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Abstract. In this paper we introduce the correlation matrix of a Boolean
mapping, a useful concept in demonstrating and proving properties of
Boolean functions and mappings. It is argued that correlation matrices
are the “natural” representation for the proper understanding and de-
scription of the mechanisms of linear cryptanalysis [4]. It is also shown
that the difference propagation probabilities and the table consisting of
the squared elements of the correlation matrix are linked by a scaled
Walsh-Hadamard transform.

Key Words: Boolean Mappings, Linear Cryptanalysis, Correlation Ma-
trices.

1 Introduction

Most components in encryption schemes are Boolean mappings. In this paper,
we establish a relation between Boolean mappings and specific linear mappings
over real vector spaces. The matrices that describe these mappings are called
correlation matrices. The elements of these matrices consist of the correlation
coefficients associated with linear combinations of input bits and linear combi-
nations of output bits.

Correlation matrices describe correlation properties of Boolean mappings in
a direct way and are therefore the natural representation for the description
and understanding of the mechanisms of linear cryptanalysis [4]. Moreover, they
provide a useful tool for theoretical derivations and proofs.

After giving some preliminary definitions, we describe the Walsh-Hadamard
transform of Boolean functions. Subsequently, we introduce the concept of cor-
relation matrices and show how to calculate elements of this matrix for some
particular types of mappings. This is followed by a treatment of the correlation
properties of iterated transformations. We conclude with deriving the relations
between the table of difference propagation probabilities of a mapping and its
correlation matrix. For a more thorough treatment of difference propagation and
additional properties of correlation matrices we refer to [6].
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2 Preliminaries

A binary vector consists of an array of binary-valued components, that are in-
dexed starting from 0. A binary vector a with dimension (or equivalently length)
n has components a0, a1, . . . , an−1. The set of all binary vectors with dimension
n is denoted by ZZ

n
2 .

A Boolean function f(a) is a two-valued function with domain ZZ
n
2 for some

n. A Boolean mapping h(a) maps ZZ
n
2 to ZZ

m
2 for some n,m and can be seen as the

parallel application of m Boolean functions: (h1(a), h2(a), . . . , hm−1(a)). If m =
n, the Boolean mapping is called a transformation of ZZ

m
2 . This transformation

is called invertible if it is a bijection.
The addition modulo 2 of two binary variables α and β is denoted by α+ β.

Hence α+β is 0 if α = β and 1 otherwise. The bitwise addition, sum or difference
of two binary vectors a and b is denoted by a+ b and consists of a vector c with
components ci = ai + bi. If the plus sign is used to denote arithmetic addition,
it will be clear form the context. A Boolean mapping h is linear (with respect
to bitwise addition) if h(a+ b) = h(a) + h(b) for all a, b ∈ ZZ

n
2 .

3 The Walsh-Hadamard transform

Linear cryptanalysis can be seen as the exploitation of correlations between lin-
ear combinations of bits of different intermediate encryption values in a block
cipher calculation. The correlation between two Boolean function can be ex-
pressed by a correlation coefficient that ranges between −1 and 1:

Definition 1. The correlation coefficient associated with a pair of Boolean func-

tions f(a) and g(a) is denoted by C(f, g) and given by

C(f, g) = 2 · prob(f(a) = g(a))− 1 .

From this definition it follows that C(f, g) = C(g, f). If the correlation coefficient
is different from zero the functions are said to be correlated .

A selection vector w is a binary vector that selects all components i of a
vector that have wi = 1. Analogous to the inner product of vectors in linear
algebra, the linear combination of the components of a vector a selected by w
can be expressed as wta where the t suffix denotes transposition of the vector
w. A linear Boolean function wta is completely specified by its corresponding
selection vector w.

Let f̂(a) be a real-valued function that is−1 for f(a) = 1 and +1 for f(a) = 0.

This can be expressed by f̂(a) = (−1)f(a). In this notation the real-valued

function corresponding to a linear Boolean function wta becomes (−1)w
ta. The

bitwise sum of two Boolean functions corresponds to the bitwise product of their
real-valued counterparts, i.e.,

̂f(a) + g(a) = f̂(a)ĝ(a) . (1)
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We define an inner product for real-valued functions, not to be confused with
the inner product of vectors, by

< f̂(a), ĝ(a) >=
∑

a

f̂(a)ĝ(a) , (2)

It can easily be shown that

C(f(a), g(a)) = 2−n < f̂(a), ĝ(a) > . (3)

The real-valued functions corresponding to the linear Boolean functions form an
orthogonal basis with respect to the defined inner product:

< (−1)u
ta, (−1)v

ta >= 2nδ(u+ v) , (4)

with δ(w) the real-valued function that is equal to 1 if w is the zero vec-
tor and 0 otherwise. The representation of a Boolean function with respect to
this basis is called its Walsh-Hadamard transform [5, 1]. The link between the
Walsh-Hadamard transform of a Boolean function and its correlation with lin-
ear Boolean functions was first established in [2]. If the correlation coefficients
C(f(a), wta) are denoted by F̂ (w) we have

f̂(a) =
∑

w

F̂ (w)(−1)w
ta (5)

and dually

F̂ (w) = 2−n
∑

a

f̂(a)(−1)w
ta , (6)

summarized by
F̂ (w) =W(f(a)) . (7)

Hence a Boolean function is completely specified by the set of correlation coef-
ficients with all linear functions.

The Walsh-Hadamard transform of the sum of two Boolean functions f(a)+
g(a) can be derived using (5). If h = f + g, we have

Ĥ(w) =
∑

v

F̂ (v + w)Ĝ(v) . (8)

Hence, addition modulo 2 in the Boolean domain corresponds to convolution
in the transform domain. If the convolution operation is denoted by ⊗ this is
expressed by

W(f + g) =W(f)⊗W(g) . (9)

The subspace of ZZ
n
2 generated by the vectors w such that F̂ (w) 6= 0 is called

its support space Vf . The support space of the sum of two Boolean functions is a
subspace of the (vector) sum of their corresponding support spaces: Vf+g ⊆ Vf+
Vg. This follows directly from the convolution property. Two Boolean functions
are called disjunct if their support spaces are disjunct, i.e., if the intersection of
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their support spaces only contains the origin. A vector v ∈ Vf+g with f and g
disjunct, can be decomposed in only one way into a component u ∈ Vf and a
component w ∈ Vg. In this case the transform values of h = f + g are given by

Ĥ(v) = F̂ (u)Ĝ(w) with v = u+ w and u ∈ Vf , w ∈ Vg . (10)

Pairs of Boolean functions that depend on non-overlapping sets of input bits are
a special case of disjunct functions.

4 Correlation matrices

A mapping h : ZZ
n
2 7→ ZZ

m
2 can be decomposed into m component Boolean func-

tions: (h0, h1, . . . , hm−1). Each of these component functions hi has a Walsh-
Hadamard transform Ĥi. The vector function with components Ĥi is denoted
by Ĥ and can be considered the Walsh-Hadamard transform of the mapping
h. As in the case of Boolean functions, Ĥ completely determines the Boolean
transformation h. The Walsh-Hadamard transform of any linear combination of
components of h is specified by a simple extension of (9):

W(uth) =
⊗

ui=1

Ĥi . (11)

All correlation coefficients between linear combinations of input bits and that of
output bits of the mapping h can be arranged in a 2m × 2n correlation matrix
Ch. The element Cuw in row u and column w is equal to C(uth(a), wta). The
rows of this matrix can be interpreted as

(−1)u
th(a) =

∑

w

Ch
uw(−1)

wta . (12)

A matrix Ch defines a linear mapping with domain IR2n and range IR2m .
Let R be a mapping from the space of binary vectors to the space of real vec-
tors, where a binary vector of dimension n is depicted onto a real vector with
dimension 2n. R is defined by

R : ZZ
n
2 7→ IR2n : α = R(a) : αu = (−1)u

ta . (13)

Since R(a+b) = R(a)R(b), R is a group-homomorphism from < ZZ
n
2 ,+ > to <

IR2n , · >, with · denoting the componentwise product. From (12) it can easily
be seen that

ChR(a) = R(h(a)) . (14)

Consider the composition of two Boolean mappings h = h2 ◦ h1 or h(a) =
h2(h1(a)), with h1 mapping n-dimensional vectors to p-dimensional vectors and
with h2 mapping p-dimensional vectors to m-dimensional vectors. The correla-
tion matrix of h is determined by the correlation matrices of the component
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mappings. We have

(−1)u
th(a) =

∑

v

Ch2
uv(−1)

vth1(a)

=
∑

v

Ch2
uv

∑

w

Ch1
vw(−1)

wta

=
∑

w

(
∑

v

Ch2
uvC

h1
vw)(−1)

wta .

Hence,
Ch2◦h1 = Ch2 × Ch1 , (15)

with × denoting the matrix product. The input-output correlations of h = h2◦h1

are given by

C(uth(a), wta) =
∑

v

C(uth1(a), v
ta)C(vth2(a), w

ta) . (16)

If h is an invertible transformation in ZZ
n
2 , we have (with b = h−1(a))

C(uth−1(a), wta) = C(utb, wth(b)) = C(wth(b), utb) . (17)

Using this fact and Ch × C(h−1) = Ch◦h−1

= I = Ch × (Ch)−1 we obtain

(Ch)−1 = C(h−1) = (Ch)t , (18)

hence, Ch is an orthogonal matrix.
This can be used to give an elegant proof of the following proposition:

Proposition 1. Every linear combination of output bits of an invertible trans-

formation is a balanced Boolean function of its input bits.

Proof : If h is an invertible transformation, its correlation matrix C is or-
thogonal. Since C00 = 1 and all rows and columns have norm 1, it follows
that there are no other elements in row 0 or column 0 different from 0. Hence,
C(uth(a), 0) = δ(u) or equivalently, uth(a) is balanced for all u 6= 0. ut

A mapping from ZZ
n
2 to ZZ

m
2 is converted into a mapping from ZZ

n−1
2 to ZZ

m
2 by

fixing a single component of the input. More generally, a component of the input
can be set equal to a linear combination of other input components, possibly
complemented. Such a restriction is of the type

vta = ε , (19)

with ε ∈ ZZ2. Assume that vs 6= 0. The restriction can be seen as the result
of a mapping a′ = hr(a) from ZZ

n−1
2 to ZZ

n
2 specified by a′i = ai for i 6= s and

a′s = ε+ vta+ as. The nonzero elements of the correlation matrix of hr are

Chr
ww = 1 and Chr

(v+w)w = (−1)ε for all w with ws = 0 . (20)
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It can be seen that columns indexed by w with ws = 0 have exactly two nonzero
entries with magnitude 1 and those with ws = 1 are all-zero. Omitting the latter
gives a 2n × 2n−1 correlation matrix Chr with only columns indexed by the
vectors with ws = 0.

The transformation restricted to the specified subset of inputs can be seen
as the consecutive application of hr and the transformation itself. Hence, its
correlation matrix C ′ is given by C × Chr . The elements of this matrix are

C ′
uw = Cuw + (−1)εCu(w+v) , (21)

if ws = 0 and 0 if ws = 1.

5 Specific types of mappings

Consider the transformation that consists of the bitwise addition of a constant
vector k: h(a) = a + k. Since uth(a) = uta + utk the correlation matrix is a
diagonal matrix with

Cuu = (−1)u
tk . (22)

Therefore the effect of bitwise addition of a constant vector before (or after)
a mapping h on its correlation matrix is a multiplication of some columns (or
rows) by −1.

Consider a linear transformation h(a) = Ma with M a m×n binary matrix.
Since uth(a) = utMa = (M tu)ta the elements of the corresponding correlation
matrix are given by

Cuw = δ(M tu+ w) . (23)

If M is an invertible square matrix, the correlation matrix is a permutation
matrix. The single nonzero element in row u is in column M tu. The effect of
applying an invertible linear transformation before (or after) a transformation h
on the correlation matrix is only a permutation of its columns (or rows).

Consider a mapping from ZZ
n
2 to ZZ

m
2 that consists of the parallel applica-

tion of ` component mappings (S-boxes) from ZZ
ni
2 to ZZ

mi
2 with

∑
i ni = n

and
∑

imi = m. We will call such a mapping a boxed mapping. We have
a = (a(0), a(1), . . . , a(`−1)) and b = (b(0), b(1), . . . , b(`−1)) with the a(i) vectors
of dimension ni and the b(i) vectors with dimension mi. The mapping b = h(a)
is defined by b(i) = h(i)(a(i)) for 0 ≤ i < `. With every S-box h(i) is associated

a 2ni × 2mi correlation matrix denoted by C(i). Since the h(i) are disjunct, (10)
can be applied and the elements of the correlation matrix of h are given by

Cuw =
∏

i

C(i)
u(i)w(i)

. (24)

with u = (u(0), u(1), . . . , u(`−1)) and w = (w(0), w(1), . . . , w(`−1)). In words this
can be expressed as: the correlation coefficient associated with input selection w
and output selection u is the product of its corresponding S-box input-output

correlations C
(i)
u(i)w(i)

.
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6 Application to iterated transformations

Correlation matrices can be easily applied to express correlations in iterated
transformations such as most block ciphers. The studied transformation is

β = ρq ◦ . . . ◦ ρ2 ◦ ρ1 , (25)

with the ρi selected from a set of invertible transformations {ρ[b]|b ∈ ZZ
nb
2 } by

round keys κ(i): ρi = ρ[κ(i)] The round keys κ(i) are derived from the cipher key
κ by the key schedule.

6.1 Fixed key

In the transform domain, a fixed succession of round transformations corresponds
to a 2n × 2n correlation matrix that is the product of the correlation matrices
corresponding to the round transformations. We have

C = Cρq × . . .× Cρ2 × Cρ1 . (26)

Linear cryptanalysis exploits the occurrence of large elements in product matri-
ces corresponding to all but a few rounds of a block cipher.

A q-round linear trail Ω, denoted by

Ω = (ω0 / ρ1 . ω1 / ρ2 . ω2 / . . . . ωq−1 / ρ1 . ωq) , (27)

is obtained by chaining q single-round correlations C(ωi
tρi(a), ωi−1

ta). With this
linear trail is associated a correlation contribution coefficient Cp ranging between
−1 and +1.

Cp(Ω) =
∏

i

Cρi
ωiωi−1

. (28)

From this definition and (26) we have

C(utβ(a), wta) =
∑

ω0=w,ωq=u

Cp(Ω) (29)

Hence the correlation between utβ(a) and wta is the sum of the correlation
contribution coefficients of all q-round linear trails Ω with initial selection vector
w and terminal selection vector u.

6.2 Variable key

In cryptanalysis, the succession of round transformations is not known in advance
but is governed by an unknown key or some input-dependent value. In general,
the elements of the correlation matrix of ρi depend on the specific value of the
round key κ(i).

For some block ciphers the strong round-key dependence of the correlation
and propagation properties of the round transformation have been cited as a
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design criterion. The analysis of correlation or difference propagation would have
to be repeated for every specific value of the cipher key, making linear and
differential analysis infeasible. A typical problem with this approach is that the
quality of the round transformation with respect to LC or DC strongly depends
on the specific value of the round key. While the resistance against LC and DC
may be very good on the average, specific classes of cipher keys can exhibit linear
trails with excessive correlation contribution coefficients.

These complications can be avoided by designing the round transformation
in such a way that the amplitudes of the elements of its correlation matrix are
independent of the specific value of the round key. As was shown in Sect. 4,
this is the case if the round transformation consists of a fixed transformation ρ
followed (or preceded) by the bitwise addition of the round key κ(i).

The correlation matrix Cρ is determined by the fixed transformation ρ. The
correlation contribution coefficient of the linear trail Ω becomes

Cp(Ω) =
∏

i

(−1)ω
t
iκ

(i)

Cρ
ωiωi−1

= (−1)dΩ+
∑
i
ωt
iκ

(i)

|Cp(Ω)| . (30)

with dΩ equal to 1 if
∏

i C
ρ
ωiωi−1

is negative and 0 otherwise. |Cp(Ω)| is indepen-
dent of the round keys, and hence only the sign of the correlation contribution
coefficient depends on the round keys.

The correlation coefficient between utβ(a) and wta can be expressed in terms
of the correlation contribution coefficients of linear trails:

C(utβ(a), wta) =
∑

ω0=w,ωq=u

(−1)dΩ+
∑
i
ωt
iκ

(i)

|Cp(Ω)| . (31)

The amplitude of this correlation coefficient is no longer independent of the
round keys since the terms are added or subtracted depending on the value of
the round keys.

6.3 Matsui’s linear cryptanalysis of DES

The multiple-round linear expressions described in [4] correspond with what we
call linear trails. The probability p that such an expression holds corresponds
with 1

2 (1 + Cp(Ω)), with Cp(Ω) the correlation contribution coefficient of the
corresponding linear trail. This implies that the considered correlation coefficient
is assumed to be dominated by a single linear trail. This assumption is valid
because of the large amplitude of the described correlation coefficients on the
one hand and the structure of the DES round transformation on the other.

The correlation contribution coefficient of the linear trail is independent of
the key and consists of the product of the correlation coefficients of its single-
round components. In general, the elements of the correlation matrix of the DES
round transformation are not independent of the round keys. In the linear trails
described in [4] the independence is caused by the fact that the single-round
correlations of the described linear trail only involve bits of a single S-box.

Appeared in Fast Software Encryption, FSE 1994, Lecture Notes in Computer
Science 1008, B. Preneel (ed.), Springer-Verlag, pp. 275–285, 1995.

c©1995 Springer-Verlag



9

7 Difference propagation

Say we have two n-dimensional vectors a and a∗ with bitwise difference a+a∗ =
a′. Let b = h(a), b∗ = h(a∗) and b′ = b+ b∗. Hence, the difference a′ propagates
to the difference b′ through h. This is denoted by (a′ a h ` b′), In general b′ is
not determined by a′ but depends on the value of a (or a∗).

Definition 2. The prop ratio Rp of a difference propagation (a′ a h ` b′) is
given by

Rp(a
′ a h ` b′) = 2−n

∑

a

δ(b′ + h(a+ a′) + h(a)) . (32)

The prop ratio ranges between 0 and 1 and must be an integer multiple of
21−n. The difference propagation (a′ a h ` b′) restricts the values of a to a
fraction of all possible inputs. This fraction is given by Rp(a

′ a h ` b′). It can
easily be seen that ∑

b′

Rp(a
′ a h ` b′) = 1 . (33)

Differential cryptanalysis [3] can be seen as the exploitation of large prop ratios.
The prop ratios of the difference propagations of Boolean functions and map-

pings can be expressed respectively in terms of their Walsh-Hadamard transform
values and their correlation matrix elements. Analogous with (8), it can be shown
that the components of the inverse transform of the componentwise product of
two spectra ĉfg =W−1(FG) are given by

ĉfg(b) = 2−n
∑

a

f̂(a)ĝ(a+ b) = 2−n
∑

a

(−1)f(a)+g(a+b) . (34)

ĉfg(b) is not a Boolean function. It is generally referred to as the cross correlation
function of f and g. If g = f it is called the autocorrelation function of f and
denoted by r̂f . The components of the spectrum of the autocorrelation function
consist of the squares of the spectrum of f , i.e.,

F̂ (w)
2
=W(r̂f (a)) . (35)

This is generally referred to as the Wiener-Khintchine theorem [5].
The difference propagation in a Boolean function f can be expressed easily in

terms of the autocorrelation function. The prop ratio of difference propagation
(a′ a f ` 0) is given by

Rp(a
′ a f ` 0) = 2−n

∑

a

δ(f(a) + f(a+ a′))

= 2−n
∑

a

1

2
(1 + f̂(a)f̂(a+ a′))

=
1

2
(1 + r̂f (a

′))

=
1

2
(1 +

∑

w

(−1)w
ta′ F̂ 2(w)) . (36)
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The component of the autocorrelation function r̂f (a
′) corresponds to the amount

that Rp(a
′ a f ` 0) deviates from 1/2.

For mappings from ZZ
n
2 to ZZ

m
2 , let the autocorrelation function of uth(a) be

denoted by r̂u(a
′), i.e.,

r̂u(a
′) = 2−n

∑

a

(−1)u
th(a)+uth(a+a′) . (37)

The prop ratio of difference propagation (a′ a h ` b′) is given by

Rp(a
′ a h ` b′) = 2−n

∑

a

δ(h(a) + h(a+ a′) + b′)

= 2−n
∑

a

∏

i

1

2
((−1)hi(a)+hi(a+a′)+b′i + 1)

= 2−n
∑

a

2−m
∑

u

(−1)u
th(a)+uth(a+a′)+utb′

= 2−m
∑

u

(−1)u
tb′2−n

∑

a

(−1)u
th(a)+uth(a+a′)

= 2−m
∑

u

(−1)u
tb′ r̂u(a

′)

= 2−m
∑

u

(−1)u
tb′

∑

w

(−1)w
ta′C2

uw

= 2−m
∑

u,w

(−1)w
ta′+utb′C2

uw . (38)

Hence the array containing the prop ratios is the (scaled) two-dimensional Walsh-
Hadamard transform of the array that contains the squares of the elements of
the correlation matrix. Inverting the transform gives the dual expression:

C2
uw = 2−n

∑

a′,b′

(−1)w
ta′+utb′Rp(a

′ a h ` b′) . (39)

8 Conclusions

The correlation matrix of a Boolean mapping is an alternative representation
that reveals properties of a more global nature. Correlation matrices are the
“natural” representation for the description and understanding of linear crypt-
analysis.
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