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Abstract. In this paper we evaluate the resistance of the block cipher
RC5 against linear cryptanalysis. We describe a known plaintext attack
that can break RC5-32 (blocksize 64) with 10 rounds and RC5-64 (block-
size 128) with 15 rounds. In order to do this we use techniques related
to the use of multiple linear approximations. Furthermore the success of
the attack is largely based on the linear hull-effect. To our knowledge, at
this moment these are the best known plaintext attacks on RC5, which
have negligible storage requirements and do not make any assumption
on the plaintext distribution. Furthermore we discuss the impact of our
attacking method on the AES-candidate RC6, whose design was based
on RC5.

1 Introduction

The iterated block cipher RC5 was introduced by Rivest in [Riv95]. It has a
variable number of rounds denoted with r and key size of b bytes. The design
is word-oriented for word sizes w = 32,64 and the block size is 2w. The choice
of parameters is usually denoted by RC5-w, RC5-w/r, or RC5-w/r/b. Currently
RC5-32/16 is recommended to give sufficient resistance against linear and dif-
ferential attacks [K'Y98].

RC5 has been analyzed intensively. For an overview we refer to the report
by Kaliski and Yin [KY98]. Currently the best published attack can be found
in [BK98]. There a chosen plaintext attack is described for which we summarize
the complexities for different round versions of RC5' in the second column of
Table 1. As this is a differential attack, it yields a known plaintext attack for
a larger amount of known plaintexts [BS93]. We give the estimated required
amount of known plaintexts in the third column of Table 1. The known plaintext
attack however needs a storage capacity for all the required plaintexts, i.e., the
attack can not be mounted in a way that the attacker obtains and analyzes
the plaintexts one by one. We give the estimated required storage capacity of
the known plaintext-version in the fourth column. For example, to mount this
attack for 4 rounds one would need to store 23 plaintexts with corresponding
ciphertexts, which is about 1 GByte. In this paper we present an attack that

! Although the attack of [BK98] makes use of very sophisticated techniques, according
to the authors the required amount of chosen plaintexts for the attack on 12 rounds
might be reduced to 238,
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requires a negligible storage capacity. We give the required amount of plaintexts
in the fifth column of Table 1.

Table 1. Complexities (Ig) of the attacks on RC5-32.

Biryukov/Kushilevitz Our attack
Rounds| Chosen | Known [Storage| Known | Storage
plaintexts|plaintexts plaintexts

4 7 36 36 28 negligible
6 16 40.5 40.5 40 negligible
8 28 46.5 46.5 52 negligible
10 36 50.5 50.5 64 negligible
12 44 54.5 54.5 - -

Our attack is a linear attack, whose high success rate is based on a large
linear hull-effect [Nyb94]. To our knowledge it is the first time that this effect
has significant consequences in the evaluation of the resistance of a cipher against
linear attacks. Furthermore we use techniques closely related to multiple linear
approximations to set up a practical attack.

Recently RC6 [RC6.1] has been submitted to NIST for the AES-Development
Effort as a candidate to replace the DES as block cipher standard. The design of
RC6 is based on RC5 and its public security analysis. Special adjustments were
done to make RC6 resistant against the successful differential attacks on RC5.
In this paper we also address the consequences for RC6 of our linear attack on
RC5.

The remainder of this paper is organized as follows. In Sect. 2 we describe
some techniques from linear cryptanalysis and show their merits and limitations
when applied to RC5 in Sect. 3. In Sect. 4 we describe our attack on RC5 and we
give experimental results on RC5-32 and RC5-64. We discuss the consequences
for RC6 in Sect. 5 and conclude in Sect. 6.

2 Linear Cryptanalysis

Linear cryptanalysis was introduced and developed by Matsui in [Mat93,Mat94].
Additional advanced techniques, which are relevant for this paper can be found
in [KR94,Nyb94,Vau96]. A basic linear attack makes use of a linear approxi-
mation between bits of the plaintext P, bits of the plaintext C' and bits of the
expanded key K. Such a linear approximation is a probabilistic relation that can
be denoted as

a-Pep - K=~v-C, (1)

where «a, 3 and v are binary vectors and x - X = @, x; X; for x = (xo0,x1,--.)-
Instead of P or C one can use intermediate computational values that can be
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computed from P or C under the assumption of a key value. If a linear approx-
imation holds with probability p = % + § with § # 0, a linear attack can be
mounted which needs about ¢|6| =2 plaintexts. The value of ¢ depends on the
attacking algorithm that is used. Here 0 is called the deviation and || = € is
called the bias.
Since the key K is fixed, (1) can be transformed into (2) without changing
the bias.
a-P=~v-C, (2)

We say that for certain values P and C, (2) behaves in the deviation direction
ifa-P®~y-C=band a-P®~-C =b has a positive deviation.

A linear approximation for the whole cipher can be derived by ‘chaining’
linear approximations between intermediate values. If the probabilities of these
approximations are independent, the value of the deviation of the derived ap-
proximation can be computed with Matsui’s Piling Up Lemma [Mat93]. This
states that the deviation § of n chained approximations with deviations §; is
given by

3 RC5 and Linear Cryptanalysis

RC5 is defined as follows. First 2r 4+ 2 round keys S; € {0,1}*,i=0,...,2r+1,
are derived from the user key.2 If (Lg, Ro) € {0,1}* x {0,1}* is the plaintext,
then the ciphertext (Lay41, Rar4+1) is computed iteratively with:

Ly = Lo+ So (3)

R =Rp+ 5 (4)

U=L®R ()

Vi=U; < R; (6)

Ripy1 =Vi+ Sia (7)

Liv1 =R; (8)

for i = 1,...,2r. Here 4+ denotes addition modulo 2% and z < y rotation of

w-bit word x to the left over y mod w places. The computation of (L;io, Rit2)
from (L;, R;) with i odd is considered as one round of RC5. In Fig. 1 a graphical
representation of one round is given.

3.1 Linear Approximations

We shall consider the following linear approximations for xor, data-dependent
rotation and addition. We only look at approximations that consider one bit of

2 As the key schedule of RC5 has no relevance for our analysis we refer to [Riv95] for
a description. However for our experiments we have used the key schedule.
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Fig. 1. One round of RC5.

each term of the equation. The binary vector that has a 1 on position 4 and is 0
everywhere else, will be denoted with e;. Let A = B @ C. Then:

ei-A:ei~B@ei-C’, (5:271 (9)
fori € {0,...,w—1}. Let D = E < F. Then:
ei-D=e; E@ep - F@ep-(i—j), =211 (10)

for i,5 € {0,...,w — 1} and k € {0,...,lgw — 1}. (Here we have abused the
“”_notation slightly to denote the k-th bit in the binary representation of 7 — j.)
If one is only interested in the bias of (10), one can leave out the term ey - (i — j)
or even ey, - F', see for example [KY98]. We use (9) and (10) to pass the xor and
rotation in RC5 as follows. Let j,k € {0,...,lgw — 1}. Then

ej-Ui:ej~Li@ej-Ri, 5:2_1 (11)
er-Vi=e; - Ui@e;-Ridej-(k—j), 6§=271sw"1 (12)
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Chaining these two yields:
ex - Vi=ej-Li®ej-(k—j), §=271v"1 (13)
Finally, let G = H 4+ .S, where S is fixed. Then:

eo-Gze()'HEBeo-S, 5:2_1 (14)
ei-G=e;-H®e;-S, 6=2"1—2715[] (15)

fori € {1,...,w —1}. Here S[z] = S mod 2%*1, hence the x LSB’s of S. Hence,
depending on the key, the bias of (15) can vary between 0 and % On the average
it is 1.

1

3.2 Key Dependency and Piling-Up

Because of the fact that (14) has a bigger bias than (15), ‘traditionally’ approx-
imations on the LSB have been considered to be most useful for a linear attack
(see [KY95,KY98]). Using Approximations (9), (10) and (14) one can derive the
following iterative approximation for one round of RC5.

60'L¢@€0-S¢+1 :eo-Li+2 (221)7 5:2—lgw—1 (16)

This approximation can be chained to [ rounds as follows.
-1
eo - L @ @60 “Siyivoj =€0 Ligar (1 2>1), 6=7 (17)
j=0

According to the Piling Up Lemma (2) this approximation would have devia-
tion § = 2!-12(-lgw—1l — o—llgw—1 jf the chained approximations would be
independent. This is however not the case.

To illustrate this consider (17) for I = 2. The deviation of this approximation
depends on the lgw least significant bits of S;12. This can be seen as follows.
The probability that (16), i.e., the approximation over the first round, holds
depends on the value of R; mod w. If R; mod w = 0 it always holds, otherwise
it holds with probability % Hence, the deviation of (16) is computed under the
assumption that every value of R; mod w is equally likely. If R; mod w = 0 then
the 1g w least significant bits of L;; are known. Now consider the approximation
for each possible value of R;41 separately. If R; 11 mod w € {0,...,lgw—1,w—
lgw+1,...,w—1} then, depending on the value of S; ;2 mod w, part of the lg w
least significant bits of R;1o can be computed. It turns out that the values of
R; 3 are not equally likely. Hence, the Piling Up Lemma cannot be applied.

To illustrate this effect we have computed the bias of the two round ap-
proximation for RC5H-32 for every value of S;;2 mod w. These results are given
in Table 2. It can be seen that the bias can vary significantly between =~ 2710
and ~ 2716, On the other hand the average value is 35 221:0 |6.] = 2711, Since
0, # 0 for all z, the average amount of expected plaintexts needed based on
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Table 2 is given by 3% Zilzo 8,2 ~ 222, Both are in accordance with the Piling
Up Lemma.

Note further that for two values of S; o mod w the deviation is negative. For
those values this means that if one would mount a basic linear attack (Algo-
rithm 1 in [Mat93]) on four rounds using (17) to find Sp @ Sz & S4 based on the
Piling Up Lemma, most likely one would find Sy & S @ Sy @ 1, given enough
texts.

We can conclude that although the deviation can vary significantly, the Piling
Up Lemma gives a good estimate for the average bias for RC5. We will show
that this estimate can be used to compute the expected average success rate of
a linear attack that does not use the sign of the deviation, but only its absolute
value; the bias.

Table 2. The deviation d, of Approximation (17) with | = 2 for RC5-32, depending
on x = Siy2 mod w.

x = Siyo mod w| 10?6, [lg|éz|[|z = Sit2 mod w| 10°6, [lg|d.]
00 0.930786|-10.07 10 0.228882|-12.09
01 0.991821|- 9.98 11 0.656128|-10.57
02 0.473022|-11.05 12 0.015259(-16
03 0.564575|-10.79 13 -0.015259|-16
04 0.595093|-10.71 14 0.137329-12.83
05 0.686646|-10.51 15 0.534058|-10.87
06 0.473022|-11.05 16 0.503540-10.96
07 0.503540|-10.96 17 0.717163|-10.45
08 0.595093|-10.71 18 0.625610(-10.64
09 0.564575|-10.79 19 0.778198|-10.33
Oa 0.289917|-11.75 la 0.747681|-10.39
0b 0.381470|-11.36 1b 0.839233-10.22
Oc 0.411987|-11.25 lc 0.381470-11.36
0d 0.289917|-11.75 1d 0.381470|-11.36
Oe 0.106812|-13.19 le 0.076294|-13.68
of 0.228882|-12.09 1f -0.045776|-14.42

3.3 Key Dependency and Linear Hulls

The concept (approximate) linear hull was introduced in [Nyb94]. We will use
the term linear hull in the way it was used in [RC6.2]. A linear hull is the set of all
chains of linear equations over (a part of ) the cipher that produce the same linear
equation. The existence of this effect for RC5 was first noticed in [RC6.2,RC6.3]
where also some preliminary work in determining the linear hull effects for RC6
(and some simplified versions) can be found.

The following linear hull for an approximation of two rounds (¢ till i + 3) of
RC5 can be noticed. Let 7,1 € {0,...,w — 1}. Using (9), (10), (14) and (15) for
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j the following lgw approximations for two rounds can be derived3.
6]‘ -L¢®ej'(kfj)®ek'5i+1 :ek‘LH_Q, 6:5j,k (18)

for k=0,...,lgw — 1. Likewise for the next two rounds and [ also 1gw approx-
imations can be derived:

ex-LitoPey- (l — k‘) @e-Siyzg=e - Liya, 6§ =05, (19)

for k =0,...,1gw—1. Hence, one can chain lg w pairs of (18) and (19) to obtain
the two round approximation

ej'Li@ekuS'iJrl@el~Si+3@ej~(k—j)@ek~(l—k) :el~Li+47 5:53"]@’[ (20)

Neglecting the key-dependency of chaining and using the Piling Up Lemma one
gets for this bias

2 2lgw—1 k=0,1=0
80, = 27218 (1 — 277G 4 [k — 1)) k#0,1=0
PRl 272lew-1 (1 —2=lHLG, 41— 1)) k=0,1#0
27 2lew=l(] —2=k+1G, [k —1])(1 — 2718, 5[l —1]) k #0,1 #0

(21)

We note two things about (20) and its deviation given in (21). Firstly it is clear
from (21) that the deviation is key dependent, i.e., dependent on the lgw — 1
LSB’s of S;41 and S;+3. But we will show that because of the linear hull effect,
this key dependency is negligible. Secondly, for each choice of the triple j, k,1
the term Cj ;= ex - Sit1D e Sips®e;- (k—j)Ser- (I—k) is constant, either 0
or 1. This constant actually determines the sign of the deviation of the following
approximation, which can be derived from (20) by leaving out Cj ;.

€; - Ll =€ - L¢+4, 0= Sj’l . (22)

For the deviation the following holds:

0= Giki— D Gk, (23)
kEV;, kgV;,
where Vj,l = {k S {0, oo lgw — 1}|Cj,k,l = 0}.
One can extend approximation (22) to hold for r subsequent rounds. In this
way one gets the following approximation for r rounds.

ej - Li=e - Lijar, 6 =05, (24)

where 4,5 € {0,...,w — 1}. The deviation can be computed/approximated by
considering the parts of the different chains, for the k-th round in the chain given
by

€5, - Livor = ey, - Livoro, (25)

3 Note that in Equation (18) and others d; 5, is not the Kronecker delta, but a variable
¢ with indices 7 and k.
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where k € {0,...,r — 1} and

(=3 if k=0
T Vedfo,.. lgw—1}ifk#0

! e{0,...,.lgw—1}ifk#£r—1
Fl=1 ifk=r—1

and
Je=lg—q for ke {l,...,r—1}.

In this way it can be seen that Equation (24) is a linear hull that consists of
(lgw)"~! different chains, namely for all of the choices of ji, ;. When we take
the average bias of i for the approximation of addition on non-LSB’s, we get for
the bias of (24):

s = {0 2 (26)

where ¢(r) can be estimated as

r—1
—1
C(T’) ~ 7(2 <7” k >(lgw — 1)k2(*1gw71)r+r717k)
k=0
—(r-1
= 7(2(—1gw—1)r Z < N >(lgw _ 1)k2r—1—k)
k=0
= 7(2(71gw*1)r(]gw — 14+ 2)7”71)

~ 1 (B2 27

2w

where v is a factor that accounts for the effect of different chains that cancel
each others contribution. The increasement factor ¢*(r) of the bias is expressed
as

c(r+1)=ct(r)-c(r), forr=2,... (28)

Hence, if a linear attack can be mounted on RC5 with r rounds using x known
plaintexts, then this attack will have the same success probability if adapted to
RC5 with (r+1) rounds if (¢*(r)) =22 known plaintexts are available. From (27)
and (28) follows ¢t = lg;"—wﬂ. Now, for RC5-32 we have ¢ (r) ~ 2734 and for
RC5-64 we have ¢t (r) ~ 2742, In Sect. 4.4 we will show that the attacks that
we have implemented for RC5-32 and RC5-64 approximately behave according
to the previously derived approximate expectations. Hence, we can neglect the
key dependency in (24): the bias given according to (26) is a sufficient practical
estimate.

4 The Attack on RC5

In this section we derive a linear attack on RC5 and present an overview of
the experimental results. In Sect. 4.1 we give the linear approximation and the
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method that is used to guess key bits. In Sect. 4.2 we specify this method. In
Sect. 4.3 we describe the search algorithm. Finally, in Sect. 4.4 experimental
results of the implemented attack are given.

4.1 The Linear Approximations

We have derived and implemented a linear attack that uses approximation (24).
Since this approximation does not involve any key bits, a basic linear attack is
not possible. In particular for an r-round attack we will use (24) with ¢ = 0 and
k = r. The first addition, adding Sy, will be passed with an approximation on
the LSB, since this has bias % Therefore we take j = 0 in (24). We also choose
I =01in (24) because then also the last key-addition in the whole approximation
will be passed with bias % It might be possible to further improve the attack
by (also) using approximations with other values for j and I, but we have not
found a method to do this.

To attack r rounds of RC5 we use the fact that each linear path that is part of
the hull given by (24) is a chain of r 1-round approximations of the form (25). We
will split the approximation into two parts. The first contains the approximation
for the first key addition and the first round. This gives us the following lgw
approximations. Each is the first part of a set of linear approximations that is
contained in the linear hull of (24).

eo-Lo=-ep-L3for k=0,... 1gw— 1. (29)

The remainder of the whole approximation can be specified by the following lg w
approximations, each beginning with a different bit of Lj:

exr-Lz3=eqg-Lopyi for k=0,...,lgw—1. (30)

When for a certain plaintext encryption the intermediate value Ry mod w =
k, hence an element of {0,1,...,lgw — 1}, then (29) behaves in the deviation
direction. Hence, if also (30) behaves in the deviation direction then the whole
approximation behaves in that direction. On the other hand, if Ry mod w &
{0,1,...,lgw — 1} then the probability that the whole approximation behaves
in the direction of the deviation is much lower.

In the attack we want to check for every text if one of the approximations
that correspond to (30) was followed. Since we have no information about any
intermediate values we do not have a criterion that always holds. Instead we
will derive a function that is expected to give higher values when one of the
approximations was followed. Hence this function will have higher values for
encryptions where Ry mod w € {0,1,...,lgw — 1} than for other R; values.
Because Ry mod w = (Ry—S1) mod w and Ry is known we can guess S; mod w
from this. We call this function the non-uniformity function. In the next section
we will describe it.

We note here that the use of such a function fits in the frameworks of statis-
tical cryptanalysis as described by Vaudenay in [Vau96] or partitioning crypt-
analysis as described by Harpes and Massey in [HM97].
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4.2 A Non-Uniformity Function

The non-uniformity function v computes non-uniformity values for a given set
of corresponding plaintext/ciphertext pairs. This set is divided into w subsets,
each set contains plaintexts with the same Ry mod w-value. For each set a non-
uniformity value can be computed.

We look at the last round of the encryption. Suppose that one approximation
of the linear hull corresponding to (30) is followed up to the last round. Say that
in this particular case ey - Lo,—1 was biased for some k € {0,...,lgw — 1}.
Then following the approximation to the end would mean that Ro,._1 mod w =
(w — k) mod w with a higher probability than other values. As seen in Sect. 3.2
depending on the subkeys also the other possible values of Rs,._; mod w might
not be uniformly distributed. But in any case certain values of Ro,._1 mod w
will have a higher probability when (30) behaves in the deviation direction then
when it does not behave in that way.

If we would know the value of Rs,_1 mod w it would be possible to compute
lg w bits of Sa,41 or two possible values for those bits from the ciphertext with:

Sor+1 = Rorp1 — (Ror—1 ® Lopy1) < Lorya, (31)

since the values of Rg,41 and Lo,y1 are known from the ciphertext. We will
use S(n) to denote the lgw-bit string, given by the bits (n + lgw — 1) mod
w,...,(n+ 1) mod w,n of S. The value of Lg,1 mod w determines for which
lgw bits of Sy.4+1 information can be computed, namely S{Lg,+1 mod w) . If
Lo,11 mod w = 0 then the lgw LSB’s can be computed. When Lg,. 11 mod w # 0
we can compute two values for S{Ls,1+1 mod w). The carry bit of the addition
n (31) determines which one is the correct one.

In the attack we do not know the value of Rs,_1 mod w or even which value
would be the most probable. Instead of trying to compute lgw bits of So,41
we make a similar computation for a value which we call S’. It is computed by
taking Ro,—1 mod w =0 in (31), i.e.,

S" = Rorq1 — (Larg1 < Lorq1). (32)

Due to the non-uniform distribution of Ro,._; mod w it is expected that the
distribution of S’(-)-values will be more non-uniform for encryptions where the
approximation was followed than for others.

Hence, in the attack we use a counter array A(i, j, k) for i,j,k =0,...,w—1,
where each i corresponds to a possible value of Ry mod w, each j to a possible
value of Lg,41 mod w and each k to a possible value of S'(Lo,+1 mod w). For
each text we check if the approximation holds. If it holds, we change the counter
array as follows. If Lo,.11 mod w = 0, we increase A(Rop mod w, La,+1 mod w, v)
by 2, where v is the suggested S’(La, 1 mod w)-value. If Lo,11 mod w # 0, we
increase A(Rp mod w, La,41 mod w,vp) and A(Ry mod w, La,+1 mod w,vy) by
1, where vy and vy are the suggested values. If the approximation does not hold,
we decrease the specific array entries accordingly.

Each (Ro mod w, Lo,+1 mod w)-combination gives a distribution of S'(-)-
values. From Sect. 4.1 we know that the distributions corresponding to the values
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Ry mod w € {0,...,lgw—1} will be the most non-uniform. To measure the non-
uniformity we check for all w bits of our S’ based on the S’(-)-values how many
times 0 is suggested and how many times 1 and take the difference of these
amounts. For each Ry mod w we take the sum over all possible Lo, 11 mod w of
the absolute values of these differences. In this way the non-uniformity function
v:{0,...,w—1} — N is defined:

w—1 lgw-1

v(rg) = Z Z| Z A(ro, lory1 + z,v) — Z A(ro, lory1 + x,v)],

lor41=0 =0 wviez-v=0 vieg -v=1
(33)

where all indices of A are taken modw. We call the w values that are derived
in this way the non-uniformity values. We expect that the sum of lgw non-
uniformity values will be maximal for the values corresponding to texts with
Ry mod w € {0,...,lgw — 1}. The final step of the algorithm guesses the value
of S1 mod w accordingly.

The observant reader will have noticed that according to the above descrip-
tion it is not necessary to have counters for the S’(-)-values. Instead of this one
could use counters corresponding to the bits of S’ and change these accordingly.
The description above is used to emphasize that with the S’(-)-distribution also
other non-uniformity measurements could be used. For example, one could look
at all possible values for two subsequent bits of S’. Also it is probably possible to
derive information about the actual value of S3,.11 from the S’(-)-distribution.
However, this falls outside the scope of this paper.

4.3 The Algorithm

1. Acquire n known plaintext/ciphertext-pairs (Py, Co), ..., (Pn—1,Cn-1).
2. Initialize a counter array* A(i,j,k) :=0 for i,5,k =0,...,w — 1.
3. For each plaintext/ciphertext-pair do:
If Loy mod w = 0 then
(a) Compute S’(0)-guess v.
Ifeg-Lo=¢eg- Loyiq then A(RO, Loyi, U) = A(Rm Loyiq, 1}) + 2.
( ) If €o - LO =€ L27‘+1 ®1 then A(Ro,L2T+1, U) = A(R07L2T+1, U) — 2.
If Loyy1 mod w # 0 then
(a) Compute S’(Lor+1 mod w)-guesses vy and v;.
If € - LO = €9 - L2T+1 then A(Ro, L2T+17 ’U()) = A(Ro, L2T+1, ’Uo) +1
(b) and A(Ro, Loyy1, ’Ul) = A(Ro, Loyi1, U1) + 1.
If e - Lo # eg - Lor41 then A(Ry, La,y1,v0) := A(Ro, Lori1,v0) — 1
and A(Ro, Loy11,v1) := A(Ro, Lar41,v1) — 1.
4. Compute w non-uniformity values v(¢) according to (33), where ¢ corresponds
with a value of Ry mod w.
5. Find the value z € {0,...,w — 1} for which Eig;g_l |v((x + i) mod w)]| is
maximal.
6. Guess S; mod w = w — .

4 For clarity in the following description of the algorithm we have left out mod w
when referring to indices of A.
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4.4 The Results

We have implemented the attack on RC5-32 and RC5-64. The results are given in
Table 3 and Table 4. As can be seen in the tables, we have done tests for up to 5
rounds of RC5-32 and up to 4 rounds of RC5-64. For each number of rounds tests
were performed for several amounts of plaintexts. To give an indication of the
practical aspects of the experiments: with our RC5-implementation carrying out
the attack on the 5-round version for 10 keys with 232 plaintexts took about 21
hours on a 333 MHz Pentium. To our knowledge these are the first experimentally
executed known plaintext attacks on reduced versions of RC5, which require a
negligible storage.

As stated at the end of Sect. 3.3, we would expect that an attack on r rounds
of RC5 with x known plaintexts should have the same success probability as an
attack on 7+1 rounds with (¢™) =2z texts. For RC5-32 it holds that (¢T) 2 as 26-8
for RC5-64 (c*)™2 ~ 284, It can be seen from the tables that the results are
better than expected, i.e., the factor to attack an extra round is ~ 26 for RC5-
32 and ~ 2% for RC5-64. We conjecture that the reason for this is that the
value of R;42 mod w depends significantly on the value of R; mod w. We are
still researching this problem, but we give some preliminary evidence in the next
section, where we discuss the consequences for RC6.

Based on the experimental results and the theoretical estimation of the bias
of the linear approximation we can estimate the complexity of the attack on
more than 4 or 5 rounds (cf. Table 5). It follows that an attack can be mounted
on RC5-32 with 10 rounds that has a success probability of 45% if 262 plaintexts
are available. An attack on RC5-64 with 15 rounds has a success probability of
90% if 2123 plaintexts are available.

5 Consequences for RC6

The block cipher RC6 [RC6.1] has been submitted to NIST as an AES-candidate.
Its design was based on RC5 and the security evaluation of RC5. To meet the
block size requirement of 128 bits and to keep a 32-bit processor oriented design
for this block size, RC6 was designed as two RC5-32’s (with some changes) in
parallel that interact®. Hence, cryptanalysis of RC5 can mostly be adapted for
analysis of RC6.

However, the RC5-structure used in RC6 differs from the original version.
One of the most important differences is the following. The amount of rotation
in RC5-32 was determined by taking the 5 LSB’s of a 32-bit word. In RC6, the
5 bits that determine the amount of rotation depend on all 32 bits of a 32-bit
word.

In the first place these changes to RC5 were made to preclude the successful
differential attacks on RC5 [BK98,RC6.1]. These attacks make use of the fact

5 Actually, the design of RC6 also is word oriented and the blocksize is 4w, where w
is the word size. We only discuss the 128-block size version, as it is the main object
for the AES standardization process.
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Table 3. Experimental results of the attack on RC5-32.

|Rounds|Known plaintexts[Success rate|

2 213 28,/100
214 46,100
21° 89/100
216 92/100
3 217 7/100
218 15/100
219 28/100
220 49/100
221 69/100
222 81/100
4 274 7/100
225 26/100
226 44/100
227 77/100
228 82/100
5 272 4/10
233 7/10
234 9/10

Table 4. Experimental results of the attack on RC5-64.

|Rounds|Known plaintexts‘Success rate|

2 217 39/100
218 82/100
219 96,/100
3 2%° 28/50
226 40/50
227 47/50
4 237 9/10

Table 5. Expected number of plaintexts needed for a known plaintext attack on r(> 2)
rounds of RC5-32 or RC5-64.

Success probability:|| 45% | 90%
RC5-32 Q2 Fer|gtFor
RC5-64 2! +8r|93+8r
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that only five LSB’s determine the rotations. However, these changes also provide
increased resistance to the attack method described in this paper.

To illustrate this we look at a transition version between RC5 and RC6. In
the definition of RC5, replace (5) and (6) with

T; = (R;(2R; +1)) <5 (34)
U=L&T, (35)
Vi=U; <T; (36)

For our theoretical analysis concerning the linear hull effect, this change makes
little difference. One can still use the same linear approximations. However, the
first round trick and last round trick we have used now become more complicated.
To compute 77 mod 32, one has to guess all bits of S; and the construction of a
non-uniformity function is not obvious.

We have done tests on the above described intermediate version with the
last and first round replaced with a normal RC5-round. Then the first and last
round trick are straightforward. We have implemented the attack for 3 and 4
rounds of the cipher and results indicate that the increase in the number of
necessary plaintexts for the same success probability was more in accordance
with the theoretical results for RC5. Hence, the application of the extra function
to determine the rotation amounts causes these values to be more independent.

We conclude that our attack does not give an obvious possibility to mount a
realistic attack on RC6. Currently we are working on a precise evaluation of its
resistance against this attack method.

6 Conclusions

In this paper we have evaluated the resistance of RC5 against linear attacks. We
have taken into account the applicability of the Piling Up Lemma and the conse-
quences of linear hull effects, both in combination with possible key dependency.
This resulted in estimates for the complexity to mount a linear attack.

Furthermore we have described an attack that exploits the linear hull effect
that we described and implemented it on reduced versions of RC5-32 and RC5-
64. In this way we estimate that our attack can theoretically break RC5-32 with
10 rounds and RC5-64 with 15 rounds. In comparison with previous attacks on
RC5, our attack needs negligible storage capacity, i.e., it could be practically
implemented.

The attack method has no serious consequences for the security of RC6. Ap-
parently the precautions that the designers made to make RC6 more resistant
against differential attacks, also made RC6 more resistant against more sophis-
ticated linear attack methods.
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