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Abstract. Sober-t32 is a candidate stream cipher in the NESSIE com-
petition. Some new attacks are presented in this paper. A Guess and
Determine attack is mounted against Sober-t32 without the decimation
of the key stream by the so-called stuttering phase. Also, two distin-
guishing attacks are mounted against full Sober-t32. These attacks are
not practically feasible, but they are theoretically more efficient than
exhaustive key search.
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1 Introduction

The European NESSIE [2] competition evaluates a variety of cryptographic
primitives (both asymmetric and symmetric) for standardization. Sober-t32, a
software-oriented synchronous stream cipher designed by G. Rose and P. Hawkes [1],
is one of the candidates. The cipher uses a Linear Feedback Shift Register
(LFSR), a Non-Linear Function (NLF) and a so-called stuttering unit for the
generation of the pseudo-random key stream.

The NESSIE competition demands that a stream cipher offers full security,
i.e., that there is no known attack faster than exhaustive key search. In crypt-
analysis, one considers that the pseudo-random key stream is known, and the
aim is to recover the key (a so-called key-recovery attack). Another possible at-
tack is a distinguishing attack, in which one tries to distinguish the key stream
of the stream cipher from a truly random sequence.
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In this paper, we will present new attacks on Sober-t32. The first attack is
a Guess and Determine (GD) attack against unstuttered Sober-t32. This at-
tack exploits a probabilistic factor in the design and appears to be faster than
exhaustive search. This is not expected by the designers, as they state in [1]:
Our analysis indicates that the combination of the LFSR and NLF appears to be
sufficient to resist GD-attacks. The second type of attacks are distinguishing at-
tacks. In [5], Ekdahl and Johansson mount distinguishing attacks on Sober-t16
– a cipher very similar to Sober-t32 – and on Sober-t32 without the stutter-
ing unit. In this paper, the attacks from [5] will be improved and distinguishing
attacks on full Sober-t32 will be presented.

The outline of this paper is as follows: In Sect. 2, a description of Sober-t32
is given. In Sect. 3, the GD attack is elaborated, based on a probabilistic factor
in the design of Sober-t32. Finally, Sect. 4 presents two distinguishing attacks
on Sober-t32.

2 Description of the Sober-t32 Stream Cipher

Sober-t32 is a word-oriented synchronous stream cipher. It uses 32-bit words
and has a secret key of 256 bits. Sober-t16 is a very similar stream cipher that
uses 16-bit words and has a 128-bit key.

In a synchronous stream cipher such as Sober-t32, the key stream is gener-
ated independently from the plaintext. The sender encrypts the plaintext by per-
forming an XOR (exclusive or, ⊕) operation between plaintext and key stream.
The recipient can, if he knows the secret key, reconstruct the key stream and
recover the plaintext by performing an XOR operation between the ciphertext
and the key stream.

Sober-t32 is based on 32-bit operations within the Galois Field GF (232).
Every word a = (a31, a30 . . . a1, a0) is represented by a polynomial of degree less
than 32:

A = a31x
31 + . . .+ a0x

0 . (1)

When adding two words in GF (232), the polynomials are added and their
coefficients are reduced modulo 2. This is the same as a bitwise XOR. For a
multiplication, the polynomials are multiplied, the coefficients reduced modulo
2, and the resulting polynomial is reduced modulo a polynomial of degree 32.
For Sober-t32 the polynomial is:

x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1) . (2)

Sober-t32 consists of three main building blocks. First there is a Linear
Feedback Shift Register (LFSR), which uses a recursion formula to produce a
state sequence sn. Next a Non-Linear Function (NLF) combines these words in
a non-linear way to produce the NLF-stream vn. Finally, the so-called stutter-
ing produces the key stream zj by decimating the NLF-stream in an irregular
fashion. All three parts are explained in detail below. An overview of the general
structure of Sober-t32 is shown in Fig. 1.
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Fig. 1. Overall structure of Sober-t32

2.1 The Linear Feedback Shift Register (LFSR)

The LFSR is a shift register of length 17, where every register contains one word.
The internal memory is thus 544 bits. The state of the LFSR at a certain time
t is respresented by the vector

−→
St = (st, st+1, st+2, . . . st+16) = (r0, r1, r2, . . . r16) . (3)

The next state of the LFSR is calculated by shifting the previous state one step,
and calculating a new word st+17 as a linear combination of the words in the
LFSR. The word st+17 is calculated as follows:

st+17 = st+15 ⊕ st+4 ⊕ α · st , (4)

with α = C2DB2AA3x.

2.2 The Non-Linear Function (NLF)

At any time t, the NLF takes five words from the LFSR state and calculates one
output, called vt. This output can be written as:

vt = ((f(st ¢ st+16)¢ st+1 ¢ st+6)⊕K)¢ st+13 . (5)

In this equation, K is a word that is determined during the initialization of
the LFSR, ¢ denotes addition modulo 232 and f is a non-linear function. The
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structure of the function f is shown in Fig. 2. First, the word is partitioned into
the Most Significant Byte (MSB) and the three remaining bytes. The MSB is
used as an input to a substitution box (S-box), which outputs 32 bits. Of these,
the MSB becomes the MSB of the output, and the three remaining bytes are
XORed with the three remaining bytes of the input word to form the rest of the
output word.

Fig. 2. Structure of the function f

It is important to notice that the S-box only uses the MSB as an input. This
implies that most of the non-linearity is caused by the MSB. One can see that
any differential in the less significant bits goes straight through the f -function,
and that the MSB of the output is solely determined by the MSB of the input
(and vice-versa). The f -function can be written as:

f(a) = SBOX(aMSB)⊕ (0‖aR) . (6)

In this equation, aR respresents the three remaining bytes of a 32-bit word a,
thus without the MSB.

2.3 The Stuttering

The output of the NLF is used as the input for the stuttering phase. The stutter-
ing decimates the stream in an irregular fashion. The first output of the NLF is
taken as the first Stutter Control Word (SCW). This SCW is divided into pairs
of bits, called dibits. The value of these dibits determines what happens with the
following words, as explained in Table 1.

The constant C is 6996C53Ax, and C ′ is the bitwise complement of C. When
all dibits have been used, the next word from the NLF-stream is taken as the
next SCW. In this way, the stuttering allows only about 48% of the NLF-stream
words to go to the key stream.
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Table 1. The possible actions of the stuttering unit as a function of the dibit

dibit action

00 The next word is excluded from the key stream.

01 The next word is XORed with C, and goes to the key stream,
the word after that is excluded from the key stream.

10 The next word is excluded from the key stream,
the word after that goes to the key stream.

11 The next word is XORed with C ′, and goes to the key stream.

3 A Guess and Determine Atttack on Unstuttered

Sober-t32

In a standard Guess and Determine attack, some words of the LFSR are guessed
and the remaining words are determined by exploiting the LFSR and NLF equa-
tions. In [3], Bleichenbacher et al. describe a GD attack on Sober-II which also
applies to Sober-t32 and has a complexity of 2320. De Cannière [4] improves
this attack to 2304.

In this section, the weakness of the NLF, as explained in Sect. 2.2, will
be exploited to elaborate a better GD attack. First a simplified attack will be
presented, where the carry bits are not taken into account. Next the real attack
will be presented. Finally, the attack will be improved in different ways.

3.1 Attack without Carry Bits

First, we will rewrite the equation of the NLF (5) by separating the MSB and
the three other bytes and by using (6). This yields the following equation:

vt =
(((SBOX(st,MSB ¢ st+16,MSB ¢ o1)⊕ (0‖st,R ¢ st+16,R))¢ st+1 ¢ st+6)⊕
K)¢ st+13 .

(7)
In this equation, o1 represents the carry bit towards the MSB. Under the as-
sumption that the MSB of K is zero, this equation can be split up in two separate
parts:


















vt,MSB =
((SBOX1(st,MSB ¢ st+16,MSB ¢ o1))¢ st+1,MSB ¢ st+6,MSB)
¢st+13,MSB ¢ o2

vt,R =
(((SBOX2(st,MSB ¢ st+16,MSB ¢ o1)⊕ (st,R ¢ st+16,R))
¢st+1,R ¢ st+6,R)⊕KR)¢ st+13,R .

(8)
In this equation, SBOX1 represents the MSB of the output of the S-box, and
SBOX2 the three remaining bytes of the S-box output. o2 represents the carry
bits from the additions.

Especially the first equation is interesting. Given the value of the MSB of
st, st+1, st+6 and st+13, the value of the MSB of the key stream vt and the value
of the carry bits o1 and o2, it is possible to calculate the MSB of st+16.
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For the moment, the carry bits are not taken into account. Now the attack
starts. First, the MSB of the first 16 words of the LFSR (st, st+1, st+2 . . . st+15)
are guessed, a total of 128 bits. Knowing these, together with the key stream vt,
it is possible to calculate the MSB of st+16, st+17, st+18, st+19, . . .

The LFSR will now be clocked a few times. We get a system of linear equa-
tions in bits, where the unknowns are the 24 least significant bits of every word
that appears in the LFSR. Meanwhile, at every iteration a number of linear
equations is obtained. These equations are the following:

– At every iteration, we get 32 new linear equations from the derivation of
the new LFSR word. In fact, the linear recurrence over GF (232) is equiva-
lent to 32 bit-wise LFSR’s (see [6]). These LFSR’s all have the same linear
recurrence, which is given in [7].

– We also get an extra linear equation per iteration in the least significant bit.
As the input to the S-box is known, one can easily see that the following
equation holds for the least significant bit:

v0
t = SBOX0(st,MSB¢st+16,MSB⊕o1)⊕s0

t⊕s0
t+16⊕s0

t+1⊕s0
t+6⊕K0⊕s0

t+13 .
(9)

In this equation, the superscript 0 stands for the least significant bit of the
word. This equation is perfectly linear. We also get one such equation before
iterating: before the LFSR is clocked, we already get such an equation from
the initial state.

After clocking the LFSR k times, 32 · k + k + 1 = 33 · k + 1 linear equations are
obtained. The remaining unknowns in these equations are:

– The value of the 24 least significant bits of st, st+1, st+2 . . . st+16.
– The value of the least significant bit of K.
– The value of the 24 least significant bits of the new word at each iteration.

After k iterations, the total is 24 · 17 + 1 + 24 · k = 24 · (17 + k) + 1 unknowns.
In order to obtain a solvable set of equations, the number of equations must

be larger than the number of unknowns:

33 · k + 1 ≥ 24 · (17 + k) + 1⇐⇒ k ≥ 45.33 . (10)

Remark that the attack recovers the whole state of the cipher, except for
the 23 remaining bits of K. However, once the attack is finished, these can be
recovered easily from the second equation of (8).

In order to evaluate the complexity of the attack, one should consider the
number of bits that has to be guessed. The following bits should be guessed:

– The MSB of st, st+1, st+2 . . . st+15, a total of 128 bits.
– The MSB of K. In fact, this MSB will always be assumed to be zero. This

assumption can be seen to be equivalent to guessing the MSB of K: It is
possible to mount the attack on a number of different key streams until we
get a key stream in which the MSB of K is zero.
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This means guessing 136 bits in total, which implies a complexity of 2136. It
should be noted that solving the set of equations does not increase the complexity
of the attack: We know in advance the linear equations relating the deduced bits
to the initial state bits, so we can precompute the inverse matrix and all we have
to do is a matrix multiplication.

Of course, we have not taken into account the carry bits that are unknown
to us. In the next section, we will take the carry bits into account and show the
complexity of the full attack.

3.2 Taking Account of the Carry Bits

In the previous section, we have assumed that the carry bits are known. In reality
we will also have to guess these carry bits. Carry bits are not purely random,
the distribution of their value is non-uniform. One can take advantage of this
by first trying to guess the more probable values. The number of times we have
to guess on average will be well approximated by the entropy, as this equals the
amount of information that is present in the carry bits.

The Entropy of the Carry Bits. The entropy of the carry bits o1 and o2 can
be derived theoretically. This is done in Appendix A. It is shown there that the
entropy of o1 is 1, and that the entropy of o2 is 1.65.

Complexity of the Full Attack. The full attack requires guessing the follow-
ing bits:

– The 136 bits that had to be guessed in the attack without carry bits.
– The carry bits, a total of 47 · (1 + 1.65) = 124.55 bits. (That is, the number

of iterations plus one. This extra guess comes from determining st+16: there
is no iteration here, but these carry bits also have to be guessed.)

This means a total of 260.55 bits. The complexity of the attack is thus 2260.55.
This is only a little above the complexity of doing an exhaustive search for the
256-bit key. In the following section, a number of improvements will be presented
in order to get the complexity below that of exhaustive key search.

3.3 Further Improvements

Instead of assuming that the 8 most significant bits of K are zero, one could
also assume that the nine most significant bits of K are zero. This will lower
the entropy of the carry bit o2. It can be calculated that the new entropy for
o2 is 1.48. Now we can recalculate the total complexity for the attack with the
procedure described above. We get a complexity of 2253.56.

We can also assume that the 10 most significant bits of K are zero. The
entropy of o2 is then 1.43, and the complexity of the attack is 2252.21.

Another improvement would be to guess the carry bits of several rounds
together. The entropy of the carry bit in (s0 + s16) is 1; and the entropy of the
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carry bit in (s16+s32) is also 1. The entropy of the two together is 1.92 however.
If we take (s0 + s16), (s16 + s32) and (s32 + s48) together, the entropy is 2.83.
There is scope for more improvements of this sort.

Another possible improvement would be to use all relations in the NLF, so
not only the linear ones. This approach is described in App. B. The complexity
of this approach is not well understood and requires further research.

4 Distinguishing Attacks

At FSE 2002, P. Ekdahl and T. Johansson presented distinguishing attacks on
full Sober-t16 and on unstuttered Sober-t32 [5]. In this section, both attacks
will be adapted to obtain two distinguishing attacks on full Sober-t32.

4.1 Extending the Attack on Unstuttered Sober-t32 to Full
Sober-t32

In this section, the attack on unstuttered Sober-t32, described by P. Ekdahl
and T. Johansson in [5], is adapted so that it also works on full Sober-t32.
First an overview of the attack on unstuttered Sober-t32 will be given. For a
complete description we refer to [5]. Then the attack on full Sober-t32 will be
described.

The Attack on Unstuttered Sober-t32. The attack starts by linearizing the
equation of the NLF (5):

vt =
[

st ⊕ st+1 ⊕ st+6 ⊕ st+13 ⊕ st+16

]

⊕ wt = Ωt ⊕ wt . (11)

Then it will be argued that the noise wt, introduced by this approximation, has
a biased distribution.

In the next step, a new linear recurrence is obtained by repetitive squaring
of the LFSR equation (4):

st+τ5 ⊕ st+τ4 ⊕ st+τ3 ⊕ st+τ2 ⊕ st+τ1 ⊕ st = 0 , (12)

with τ1 = 11, τ2 = 13, τ3 = 4 · 232 − 4, τ4 = 15 · 232 − 4 and τ5 = 17 · 232 − 4.
This linear recurrence is valid for each bit position individually.

Then the XOR between two adjacent bits in the stream vt are considered:

vt[i]⊕ vt[i− 1] = Ωt[i]⊕Ωt[i− 1]⊕ wt[i]⊕ wt[i− 1] . (13)

The distribution F [i] of wt[i]⊕wt[i− 1] is then calculated. Simulation indicates
that this distribution is quite biased. The largest bias was found for the XOR of
bit 29 and 30. The bias depends on the corresponding bits of K, and for bit 29
and bit 30 it is at least ε30 = 0.0052.
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Now, given the NLF-stream v0, v1, . . . vN−1, the linear recurrence (12) can
be used to calculate

vt+τ5⊕vt+τ4⊕vt+τ3⊕vt+τ2⊕vt+τ1⊕vt =
Ωt+τ5 ⊕ wt+τ5 ⊕Ωt+τ4 ⊕ wt+τ4⊕
Ωt+τ3 ⊕ wt+τ3 ⊕Ωt+τ2 ⊕ wt+τ2⊕
Ωt+τ1 ⊕ wt+τ1 ⊕Ωt ⊕ wt ,

(14)

where the sum of all Ωj terms is zero because of (12). This equation can be
rewritten as:

vt+τ5 ⊕ vt+τ4 ⊕ vt+τ3 ⊕ vt+τ2 ⊕ vt+τ1 ⊕ vt =

5
⊕

j=0

wt+τj
. (15)

The left hand side of this equation is noted as Vt, the right hand side as Wt. It
is now possible to calculate the following probability:

P (Vt[i]⊕ Vt[i− 1] = 0) = P (Wt[i]⊕Wt[i− 1] = 0) =
1

2
+ 25ε6i . (16)

The final correlation probability for the six independent key stream positions
can then be obtained for i = 30:

p0 = P (Vt[30]⊕ Vt[29] = 0) =
1

2
+ 25(0.0052)6 ≈ 1

2
+ 2−40.5 . (17)

In order to distinguish this nonuniform distribution P0 from a uniform source
PU , the Chernoff information between the two distributions is calculated:

C(P0, PU ) = − min
0≤λ≤1

log2

∑

x

Pλ
0 (x)P

1−λ
U (x) ≈ 2−81.5 . (18)

In order to obtain an error probability of Pe = 2−32, N = 286.5 samples from the
key stream are needed. Each sample spans τ5 = 17 · 232 ≈ 236 bits, so in total
N + τ5 ≤ 287 words from the NLF-stream are needed to distinguish unstuttered
Sober-t32 from a uniform source.

The Attack on Full Sober-t32. This distinguishing attack requires the words
vt, v11, v13, v4·232−4, v15·232−4 and v17·232−4 from the NLF-stream. Our aim is to
find these words in the key stream zj , i.e., after the stuttering. One might think
that the probability of guessing the right positions for the large values 4 ·232−4,
15 · 232 − 4 and 17 · 232 − 4 will be so small that the distinguishing attack will
no longer be successful. In this section we will show that this is not the case.

First of all, an expression is derived for the probability that a particular word
will be at its most probable position in the key stream. A key stream word zi
is taken, and this word comes from the word vt in the NLF-stream. Then the
probability is calculated that the following words appear at their most probable
position in the key stream.

The most probable position of vt+11 in the key stream is zi+6. Simulations
indicate that the probability that this is a correct guess is 21.7%. The most
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probable position of vt+13 in the key stream is zi+7. Simulations indicate that
the probability that this is a correct guess is 19.8%.

For the remaining three words, the situation is more complex. The probabil-
ities will be calculated through a theoretical deduction. For the n-th word that
goes to the stuttering unit, it can be expected that b n

25
c stutter control words

(SCW) have been used before. Of all the remaining (non-SCW) words, 50% are
expected to go to the key stream. The most probable position in the key stream
of the word vn is thus:

E[position(vn)] =
n− b n

25
c

2
. (19)

In order to calculate the probability that the word vn will be at this most prob-
able position, we will first calculate the probability that the n-th SCW appears
at its most probable position in the NLF-stream. This probability is easier to
calculate theoretically, and it is easy to see that the asymptotical behaviour of
both values will be the same.

Two dibits, 00 and 11, determine what is going to happen with the next word.
The two other dibits, 01 and 10, determine the stuttering of the two following
words. As every dibit appears with the same probability, it is expected that a
dibit uses 1.5 words of the NLF-stream on average.

A SCW gives 16 dibits and uses thus an average of 24 words. Because the
SCW is also coming from the NLF-stream, it is expected that the n-th SCW
is at the position 25n of the NLF-stream. The probability that the n-th SCW
is indeed on this position, is equal to the probability that n SCW’s determine
the stuttering of exactly 24n words from the NLF-stream. This means that half
of the 16n dibits should determine the stuttering of one word, the other half
should determine the stuttering of two words. This probability can be expressed
as follows:

P (position(SCW [n]) = 25n) =

(

16n

8n

)

(
1

2
)8n+8n =

16n!

(8n!)2 · 216n
. (20)

This equation can be approximated by using the Stirling equation for large
faculties:

n! ≈
√
2πn · nn · e−n . (21)

This gives the following equation:

P (position(SCW [n]) = 25n) ≈
√
2π16n · (16n)16n · e−16n

(
√
2π8n · (8n)8n · e−8n)2 · 216n

=
1√
8πn

. (22)

Simulation shows that this equation is a very good approximation.

When this line of reasoning is reversed, we see that the probability that the
25n-th word of the NLF-stream will be the n-th SCW, is also proportional to
1/
√
n.
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The probability for the following words to be at their most probable position
in the key stream will be similar. It can be written as:

P (position(vn) =
n− b n

25
c

2
) =

λ
√

8πn
25

, (23)

where λ is a constant. Simulation shows that this hypothesis is indeed correct.
From the simulations it follows that λ ' 0.84.

The probability that v4·232−4, v15·232−4, v17·232−4 appear in the key stream at
their most probable position can now be calculated with (23). These probabilities
– given that the words before are present in the key stream at their most probable
position – are 2−17.3, 2−18.0 and 2−16.8 respectively.

The total probability p0 can now be calculated:

p0 = 0.217 · 0.198 · 2−17.3 · 2−18.0 · 2−16.8 = 2−56.6 (24)

With probability p0, v17·232−4, v15·232−4, v4·232−4, v13 and v11 are present in the
key stream at their most probable position. They will appear in the key stream,
XORed with 0, C or C ′. This will however not affect the distribution: we are
considering the XOR of bit 29 and bit 30, and for C both bits are 1. Thus,
for C, C ′ and for 0, the XOR of bit 29 and 30 is always zero, so the constant
values are always eliminated. This yields the following for the calculation of the
Chernoff information between the distribution of the key stream PY and the
uniform distribution PU :

C(PY , PU ) ≈ p2
0 · C(PW , PU ) = 22·−56.6 · 2−81.5 = 2−194.7 . (25)

PW is the distribution of the NLF-stream. For an error probability of Pe =
2−32 this means we need 32 · 2194.7 = 2199.7 samples. The attack requires 2199.7

sequences of 17 · 232 words from the key stream, this is a total of L = 2200 ≥
2199.7 + 17 · 232 words.

4.2 Extending the Attack on Sober-t16 to Sober-t32

In [5], Ekdahl and Johansson present a distinguishing attack on the full Sober-
t16 (with stuttering). As the paper mentions, the proposed methods are expected
to be applicable against Sober-t32 as well, but no complexity expression is
given due to computational limitations. In this section, we derive the expected
complexity by making a number of (realistic) probabilistic assumptions.

Distributions. The distinguishing attack in [5] starts by approximating the
equation of the NLF (5) of the cipher with a linear function and analyzing the
distribution of the noise wt for different values of K.

vt =
[

st ⊕ st+1 ⊕ st+6 ⊕ st+13 ⊕ st+16

]

⊕ wt = Ωt ⊕ wt (26)
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In the case of Sober-t16, the noise wt can take on 216 values and the prob-
ability of each of these values can easily be estimated by simulations (in [5],
an accurate estimation is obtained by taking 238 samples). A similar simulation
for Sober-t32, however, would require an impractical amount of memory and a
huge processing time. This motivates us to derive a complexity expression based
on the average non-uniformity of wt, instead of on its full distribution.

In the following, Pu(w) = p = 1/N = 2−32 stands for the uniform dis-
tribution, Pw(w) = p · (1 + εw(w)) for the noise distribution and σ2

εw
for the

non-uniformity.
To estimate the non-uniformity of the noise distribution, we will now simulate

εw(w) for a limited number of values w and assume that these samples are
representative for the full distribution.

A first straightforward way to find an estimate of εw(w) for a given value of w
would consist in randomly choosing n sets (st, st+1, st+6, st+13, st+16), computing
wt for each of them and analyzing the frequency at which wt equals w.

However, in order to speed up the convergence, we will follow a somewhat
different approach. We first uniformly choose n sets (st, st+1, st+6, st+16) and
compute

at =
(

fw(st ¢ st+16)¢ st+1 ¢ st+6

)

⊕K (27)

bt = st ⊕ st+1 ⊕ st+6 ⊕ st+16 . (28)

Then for each set we count the number of st+13 for which

wt = (at ¢ st+13)⊕ (bt ⊕ st+13) = w . (29)

This number can directly be derived from the bits of at and bt, i.e., it is not
needed to run through all possible values of st+13. The estimation for εw(w)
obtained this way is expected to converge more rapidly, as each step takes into
account 232 possible values for (st, st+1, st+6, st+13, st+16). In case at and bt were
uncorrelated and uniformly distributed, one would find that

error =

√

(

3

4

)32

p · n ≈ 1
√

213 · p · n
. (30)

For both Sober-t16 and Sober-t32, we performed the simulations for dif-
ferent values of K and different sets of 256 consecutive w. From the estimated
values of εw(w), we calculated the non-uniformity σ2

εw
. Eventually, the minimal

and average non-uniformity were found to be 2−10 and 2−8 for Sober-t16 and
2−9 and 2−7 for Sober-t32.

Combining Distributions. In the next step of the attack described in [5],
different shifted versions of wt are combined in order to eliminate the unknown
LFSR words st.

Wt = wt+17 ⊕ wt+15 ⊕ wt+4 ⊕ α · wt . (31)

Next, we need to calculate the non-uniformity of the full noise Wt. In Ap-
pendix C, a general expression for the non-uniformity of z = x⊕y given σ2

εx
and

σ2
εy

is derived.
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Distinguishing Distributions: Chernoff Information. The number of sam-
ples required to distinguish a distribution Px(x) from the uniform distribution is
determined by the Chernoff information [5]. This quantity can easily be derived
from the non-uniformity σ2

εx
:

− log2

∑

x

√

Px(x) · p = − log2

1

N

∑

x

√

1 + εx(x) (32)

≈ − log2

1

N

∑

x

[

1 +
1

2
· εx(x)−

1

8
· εx(x)2

]

(33)

= − log2

(

1− 1

8
· σ2

εx

)

≈ 1

8 · ln 2 · σ
2
εx

. (34)

Complexity of the Attack on Sober-t32. Using the formulae in the previous
sections we are now able to estimate the complexity of a distinguishing attack
on Sober-t32.

– From the simulated approximation for the minimal non-uniformity of the
noise wt, 2

−9, we can find the expected non-uniformity of the full noise Wt

by using (51) and (52):

σ2
εW
≈ 3

N3
·
(

σ2
εw

)4 ≈ 2−130 . (35)

To derive this result, the last two sums of the expression Wt = (wt+17 ⊕
wt+15)⊕(wt+4⊕α·wt) are considered to be sums of independent distributions.

– The stuttering adds an additional unknown constant Ct to the noise Wt.
This constant can be written as Ct = ct+17 ⊕ ct+15 ⊕ ct+4 ⊕ α · ct with
ct ∈ {0, C, C ′}. Assuming that all 12 possible values of Ct are equiprobable
(which is the worst case), we find σ2

εC
≈ N/12 and

σ2
εW⊕C

≈ 1

12
· σ2

εW
≈ 2−134 . (36)

– As explained in [5], we will only get this non-uniform distribution if we made
correct guesses for the positions of the wt in the key stream. Simulations show
that this happens with a probability p0 = 2−5.5. The final non-uniformity
will therefore be reduced to:

σ2
ε ≈ p2

0 · σ2
εW⊕C

≈ 2−145 . (37)

– In order to obtain a sufficiently small probability of error (say 2−16), even
after applying the distinguisher for all 232 possible values of K, we need a
stream of at least 48 times the inverse of the Chernoff information. This
yields the final complexity:

48 · 8 · ln 2
σ2
ε

≈ 2153 . (38)
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5 Conclusion

In this paper, some new attacks on Sober-t32 have been presented.
A first attack is a 2252.21 Guess and Determine attack on unstuttered Sober-

t32. This attack is due to a probabilistic property of the t-class of stream ciphers
found in their S-box construction: The relationship between 8 bits in and 8 bits
out is not diffused to other positions in the word. Even a cyclic shift at the
end of the S-box would have destroyed the attack. In order to prevent similar
attacks, we suggest that in word-based LFSRs, the NLF should implicate the
whole word, and not just a part of the word as in Sober-t. Then the attacker
will not gain any profit by guessing some bits of the words.

Stuttering prevents the attack - not so much by the uncertainty it introduces
as by the fact that consecutive words don’t appear in the key stream. In fact,
a timing attack [7] on the stuttering can reveal a long sequence of consecutive
words that are not eliminated, thus enabling the GD-attack described above
(see [8]).

Next, two ways of mounting distinguishing attacks on full Sober-t32 have
been elaborated. Both attacks are based on the attacks described in [5]. The
first attack is an adaptation of the attack on unstuttered Sober-t32, such that
it also works on full Sober-t32. This attack could distinguish the Sober-t32-
key stream from a uniform source with about 2200 output words. The second
attack extends the attack on full Sober-t16 to full Sober-t32. This attack could
distinguish the Sober-t32 key stream from a uniform source with about 2153

output words. Furthermore, these distinguishing attacks show that the stuttering
cannot frustrate all attacks requiring vast amounts of key stream. The stuttering
unit is however very expensive as it lowers the performance of the cipher by 52%.
We would thus not recommend the usage of such parts in stream ciphers.

The attacks described are only possible theoretically. However, they are more
efficient than exhaustive key search. This implies that Sober-t32 does not offer
the security required by the NESSIE competition.
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A Calculating the Entropy of the Carry Bits

In the following, pji (and also qji and rji ) stands for: the probability that the
value of the carry bit to the i-th bit is equal to j. The bits are numbered from
least to most significant. Bit 0 is the least significant bit, bit 31 is the most
significant bit. The notations pji , q

j
i and rji are used to distinguish between the

three different scenarios which are discussed below:

– Two random 32-bit words are added. One can see that p0
1 equals 3

4
, and that

p1
1 equals 1

4
. The values of the subsequent carry bits can be obtained with

the following recursion:

{

p0
i+1 = 3

4
.p0

i +
1

4
.p1

i

p1
i+1 = 1

4
.p0

i +
3

4
.p1

i

(39)

The values of p0
i and p1

i can now be calculated for all i. Both values converge
rapidly to 1

2
. For i = 24, the carry bit of interest here, this is a very good

approximation.
The entropy H for this carry value is thus:

H = −
∑

pi. log(pi) = −1

2
log(

1

2
)− 1

2
log(

1

2
) = 1 (40)

The carry bit o1 corresponds to this case. The entropy of the carry bit o1

is 1.
– Now three words are added up. The carry value can now be 0, 1 or 2. The

probabilities for the first carry value are q0
1 = 1

2
, q1

1 = 1

2
and q2

1 = 0, and the
recursion formula is:



















q0
i+1 = 1

2
.q0
i +

1

8
.q1
i

q1
i+1 = 1

2
.q0
i +

3

4
.q1
i +

1

2
.q2
i

q2
i+1 = 1

8
.q1
i +

1

2
.q2
i

(41)

For increasing i, the values converge rapidly towards q0 = 1

6
, q1 = 2

3
and

q2 = 1

6
.
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The entropy H converges thus towards the value:

H = −
∑

qi. log(qi) = −1

6
log(

1

6
)− 2

3
log(

2

3
)− 1

6
log(

1

6
) = 1.25 (42)

– In a third scenario, we consider the carry value for the sum ((x+y)⊕C)+z+u.
As an extra constraint, all bits of C that are more significant (i.e. more to
the left) than the carry value considered must be zero. It can be seen that
this case is a combination of the two previously considered cases: the total
carry value is the sum of the carry value from the addition of two words (x
and y) and of the carry value from the addition of three words (x+ y ⊕ C,
z and u). It is then easy to see that the probabilities converge towards the
following values:































r0 = p0.q0 = 1

2
. 1
6
= 1

12

r1 = p0.q1 + p1.q0 = 1

2
. 2
3
+ 1

2
. 1
6
= 5

12

r2 = p0.q2 + p1.q1 = 1

2
. 1
6
+ 1

2
. 2
3
= 5

12

r3 = p1.q2 = 1

2
. 1
6
= 1

12

(43)

The entropy H converges thus towards the following value.

H = −
∑

ri. log(ri) = − 1

12
log(

1

12
)− 5

12
log(

5

12
)− 5

12
log(

5

12
)− 1

12
log(

1

12
) = 1.65

(44)

The carry value o2 corresponds to this case. The entropy of the carry value o2

is 1.65.

B Using Multivariate Quadratic Equations

By knowing the MSB of the words of the LFSR, we have eliminated the main
non-linearity in the algorithm. A consequence is that the equation (9) in the
least significant bit is completely linear, a fact that has been exploited above.

For the 23 other bits, the equations will be similar to this equation, but some
carry bits will appear in these equations. This is the only (small) non-linearity
in the system. These carry bits do not represent new unknowns as they can be
written as the product of bits. We can write the following bitwise equations for
each vit for i going from 1 to 23 (and similarly for vt+1, . . . vt+k:































vit = SBOXi + sit + sit+16 + cait + sit+1 + sit+6 + cbit +Ki + sjt+13 + ccit

cait = si−1
t · si−1

t+16 + si−1
t · cai−1

t + si−1
t+16 · cai−1

t

cbit = . . .

ccit = . . .
(45)
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We have introduced 3 ·23 ·(k+1) new unknowns and 4 ·23 ·(k+1) new equations.
In order to have enough equations we need:

33 ·k+1+4 ·23 · (k+1) ≥ 24 · (17+k)+24+3 ·23 · (k+1)⇐⇒ k ≥ 12.75 . (46)

So we can now consider all possible number of iterations beginning with 13.
The more iterations we will use, the more our system will be overdefined. The
so-called XL[9] and XSL techniques[10] can be used to solve this system. This
may lead to a more efficient attack. However, the complexity of these algorithms
is not well understood and may be clarified in future research.

C Calculating the Non-Uniformity of the Sum of

Distributions

C.1 The Sum of Two Independent Distributions

Let x an y be drawn from two independent distributions with non-uniformity
σ2
εx

and σ2
εy
.

Px(x) = p ·
(

1 + εx(x)
)

(47)

Py(y) = p ·
(

1 + εy(y)
)

. (48)

The distribution of z = x⊕ y can be written as:

Pz(z) =
∑

x⊕y=z

Px(x) · Py(y) (49)

= p ·
(

1 + εz(z)
)

. (50)

Exploiting the fact that the sum of all ε equals zero and that the distributions
of x and y are independent, we obtain:

E
(

σ2
εz

)

=
1

N

∑

z

E
(

εz(z)
2
)

=
1

N

∑

z

E





[

p−1 ·
∑

x⊕y=z

Px(x) · Py(y)− 1

]2




=
1

N

∑

z

E





[

1

N

∑

x

εx(x) +
1

N

∑

y

εy(y) +
1

N

∑

x⊕y=z

εx(x) · εy(y)
]2




=
1

N

∑

z

E





[

1

N

∑

x⊕y=z

εx(x) · εy(y)
]2




=
1

N

∑

d

[

1

N

∑

x

E
(

εx(x) · εx(x⊕ d)
)

· 1

N

∑

y

E
(

εy(y) · εy(y ⊕ d)
)

]

.
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To calculate the expression between the square brackets we distinguish the cases
d = 0 and d 6= 0. When d = 0, we have E

(

εx(x) · εx(x ⊕ 0)
)

= σ2
εx
. In all

other cases we may assume that the expected value of εx(x) · εx(x⊕ d), over all
possible distributions with non-uniformity σ2

εx
, is independent of d and equal to

−σ2
εx
/(N − 1) (because εx sums to zero). The same applies for εy and hence

E
(

σ2
εz

)

=
1

N

[

σ2
εx
· σ2

εy
+ (N − 1) · −σ2

εx

N − 1
·
−σ2

εy

N − 1

]

=
1

N − 1
· σ2

εx
· σ2

εy
. (51)

C.2 The Sum of Two Identical Distributions

A similar expression can be derived for the non-uniformity of z = x⊕ x′ with x
and x′ drawn from a single distribution.

E
(

σ2
εz

)

=
1

N

∑

z

E
(

εz(z)
2
)

=
1

N

∑

z

E





[

p−1 ·
∑

x⊕x′=z

Px(x) · Px(x
′)− 1

]2




=
1

N

∑

z

E





[

2

N

∑

x

εx(x) +
1

N

∑

x⊕x′=z

εx(x) · εx(x′)
]2




=
1

N

∑

z

E





[

1

N

∑

x⊕x′=z

εx(x) · εx(x′)
]2




=
1

N

∑

z

[

1

N

∑

x⊕x′=z

1

N

∑

x′′⊕x′′′=z

E
(

εx(x) · εx(x′) · εx(x′′) · εx(x′′′)
)

]

=
1

N

[

τ4
εx

N
+ 3 · N · σ4

εx
− τ4

εx

N
+

3 ·N · σ4
εx
− 6 · τ4

εx

N · (N − 3)

]

=
1

N · (N − 3)

[

3 · (N − 2) · σ4
εx
− 2 · τ4

εx

]

, (52)

with

τ4
εx

=
1

N

∑

x

εx(x)
4 (53)

= O
(

σ4
εx

)

. (54)
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