a rather complicated procedure to
model the inner PUF via the response of the outer arbiter PUF. The latter has a single bit response: during
authentication, a list of challenges cO/cI is transferred between token and server to expand its response
space. One does introduce a function Lin, compensating the non-linearity of the arbiter PUF, apart from
the final thresholding step: ∆t is a linear function of Lin(x̃). This transformation is relatively simple, as
shown below. We note that this is rather contradictive: it degrades the overall modeling resistance. Fixing
cO = 0, one obtains a system r̃ ← PUFO(Lin(x̃)). Error propagation from x̃ to r̃ is very limited then. An
error in bit x̃(i) would flip the sign of γ(i) only, corresponding to h = 1 in Figure 14. During enrollment,
one can force the PRNG to maintain either 0 or 0 as its state, allowing to model the upper and lower
chain separately. This requires some sort of destructive interface, similar to our proposal to read out x̃
directly. Depending on cI , x̃ will be either 0 or 0, apart from potential noisiness, hereby maximizing h. As
a consequence, one can distinguish either case, as r̃ is very likely to flip. This enables modeling of the inner
PUF. Although some IC samples might be problematic: the pair x̃ = 0/0 occasionally result in ∆t ≈ 0,
maintaining r̃ in a noisy state.

Lin(x̃) =


x̃(1)⊕ x̃(2)
x̃(2)⊕ x̃(3)

...
x̃(m− 1)⊕ x̃(m)

x̃(m)


T

.

B.3 Non-Functional: Error Propagation

We believe the proposal to be non-functional: non-determinism of the inner PUF is strongly amplified,
leading to a persistent authentication failure. The minimization of h does not hold for the system r̃ ←
P̃UFO(Lin(x̃) ⊕ cO), in the general case that cO 6= 0. A single error in x̃ will flip the sign of r̃ with a
probability close to 1/2. This could have been avoided by implementing the system r̃ ← PUFO(Lin(x̃⊕cO))
instead.


