
Speed Records for NTRU ?

Jens Hermans ??, Frederik Vercauteren ? ? ?, and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
{jens.hermans,frederik.vercauteren,bart.preneel}@esat.kuleuven.be

Abstract. In this paper NTRUEncrypt is implemented for the first time on
a GPU using the CUDA platform. As is shown, this operation lends itself
perfectly for parallelization and performs extremely well compared to similar
security levels for ECC and RSA giving speedups of around three to five
orders of magnitude. The focus is on achieving a high throughput, in this
case performing a large number of encryptions/decryptions in parallel. Using
a modern GTX280 GPU a throughput of up to 200000 encryptions per second
can be reached at a security level of 256 bits. This gives a theoretical data
throughput of 47.8 MB/s. Comparing this to a symmetric cipher (not a very
common comparison), this is only around 20 times slower than a recent AES
implementation on a GPU.

Keywords: NTRU encryption, Graphical Processing Unit, Parallelization,
CUDA.

1 Introduction

Graphical Processing Units (GPUs) have long been used only for the rendering of
games and other graphical applications. More recent GPUs are also used for general
purpose parallel programming, using new programming models. A General Purpose
GPU (GPGPU) contains a large number of processor cores (240 for the GTX280
[23]) that run at frequencies that are mostly lower than CPUs (1.2 GHz for the
GTX280 GPU compared to 3.8 GHz for a recent Intel Pentium 4 [18]). Compared
to a CPU a GPU provides a much larger computing power (several GFlops, or even
TFlops for multiple GPUs) for specific parallel applications, because of the large
number of cores. The recent change towards general scalar processor cores, that
support 32- or 64-bit integer and bitwise operations, offers a new opportunity to
implement cryptographic applications on GPUs.

There are several cryptographic ciphers that have a high level of parallelism,
making them suitable for implementation on GPU. For performing a single encryp-
tion/decryption GPUs might not be very well suited: there is a latency compared

? This work was supported in part by the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy).

?? Research assistant, sponsored by the Fund for Scientific Research - Flanders (FWO).
? ? ? Postdoctoral Fellow of the Fund for Scientific Research - Flanders (FWO).



to a CPU, because of the transfer of the data between main memory and GPU
memory. In many applications the focus is not on the latency of a single crypto-
graphic application, but on the throughput: one wants to perform a large number of
encryptions/decryptions as fast as possible. In the case of a symmetric block cipher
this will be the case when operating on a large block of data (using a suitable block
cipher mode). Asymmetric ciphers are not often used in such a mode of operation,
but more likely on servers that need to process many different secured connections
where a large number of asymmetric cryptographic operations need to be performed.
Currently cryptographic co-processors are used to speed up these operations, but a
GPU might provide an alternative for these co-processors. An advantage is the fact
that GPUs are almost by default present in modern computers and are also much
underused. Another advantage is the flexibility: GPUs are easy to reprogram, mak-
ing it an interesting co-processor to add to large computing farms. The large power
consumption of the fastest GPUs is however a disadvantage, especially with a grow-
ing focus on the energy performance of data centers. One of the most likely uses
of GPUs will be performing attacks on ciphers. GPUs have a very good comput-
ing power / price ratio, making them very economic for bulk computations. One
can have around 200 GFlops (around 1 TFlops theoretically) for less than AC500. In
many attacks multiple cryptographic operations need to be performed, or at least
part of these operations, so implementing and optimizing the original cryptographic
operation on GPU is also of great use for attacks.

The choice for NTRUEncrypt (in short: NTRU) as the cryptographic cipher is
less obvious: RSA [24] and ECC [7] are currently the respectively dominant and
rising ciphers. NTRU has a large potential as a future cipher, given the very simple
nature of it’s core operation: the convolution (compared to a modular exponentiation
for RSA and repeated squaring/doubling for ECC). This simple operation makes
it very suitable for embedded devices with limited computing power, but also for
parallelization, since a convolution can be split up over several processors. NTRU
also has a good (asymptotic) performance of O(N2) (or even O(N log N) using FFT),
compared to, for example, O(N3) for RSA. So, NTRU is expected to outperform RSA
and ECC at similar security levels, and NTRU will also provide a good scalability
for the future.

Because of these properties of NTRU, it was chosen as the cipher to be im-
plemented on a GPU in this paper. For this paper the ees1171ep1 parameter set
is used, a high security (k = 256, the symmetric key size in bits) parameter set
as claimed in [27]. Besides this parameter set a special version using product-form
polynomials is also implemented. Product-form polynomials improve performance
even further. Taking this high security level into account, NTRU performs very well
when comparing with RSA (which would require a 15360 bit modulus) and ECC.
For high througput applications a speedup of three to five orders of magnitude is
reached compared to RSA and ECC. The GPU implementation reaches a through-
put of up to 200000 encryptions per second which is equivalent to a theoretical data
throughput of 47.8 MB/s.



Organization In Section 2 previous work on cryptography on GPUs and NTRU
implementations is discussed. Next, a brief introduction is given to the NTRU cryp-
tosystem in Section 3, especially on the parameter sets that have been proposed in
the literature. In Section 4 the basics of GPGPU programming are explained, with a
focus on the CUDA platform. This knowledge of NTRU and CUDA is combined to
make an optimized GPU implementation of NTRU in Section 5. Finally the perfor-
mance of the implementation is evaluated and compared to other implementations
and other ciphers in Section 6.

2 Related work

There is already much software available for GPUs, ranging from simple linear alge-
bra packages to complex physical simulations. There has not been much development
of cryptographic applications for the GPU, until recently when GPUs started sup-
porting integer and bitwise operations. For example, AES was implemented on GPU
[20] [14] [8], offering a maximum throughput of 831 MBytes/s (128 bit key, [20]).

RSA [24] has been implemented before the introduction of recent GPGPU plat-
forms, using the OpenGL API [21] and more recently using modern platforms [26]
[11], reaching up to 813 modular exponentiations (1024-bit integers) per second [26].
GPUs are also used to launch attacks, for example elliptic curve integer factoring [5]
and brute force attacks, like for wireless networks [25].

There are no GPU implementations for NTRU. NTRU has however been imple-
mented on a variety of platforms, like embedded devices, FPGAs [3] and custom
hardware [1]. NTRU turns out to perform very well on devices with limited comput-
ing capabilities, given the simple nature of the convolution that is the central en-
cryption/decryption operation. Compared to other modern cryptosystems like ECC,
NTRU turns out to be very fast [19].

3 NTRUEncrypt

In this section the basics of NTRU are briefly introduced, based upon [2], to which
we refer for further, more complete, information.

Let Z denote the ring of integers and Zq the integers modulo q. NTRUEncrypt is a
public-key cryptosystem that works with the polynomial ring P (N) = Z[X]/(XN −
1) (and Pq(N) = Zq[X]/(XN − 1)), where N is a positive prime. A vector from
ZN (resp. ZN

q ) can be associated with a polynomial by f = (f0, f1, . . . , fN−1) =∑N−1
i=0 fiX

i

The multiplication of two polynomials h = f?g is defined as the cyclic convolution
of their coefficients:

hk = (f ? g)k =
∑

i+j≡k mod N

fi · gj (0 ≤ k < N) (1)

which is the ordinary polynomial multiplication modulo XN − 1.



The polynomials used in NTRU are selected from several polynomial sets Lf ,Lg,Lr

and Lm. First the basic operations (key creation, encryption and decryption) of
NTRU are introduced and afterwards, in Section 3.1, the structure of the polyno-
mials and the parameter sets are discussed.

Key creation The private key is a polynomial f , chosen at random from the set
Lf . Another polynomial g ∈ Lg is also chosen at random, but is not needed anymore
after key generation. From these polynomials the public key h can be computed as

h = p ? f−1
q ? g mod q (2)

where f−1
q is the inverse of f in Pq(N) and p is a polynomial (usually 3 or X + 2).

The polynomials f and g generally have small coefficients, while h has large
coefficients.

Encryption The message m ∈ Lm can be encrypted by choosing a random poly-
nomial r ∈ Lr as a blinding factor and computing the ciphertext as

e = r ? h + m mod q. (3)

In practical schemes the message is padded with random bits and masked. For
this paper, these steps are ignored, and only the computation of r ? h + m mod q is
considered.

Decryption Decryption can be done by convolving the ciphertext e with the private
key f

a ≡ e ? f ≡ p ? r ? g + m ? f mod q (4)

and next convolving by f−1
p mod p. By a careful choice of f it can be assured that

f−1
p = 1, so only a reduction mod p is needed.

One of the problems NTRU faces are decryption failures: the first step of the de-
cryption only computes a mod q and not a. The problem is that knowing a mod q
is not enough to know a mod p. The problem of decryption failures has been stud-
ied extensively in [17]. In this paper it suffices to pick the coefficients of a from
(−q/2, q/2] and assume the probability of decryption failures is negligibly low.

3.1 Parameter sets

The parameter N must always be chosen to be prime, since composites allows the
problem to be decomposed [13]. The parameter q is mostly chosen as a power of 2,
to ease the computations modulo q. The parameter p must be relatively prime to q,
but it is not necessary that p is an integer, it can be a polynomial. Popular choices
for p are 3 and X + 2.



Besides the parameters N, p, q there are the sets of polynomials Lf ,Lg,Lm,Lr

that have to be defined. The message space Lm is defined as Pp(N), since the message
is obtained during the decryption after reducing modulo p.

The other sets of polynomials are chosen as ternary (for p = 3) or binary (for
p = X + 2) polynomials.

Ternary polynomials Define L(dx, dy) as the set of all ternary polynomials that
have dx coefficients set to 1 and dy coefficients set to −1 (all other coefficients are
0).

One of the most natural choices for the polynomial sets is

Lf = {1 + p ? F : F ∈ L(df , df )} , Lr = L(dr, dr) , Lg = L(dg, dg)

which is also used in the most recent standards draft [27]. The choice of Lf as 1+p?F
guarantees that f−1

p = 1.
For ternary polynomials p is set to 3.

Binary polynomials Binary polynomials offer an alternative for ternary polyno-
mials and are much easier to implement in hardware and software. A disadvantage is
that binary polynomials are by definition unbalanced, so f(1) 6= 0. As a consequence
information on m, namely m(1), leaks.

In [12] the following parameters are used:

Lf = {1 + p ? F : F ∈ L(df , df )} , Lr = L(dr, 0) , Lg = L(dg, 0)

Product-form polynomials The central operation when encrypting is a convolu-
tion with a binary/ternary polynomial. The number of non-zero elements in r ∈ Lr

is crucial for the performance of the encryption operation. A smaller number of non-
zero elements will make the convolution faster (and lower memory usage, depending
on the storage strategy) but will also degrade the security. By taking

Lr = {r1 ? r2 + r3 : r1 ∈ Lr1 , r2 ∈ Lr2 , r3 ∈ Lr3}

with dr1 , dr2 , dr3 � dr the convolution is still secure, since r1 ? r2 + r3 still contains
roughly the same amount of randomness as a single random r [15]. For our imple-
mentation dr1 = dr2 = dr3 = 5, so each polynomial ri has 10 non-zero coordinates.
The performance is however increased drastically. The convolution t = r ? h mod q
can be computed in several steps as in [3]:

t1 ← r2 ? h ; t2 ← r1 ? t1 ; t3 ← r3 ? h ; t← t2 + t3 mod q (5)

Since each of r1, r2, r3 have a low number of non-zero elements, the convolutions
in (5) are much faster, requiring less additions than r ? h. Another advantage is the
lower storage requirement.



4 GPU programming

4.1 The CUDA platform

The CUDA programming guide [22] explains in detail all aspects of the platform
and programming model and was used as a basis for the following sections. The
GTX280 that was used for this paper is a GPU that belongs to the range of Tesla
Architecture GPUs from Nvidia. The Tesla architecture is based upon an array of
multiprocessors (30 for the GTX280) that each contain 8 scalar processors. A multi-
processor is operated as a SIMT-processor (Single-Instruction, Multiple-Thread): a
single instruction uploaded to the GPU causes multiple threads to perform the same
scalar operation (on different data). The CUDA programming model from Nvidia,
that is used to program their GPUs, provides a C-like language to program the GPU.

Programming model As stated above, all programming is done using scalar oper-
ations: one needs to program a single thread which will then be executed in multitude
on the GPU. Threads are grouped into blocks. All blocks together form a ‘grid’ of
blocks. Threads within the same block can use shared memory. Both threads and
blocks can be addressed in a multi-dimensional way. All scheduling of instructions
(threads) on the multiprocessors is hidden from the programmer and is done on-chip.
Threads are scheduled in warps of 32 threads. For optimal performance divergent
branching inside the same half-warp (16 threads) must be avoided: each thread in
a half-warp must execute the same instruction, otherwise the execution will be se-
rialized. If divergent branching occurs, one possible strategy is to ensure that the
thread ID for which divergence occurs coincides with a change of half-warp.

Memory A multiprocessor contains fast on-chip memory in the form of registers,
shared memory and caches. Off-chip memory is also available in the form of global
memory and specialized texture and constant memory. The global memory is not
cached. The GTX280 provides 1GB of off-chip memory.

Each of the memory types has specific features and caveats 1:

– Global memory: as the global memory is off-chip there is a large performance
hit (hundreds of cycles). Another issue is that multiple threads might access
different global memory addresses at the same time, which creates a bottle-neck
and forces the scheduler to stop the execution of the block until all memory
is loaded. It is recommended to run a large number of blocks, to ensure the
scheduler can keep the multiprocessors busy, while memory loading takes place.
One way to avoid such large performance penalties are coalesced memory reads,
in which all threads from a half-warp access either the same address or a block
of consecutive addresses. In the case of loading a single address the total cost is
only one memory load.

– Registers: care has to be taken to limit the number of registers per thread as
the registers are shared among all threads and blocks running on the same mul-
tiprocessor.

1 Texture memory is not used in this paper, so details have been omitted.



– Shared memory: shared memory is stored in banks, such that consecutive 32 bits
are stored in consecutive banks. When accessing shared memory one needs to
ensure that threads within the same warp access different banks, to avoid ‘bank
conflicts’. Bank conflicts result in serialization of the execution.

– Constant memory: the advantage of using constant memory is the presence of a
special read-only cache, which allows for fast access times.

Instructions Almost all operations that are available in C can be used in CUDA.
CUDA only uses 32-bit (int, float) and 64-bit variables (long, double) for arith-
metic, other types are converted first. In this paper, we will refer to 32-bit integers
as ‘int’ (or just ‘integer’) and to 64-bit integers as a ‘long’. Integer addition and
bitwise operations take 4 clock cycles. 32-bit integer multiplication takes 16 cycles.
Integer division and modulo are expensive and should be avoided.

5 The implementation

For the implementation the ees1171ep1 parameter set from [27] is used. This param-
eter set (with ternary polynomials and N = 1171, p = 3, q = 2048 = 211, dr = 106) is
one of the three strongest from the draft standard. Considering the relatively young
age of NTRU and recent attacks (e.g. [16]), it is better to be rather conservative in
the parameter choices and take one of the strong parameter sets.

Two implementations were made: one using the default ternary polynomials, the
other using product-form ternary polynomials. In the last case dr1 = dr2 = dr3 = 5.

The generation of random data (needed for encryption) is performed by the
CPU, although parallel implementations exist for CUDA. There are several reasons
for this choice: first of all it is the goal of this paper to compare the central NTRU
operation, the convolution, and not to compare choices of random number genera-
tors. By computing the random numbers beforehand on CPU, any influence of the
choice of the random generator is excluded. Second, one might consider an attack
strategy in which the opponent would explicitly choose r, instead of using random
numbers. Another advantage of performing the generation of r on CPU is exploiting
the parallel computation by using both CPU and GPU.

5.1 Operations

Both parallel encryption (two variants) and parallel decryption are implemented on
CUDA. The superscript i in mi denotes the i-th message that is used in the parallel
computation. The operations are defined as follows:

– Encryption: given ri ∈ Lr, hi and mi ∈ Lm (for i ∈ [0, P ), with P the number
of parallel encryption operations) the kernel computes ei = ri ? hi + mi mod q.
Two strategies for the public key are considered: one which uses the same public
key for all encryptions (∀i : hi = h) and one with different public keys for every
operation.



– Decryption: given ei and f , compute mi. The private key is the same for all
decryptions.

Key generation was not implemented, although situations exist where one would like
to generate multiple keys in parallel.

For encryption both ordinary and product-form ternary polynomials are used as
r.

The decryption operation can be written as

e ? f ≡ e ? (1 + p ? F ) ≡ e + (e ? F ) + (e ? F )� 1 mod q (6)

where “�” is a left bit shift. Besides some extra scalar operations for each coeffi-
cient, one can reuse the encryption algorithm. In the next sections only encryption
is discussed. The results section only includes results for the case that F is an ordi-
nary ternary polynomial. Because there was no performance difference compared to
encryption, decryption was not implemented for product-form polynomials.

5.2 Memory usage - Bit packing

Since all data must be transferred from the main computer memory to the GPU
(device) memory, it is in the best interest to limit the amount of memory used.

One standard technique is bit packing. The ternary coefficients of r can be en-
coded as 2 bits, of which 32 can be packed into a 64-bit long. The coefficients of
h are each 11 bit long, allowing for up to 5 coefficients to be stored in a long. We
however pack only 4 elements of h in a long. The extra unused bits come in handy
when performing an addition on the entire long, so that the overflow does not cor-
rupt one of the packed values stored higher in the bit array. Note that although the
polynomial m also has ternary coefficients we choose to store it using 11 bits per
element. This way, the result of the encryption e (which is mod q) can be written in
the same space as m, which results in a smaller memory usage. In total 623 long’s
are required to store h, m and r.

For the implementation with product-form polynomials the values of r1, r2 and
r3 can be stored in a different way. Instead of encoding each ternary coefficient as
two bits, the indices of the non-zero coefficients are stored, as in [3]. Since each index
is in [0, N − 1], dlog2(N)e = 11 bits are needed to store each index. These indices
are again packed, but not aligned to 16 bit multiples, since the access is sequential
(see further). The memory consumption is only lowered moderately to 592 longs,
but the new structure of the convolution has a large impact on the construction of
the loops and thus the performance.

Since multiple encryption/decryption operations are performed, multiple mes-
sages m and blinds r need to be uploaded to the device. All variables are stored in
one large array of long’s, e.g. a single mb is packed to 293 longs, with the total
array being 293× P long’s. Note that the time for bit packing the data on CPU is
not included in the timing results and that all host-memory is page-locked.

In the next sections and the algorithms in Appendix A, we use the notation
xpacked,i to refer to the long containing the i-th element of the x polynomial (which



is denoted as xi). P (i) is used to denote the index of the long that contains xi. When
there is a reference to xi in the pseudo-code, the index calculation and decoding are
implicit.

5.3 Encoding

The coefficients of h are encoded as 11 bit integers, in the range [0, q − 1]. The
blind r, consisting of ternary coefficients, is encoded by mapping {0, 1,−1} to 2-bit
values (which can be chosen arbitrarily). The message m also consists of ternary
coefficients, but for efficient computation, these are loaded in the memory space
that will contain the result e. Because of this, the ternary coefficients are stored as
11-bit values in two’s complement (e.g. (−1)3 = 211 − 1).

5.4 Blocks, threads and loop nesting

Parallelism is present at two levels: at the level of a single encryption, which is split
over multiple threads, and at the level of the parallel encryptions, which are split over
the blocks. When performing a single encryption, one needs to access all elements
rb
i , hb

j and eb
k. Each block (block index denoted with the superscript b) is responsible

for doing a single encryption/decryption operation. To make storing ek as efficient
as possible, each thread is responsible of computing 4 coefficients of e, which implies
that each thread writes only one long.

For the normal ternary polynomials, the algorithm executed by each thread is
presented in Algorithm 3. There is an implicit ‘outer loop’ that iterates over k (the
parallel threads). The middle loop (over i) selects the element from rb and then uses
simple branching and addition (no multiplications).

Algorithm 1 shows the algorithm for the product-form ternary polynomials. The
implicit outer loop is the same, but the computation inside is completely different.
The computation of r2 ?h is split over all threads and the results are stored (packed)
in shared memory. Unlike the other convolutions in Algorithm 1, all threads need
all indices of r2 ? h and not just the k . . . k + 3-th coefficients.

Since r1, r2 and r3 are stored using indices, the convolution algorithm is differ-
ent from that used for ordinary polynomials. Algorithm 2 describes part of such a
convolution. Again, only 4 coefficients of the result are computed, which matches
the division of the convolution among the threads.

5.5 Memory access

Since the convolutions are very simple operations, using only addition and some
index-keeping operations, the memory access will be the bottleneck. One of the
solutions is to explicitly cache the elements of r and h in registers (the GPU does not
have a cache for global memory). Especially for r this turns out to be a good strategy,
since each long contains 32 coefficients, thereby reducing the number of accesses to
global memory with a factor 32. For h no significant benefits were observed, so the
caching was omitted. The main reason is that the packed coefficients of h are less



often accessed (many of the ri are zero) and they are accessed in a more or less
random pattern, so caching them for more than one iteration (over i in Algorithm
3) makes no sense. There is however a benefit from executing multiple threads in
parallel: when thread t accesses hj , thread t + 1 will at the same time access hj+4,
which is always stored in the next long. This means that memory access is coalesced,
although bad alignment of the memory blocks will prevent the full speedup.

For product-form polynomials the number of memory accesses is much lower: the
space used to store r is smaller. As r1,r2 and r3 are accessed only once, this means
a drop in memory access from 296 to 48 bytes per block. The number of accesses to
h also goes down: only the convolutions r2 ? h and r3 ? h need access to h. r2 and r3

each have 10 non-zero coefficients, giving a total of 20 accesses to h for each element
in the result, so 20 × 1171 = 23420 longs per block, compared to 2Ndr = 248252
longs per block for ordinary polynomials.

Note that the access to e is coalesced, since each thread accesses a consecutive
long.

5.6 Branching

Almost no divergent branching occurs during the execution of the algorithms. In
the case of normal polynomials branching on ri is not divergent, as each thread has
the same value for i. The only divergent branches are for the modulo computation.
There is one aspect when using product-form polynomials in Algorithm 1 that might
cause a performance hit: the thread synchronization. Since the intermediate result
tshared is shared among all threads, all threads should wait for the completion of that
computation.

6 Results

In this section the results of the GPU implementations are compared to a simple
CPU implementation in C and other implementations found in the literature. The
CPU tests were performed on an Intel Core2 Extreme CPU, running at 3.00GHz.
This processor has four cores, but only one of these cores is used as the CPU imple-
mentation is not parallel. The GPU simulations were performed on a GTX280. To
verify that all implementations were correct, the output was verified (with success)
against a reference implementation in Magma [6].

Table 1 shows the results expressed as milliseconds per operation (or operations
per second). Results for different hi are, obviously, only available for the GPU when
doing multiple (20000) operations in parallel. The times in Table 1 are the minimal
times over 10 identical experiments. All results are expressed as wall clock time, since
this is the only way to be able to compare CPU and GPU. Taking the minimum time
ensures that clearing of the cache or context switches do not bias the results. Clearing
of the cache and context switches depend heavily on the environment in which the
program is used, so it would not be fair to include these in the measurements.
Overall, the GPU times had a small variance, so the difference between average time



and minimal time was negligible. The time for copying data from main to GPU
memory is included in the GPU performance figures.

The CPU implementation does not use any optimizations like bit packing and
just consists of a few nested loops. The CPU implementation only performs one
single encryption/decryption. Despite the fact that the CPU implementation is not
optimized, we use it as a rough basis for comparison for the GPU version. The
available performance results for previous implementations are for different (less
secure) parameter sets, which makes it very hard to compare.

From Table 1 it is clear that encryption and decryption have roughly the same
performance: the extra element-wise operations for decryption do not take much
time. This is also the reason that decryption was not implemented separately for
product-form ternary polynomials, since it would show the same performance. En-
cryption with the same h is slightly faster than using different hi, although an
explanation for this has not been found 2.

Figure 1 shows the subsequent gain in performance when increasing the number
of parallel encryptions (for ordinary polynomials). Around 211 encryptions the GPU
approaches its maximum performance, larger numbers of parallel encryptions yield
only a slight improvement in the number of operations per second.

Table 1 shows that for all implementations, product-form polynomials are much
faster, as expected by the lower number of memory accesses in Section 5.5. The
performance increases by almost a factor 10 compared to ordinary polynomials.
Again a small difference is observed between encryption with the same and different
hi.

Table 2 compares the CPU and GPU implementations with previous work on
NTRU and to some RSA and ECC implementations. A note of caution is due, since
the previous NTRU implementations use much lower security parameters and be-
cause the platforms that are used are totally different. Also note that the amount
of data encrypted per operation is different. As a very rough extrapolation to con-
vert the results for the other NTRU implementations to the security level of our
implementation one can use the O(N2) asymptotic performance of NTRU. This
drastically lowers the performance measures for the other NTRU implementations,
ignoring even the increase of q and dr. For applications with a focus on high through-
put (many op/s), the CUDA implementation for product-form polynomials outper-
forms all other NTRU implementations (taking the higher security parameters and
amount of data into account). The implementation with product-form polynomials
gives a speed of more than 200 000 encryptions per second or 41.8 MByte/s. For
applications that need to perform a small number of encryptions with low latency,
the parallelization of CUDA does not give much speedup compared to the CPU.
However, when comparing NTRU with RSA and ECC, the speedup is large: up to
1300 times faster than 2048-bit RSA and 117 times faster than ECC NIST-224 when
comparing the number of encryptions per second (or up to 1113 times faster than
2048-bit RSA when comparing the data throughput). In addition, the security level
of NTRU is much higher: when extrapolating to RSA and ECC with k = 256 bit

2 The opposite result was expected. As h was not stored in constant memory, there should
be no benefit from caching.



security, this would add an extra factor of around 10 for ECC and around 400 for
RSA (assuming O(N3) operations for RSA and ECC, where N is the length of a
message block). So, in this extrapolation, NTRU has a speedup of five orders of
magnitude compared to RSA and three orders of magnitude compared to ECC. The
results listed for RSA encryption on CPU are operations with a small public key
(e = 17), which allows for further optimization that has not been done for the RSA
GPU implementation.

Encryption (different hi) Encryption (same hi) Decryption
µs/op op/s µs/op op/s µs/op op/s

Ordinary

CPU - - 10.5 · 103 (95) 10.5 · 103 (95)
GPU, 1 op. - - 1.75 · 103 - 1.87 · 103 -
GPU, 20000 ops 41.3 24 213 40.0 25 025 41.1 24 331

Product-form

CPU - - 0.31 · 103 (3225.8) - -
GPU, 1 op. - - 0.16 · 103 - - -
GPU, ∼ 216 ops 4.58 218 204 4.51 221 845 - -

Table 1. Performance comparison of NTRU on an Intel Core2 CPU and a Nvidia GTX280
GPU using ordinary and product-form ternary polynomials (N = 1171, q = 2048, p = 3).

7 Conclusion

In this paper NTRU encryption/decryption was implemented for the first time on
GPU. Several design choices, such as the NTRU parameters sets, are compared. The
exact implementation is analysed in detail against the CUDA platform, explaining
the impact of every choice by looking at the underlying effects on branching, memory
access, blocks & threads... Although the programming is done in C, the CUDA
model has its own specific ins and outs that take some time to learn, making a good
implementation not very straightforward.

Many external factors, like power consumption, cost, reprogrammability, context
(latency vs throughput), space... besides the speed of the cipher influence the choice
of platform. In areas in which reprogrammability, cost and throughput are important
and power consumption is of lesser importance, a GPU implementation is a very good
option.

For 216 encryptions a peak performance of around 218 000 encryptions/s (or
4.58 × 10−6 s/encryption) is reached, using product-form polynomials. This corre-
sponds to a theoretical data throughput of 47.8 MB/s. The GPU performs at its
best when performing a large number of parallel NTRU operations. Parallel NTRU
implementations could serve well on servers processing many secured connections
or in various attack strategies in which many (partial) encryption operations are



10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5
x 10

4

Number of parallel operations

o
p

e
ra

ti
o

n
s
 /

 s

Fig. 1. NTRU encryption operations per second using ordinary polynomials and the same
h (N = 1171, q = 2048, p = 3).

Platform (N, q, p) Enc/s Dec/s bit/op

FPGA [3] Xilinx Virtex 1000EFG860 @ 50 MHz (251, 128, X + 2) 193 ·103 - 251
Palm [3] Dragonball @ 20 MHz (C) Product form 21 11
Palm [3] Dragonball @ 20 MHz (ASM) (k < 80) 30 16
ARM C [3] ARM7TDMI @ 37 MHz 307 148
FPGA [1] Xilinx Virtex 1000EFG860 @ 500kHz (167, 128, 3) 18 8.4 250

(k � 80)
C Intel Core2 Extreme @ 3.00GHz (1171, 2048, 3) 95 95 1756
CUDA GTX280 (1 op) (k = 256 [27]) 571 546
CUDA GTX280 (20000 ops) 24 ·103 24 ·103

C Intel Core2 Extreme @ 3.00GHz (1171, 2048, 3) 3.22 ·103 - 1756
CUDA GTX280 (1 op) Product form 6.25 ·103 -
CUDA GTX280 (∼ 216 ops) (k = 256 [27]) 218 ·103 -

RSA comparison
CUDA [26] Nvidia 8800GTS 1024 bit 813 1024
C++ [9] Intel Core2 @ 1.83GHz (k = 80 [4]) (14 ·103) 657 1024
CUDA [26] Nvidia 8800GTS 2048 bit 104 2048
C++ [9] Intel Core2 @ 1.83GHz (k = 112 [4]) (6.66 ·103) 168 2048
ECC comparison

CUDA [26] Nvidia 8800GTS (PointMul) ECC NIST-224 1.41 ·103

C [10] Intel Core2 @ 1.83 GHz (ECDSA) (k = 112 [4]) 1.86 ·103

Table 2. Comparison of several NTRU, RSA and ECC implementations. The chosen pa-
rameter set and claimed security level (k) is listed for all ciphers. The number of operations
per second is listed, together with the amount of data encrypted/decrypted per operation
(excluding all padding, headers...)



needed. A single NTRU operation on GPU is still faster than a (simple) CPU im-
plementation, but the speedup is limited. Even then a GPU might be interesting to
simply move load off the CPU.

Comparing NTRU to other cryptosystems like RSA and ECC shows that NTRU,
at a high security level, is much faster than RSA (around five orders of magnitude)
and ECC (around three orders of magnitude). Even when only performing a sin-
gle operation NTRU is still faster by around a factor of 35 for 2048 bit RSA and
3 for ECC NIST-244. Because of the ways NTRU can be parallelized, NTRU also
clearly outperforms RSA and ECC for high-throughput applications. So, both for
low-latency (single operation) and high-throughput (multiple operations) applica-
tions NTRU on GPU outperforms RSA and ECC.

References

1. A.C. Atıcı, L. Batina, J. Fan, I. Verbauwhede, and S.B.O. Yalçın. Low-cost implemen-
tations of NTRU for pervasive security. In ASAP 2008, pages 79–84. IEEE Computer
Society, 2008.

2. ECRYPT AZTEC. Lightweight Asymmetric Cryptography and Alternatives to RSA,
2005.

3. D.V. Bailey, D. Coffin, A.J. Elbirt, J.H. Silverman, and A.D. Woodbury. NTRU in
Constrained Devices. In CHES 2001, volume 2162 of LNCS, pages 262–272. Springer,
2001.

4. E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for Key
Management. NIST special publication, 800:57, 2007.

5. D.J. Bernstein, H.C. Chen, M.S. Chen, C.M. Cheng, C.H. Hsiao, T. Lange, Z.C. Lin,
and B.Y. Yang. The Billion-Mulmod-Per-Second PC. In SHARCS 2009, pages 131–144,
2009.

6. W. Bosma, J. Cannon, and C. Playoust. The Magma Algebra System I: The User
Language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

7. H. Cohen, G. Frey, and R. Avanzi. Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography. CRC Press, 2006.

8. D. Cook, J. Ioannidis, A.D. Keromytis, and J. Luck. Cryptographics: Secret key cryp-
tography using graphics cards. In CT-RSA 2005, volume 3376 of LNCS, pages 334–350.
Springer, 2005.

9. W. Dai. Crypto++: benchmarks. http://www.cryptopp.com/benchmarks.html.
10. Ecrypt Ebats. ECRYPT benchmarking of asymmetric systems. http://www.ecrypt.

eu.org/ebats/, 2007.
11. S. Fleissner. GPU-Accelerated Montgomery Exponentiation. In International Confer-

ence on Computational Science (1), volume 4487 of LNCS, pages 213–220. Springer,
2007.

12. Consortium for Efficient Embedded Security. Efficient embedded security standards
#1: Implementation aspects of NTRU and NSS, Version 1. 2002.

13. C. Gentry. Key Recovery and Message Attacks on NTRU-Composite. In EUROCRYPT
2001, volume 2045 of LNCS, pages 182–194. Springer, 2001.

14. O. Harrison and J. Waldron. AES Encryption Implementation and Analysis on Com-
modity Graphics Processing Units. In CHES 2007, volume 4727 of LNCS, pages 209–
226. Springer, 2007.

15. J. Hoffstein and J.H. Silverman. Random small Hamming weight products with appli-
cations to cryptography. Discrete Applied Mathematics, 130(1):37–49, 2003.



16. N. Howgrave-Graham. A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack
Against NTRU. In CRYPTO 2007, volume 4622 of LNCS, pages 150–169. Springer,
2007.

17. N. Howgrave-Graham, P.Q. Nguyen, D. Pointcheval, J. Proos, J.H. Silverman,
A. Singer, and W. Whyte. The impact of decryption failures on the security of ntru
encryption. In CRYPTO 2003, volume 2729 of LNCS, pages 226–246. Springer, 2003.

18. Intel. Intel Pentium 4 - SL8Q9 Datasheet, 2008.

19. P. Karu and J. Loikkanen. Practical Comparison of Fast Public-key Cryptosystems.
http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/, 2001.

20. S.A. Manavski. CUDA Compatible GPU as an Efficient Hardware Accelerator for AES
Cryptography. In ICSPC 2007, pages 65–68. IEEE, Nov. 2007.

21. A. Moss, D. Page, and N.P. Smart. Toward Acceleration of RSA Using 3D Graphics
Hardware. In Cryptography and Coding, IMA Int. Conf. 2007, volume 4887 of LNCS,
pages 364–383. Springer, 2007.

22. Nvidia. Compute Unified Device Architecture Programming Guide, 2007.

23. Nvidia. GeForce GTX280 - GeForce GTX 200 GPU Datasheet, 2008.

24. R.L. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, 1978.

25. M. Settings. Password crackers see bigger picture. Network Security, 2007(12):20–20,
2007.

26. R. Szerwinski and T. Güneysu. Exploiting the Power of GPUs for Asymmetric Cryp-
tography. In CHES 2008, volume 5154 of LNCS, pages 79–99. Springer, 2008.

27. W. Whyte, N. Howgrave-Graham, J. Hoffstein, J. Pipher, J.H. Silverman, and
P. Hirschhorn. IEEE P1363.1: Public Key Cryptographic Techniques Based on Hard
Problems over Lattices.

A Code listings

Algorithm 1 Pseudo-code for a single NTRU encryption (product-form polynomi-
als)
1: b← blockID
2: k ← 4 ∗ threadID
3: Allocate etemp[0 . . . 3]← 0
4: Allocate tshared[0 . . . N − 1]
5: tshared[k . . . k + 3]← Convolve(hb, rb2,+, r

b
2,−, k, tshared[k . . . k + 3])

6: Synchronize threads
7: etemp[0 . . . 3]← Convolve(tshared, r

b
1,+, r

b
1,−, k, etemp[0 . . . 3])

8: etemp[0 . . . 3]← Convolve(hb, rb3,+, r
b
3,−, k, etemp[0 . . . 3])

9: for l = 0 to 3 do
10: ebk+l ← mb

k+l + etemp[l] mod q
11: end for



Algorithm 2 Pseudo-code for a single product-form convolution.
Convolve(h, r+, r−, k, t)
Require: h: an ordinary polynomial,

r+, r−: the positions of the +1 and −1 elements in the polynomial r,
t: result of the convolution,
k: offset of the results that need to be calculated.

Ensure: t[k . . . k + 3] = {h ? r}k...k+3

1: k ← 4 ∗ threadID
2: for l = 0 to dr−1 − 1 do
3: i← r+l
4: for δk = 0 to 3 do
5: t[k + δk]← t[k + δk] + h(k+δk−i mod N)

6: end for
7: end for
8: for l = 0 to dr−1 − 1 do
9: i← r−l

10: for δk = 0 to 3 do
11: t[k + δk]← t[k + δk]− h(k+δk−i mod N)

12: end for
13: end for
14: return t[k . . . k + 3] mod q

Algorithm 3 Pseudo-code for a single
NTRU encryption (ordinary polynomi-
als)
1: b← blockID
2: k ← 4 ∗ threadID
3: Allocate etemp[0 . . . 3]← 0
4: for i = 0 to 10 do
5: for l = 0 to 3 do
6: if P (i) 6= P (i− 1) then
7: rcache ← rbpacked,i

8: end if
9: relem ← ri (from rcache)

10: j ← k + l − i mod N
11: if relem = 1 then
12: etemp[l]← etemp[l] + hbj
13: end if
14: if relem = −1 then
15: etemp[l]← etemp[l]− hbj
16: end if
17: end for
18: end for
19: for l = 0 to 3 do
20: ebk+l ← mb

k+l + etemp[l] mod q
21: end for

Algorithm 4 Pseudo-code for a single
NTRU Decryption
Require: F : the private key (f = 1+p?F )

e: the encrypted message
1: k ← 4 ∗ threadID
2: Execute Algorithm 3, taking m = 0,
r = F and h = e and obtaining t[0 . . . 3].

3: for l = 0 to 3 do
4: t[l]← t[l] + (t[l]� 1) + ek+l
5: tmp← t[l]−p∗((p−1 mod q)∗ t[l]�

log2 q)
6: (t[l] > q)⇒ (tmp← tmp+ 1)
7: t[l]← tmp
8: end for


