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Abstract. We revisit narrow-pipe designs that are in practical use, and their security against preimage
attacks. Our results are the best known preimage attacks on Tiger, MD4, and reduced SHA-2, with the
result on Tiger being the first cryptanalytic shortcut attack on the full hash function. Our attacks runs
in time 2188.8 for finding preimages, and 2188.2 for second-preimages. Both have memory requirement
of order 28, which is much less than in any other recent preimage attacks on reduced Tiger. Using
pre-computation techniques, the time complexity for finding a new preimage or second-preimage for
MD4 can now be as low as 278.4 and 269.4 MD4 computations, respectively. The second-preimage attack
works for all messages longer than 2 blocks.
To obtain these results, we extend the meet-in-the-middle framework recently developed by Aoki and
Sasaki in a series of papers. In addition to various algorithm-specific techniques, we use a number
of conceptually new ideas that are applicable to a larger class of constructions. Among them are
(1) incorporating multi-target scenarios into the MITM framework, leading to faster preimages from
pseudo-preimages, (2) a simple precomputation technique that allows for finding new preimages at
the cost of a single pseudo-preimage, and (3) probabilistic initial structures, to reduce the attack time
complexity. All the techniques developed await application to other hash functions. To illustrate this,
we give as another example improved preimage attacks on SHA-2 members.
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1 Introduction

After the spectacular collision attacks on MD5 and SHA-1 by Wang et al. and follow-up work [12,40,45,46],
implementors have reconsidered their choices. While starting a very productive phase of research on the
design and analysis of cryptographic hash functions, the impact of these results in terms of practical and
worrying attacks turned out to be less than anticipated (exceptions are e.g., [26,39,41]). Instead of collision
resistance, another property of hash functions is more crucial for practical security: preimage resistance.
Hence, research on preimage attacks and the security margin of hash functions against those attacks seems
well motivated, especially if those hash functions are in practical use.

An important ongoing challenge is to find an efficient and trustworthy new hash function for long term
use (e.g., in the SHA-3 competition). For new hash functions, an important first step to get confidence in
them is to apply known cryptanalysis methods in order to break them. So the cryptanalysts’ toolbox needs
to be well equipped for this.

The new techniques we present in this paper contribute to both issues at the same time. They give new,
generically applicable tools to cryptanalysts for analyzing compression functions and hash functions, and at



the same time applications of them improve significantly upon known preimage attacks on hash functions in
practical use, like MD4, Tiger, and SHA-256/512. In the following we outline the new tools and new results
that will be described later in the paper. We describe them in a way to fit into the meet-in-the-middle
(MITM) framework of Aoki and Sasaki as recently developed in a series of papers [6,7,8,37,38], although
we note that the basic approach was pioneered by Lai and Massey [23]. Other interesting approaches to
preimage attacks appeared in [11,13,21,22,24,25,29,30,35,47].

New methods. New methods described in this paper that are independent of a particular attack or hash
functions are the following:

– Probabilistic initial structure, compared with (deterministic) initial structure, is found be useful
for significantly reducing attack complexity for the first. To improve the time complexity of a MITM
preimage attack, the attackers usually need to find more neutral words. This usually reduces the number
of attackable steps, due to the fact that the more neutral words, the faster the neutrality is destroyed,
and the less step can be covered for independent chunks, initial structure, and partial matching. Hence,
there is a tradeoff between the size of neutral words, and attackable steps. In this paper, using MD4 in
Section 3 as an example, we show one can use more neutral words, and maintain long initial structure
at the same time, with cost of turning the initial structure into a probabilistic one. A similar technique
has been used in [38], however there it serves the purpose of better approximating the initial structure,
and the attack complexity is not reduced due to limited bits for partial matching.

– Incorporating multi-target scenarios into the MITM framework, leading to faster preimage
attacks. The MITM framework is the basis for several theoretically interesting results on the preimage
resistance of various hash functions, mostly close to brute force search complexities. One reason for this is
that in order to exploit all the options of this framework, matching points of the meet-in-the-middle phase
can be anywhere in the computation of the compression function, and not necessarily at their beginning
or end. Even though this gives an attacker more freedom in the design of a compression function attack,
this always leads to big efficiency losses when the attack on the compression function is converted to an
attack on the hash function. Hence, an attacker basically has to choose between a more restricted (and
potentially much slower) strategy in the compression function attack that allows more control over the
chaining values and in turn allows efficient tree- or graph-based conversion methods, or to fully exploit
the freedom given by the latest versions of the MITM framework in the compression function attack at
the cost of inefficient conversion methods. In Section 2.2 we describe a way to combine the best of both
worlds. Later in the paper, this results in the best known preimage attacks for Tiger and the SHA-2
members.

– A simple precomputation technique that allows for finding new preimages at the cost of a single
pseudo-preimage. See Section 3 for an application to MD4, where this approach is shown to outperform
any point on the time/memory trade-off curve by Hellman [17] (which was proven optimal in [10] in the
generic case).

New results in perspective. In addition to the conceptual ideas that contribute to the cryptanalysts’
toolbox in general, we also apply those ideas and present concrete results. In fact, we manage to improve the
best known preimage attacks on a number of hash functions in practical use. A table of best related works,
and the comparison with our main results are shown in Table 1.

– Tiger: One of the few unbroken but time-tested hash functions, designed by Anderson and Biham [5]
in 1996, Tiger is sometimes recommended as an alternative to MD4-like designs like SHA-1, especially
because it is faster than SHA-1 on common platforms. Tiger is in practical use e.g., in decentralized
file systems, or in many file sharing protocols and applications, often in a Merkle-tree construction (also
known as TigerTree [3]). The best collision attack on Tiger is on 19 rounds [31].1 So far the best preimage

1 If an attacker can choose both the difference and the actual values not only of the message, but also of the chaining
input, then the full compression function can be attacked, see Mendel and Rijmen [32]. However, this attack cannot
be extended on the hash function, whereas all the attacks in this paper can.

2



Hash Attack Time Complexity Memory Source Remarks

MD4

pseudo-preimage
296 232 [27] consistent padding
272 264 Section 3 without padding
281 255 Section 3 consistent padding

preimage
2102 233 [27]
299.7 264 Section 3 msg ≥ 250 blocks
278.4 281 Section 3 msg ≥ 250 blocks, 2128 precomp.

second-preimage

256 256 [47] msg about 256 blocks
264 264 [20] msg about 264 blocks
2102 233 [27]
299.7 264 Section 3 msg ≥ 3 blocks
269.4 272 Section 3 msg ≥ 3 blocks, 2128 precomp.

Tiger preimage

2128.5 negl. [18] 13 steps
2161 232 [19] 16 steps, one block
2185 2160 [28] 17 steps
2189.5 222 [43] 23 steps
2188.8 28 Section 4 full 24 steps

SHA-256 preimage

2240 216 [19] 24 out of 64 steps, one block
2251.7 212 [6] 42 steps
2248.4 212 Appendix A 42 steps
2254.9 26 [6] 43 steps

SHA-512 preimage

2480 232 [19] 24 out of 80 steps, one block
2502.3 222 [6] 42 steps
2494.6 222 Appendix A 42 steps
2511.5 26 [6] 46 steps

Table 1. Summary of results in this paper, and the best related works; msg refers to original message before padding.

attack on the Tiger hash function is by Wang and Sasaki [43]. Independently of our work, they applied the
MITM preimage attack to Tiger reduced to 23 steps with time complexity higher than ours (1.4× 2189)
and requirements of 222 units. Our new attack improves those in many aspects and seems to be the
first cryptanalytic shortcut attack on the full Tiger hash function. Our attack on the full 24 rounds hash
functions has time complexity 2188.8 (compression function attack is 2185.4) and memory requirements
are only in the order of 28. These results are obtained using the multi-target technique mentioned above,
and a dedicated technique to construct an initial structure in a precomputation.

– MD4: Even though very efficient collision search methods exist for MD4 [44,36], this hash function
is still in practical use. Examples include password handling in Windows NT, the S/KEY one-time-
password system [16], integrity checks in popular protocols e.g., rsync [2] or file-sharing protocols [1] and
applications. The time complexity for the best known compression function attack is reduced from 296 (by
Leurent [27]) to 272. Assuming 2128 precomputation using the large computation technique mentioned
above, and 281 storage, the effort for finding any new preimage (be it for the same or a different target
hash value as a challenge) can now be as low as 278.4.

– SHA-2: The members of the SHA-2 family of hash functions are probably among the most interesting
cryptanalytic targets, not only because of the uptake of its adoption in all places where a hash function
is needed (and they are countless), but also because they are used to compare them to candidates of the
ongoing SHA-3 competition. We use SHA-2 members as an example to illustrate the effect of using the
multi-target scenario. This way we also improve the best known preimage attacks on reduced SHA-256
and reduced SHA-512. They are described in Appendix A.

Outline. This paper is organized as follows. Section 2 describes the MITM preimage attack, four differ-
ent methods converting the pseudo-preimage to preimage (including two new ones), and also recapitulates
techniques to extend MITM based preimage attacks. We apply these new techniques to MD4 and Tiger in
Section 3 and Section 4, respectively. Section 5 concludes the paper. Results on SHA-2 appear in Appendix A.
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2 The Meet-in-the-Middle Preimage Attack

matchsplit

Target

Fig. 1. Meet-in-the-Middle Pseudo-Preimage Attack against Davies-Meyer Hash Functions

The general idea of the preimage attack, illustrated in Fig 1, can be explained as follows:

1. Split the compression function into two chunks, where the values in one chunk do not depend on some
message word Wp and the values in the other chunk do not depend on another message word Wq

(p 6= q). We follow the convention and call such words neutral with respect to the first and second chunk,
respectively.

2. Fix all other values except for Wp, Wq to random values and assign random values to the chaining
registers at the splitting point.

3. Start the computation both backward and forward from the splitting point to form two lists Lp, Lq

indexed by all possible values of Wp and Wq, containing the computed values of the chaining registers
at the matching point.

4. Compare two lists to find partial matches (match for one or a few registers instead of the full chaining)
at the matching point.

5. Repeat the above three steps with different initial configurations (values for splitting point and other
message words) until a full match is found.

6. Note that the match gives a pseudo-preimage as the initial value is determined during the attack.
However, it is possible to convert pseudo-preimages to a preimage using a generic technique described
in [34, Fact 9.99]. One can compute many pseudo-preimages, and then find a message which links the
IV to one of the input chaining of the pseudo-preimages, as demonstrated in Fig 2(a).

With the work effort of 2l compression evaluations (let the space for both Wp and Wq be 2l), we obtain
two lists, each one containing 2l values of the register to match. When we consider all of the 22l possible
pairs, we expect to get around 2l matches (assume we match l bits at the matching point). This means that
after 2l computations we get 2l matches on one register, effectively reducing the search space by 2l. Leaving
all the other registers to chance allows us to find a complete match and thus a pseudo-preimage in 2n−l

computations if the chaining is of n bits. We repeat the pseudo-preimage finding 2l/2 times, which costs
2n−l/2, and then find a message which links to one of the 2l/2 pseudo-preimages, this costs 2n−l/2. So the
overall complexity for finding one preimage is 2n−l/2+1, with memory requirement of order 2l.

Remark on bits for partial matching. Assume we have m bits for partial matching, we expect 22l−m

good candidates with the m-bit matched. However we still need to check if one of the remaining candidates
gives a full match (pseudo-preimage), the checking costs about 22l−m (a bit less indeed, since we can store
the computed candidates up to the point before partial matching, and re-check the partial matching portion
only). To minimize the time complexity, we require m ≥ l, so that the partial matching costs 22l−m ≤ 2l,
which can be neglected.
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(a) Traditional Conversion

IV linkExpandable Message t

...

(b) Multi-Target Pseudo Preimages

Fig. 2. Converting Pseudo-Preimages to Preimage: circle denotes state, arrow denotes message block

2.1 Multi-Target Pseudo Preimage (MTPP)

In [27], Leurent provides an unbalanced-tree multi-target pseudo-preimage method (refer Fig 2(b)) to convert
the pseudo-preimages to preimage with complexity (l ln(2) + 1) · 2n−l, compared with 2n−l/2+1 in [34, Fact
9.99]. Suppose the matching point is at the end of compression function. The matching process is to find
lp + lq = t (lp ∈ Lp, lq ∈ Lq, and t ∈ T , the set of known targets). When we are given k targets, the chance to
find a match increases by a factor k, i.e., it takes 2n−l/k to find a pseudo-preimage which links to one of the
k targets. To find 2k pseudo-preimages, it takes 2n−l/1+2n−l/2+2n−l/3+ · · ·+2n−l/2k ≃ k ln(2) · 2n−l. To
find a preimage, it is expected to repeat 2n−k blocks finding a message, which links to one of the 2k targets.
Taking the optimal k = l, the overall complexity is

2n−k + k ln(2) · 2n−l = (l ln(2) + 1) · 2n−l . (1)

Note this conversion does not necessarily increase the memory requirement, i.e., it can be the same as
for finding a pseudo-preimage, since we compute the 2l pseudo-preimages in sequence.

Enhanced 3-Sum Problem. The above conversion comes with an assumption that the matching can
be done within 2l. Note from each chunk, we have 2l candidates (denoted as Lp and Lq), and given 2k

targets (denoted as T ), we are to find all possible (lp, lq, t), where lp ∈ Lp, lq ∈ Lq and t ∈ T , such that
lp + lq = t. We call this problem the Enhanced 3-Sum Problem, where the standard 3-sum problem decides
whether there is a solution [4]. Current research progress [9] shows that the problem can be solved in O(22l)
or slightly faster. So this approach expects the matching to be done in 22l (for k = l) instead of the assumed
2l. However the matching only occurs in the final feed-forward operation (“+” in most of the MD hash
families), which is a small portion of the compression. Hence this approach expects 22l “+” operations to be
somewhat equivalent to 2l compression computations by counting the number of “+” in the compression,
when l is relatively small (e.g., ≤ 7 for MD4 and Tiger, since there are about 27 “+” in MD4 compression;
we simply count the number of operations (“+”, “−”, “×” and sbox lookup) in the case of Tiger).

2.2 Generic Multi-Target Pseudo Preimage (GMTPP)

The framework of Aoki and Sasaki could not take advantage of a multi-target scenario to speed-up the con-
version from pseudo-preimage to preimages. The reason is a rather strong requirement on the compression
function attack by the MTPP approach outlined above. By generalizing the setting, we weaken the assump-
tion on the compression function attack, and hence allow the MITM framework to take advantage of new
speed-up possibilities.

When the matching point is not at the end of the compression function, we can still make use of the multi-
targets. Consider the sum of the size of Wp and Wq to be 2l, and assume we can re-distribute the 2l bits to
Wp and Wq freely2. Given 2k targets, we can distribute the 2l bits to l+k/2 and l−k/2, so that we can have
2l+k/2 candidates for each direction (combining the 2l−k/2 and 2k targets to get 2l+k/2 candidates). In this

2 This being a very natural assumption is illustrated by the fact that for both MD4 and SHA-2 we can give a useful
application that uses this.
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way, we can find a pseudo-preimage in 2n−l−k/2 and finding 2k targets costs Σ2k

i=12
n−l · i−1/2 ≃ 2n−l+1+k/2

(see Appendix B for the proof). So we can find the preimage in

2n−k + 2n−l+1+k/2 = 3 · 2n−2l/3 (2)

taking the optimal k = 2l/3. For this method to work, we will need more matching bits: 4l/3 bits instead of
l (we have 24l/3 candidates for both directions). The memory requirement hence increases to 24l/3. Here we
trade memory for speed from 2n−l/2l (time/memory) to 2n−l−k/2/2l+k/2 for k = 0, . . . , 2l/3. And we have
full control on any other speed/memory balance in-between by making use of the proper number of given
targets, i.e., less than 2k.

2.3 Finding Preimages using Large Precomputation (FPLP)

Here, we describe a simple technique to turn a large class of pseudo-preimage attacks into preimage attacks
without any speed loss. The method requires an initial large precomputation of order 2n and hence needs
to be compared with the time/memory trade-off proposed by Hellman [17]. This means that the time and
memory requirements of a dedicated attack need to be below the TM2 = N2 tradeoff curve in order to be
considered as an improvement over the generic attack.

The approach may be described as follows: in the precomputation phase, one tries to find messages for all
possible chaining outputs, i.e., find mi such that hash(mi) = hT for (almost) all possible target hash values
hT , but only store those messages mi in a table together with the output, which can actually “happen” in
the pseudo-preimage attack. In the online phase, after the pseudo-preimage attack is carried out, a simple
lookup into this memory is enough to find the right linking message. The memory requirement depends on
the subset of all possible chaining inputs the pseudo-preimage attack can possibly result in. If this subset
can be restricted enough, and the pseudo-preimage attack is fast enough, the approach may outperform the
generic method. In Section 3.3, we give an actual example where this is the case for MD4, which seems to
be the first result of this kind.

Four different conversion techniques are summarized in Table 2. Our point here is to illustrate and compare
various approaches and the assumptions they make on the compression function attack. For simplicity,
other conversion methods somewhat similar to MTPP (tree construction in [33], alternative tree and graph
construction in [13]) are not listed. As an example, the new attack on the MD4 compression function satisfies
only assumptions of the traditional and the FPLP approach, the new attack on the Tiger compression function
and the SHA-2 compression function satisfy the assumption made by the GMTPP approach.

Name Reference Time Memory Bits for PM Assumption

Traditional Section 2,[34] 2n−l/2+1 2l l -

GMTPP new, Section 2.2 3 · 2n−2l/3 24l/3 4l/3 redistribute neutral bits

MTPP Section 2.1, [27] (l ln(2) + 1) · 2n−l 2l 2l
Enhanced 3-SUM
PM at feedforward

FPLP new, Section 2.3 2n−l max(2z,2l) l
2n precomputation

subset of chaining of size 2z

Table 2. Comparison of methods converting pseudo-preimage to preimage

2.4 Introduction to some MITM Techniques for Compression Function Attacks

There are several techniques developed recently to extend the preimage attack for more steps or to reduce
the time complexity. To help understand the techniques developed later in the paper, we will introduce the
concepts of initial structure and partial matching here.
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Initial Structure. An Initial Structure can swap the order of some message words near the splitting point,
so that the length of the two chunks can be extended. As shown in Fig 3, originally both chunks p and q
contain both neutral words Wp and Wq . After the initial structure, we essentially swap the Wp and Wq near
the splitting point, so that chunk p is independent from Wq and chunk q is independent from Wp now.

split
chunk p chunk q

Wp

Wq

match

Wq
Wp

Fig. 3. Initial Structure

Partial Matching. Partial matching (PM) can extend the attack for a few additional steps. As shown
in Fig 4, there are Wp and Wq near the matching point, which appear in other chunks and destroy the
independence. However we can still compute a few bits at the matching point, independently for both
chunks, assuming no knowledge of Wp and Wq near the matching point. Partial fixing will fix part of the
Wp and Wq so that we can still make use of those fixed bits, and extend the attack for a few more steps.
Sometimes, Wp and Wq near the matching point behave in such a way that we can express the matching point
as f(Wq) + σ(Wp) from chunk q, and g(Wp) + µ(Wq) from chunk p, for some functions f, σ, g, µ depending
on the underlining hash function. So we can compute f(Wq)−µ(Wq) from chunk q and g(Wp)−σ(Wp) from
chunk p independently, and then find matches. This is called indirect partial matching.

split
chunk p chunk q

Wp Wq

match

WqWp

Fig. 4. Partial Matching

The success of the MITM preimage attack relies mainly on the choice of neutral words and number of
steps the initial structure and partial matching can do. So we will mainly discuss those three points when
the attack is applied on MD4, Tiger, and SHA-2. The way how initial structure and partial matching can
be achieved will be demonstrated in following attack descriptions.

3 Improved Preimage Attack against MD4

3.1 Description of MD4

MD4 follows the traditional MD-strengthening, the original message is padded by 1, followed by many 0’s and
the 64-bit length information so that the length of padded message becomes a multiple of 512. Then divide
the padded message into blocks of 512 bits and feed into the compression function iteratively. Output of the
final compression is the hash. The compression function follows the Davies-Meyer construction, and comes
with two major parts: message scheduling and step function. Message scheduling divides the 512-bit message
block into 16 words (32 bit each) and expands them into 48 using permutations, as shown in following table.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Starting from input chaining, the expanded words are fed into the step function iteratively. The output of the
last step is added with the input chaining to give the output of the compression function. The step function
takes four registers as input, and update one as Qi = (Qi−4 + Fi(Qi−1, Qi−2, Qi−3) + Mπ(i) + Ci) ≪ ri for
i = 0, . . . , 47, where Ci and ri are predefined constants, π is a permutation defined in above table, and the
functions Fi are defined as in the following table. We use typewriter font to denote the hex numbers, such
as 5A827999, 1 for FFFFFFFF, and 0 for 00000000.

First pass 0 ≤ i < 16 Fi = IF Ci = K0 = 0
Second pass 16 ≤ i < 32 Fi = MAJ Ci = K1 = 5A827999

Third pass 32 ≤ i < 48 Fi = XOR Ci = K2 = 6ED9EBA1

3.2 Faster Pseudo Preimage Attack

In this section, we present a pseudo-preimage attack in 272. Separation of chunks is shown in Fig 5. We
choose (M9, Q6) as Wp and (M14, Q26) as Wq. The initial structure covers 17 steps from Step 10 to Step
26, as shown in Fig 6. Note that every register and message words within the initial structure except
Q6, M10, M14, M9, Q26 are fixed to some random values. The concept of 4-cycle local-collision path has been
used in [42,14,27]. However, none of those paths help in our MITM preimage attack, since we cannot find
more proper choices of neutral words. In our initial structure, the relation between Q6 and Q26 satisfies

Q26 −Q6 = ϕ(M9, M10, M14) (3)

for some function ϕ. Note ϕ is fixed when all other registers/message words are fixed.

0 . . . 9 11 5 9 131 6 14213 14 1512 0 4 8 12 10 14. . .

initial structure PM

. . .6 1 91010

chunk p chunk q

Fig. 5. Separation of chunks for Pseudo-Preimage against MD4

We fix all other registers in Fig 6 in such a way that the influence of the registers in the bold line is
absorbed when passing through the F function (this is called cross absorption property). Note F is IF for the
first pass and MAJ for the second pass. To deal with IF,

IF(x, y, z) =











y set y = z when variable lies in x

z set x = 0 when variable lies in y

y set x = 1 when variable lies in z .

Similarly, we force the other two inputs equal for MAJ. All required values are shown in Fig 6. However, this
setting results in no solution, since it is over-constrained on M12 and M13. To overcome this problem, we
propose a probabilistic initial structure.

Probabilistic Initial Structure. Consider the probability for a = IF(b, a, x), where a, b are fixed constants,
and x is a random value in F232 . The equation does not always hold for all x. However, if |b| (Hamming
weight) is very close to 32, then we can expect high probability for the equation to hold. Instead of setting
inputs of IF to be strictly 1 or 0, we use some other values which are close to 1 or 0 (similarly, we force two
inputs of MAJ to be very close), which enables us to find some solutions for the initial structure, as shown
in Fig 7, where a, b are variables to be decided later. We list the equations of the constraints here:
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≪ 13

M12 C19

≪ 3

M1 C20

≪ 9

M10 C26

≪ 5

M5 C21

≪ 9

M9 C22

≪ 13

M13 C23

≪ 3

M2 C24

≪ 5

M6 C25

1

1

(b) (c) (d)(a)

1

1

IF

≪ 11

M14 C14

Q6

Q26

≪ 9

M8 C18

≪ 11

M10 C10

≪ 19

M11 C11

≪ 3

M12 C12

≪ 7

M13 C13

IF

IF

IF

IF

Q9 Q8 Q7

Q25 Q24Q23

1

≪ 19

M15 C15

≪ 3

M0 C16

≪ 5

M4 C17

1

1

IF

1 1

10

Fig. 6. 17-Step Initial Structure for MD4

≪ 13

M12 C19

≪ 3

M1 C20

≪ 9

M10 C26

≪ 5

M5 C21

≪ 9

M9 C22

≪ 13

M13 C23

≪ 3

M2 C24

≪ 5

M6 C25

a

b

(b) (c) (d)(a)

b

b

IF

≪ 11

M14 C14

Q6

Q26

≪ 9

M8 C18

≪ 11

M10 C10

≪ 19

M11 C11

≪ 3

M12 C12

≪ 7

M13 C13

IF

IF

IF

IF

Q9 Q8 Q7

Q25 Q24Q23

a

≪ 19

M15 C15

≪ 3

M0 C16

≪ 5

M4 C17

a

a

IF

a

a

b

b0

Fig. 7. 17-Step Probabilistic Initial Structure for MD4
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Step 11: Q9 = Q8

Step 12: Q11 = 0 ⇔ Q7 + Q8 + M11 = 0
Step 13: Q12 = a ⇔ (Q8 + Q9 + M12) ≪ 3 = a
Step 15: Q13 = Q12 = a ⇔ (Q9 + M13) ≪ 7 = a
Step 16: Q15 = Q13 = a ⇔ (a + M15) ≪ 19 = a
Step 17: Q16 = Q15 = a ⇔ (a + a + M0 + K1) ≪ 3 = a
Step 18: Q17 = Q16 = a ⇔ (a + a + M4 + K1) ≪ 5 = a
Step 19: Q19 = b ⇔ (a + a + M12 + K1) ≪ 13 = b
Step 20: Q20 = Q19 = b ⇔ (a + a + M1 + K1) ≪ 3 = b
Step 22: Q21 = Q20 = b ⇔ (a + b + M5 + K1) ≪ 5 = b
Step 24: Q23 = Q21 = b ⇔ (b + b + M13 + K1) ≪ 13 = b
Step 25: Q24 = Q23 = b ⇔ (b + b + M2 + K1) ≪ 3 = b

(4)

The above system of equations allows us to have choices for a and b. Note that we used two probabilistic
approximations in two places, i.e., IF(a, 0, Q10) = 0 at Step 13, and MAJ(b, Q18, a) = a at Step 20. Each
happens with probability 2|a|−32 and 2−|a⊕b|, respectively (assume Q10 and Q18 are uniformly distributed). To
have high probability, we search the a, b which maximize prob = 2|a|−|a⊕b|−32. We found a = EFFFBFEF, and
b = EFCF1F6F, which give prob = 2−8. Solving (4) leaves M0 = C37DFE86, M1 = C377EA76, M2 = C3D92B76,
M4 = 44FE0488, M5 = 452D2004, M12 = C0FD8501, M13 = C15EC601, M15 = 07FE3E10, Q8 = Q9 =
1E81397E, and Q7 + M11 = E17EC682. To ensure this works as expected, we verified the probability using a
C program [15] , and the experiment confirms the result.

3-step Partial Matching. As shown in Fig 8, the partial matching works for 3 steps. Q36 and Q39 can be
matched directly or using indirect partial matching. So we have 64 bits for partial matching (without using
M10).

The pseudo-preimage algorithm.

1. Fix all mentioned message words/registers as above.
2. Randomly assign all other message words, except M9, M10 and M14.
3. Compute (Q7, Q8, Q9) and (Q23, Q24, Q25).
4. For all (Q26, M14) compute forward from step 27 up to step 36, and obtain the list (Lq, Q26, M14)

(expected size 264).
5. For all (Q6, M9), compute backward from step 9 up to step 0, and obtain the list (Li

p, Q6, M9) (expected
size 264).

6. Do feedforward and add the target, continue computing backwards up to step 40, and obtain the list
(Lp, Q6, M9) (expected size 264).

7. Do partial matching with Q36 and Q39 as shown in Fig 8 (264+64−64 = 264 pairs left), then match with
Q38 (264−32 = 232 pairs left).

8. For each pair left, compute the right M10, such that Q37 is also matched (we have 232 pairs (M14,Q26,
M9, Q6, M10) fully matched).

9. Check if any pair left satisfies Eqn (3), if yes, output the pseudo-preimage; otherwise repeat the above
process until a pseudo-preimage is found (232+8−32 = 28 repetitions expected).

Clearly, the complexity is 272 with memory requirement 264. There are some other additional properties.
Note that given a new target, we can reuse the two lists Li

p and Lq, so that the computation starts from
Step 6 in the algorithm, which results in slightly faster pseudo-preimage in 269.4. Furthermore, such an attack
gives pseudo-preimage with chaining limited to the set Li

p only.

3.3 Preimage attack on the MD4 hash function

To find preimage using the pseudo-preimage attack above, we need to correct the padding. Note that M13

is precomputed, hence the length of last block is fixed, we need to fix the least significant 9 bits of M14

accordingly, i.e., 447 (1BF in hex). Note that adding more blocks will only affect the length by a multiple
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of 512 (29). We leave the number of additional blocks for chance as done in the algorithm in Section 3.2.
A small modification on the algorithm (computing 255 candidates for each direction during each repetition,
and 2128−55×2+8 = 226 repetitions are needed, hence the size of Li

p increases to 255+26 = 281) will result
in pseudo-preimage in 269.4+9 = 278.4 with memory requirement 255. This can be further converted into
a preimage in 299.7 using the traditional conversion (link to input chaining of the last padded block), as
the number of blocks can be resolved by expandable message (we compute a pseudo-preimage following the
padding rule in 278.4, then apply the traditional conversion. Now, padding is no longer a problem when
inverting the second last block etc.).

The resulting message of this attack has at least 250 blocks, due to the fact that M15 is the most significant
word of the length (M15||M14 denotes the length) and we have preset M15 to 07FE3E10.

Precomputation. Similarly we can restrict the input chaining to a subset of size 281, by re-using the lists
whenever looking for a new pseudo-preimage. So the pseudo-preimage can also be converted to preimage in
278.4, when large precomputation is allowed. To achieve this, we precompute about 2128 different message
blocks (prefixed by the expandable message) and store those with output in the restricted subset. This
requires storage of order 281 and precomputation effort 2128. Given a target, we compute a pseudo-preimage
(with padding done), and it can be converted to a preimage by looking up the stored chaining values. Hence
this requires online computation 278.4 only. Using a similar 2128 precomputation, the generic Hellman tradeoff
would either require almost 27.8 times more memory (288.8) to achieve the same runtime, or would lead to
online computation that is almost 215.6 times slower (294) if the same memory would be available.

≪ 9

M10 C37

≪ 11

M6 C38

≪ 15

M14 C39

F

F

F

Match

Q36

Q39

Q37

Fig. 8. 3-Step Partial Matching for MD4

3.4 Second-preimage attack on the MD4 hash function

In contrast to finding preimages, we can avoid the padding issues when finding second-preimages by finding
pseudo-preimages for second last block etc., as done in [27]. Given 2128 precomputation, the complexity of
this second-preimage attack is in 269.4 with 272 memory when k ≥ 2, i.e., it works for all messages with
original length before padding at least 2 blocks (1024 bits, at least 3 blocks after padding). Similarly, it works
in time 299.7 and 264 memory without precomputation. Although a faster second-preimage attack exists [47],
the attack only works for very long messages, i.e., at least 256 blocks. For comparison, a second preimage
can be found in 2n−k, if the given message is of more than 2k blocks, due to Kelsey and Schneier [20] (264

for both time and memory if the optimal k = 64 can be achieved).
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4 Preimage Attack against Tiger

Before presenting the result, we give some notations used in this Section. Let Xo and Xe denote the odd
bytes and even bytes from register X , respectively. More generally, let us denote Xs so that those bits
indexed by the set s are the same as in X and the rest are set to 0. To be consistent, we can define
e = {0, . . . , 7, 16, . . . , 23, 32, . . . , 39, 48, . . . , 55} and o = {8, . . . , 15, 24, . . . , 31, 40, . . . , 47, 56, . . . , 63}.

4.1 Description of Tiger

Tiger is an iterative hash function based on the MD structure. The message is padded followed by the 64-bit
length of the original message so that the length of the padded message becomes a multiple of 512. Then it
is split into blocks of 512 bits and fed into the compression function iteratively. The compression of Tiger
takes 3 chaining words and 8 message words (each word is of 64 bits) as input and produces the updated 3
chaining words as output. It consists of two parts: message expansion and step function. The input chaining
is fed forward, together with output of last step function, to produce the output of the compression function,
which is a variant of the Davies-Meyer construction. We introduce the step function and message expansion
in details as follows.

Step Function. We name the three input chaining words of compression function as A, B and C. These
three registers are updated as follows.

C ← C ⊕X

A← A− even(C)

B ← (B + odd(C)) ×mul

The result is then shifted around so that A, B, C become C, A, B, as shown in Fig 9. Here +, −, × are
addition, subtraction and multiplication, in Z264 , respectively. The two non-linear function even and odd are
defined as follows.

even(x) = T1[x
0
B ]⊕ T2[x

2
B ]⊕ T3[x

4
B ]⊕ T4[x

6
B ] ,

odd(x) = T4[x
1
B ]⊕ T3[x

3
B ]⊕ T2[x

5
B ]⊕ T1[x

7
B ] ,

where T1, . . . , T4 are four S-boxes defined on {0, 1}8 → {0, 1}64, and xi
B denotes the i-th least significant

Byte of x, the details can be found in [5]. mul is 5, 7, 9 for the three passes, respectively.

Ai Bi Ci

Ai+1 Bi+ Ci+1

mul

Xi

even

odd

Fig. 9. Step Function of Tiger

Message Expansion. The 512-bit message block is split into 8 message words X0, . . . , X7, each of 64
bits. The key scheduling function takes X0, . . . , X7 as input and produces message words {X8, . . . , X15} and
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{X16, . . . , X23} recursively as follows.

(X8, . . . , X15) = KSF(X0, . . . , X7)

(X16, . . . , X23) = KSF(X8, . . . , X15) ,

where the key scheduling function KSF is defined as follows. We use (X8, . . . , X15) = KSF(X0, . . . , X7) as an
example here.

First Step: Second Step:

Y0 =X0 − (X7 ⊕K3) X8 =Y0 + Y7

Y1 =X1 ⊕ Y0 X9 =Y1 − (X8 ⊕ (Y 7 ≪ 19))

Y2 =X2 + Y1 X10 =Y2 ⊕X9

Y3 =X3 − (Y2 ⊕ (Y 1 ≪ 19) X11 =Y3 + X10

Y4 =X4 ⊕ Y3 X12 =Y4 − (X11 ⊕ (X10 ≫ 23))

Y5 =X5 + Y4 X13 =Y5 ⊕X12

Y6 =X6 − (Y5 ⊕ (Y 4 ≫ 23)) X14 =Y6 + X13

Y7 =X7 ⊕ Y6 X15 =Y7 − (X14 ⊕K4)

with K3 = A5A5A5A5A5A5A5A5, K4 = 0123456789ABCDEF, and Y denotes bitwise complement of Y .

Attack Preview. The MITM preimage attack has been applied to Tiger, however for variants reduced
to 16 and 23 steps [19,43], out of 24 in full Tiger. The difficulty lies on finding good neutral words, longer
initial structure and partial matching. In our attack, we find a 4-step initial structure, extend the partial
matching to 5 steps and provide choice of neutral words achieving this. However each of them comes with
constraints posed on message words/registers, due to the very complicated message scheduling used in Tiger.
Throughout the description of the attack, we will explicitly give all those constraints, and explain how they
can be fulfilled using the multi-word technique, i.e., utilizing the degrees of freedom of most message words
and registers to fulfill these constraints, which are usually left as random in the original MITM preimage
attacks.

4.2 Precomputed Initial Structure

The original initial structure does not apply to Tiger, since the message words are xor-ed into the chaining,
followed by addition/subtraction operations. One cannot swap the order of xor and addition/subtraction,
unless the chaining values are within certain range so that we can either approximate xor by addition, or
approximate addition by xor. We can either restrict one of the inputs to 0, or force the output to be 1, e.g.,
X ⊕ 0 = X + 0, and X ⊕Y = 1 if and only if X +Y = 1. Under this restriction, we are able to have a 4-step
initial structure as shown in Fig 10(a), which comes with the following three constraints.

Constraint 1 Variables from Xi lie on the odd bytes only, so that (Xe
i ) is fixed.

Constraint 2 Assume we have control over Xi+4 on those bits so that (Xi+4

mul )o is fixed, and there is no carry
from even bytes to odd bytes so that we can eventually move the X ′

i+4 further up above the odd function in

step i + 1. The idea is to keep the input to the odd function unchanged when we move the (Xi+4

mul )e as shown
in Fig 10(b).

Constraint 3 Ci+3 ⊕Xi+4 should be 1 for those bits, where variables from Xi+4 lie.

After the precomputed initial structure (PIS) is formed, we essentially swap the order of Xe
i and (Xi+4

mul )o,
which are 4 steps away from each other originally.
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o

Xi+3
e

o

Xi+2
e

o

o

e

Ci−1

o

split

Xo
i

Xe
i

X ′
i+4 = (Xi+4

mul )ee
Xi+1

(b) Initial Struc-
ture 2

Match A2

X5

X6
e

o

e

o

X2
e

o

X4
e

o

X3
e

o

(c) Partial
Matching

Fig. 10. 4-Step Initial Structure and 5-step Partial Matching for Tiger

4.3 Message Compensation

The length of each independent chunk is at most 7 steps, due to the fact that any consecutive 8 message
words can generate all other words (i.e., related to all other words). Message compensation is used to achieve
the maximum length (or close to maximum) for each chunk. Since we are able to have 4-step PIS, we would
have 7 + 4 + 1 + 7 = 19 steps for two chunks. Details are shown in Fig 11. Where X7, . . . , X13 form the
first chunk (7 steps), X14, . . . , X18 may be dealt with using precomputed initial structure as shown above,
and X19, . . . , X23, X0, X1 are the second chunk (7 steps). In this way, we have 19-step extended chunks.

For the first chunk, we use a few bits of X18 as the neutral word (we will discuss which bits are to be
used later). We force X18 to be the only one affected in the third pass (i.e., X16, . . . , X23). We come up with
such a configuration following the rule that there are as few words affected in the current pass as possible.
In summary, we have {X2, . . . , X6, X10, X11, X12, X18} affected as shown in Fig 11(a). Note this comes with

Constraint 4 We use at most the least significant 23 bits of X18 so that these bits disappear when (X18 ≫
23) is done (as shown in Fig. 11(a)), hence it does not affect X20 etc.

For the second chunk, we use a few bits of X14 as the neutral word and avoid difference in X7 in the
first pass. Meanwhile, we avoid differences in X8, . . . , X13 and X15 for the second pass. In the end, we have
{X0, . . . , X3, X14, X16, . . . , X23} affected as shown in Fig 11(b). Note this comes with a constraint

Constraint 5 X15 remains constant.

The two neutral words affect some common message words, i.e., X2, X3, X6 and X18. We will need to choose
the bits from two neutral words X14 and X18 properly, so that

Constraint 6 X14 and X18 will not affect any common bits of any word simultaneously, i.e., for X2, X3, X6

and X18.

We are left with the choices of the neutral bits for minimizing the attack complexity, which will be discussed
later in Section 4.5.
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(a) First Neutral Word in Red
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(b) Second Neutral Word in Blue

Fig. 11. The neutral words with key scheduling function for Tiger

4.4 Partial Matching and Partial Fixing

The direct partial matching works for 3 steps by computing backwards. Furthermore, by fixing the even bytes
of the first message word (partial fixing technique) in forward direction, Isobe and Shibutani [19] are able
to achieve 4-step, and 5-step by Wang and Sasaki [43]. In addition to the 4-step initial structure, we further
post more conditions on message words in order to achieve 5-step partial matching (different from [43]), as
shown in Fig 10(c), it covers step 2 to step 6.

Constraint 7 The partial information below X3 as in Fig 10(c) computed from X6 should cover all even
bytes so that we can compute the even function in step 3;

Constraint 8 Xo
2 should be related to X14 only, so that we can compute the odd function at step 2 inde-

pendently of X18.

To summarize, we are to use {X7, . . . , X13} as one chunk, {X19, . . . , X23, X1, X2} as the other chunk;
precomputed initial structure covers steps using {X14, . . . , X18} (i = 14 for Section 4.2); and partial matching
works for {X2, . . . , X6}. Hence, the full Tiger of all 24 steps is covered.

4.5 Attack Description and Complexity Analysis

In this section, we show how to set the message words and registers for the PIS in order to have all constraints
fulfilled. We also give algorithms with complexity evaluations, when necessary, to demonstrate how the attack
works.

Fulfilling all Constraints. To have constraints about X18 fulfilled (i.e., Constraints 2, 4, and 8), we choose
neutral bits from Xsb

18, where sb = {0, . . . , 7, 16, . . . , 22}. Similarly, to have Constraint 1 on X14 fulfilled, we
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restrict the neutral bits from bytes 3, 5, 7 of X14, i.e., X
sf

14 with sf = {24, . . . , 31, 40, . . . , 47, 57, . . . , 63} (bit
56 is reserved for padding). Due to the fact that addition/subtraction will only propagate differences towards
MSB, the least significant bits of X

sf

14 that may affect on X2, X3, X6, X18 are 43 (due to ≪19), 62 (due to
≪19 twice), 24, and 24, respectively. However, Xsb

18 has very low chance (≃ 0) of affecting up to bit 43 of
X2, bit 62 of X3, bit 24 of X18, and we will filter candidates so that the influence on X6 is limited to up
to bit 23. Hence, Constraint 6 can be fulfilled. To fulfill Constraint 5, we force Y

sf

6 = X
sf

14 (through setting
X

sf

13 = 0), and X
sf

7 = K
sf

4 . We leave Constraint 3 for PIS setup, and Constraint 7 for partial matching, to
be addressed later.

Precomputed Initial Structure. For the precomputed initial structure to work, we have to preset several
message words. Besides X

sf

13 = 0 and X
sf

7 = K
sf

4 , we still need to take care of the padding. We set X56
6 = 1,

i.e., the length of original message in last block is 447 (7× 64 − 1). Hence, we need to set X
{0,...,8}
7 = 447.

Note that adding more blocks will affect the length by a multiple of 29, which has no effect on the 9 LSBs
of X7. To reduce the influence of X

sf

14 on X6, we further set (Y 4 ≫ 23 ⊕ Y5)
sf = 0, so that only X

sf

6 out
of X6 will be affected. Note the PIS can be done in 215 evaluations of key scheduling (leaving restriction on
X

sf

14 for probability only). This is negligible since we can reuse the PIS for at least 216 times, to be discussed
later.

Finding good candidates - Backward. We use bits from Xsb

18 to compute the good candidates for

backward direction. Constraint 2 further restricts us to choose values such that X
{0,...,7}
18 and X

{16,...,23}
18

are multiple of 9 (mul = 9 for third pass). Hence, we can have ⌈28/9⌉ × ⌈27/9⌉ = 28.8 good candidates.
Finally, we filter out candidates which do not fulfill Constraint 6. Experiments show that the remaining good
candidates are about 28. Note these good candidates need to be computed under the constrainted PIS, we
use message modification techniques to fulfill the constraints for PIS, and to get the 28 good candidates in
less than 219 key scheduling evaluations. Details can be found in [15].

Finding good candidates - Forward. We use bits from X
sf

14 to compute the good candidates for backward
direction. To have Constraint 3 fulfilled, we need to filter the candidates, such that it gives 1 for Csb

i+3 as
in Fig 10(b), this reduces the number of candidates to 223−15 = 28. Note that this part can be re-used for
many different (at least 216) Ci, by changing the even bytes, which we can freely set at the very beginning
of the MITM preimage attack. Hence, the time complexity for this part is also negligible.

Probabilistic Partial Matching. Partial matching matches A2 from both sides, where we can compute A2

in the forward direction without any problem. However, in the backward direction, we only know information
of bytes 0, 1, 2, 4, 6 of X6 (red), as to compute Be

3. Note that B3 = (B6 ⊕ X6 + even(B6))/5 − odd(B5)
(mul = 5 for first pass), where B5 and B6 are known. We rewrite it to B3 = (B6 ⊕ X6)/5 + K5, where
K5 = even(B5)/5−odd(B4). We can compute bytes 0, 1, 2 of B3, yet we still need bytes 4, 6 from information

of bytes 4, 6 of X6 only. Note that B
{32,...,39}
3 = (B

{32,...,39}
6 ⊕X

{32,...,39}
6 −Bo×232)/5+K

{32,...,39}
5 +Ca×232,

where Bo ∈ {0, . . . , 4} denote borrow from bit 31 when ‘/5’ is carried out, and Ca ∈ {0, 1} denote the carry
for the ‘+’ from bit 31. We deal with the Bo by computing all possible choices, and guess the Ca = K31

5

which results in a probability 3/4 for the Ca to be correct. This gives an example for byte 4, and we can deal
with byte 6 similarly. The process results in 25 times more computations for partial matching, together with
probability 9/16. However, we shall only need to repeat the even and the ‘−’ at Step 3, so that the essential
repetition is equivalent to less than 2−1 compression computations per candidate.

Complexity of Finding a (Second) Preimage. Following the MITM preimage attack framework, the
pseudo-preimage attack works as follows.

1. Randomly choose A14, B14, C14.
2. Compute precomputed initial structure.
3. Compute candidates in backward and forward directions.
4. Repeat for 216 values of C14 by looping all values in byte 4 and 6 (this step is to make time complexity

for first three steps negligible):
(a) For each candidate for backward and forward directions, compute A2 independently.
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(b) Carry out probabilistic partial matching. If a full match on A2 is found, further re-check if the “guess”
is correct.

5. Repeat 1-4 until a pseudo-preimage is found.

The pseudo-preimage attack works in time 2185.4 (2192−8 × 1.5 × (3/4)−2), which can be reduced to 2182.4

when more than 24 targets are available (by using targets as part of backward candidates as in GMTPP).
The pseudo-preimage can be converted to preimage attack with time complexity 2189.7 using the traditional
conversion, with memory requirement of order 28. Following the GMTPP framework, the time complexity
can be further reduced to 2188.8 (by computing 24 pseudo preimages and 2192/24 linking messages), with the
same memory requirement. Similarly, the second-preimage attack works in 2188.2, when the given message is
of more than 24 blocks.

5 Concluding Discussion

We conclude with a discussion of results and some open problems that are independent of particular hash
functions. In this paper we have extended the framework around meet-in-the-middle attacks that is currently
being developed by the community with a number of general approaches. We illustrated those extensions
with improved preimage attacks on various time-tested hash functions, with the first cryptanalytic attack on
the full Tiger hash function probably being the most interesting example. Other examples include various
improved preimage attacks on MD4 and step-reduced SHA-2.

One of the generic ideas presented was the following. Under the meet-in-the-middle preimage attack
framework, we presented new techniques to convert pseudo-preimage into preimage faster than the traditional
method, i.e., the Generic Multi-Target Pseudo Preimage and a simple precomputation technique. It will be
interesting to see if an algorithm solving the Enhanced 3-Sum Problem faster than 22n for a set size of 2n

exists, so that the MTPP can be valid for any l. On the other hand, we found pseudo-preimage for MD4 in
272, it will be interesting to see if any of the new conversion techniques or other unknown techniques works
when converting pseudo-preimage to preimage for MD4.

We expect the techniques outlined in this paper to also improve existing preimage attacks on well studied
hash functions like MD5, SHA-1, HAVAL, and others. Also, the narrow-pipe SHA-3 candidates seem to be
natural targets.
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A Improved Preimage Attack against SHA-2

In [6], Aoki et al. give preimage on 42-step reduced SHA-2. We note that the matching point (together with
the choice of neutral words) can be moved to the end of the compression function, as done for attacking
SHA-224/384 in [6]. The number of neutral bits in two directions is around 32/3 (64/3 for SHA-512) and
the number of bits for partial matching is 32 (64 for SHA-512), which is more than enough. Applying the
MTPP framework, we find preimages in 2248.4 (substitute n = 256 and l = 32/3 to (1)), compared with
2251.7 for 42-step SHA-256 and 2494.6 (substitute n = 512 and l = 64/3 to (1)), compared with 2502.3 for
42-step SHA-512. The memory requirements remain unchanged.

Note partial matching works in such a way that, the more bits are fixed, the fewer bits for neutral words
and more steps/more bits can be used for partial matching. So there is a trade-off between bits for neutral
words and bits for partial matching. When multi-targets are available, we are to use fewer bits for neutral
bits, and more for partial matching, in order to reduce the complexity for finding pseudo-preimages. This
trick can be applied to the attack on 43-step SHA-256 and 46-step SHA-512 in [6], hence the complexity
can be reduced. As mentioned in our conclusions, we expect this method to be directly applicable to more
existing results.

B Proof

This section proves Σ2k

i=12
n−l · i−1/2 ≃ 2n−l+1+k/2.
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Proof. Using Riemann integral, we can estimate Σ2k

i=1i
−1/2 as

∫ 2k

i=0
i−1/2 = 2k/2+1, with error in the range

(-2, 0]. A concrete proof is shown below.

Let f(x) = ⌈x⌉−1/2 for x > 0, and g(x) = x−1/2 , we immediately have Σ2k

i=1i
−1/2 =

∫ 2k

i=0
f(x)dx ≤

∫ 2k

i=0
g(x)dx = 2k/2+1 (note g(x) ≥ f(x) for all x > 0). Similarly, f(x) ≥ g(x + 1) for all x > 0, hence

Σ2k

i=1i
−1/2 ≥

∫ 2k

i=0
g(x + 1)dx = 2((2k + 1)1/2 − 1) > 2k/2+1 − 2. Hence the estimation Σ2k

i=1i
−1/2 ≃ 2k/2+1 is

valid. Multiplying both side by 2n−l proves above.
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