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Abstract

The present contribution focuses on the problem of assigning and schedul-
ing surgical cases in rooms of an operating theatre, in order to maximize effi-
ciency. The aim is to schedule as many surgical cases in as few operating rooms
as possible, within regular operating theatre opening hours and under limited
resource availability. This work generalizes many surgical case scheduling as-
pects considered in the literature and in practice by means of a unified resource
model. The performance of a heuristic algorithm designed for this rich problem
formulation is evaluated and compared on a set of real-world data. Computa-
tional results demonstrate the potential improvements obtained by using the
presented approach, over schedules constructed by human planners.

Keywords: surgical case scheduling; operating theatre scheduling; serial schedule
generation; metaheuristic

1 Introduction

Spurred by increasingly tighter budgetary constraints, hospital managers continu-
ously aim to improve the efficiency of their most costly resources. Unsurprisingly,
much attention is devoted to the operating theatre (OT), a key resource that gen-
erates significant revenue for any hospital, though at considerable costs. Macario
et al. [21] indicate that surgery related services can represent more than 40% of
hospital costs and revenues. Notably, Jackson [18] identifies the OT as an import-
ant profit center rather than a cost center. Being a profit center, the OT should be
run to maximize throughput, while still managing added costs from over-utilization.
Efficiently running an OT consisting of several operating rooms1 (ORs) and a large
surgical staff is not an easy task. It requires coordination of many different re-
sources, both human, equipment and consumables/renewables in order to enable
performing surgeries. A great deal of careful planning and organization is thus
necessary to avoid delays and to ensure a high throughput. Failure to do so may

1Note that we use the term ‘operating theatre’ to refer to the general hospital unit where surgeries are
performed. The term ‘operating room’ refers to a specific room where individual surgeries are performed.
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require overtime by the surgical staff to finish all surgeries, or even cause cancel-
lation/postponement of surgeries; ultimately resulting in revenue loss and worse
quality of care.
Over the past decades, numerous software development efforts have been made
to assist the planner (e.g. a surgeon, an OT manager) in scheduling the OT. These
efforts have mainly computerized the process that human planners perform, e.g.
providing digital user interfaces and scheduling boards in which the manual plan-
ner can allocate surgeries. Such applications can provide the planner with a good
overview of availability of resources, thus improving his/her effectiveness at the
task. However, the complexity of putting together a good OT schedule has not been
reduced: planners still have to allocate and sequence surgeries manually (though
software assisted) to find a good, workable OT schedule. Software support for
automatically generating surgical schedules has seen considerably less adoption.
For example, Cardoen et al. [9] report on software support for generating and op-
timizing surgery schedules in hospitals in Flanders, Belgium. Their survey indicates
that 56% of the hospitals do not use any software support to develop and optimize
their surgical schedules; 26% use software but find that the produced schedules
are impractical (may contain errors, or do not consider all resources); and 11% use
software that produces reliable/usable schedules (7% used other approaches, or
left the question unanswered).
The present paper focuses on a decision support model and algorithm for OT schedul-
ing, generalizing many considerations encountered in the literature and in practice.
The aim is to algorithmically support OT managers in their daily/weekly task of
both scheduling (determining date and time of) surgeries and assigning them to
an OR. In particular, the presented approach supports scheduling other resources
that may be required for performing surgeries, both human resources (e.g. the sur-
gical staff: surgeons, anaesthesiologists, instrumenting nurses) and other resources
(e.g. portable imaging tools, operating lights). To this end, generalized resource de-
pendencies are introduced to define the dependency of surgeries on specific types
of resources. A heuristic approach to this problem formulation is presented, based
on a schedule generation procedure combined with local search.
The research was partly supported by Dotnext2, a software company developing an
application for managing the OT with scheduling, monitoring and reporting tools.
The company’s input on current OT scheduling practices and the provision of data
have been essential. The remainder of this paper is organized as follows. In Section
1.1, an overview of previous research on the operating theatre scheduling problem
is provided. Next, in Section 2 the proposed model is described, with Section 3 de-
tailing the heuristic approach to operating theatre scheduling. Two example models
addressing important considerations from practice are presented in Section 4, in or-
der to emphasize the flexibility of the resource model. Computational experiments
in Section 5 show that the approach scales favourably with problem size, and is able
to schedule surgical cases in a large hospital setting in limited time. Finally, Section
6 concludes the paper.

1.1 Related work

Given the central role of the OT in any hospital, and the impact it has on hospital
costs and revenue, it has been the subject of a myriad of studies. In particular,

2Dotnext, Dikkemeerweg 172, 1652 Alsemberg, Belgium – http://www.dotnext.be
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optimization and decision support for planning and scheduling in OTs is not at all
new. Cardoen et al. [8] review 115 studies on the matter published after 2000,
and many more have been published since 2010. The studies can be categorized
based on the decision level they focus on [17]. The strategic and tactical decision
levels are concerned with long resp. mid term decision making, mostly determin-
ing service and capacity levels (strategic), and allocating capacity (tactical). The
operational decision level focuses on short term decisions involving execution of the
service process. The surgical scheduling problem considered in this paper is situ-
ated at this level and is concerned with scheduling individual surgical cases in an
OT over a certain planning horizon. The literature overview therefore concentrates
on operational decision making. However, one particular decision at the tactical
level is of interest for this work: the OT planning strategy. This strategy determ-
ines how OT capacity is distributed among different surgeons or surgeon groups.
Roughly, three different strategies can be identified [12, 14]: an open scheduling
strategy, a block scheduling strategy and a modified block scheduling strategy.

• Open scheduling strategy: OT capacity is not reserved for surgeons or surgeon
groups. Rather, the OT capacity is managed as a single, shared entity to which
surgical cases can be assigned.

• Block scheduling strategy: preallocates the OT capacity to the different sur-
geons or surgeon groups. OT capacity is divided into blocks or slots con-
sisting of an OR for a specified duration (usually a half day or full day). A
block schedule, also denoted as the master surgical schedule (MSS), determ-
ines which blocks are allocated to which disciplines for each day of the week.
Surgeons are free to assign surgical cases to their allotted blocks as they see
fit.

• Modified block scheduling: complements block scheduling with a policy to
check for underutilization. If underutilization of an upcoming OR block is
likely, this block may be opened to other surgeons for assigning surgical cases.

A block schedule or MSS is relatively common in practice, as it has the advantage
of establishing a (semi-)fixed situation, resulting in a stable flow and consistent
mix of patients. It also reduces the scheduling complexity since surgeries can only
be allocated to blocks of their particular medical discipline. An open scheduling
strategy, on the other hand, may result in higher performance and throughput due
to increased scheduling flexibility.
The construction of the MSS has been shown to have significant impact on other
downstream resources (bed usage, workload) as it partly determines the arrival
rate and arrival pattern of surgical patients. Therefore, these resources should not
be ignored when constructing/updating the MSS. Beliën and Demeulemeester [4]
showed how to construct an MSS that results in an expected levelled bed occu-
pancy, by minimizing a weighted sum of the maximum expected bed occupancy and
the maximum expected variance of the bed occupancy. van Essen et al. [32] also
showed how to relate downstream ward bed usage to the MSS. By doing this, they
were able to reduce the number of required beds in HagaZiekenhuis (Den Haag, the
Netherlands) by rearranging the MSS. Next to bed occupancy, the MSS also influ-
ences the workload in nursing wards. Therefore, it is worthwhile to consider staff-
ing decisions in the process of constructing the MSS. Beliën and Demeulemeester
[5] showed how to match and integrate the construction of an MSS with nurse
scheduling.
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Considering OT scheduling and planning decisions at the operational level, the
present paper emphasizes scheduling individual surgical cases. Many studies fur-
ther decompose this process into two steps, denoted advance scheduling and alloc-
ation scheduling [22, 27]. Other authors, e.g. [29], have coined terms such as
“intervention assignment” and “intervention scheduling”, and “surgical case assign-
ment” [1] and “surgical case scheduling” [7]. In any case, the former process deals
with assigning a surgery date, and possibly an OR, to individual surgical cases in
an upcoming planning period. The latter process deals with sequencing/scheduling
individual surgical cases throughout the day within the different ORs, determining
a specific start time for each surgery. Note that there is no clear distinction between
these two steps. Depending on the hospital’s policy, some flexibility may be allowed
in the allocation scheduling step: i.e. OR assignments may be changed, surgeries
may be cancelled or postponed.
Concerning the advance scheduling problem, most studies focus solely on the OT,
assigning surgical cases to a specific surgery day and operating room. This is often
a weekly process of selecting surgical cases from a waiting list, and possibly (pre-)
assigning them to individual ORs. The main objectives typically involve minimizing
overtime and underutilization of ORs [12, 19], as well as patient related costs and
quality of service measures, such as waiting time [15, 19] and tardiness with respect
to due dates [29].
The allocation scheduling problem follows the advance scheduling problem, and
takes as input the surgical cases for the upcoming planning period. The main goal
of the scheduling process is to construct a feasible work plan for each surgery day.
Therefore, the allocation scheduling process typically considers more resources and
more operational constraints in order to be feasible in practice. Examples are sur-
geons operating in multiple rooms [23, 25]; the capacity-limited post anaesthetic
care unit (PACU) [7, 25] or the intensive care unit (ICU); (sequence-dependent)
setup times between surgeries [28, 35]. Many studies target optimization of a vari-
ety of performance measures. Minimizing overtime or makespan are of main im-
portance.
Some studies handle both the advance scheduling problem and the allocation schedul-
ing problem in one single approach. For example, Marques et al. [23] presented an
integer programming model to both select surgical cases to be performed in the
upcoming week and determine an OR and start time (slot). Riise and Burke [29]
addressed a combined surgery allocation and surgery admission planning problem,
considering patient waiting time and tardiness, and surgeon overtime. More recent
studies have broadened the scope of the problem even further, considering for ex-
ample the impact of the surgical schedule on downstream resources (e.g. bed usage
at nursing wards [3]), or integration with personnel scheduling related issues [33].
Yet another discriminating feature of approaches is the consideration of uncertainty
in surgery durations and emergency interventions. Clearly, uncertainty is an im-
portant issue due to the highly variable nature of surgical cases. Denton et al. [11]
presented a stochastic model for surgery sequencing and scheduling in a single OR.
Their aim is to minimize a weighted objective function consisting of waiting time,
idle time and tardiness. Hans et al. [16] presented a robust surgery loading study
for the advance scheduling problem. Overtime should be minimized and free ca-
pacity should be maximized, whilst considering uncertainty in surgery durations
and varying flexibility with respect to a base schedule. They minimize the required
slack for avoiding overtime by exploiting the portfolio effect – a decrease in risk by
increasing diversity (by means of non-correlated portfolio components). Min and
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Yih [26] introduced a stochastic approach to the advance scheduling problem that
considers both uncertainty on surgery durations, emergency arrivals and length of
stay in the ICU. Their objective was to minimize block overtime and patient waiting
time related costs. Bruni et al. [6] presented a heuristic approach to a stochastic
programming model for the advance scheduling problem. They consider different
(recourse) methods to deal with infeasibilities in the surgical schedule caused by the
realization of uncertain parameters. On a weekly basis, an advance schedule is con-
structed, maximizing an abstract priority weighted profit of performing surgeries,
decreased by the expected recourse cost.
Lastly, studies differ in the approaches used for solving the respective models. Many
studies develop a mathematical programming formulation (e.g. Mixed-Integer Lin-
ear programming, Constraint programming) of the scheduling problem [2, 3, 12,
13, 20, 23, 25, 30, 34], which can be implemented and solved with dedicated soft-
ware. However, often a heuristic method (possibly based on the mathematical pro-
gramming approach) is developed alongside [12, 13, 34] to limit the execution time
of the approach when dealing with realistic-size instances. Several metaheuristic
methods have been developed as well, such as genetic algorithms [24, 30] and local
search based algorithms [2, 3, 16, 29].

1.2 Contribution

The main motivation for this work was to develop a sufficiently general and flexible
approach to deal with different policies to OT scheduling across hospitals. In this
study, a decision support model and approach for the surgical scheduling problem
is developed that generalizes many considerations pointed out in literature and in
practice: employing multiple ORs, assigning a surgical team, material dependencies
for surgical cases, etc. A generalized resource dependency model is proposed for
specifying dependencies of surgical cases on different resources.
The model of Meskens et al. [25] is one of the few considering many aspects of
surgical case scheduling encountered in practice, targeting, similar to the present
paper, a general decision support tool. Meskens et al. present a modular model for
the daily surgical case scheduling problem using constraint programming, in which
different considerations are grouped into modules and can be turned ‘on/off’ ac-
cording to the application’s requirements. It does, however, not accommodate sev-
eral considerations from practice, such as minimizing resource transfers (avoiding
that nurses, anaesthesiologists have to move between rooms); the concept of sur-
gical phases (a surgeon should only be present during an incision phase); multi-day
scheduling.
Many studies [e.g. 7, 23–25] employ a discrete representation of time. Both the
planning horizon and the surgical case durations are discretized into multiples of
a certain time unit. To keep model sizes tractable, time unit sizes are often in the
order of 15-30 minutes. As surgical durations must be rounded due to this discret-
ization, underutilization may be introduced (assuming rounding up to the nearest
multiple of a time slot). Contrastingly, the present study relies on a continuous
time representation, enabling any scheduling precision and thus avoiding underu-
tilization due to limited precision. Moreover, the algorithm’s complexity does not
depend on the precision of time.
Finally, an important practical contribution is that the approach has been designed
for implementation in an OT management application of a software company. The
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generality and flexibility of the model and approach are essential in this aspect, as
the software application must be able to cope with the diversity of all its end users.

2 Surgical case scheduling problem

2.1 Problem statement

The problem addressed in this paper is largely motivated by the goal to have a work-
ing decision support approach for surgical case scheduling, suited for integration
in hospital applications. The research project with the software company Dotnext
was set up to reach this goal and has strongly influenced modelling and algorithm
development. The software application QCare OR, developed by Dotnext (before
the start of the project), allows to organize and support the complete operative pro-
cess, from pre-operative planning, to online monitoring of current status, to finally
post-operative planning and reporting. QCare OR is intended for use in different
hospitals and customers in different countries; it is therefore set up quite flexibly to
accommodate different organisational approaches to manage the operating theatre.
Figure 1 shows the QCare OR interface for pre-operative planning, which is the fo-
cus of the present paper. The application allows to configure operating rooms and
resources (personnel, equipment) along with their availability (which may vary per
OR /resource). Surgical appointments can be created with their expected duration
and various resource dependencies, e.g. a surgeon, instrumenting nurse, anaes-
thesiologist. These appointments can then be assigned to specific days, and sched-
uled in specific operating rooms at specific times. Configuration of the application
is typically done at installation, and when ORs/resources are introduced, modified
or removed. The scheduling process is performed on a daily or weekly basis (de-
pending on the hospital policy). Often times, the schedule is updated during the
day/week to reflect changes, e.g. new arrivals, emergencies, unplanned personnel
unavailability.
To algorithmically support this manual scheduling process, we formulate it as a
multi-day surgical case scheduling problem with resource dependencies. In what
follows, we define the most relevant elements of the problem.

• Operating room: An operating room is dedicated to performing surgeries on
individual patients. It is typically one room out of a larger set of operating
rooms in the operating theatre, dedicated to performing surgeries. An oper-
ating room provides several (static) tools and equipment for supporting the
surgical process. Quite often, operating rooms in an operating theatre are
equipped differently, making some of them more suitable for certain types of
surgeries.

• Resources: Next to the static equipment provided in operating rooms, certain
equipment or tools are not room-bound and may be used in different rooms.
For example, mobile surgical lamps or imaging equipment may be moved
between operating rooms and support different surgeries across rooms. Apart
from tools and equipment, personnel and the surgical staff can also be con-
sidered as important resources of the operating theatre. The surgical staff are
among the most crucial and capacity-limited resources for performing surger-
ies and must be accounted for when scheduling surgeries.
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Figure 1: Dotnext’s QCare OR pre-operative planning user interface. The interface for pre-
op planning is divided into three sections: waiting list of appointments to be scheduled in the
current planning period (top); scheduling dashboard showing the assigned OR, starting time
and duration of scheduled surgeries (middle); detailed information and resources assigned
to the scheduled surgeries (bottom).

• Surgical cases: Surgical cases are the main element of the problem under
consideration. After a consultation, determining that a patient must undergo
surgery, a surgery appointment is made. The surgeon may then record the
type of surgery, how long it is expected to last and what kind resources and
surgical staff are required. The surgery date and start time depend on the
availability of a suitable operating room, as well as the required resources
and surgical staff. Resources or staff often need not be present for the entire
duration of the surgery. A supervising surgeon, for example, may only be
present during a crucial part of the surgery, whereas the remainder is handled
by the other surgical staff (e.g. another assisting surgeon).

The manual planner has a list of surgical appointments to be scheduled in the up-
coming period. The goal is to schedule all surgical cases within this period. How-
ever, due to limited capacity of ORs and availability of resources, this may not be
possible without incurring overtime. Dealing with overtime may vary greatly among
hospitals. Some hospitals have a policy to never schedule elective cases in over-
time, while others may allow it, provided it is cost-effective. We opt in this study to
schedule surgical cases only within normal capacity. This may leave surgical cases
unscheduled. The main motivation for this approach is that hospitals can always
decide manually if it is necessary to perform the remaining surgeries during over-
time.

2.2 Model formulation

The surgical case scheduling problem deals with scheduling a set of surgical cases
S in a set of ORs O, over a finite planning horizon (represented by a set D of one
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Set Index Description

S s = 1, . . . |S| Set of surgical cases
O o = 1, . . . |O| Set of ORs
D d = 1, . . . , |D| Set of days in planning horizon
RT j = 1, . . . , |RT | Set of resource types
R r = 1, . . . , |R| Set of resources
RTr ⊆ RT Subset of resource types that resource r

can be assigned to.
R j ⊆ R Subset of resources of type j. Note that R j1

and R j2 are not necessarily disjoint
if j1 6= j2: some resources are
flexible and can fulfil different resource type
dependencies (e.g. nursing staff
who have multiple skills).

RTRAN ⊆ R Set of resources for which transfers between ORs
must be minimized.

RI DLE ⊆ R Set of resources for which idle time must be minimized.
AVo,d Set of availability intervals [start, end) for OR o on day d1.
AVr,d Set of availability intervals [start, end) for resource r on day d.
O1

s , O2
s , O3

s ⊆ Os Set of preferred, possible and if-necessary operating rooms for
surgery s

RT r
s , RT o

s ⊆ R Set of required (optional) resource types for surgery s
Ds ⊆ D Subset of planning horizon on which case s can be scheduled

1 [a, b) denotes the half-open interval with limits a (inclusive) and b (exclusive).

Table 1: Summary of input sets and indices.

or more days). In this work, an open-scheduling policy is assumed; thus allowing
surgical cases to be scheduled in any OR at any time. Fei et al. [12] also noted
that an open scheduling strategy is more general than block scheduling. Schedules
complying with a block scheduling strategy, also fit an open scheduling strategy.
Nevertheless, the approach can also be adapted to accommodate block scheduling
quite easily (see Section 3.1).
The aim is to schedule as many surgical cases in as few ORs as possible, within the
regular opening hours of the OT. Furthermore, a set of hard resource and ordering
constraints must be considered. Soft resource constraints and desiderata are pen-
alized if violated or not met. In what follows, the elements and constraints of the
problem are described. Notation will be introduced along the description but is also
summarized in Tables 1 and 2.

Parameter Unit/Possible values Description

Cr dimensionless, Cr ∈ N0 Number of ORs resource r can be used in, per day.
AF(r1, r2) positive, negative, neutral Affinity between

resources r1 and r2.
ps dimensionless, Cr ∈ N0 Priority of case s
ds unit of time (e.g. minutes) Surgical duration of case s
ss j unit of time (e.g. minutes) Start of surgical phase (offset from start of case s in

the OR) of resource type j
ds j unit of time (e.g. minutes) Duration of surgical phase of resource type j
Cs j dimensionless, Cr ∈ N0 Number of resources of resource type j

required for surgical case s

Table 2: Summary of model parameters.
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2.2.1 Basic problem

The aim of this work is to schedule as many surgical cases in an OT, over a specified
period, as possible. In practice it is common to schedule the surgical cases for the
upcoming week, one week in advance. However, it is not uncommon that certain
arrangements have already been made with respect to the surgery date of individual
cases. Therefore, this work considers a general setting where surgical cases s ∈ S
are eligible to be scheduled on one day from a set of possible days Ds ⊆ D. Clearly,
a surgical case should only be scheduled once:

Constraint 1. A surgical case s can be scheduled on at most one day d ∈ Ds.

It is assumed that an open scheduling policy is maintained, i.e. surgical cases can be
scheduled in any OT. However, practice may differ: some surgical cases may only
be performed in certain ORs, due to restrictions on capacity, fixed equipment, etc.
Therefore, for each surgical case s a set of suitable ORs Os is considered. Obviously:

Constraint 2. A surgical case s can be scheduled in at most one OR o ∈ Os .

In addition, some ORs may be more suited than others for a surgical case s. There-
fore, a distinction is made between ORs. “Preferred” rooms (O1

s ⊆ Os) are best
suited for performing surgery for case s, but “possible” rooms (O2

s ⊆ Os) and “if-
necessary” rooms (O3

s ⊆ Os) may be used as well. “If-necessary” rooms should be
avoided unless no other room is available. Thus:

Soft constraint 1. Surgical cases should be scheduled in “preferred” rooms as much
as possible, but “possible” and “if-necessary” rooms may be used as well. “If-necessary”
rooms should be avoided.

Each surgical case s has a specific duration ds during which the case occupies the
OR. For the purpose of presentation, we assume that the precision of the duration
ds is specified in minutes, as well as any other measure of time (i.e. availability
intervals, see further). However, as it will be shown in Section 3, any precision of
time is possible without loss of performance.
Clearly the following must hold:

Constraint 3. A surgical case s cannot be overlapping in time with any other surgical
case s′ scheduled in the same OR.

ORs are only ‘open’ during specific time windows, often only from 7-8 am until 5-6
pm. Sometimes an OR may also be closed during lunch. Therefore, availability
intervals can be specified for each OR and each day d as [open, close) ∈ AVo,d , and:

Constraint 4. A surgical case s can only be scheduled on day d in OR o within an
availability interval [open, close) ∈ AVo,d .

Note: To accommodate block scheduling, availability intervals can be expanded to also
indicate to which surgical discipline they belong to. Surgical cases should also indicate
the surgical discipline they belong to.

2.2.2 Resource dependencies

Surgical procedures may require the presence of some resources. In this problem
setting, resource dependencies are considered in a broad sense: both human re-
sources such as surgeons, anaesthesiologists, nurses, but also specific material such
as portable imaging equipment, surgical lights or other tools.
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ds

Required Resource
Types (RT):

RT1 

ds1ss1

resource phase 1

RT2 

resource phase 2

ds2ss2 = 0

Figure 2: Definition of a resource phase. For surgical case s, one dependency on a resource
type (RT1) is defined, with offset from start ss1 and duration ds1.

We distinguish between resource types and resources. Resource types (denoted
j ∈ RT) represent general types such as surgeons, nurses, instrumenting nurses,
anaesthesiologists, lamps, imaging devices. That is, they represent a specific func-
tionality (for materials) or role (for people). Resources (denoted r ∈ R) on the other
hand represent true physical resources that have specific functionalities or can per-
form certain roles. The set of resource types a resource r belongs to is denoted by
RTr ⊆ RT , and the set of resources of a certain resource type j is denoted R j ⊆ R.
Each surgical case specifies dependencies on resource types rather than specific re-
sources, and are denoted by RTs. For each resource type dependency j ∈ RTs, a
count Cs j specifies the number of resources required for a specific resource type.
Therefore, an additional complexity in this model is that for each resource type de-
pendency j ∈ RTs of a surgical case s, sufficient resources r ∈ R j must be assigned.
Note that in some hospital settings, the surgeon/surgical staff may already be as-
signed to the surgical case beforehand. This is also easily accommodated by making
resource types for each individual resource. By doing so, a resource dependency on
a specific resource can be defined.
Furthermore, resources may only be essential during a specific part of the surgical
case duration. For example, an imaging tool may only be needed at the start of
a surgical case. A (supervising) surgeon on the other hand may only be present
during the incision phase of the surgical case. Therefore, each resource type de-
pendency j ∈ RTs a surgical case s depends on, also specifies a surgical phase by an
offset ss j from the scheduled start, and a duration ds j (Figure 2). Resources only
need to be assigned during this surgical phase, rather than during the entire sur-
gical case. Additionally, this work limits resource assignments to one surgical phase
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per surgical case.
As with ORs, resources also have limited availability. Thus, for each resource r avail-
ability intervals are specified for each day d of the scheduling period as [start, end) ∈
AVr,d .
Finally, a distinction is made between required and optional resources (denoted
RT r

s and RT o
s respectively); the former being necessary for scheduling the surgical

case, while the latter are preferably present. Such a distinction may be made, for
example, if it is important for the human planner to schedule surgical cases even
when resource availability is insufficient. Another possible use case is to define
resource dependencies that are not medically relevant but preferably present. For
example, in a teaching hospital it may be interesting to assign a student surgeon to
overview the surgery, but it may not be required to perform the surgery.
The resource constraints are thus:

Constraint 5. For each required resource type j ∈ RT r
s a surgical case s may depend

on, Cs j resources r ∈ R j should be assigned during [ss j , ss j + ds j).

Constraint 6. A resource can only be assigned to one surgical case at any given time
and is used during the entire surgical phase it is assigned to (no pre-emption).

Soft constraint 2. Optional resource types RT o
s for a surgical case s must be assigned

as much as possible, i.e. shortages with respect to Cs j should be minimized.

2.2.3 OR and resource considerations

Resource efficiency
Next to handling the dependency of surgical cases on resources, the aim is also to
schedule resources assigned to surgical cases as efficiently as possible. Therefore
some measures of resource efficiency are considered as well.
Firstly, resources considered in this paper are assumed to be mobile. This is a reas-
onable assumption given that stationary resources are fixed to a specific OR, and
are thus scheduled implicitly together with the OR. Even though resources are as-
sumed mobile, some should only be used in few OTs, and some should not be
transferred too much (e.g. large equipment). Therefore, for such resources the
aim is to minimize the number of ORs they are used in, and the transfers. However,
other resources may not have such a restriction. A surgeon assigned to two ORs,
may want to alternate surgical cases in different rooms to avoid non-surgical tasks
that occur at the start/end of a surgery, such as anaesthesia and closing/cleaning.
Thus, transfers for such resources (i.e. surgeons, but also others) should not be con-
strained/minimized, but the number of ORs these resources are used in should not
exceed their assigned ORs.
To accommodate this, the following is defined:

• Cr : the number of ORs a resource r may be used in.

• RTRAN ⊆ R: the set of resources for which transfers between ORs must be
minimized.

These dependencies are then formalized by:

Soft constraint 3. The number of ORs a resource r is used in, should be smaller than
Cr , i.e. the surplus should be minimized.
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Soft constraint 4. For resource r ∈ RTRAN , transfers between ORs should be minim-
ized.

Secondly, next to transfers between ORs it may also be important that resources are
not left idle between surgical cases. For example, surgeons may prefer that their
surgical cases are not scattered during the day, but are grouped together. Idle time
between surgical cases may need to be minimized, for ensuring maximal efficient
usage of a resource. Let RI DLE ⊆ R denote the set of resources for which the idle
time between surgical cases must be minimized. Then:

Soft constraint 5. The total idle time between surgical phases to which r is assigned
should be minimized, for all r ∈ RI DLE .

Resource affinity cost
Meskens et al. [25] point out possible affinities between surgical staff members, i.e.
some people work better together than others. Their model considers a positive-
valued affinity matrix defined between individual surgical staff members to address
this aspect. Affinities are ranked on a range of 0 to 9, with 0 denoting incompatible
and 9 denoting strong preference. A simplified idea applied in this research distin-
guishes between negative, neutral and positive affinities. Therefore, an affinity cost
matrix AF(r1, r2) with r1, r2 ∈ R, is defined as follows (assuming minimization of
conflicts):

AF(r1, r2) =







1 if r1, r2 have a negative working affinitiy,

−1 if r1, r2 have a positive working affinity,

0 if r1, r2 have a neutral working affinity.

(1)

The aim is consider these affinity costs when assigning resources to surgical cases.

Soft constraint 6. Positive working affinities should be maximized when assigning
resources to surgical cases, whereas negative working affinities should be avoided. I.e.
the total affinity cost should be minimized.

Note that no strong incompatibility is defined. The approach does not model com-
pletely incompatible resources. It is only considered as a soft constraint (violations
are thus possible, but should be minimized).

OR idle time
Maximal throughput and efficient occupation of ORs are also ensured, by minimiz-
ing idle time between surgeries scheduled in an OR.

Soft constraint 7. The total idle time between surgeries should be minimized for every
OR.

Note that this goal does not leave time between surgeries for e.g. cleaning the OR.
We assume that such ‘setup times’ are considered in the surgical case duration ds.
Surgical phases can be defined, accordingly, to end when cleaning should start.

Ordering constraints
For medical and practical reasons, a preferential ordering of surgical cases exists
within any OR. For example, patients with latex allergies are treated before other
surgical cases, while patients who may be infectious are operated on after all other
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cases. Another common case is that children are operated earlier during the day,
after which adults follow. This work assumes that such sequencing rules can be
captured by an ordering priority ps, specific to each case s, and:

Constraint 7. Within any OR, surgical cases should be performed in order of increas-
ing priority ps.

2.2.4 Objective function

The main aim of the surgical case scheduling problem presented in this work, is
scheduling as many surgical cases as possible (within availabilities). However, this
may have a side effect in case of low availability (and surgeries are left unsched-
uled). In such a case, the algorithm will be biased towards scheduling surgeries
with short durations since more of these can be scheduled. To counter this bias,
rather than minimizing the number of unscheduled surgeries, the total duration of
the unscheduled cases is minimized. As a secondary objective, the number of OR
days, i.e. days individual ORs are occupied, is minimized. Essentially the combina-
tion of these first two objectives maximize efficient usage of the OT.
In addition, soft constraints 1-7 should also be considered. Therefore, we propose
a lexicographic optimization objective function with the following ordering of im-
portance:

1. Minimize the total surgical duration of surgical cases left unscheduled.

2. Minimize the number of OR days of the schedule.

3. Minimize the number of surgical cases assigned to InIfNecessary rooms (Soft
constraint 1).

4. Minimize the number of optional resources left unassigned (Soft constraint
2).

5. Minimize the number of resource ‘overloads’: resources r assigned to surgical
cases in more than Cr rooms (Soft constraint 3).

6. Minimize the number of resource transfers of resources r ∈ RTRAN (Soft con-
straint 4).

7. Minimize the total affinity cost (Soft constraint 6).

8. Maximize surgical case assignments to Preferred rooms (Soft constraint 1).

9. Minimize operating room idle time between surgical cases (Soft constraint
7).

10. Minimize resource idle time between surgical case assignments (Soft con-
straint 5).

Note that this ordering of importance is essentially arbitrary. The ordering depends
on a hospital’s preference. However, as a decision support tool intended to construct
schedules it is important to minimize the total duration of unscheduled surgeries
as primary objective. Given the objectives presented, it would be easy to find a
schedule without soft constraint violations by leaving surgical cases unscheduled.
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Figure 3: General overview of the heuristic approach.

3 Algorithmic approach

As already mentioned, earlier research efforts have presented approaches based
on mathematical programming formulations and related techniques (e.g. integer
programming [23], column generation [7]) and constraint programming [25, 35].
Such approaches often suffer from the dimensionality of the problem, limiting scalab-
ility. Heuristic methods have been developed alongside to tackle realistic-size in-
stances. In this study we have opted for a heuristic two phase approach in order to
deal with the generalized problem definition, which may involve many resources.
An overview of the two phase approach is presented in Figure 3. The approach is
based on a list decoding procedure for generating feasible schedules. This proced-
ure takes as input a list of surgical cases in a specific order and produces a schedule
that adheres to all hard constraints of the problem. Next, a local search algorithm is
used to manipulate this list of surgical cases in order to find new feasible schedules
of better quality. Finally, in a second phase, optional resources are greedily assigned
to surgical cases.
The main motivation for this two phase approach is exactly due to the dimension-
ality of the problem, in the context of our case study presented in Section 5. In this
setting, optional resources are quite numerous and considering them in the first
phase will slow down the local search algorithm too much; ultimately limiting its
interactive usage.
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Notation Description

(s, o, d, AR) Tuple assigning s to room o on day d,
with resource assignments AR.

AR= {( j, r)| j ∈ RT r
s , r ∈ R j} Set of resources r assigned to resource type j

for case s.
To,d , Tr,d Interval tree of surgery intervals/surgical phase

intervals for OR o /resource r on day d.
T (s) Starting time of case s.
Tr(s) Starting time of resource r for surgical case s.

Table 3: Summary of data structures and decision variables.

3.1 Indirect solution representation and list decoding proced-
ure

The list decoding procedure takes as input an ordered list of surgical cases in which
each surgical case is already assigned to an OR o, a day d and to a set of resources
AR. Based on this list, a feasible schedule/solution is constructed. The main de-
cision variable in this approach is an ordered list of tuples, each consisting of a
surgical case s, an OR o, an assigned day d and a set of assigned required resource
type/resource pairs AR= {( j, r)| j ∈ RT r

s , r ∈ R j}, or formally:

< (s1, o1, d1, AR1), (s2, o2, d2, AR2), . . . , (s|S|, o|S|, d|S|, AR|S|)> (2)

Note that only required resource types are considered for resource assignments.
Optional resources are handled differently, see Section 3.4.
The ordered list must be feasible with respect to the ordering/priority constraint
(Constraint 7) for any day d and OR o, i.e. (sk, ok, dk, ARk) should appear earlier in
the list than (sl , ol , dl , ARl) if dk = dl ,ol = ok and psk

< psl
for any 1≤ k < l ≤ |S|.

Given this priority feasible list, the list decoding procedure produces a feasible
schedule as follows.

1. Initialize data structures: the most important data structures are represent-
ations of a schedule for both the ORs and the resources. These data structures
will hold the partial schedules of all surgical cases/surgical phases assigned
to an OR/resource.

A schedule is implemented as an interval tree, a balanced binary tree data
structure for storing intervals over the real numbers. Intervals are stored in
the nodes of the tree, ordered first by increasing start time and second by
increasing end time (when start times are equal). Additionally, each node
maintains both the min and max interval value stored in the subtree rooted
at the node. Figure 4 shows an example interval tree.

An interval tree is well suited for testing whether a point/interval is contained
in/overlaps with an interval in the tree; such operations can be performed in
O(log n), if the tree is balanced. Finding the first interval before/after a query
point or interval can also be found in O(log n). Finally, given a node in the
tree, the next node in the ordering can be found in O(log n). Cormen et al.
[10] provide a thorough introduction to interval trees, and how they can be

15



min: 1
max: 10
[5,6)

min: 1
max: 5
[2,4)

min: 6
max: 12
[8,10)

min: 1
max: 3
[1,3)

min: 2
max: 5
[2,5)

min: 6
max: 8
[6,8)

min: 8
max: 12
[8,12)

min: 1
max: 2
[1,2)

Figure 4: Example of an interval tree holding the intervals (in order) [1,2), [1,3), [2,4),
[2, 5), [5, 6), [6, 8), [8, 10), and [8, 12). If the tree is balanced (which is the case), retrieval
and query operations can be done in O(log n). For example, finding the interval that contains
7 can be found by visiting the root node [5,6), then [8,10) and then finally [6, 8). The
min and max values of every node, along with the stored interval, allow to quickly find the
direction to visit nodes or determine that no overlapping node is present.

implemented through augmenting a Red Black tree, a self balancing binary
tree data structure.

For both ORs and resources, interval trees are used to store all relevant inter-
vals (surgical case start + duration for ORs; surgical phase start + duration
for resources), where each node also stores a pointer to the relevant surgical
case. The main motivation for using interval trees to maintain OR or resource
schedules is that they allow to store intervals with any precision of time (e.g.
seconds, but any unit is theoretically possible) while still ensuring fast, i.e.
O(log n), retrieval properties and having a low memory footprint (only stor-
ing start/endpoints per interval + some pointers).

The schedules of OR o ∈ O are denoted To,d for each day of the planning
horizon d ∈ D. The schedules of resource r ∈ R are denoted Tr,d . Similarly,
the availability intervals of an OR o/resource r are stored in interval trees
AVo,d/AVr,d for each day d.

2. Variable definitions: Let S′ denote the set of all scheduled surgical cases up
to this point. Let S′o,d denote the subset of S′ that were scheduled in OR o,
on day d. Let S′r,d denote the subset of S′ that use resource r on day d. Let
T (s) denote the scheduled start time of surgical case s. Let Tr(s) denote the
scheduled start time of a surgical phase for assigned resource r ∈ AR.

3. Schedule cases: For each tuple (s, o, d, AR) in the priority feasible list:
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(a) Find the earliest starting time t for case s as:

t = max
s′∈S′o,d :

ps′<ps

(T (s′) + ds′)

i.e. the earliest starting time is after the end time of the last surgical case
of a lower priority case in the same room on the same day.

(b) Check if [t, t + ds) is contained in an interval in AVo,d . If not, find the
next interval [u, v) in AVo,d and t := u. If no such interval [u, v) exists,
there is no more availability of room o on day d; leave s unscheduled
and go to 3.
Note: To accommodate block scheduling, this check should only consider
availability intervals in AVo,d that correspond to the surgical discipline of
s.

(c) Check if [t, t + ds) overlaps with any interval [T (s′), T (s′) + ds′) ∈ To,d .
If yes, t := T (s′) + ds′ and go to 3b.

(d) Check if [t+ ss j , t+ ss j + ds j) is contained in an interval in AVr,d , for each
( j, r) ∈ AR. If a resource r is unavailable, find the next interval [u, v) in
AVr,d , let t := u− ss j and go to 3b. If no such interval [u, v) exists, there
is no more availability for resource r on day d; leave s unscheduled and
go to 3.

(e) Check if [t + ss j , t + ss j + ds j) overlaps with any interval [Tr(s′), Tr(s′) +
ds′ j) ∈ Tr,d for any ( j, r) ∈ AR. If yes, t := T (s′) + ds′ j − ss j and goto 3b.

(f) Schedule surgical case: S′ := S′ ∪ {s}, T (s) := t, Insert([T (s), T (s) +
ds), To,d), and Insert([T (s)+s js, T (s)+s js+d js), Tr,d) for each ( j, r) ∈ AR.

At the end of this procedure, the result is a feasible schedule for all s ∈ S′, while
s ∈ S\S′ are left unscheduled.
Essentially, the algorithm just described constructs a schedule in the order defined
by the priority feasible list. At each step, the algorithm maintains a schedule for each
OR/resource that holds when it is available or occupied. The main loop defined in
step 3 scans these schedules in order to find the earliest time at which the current
surgical case s can be inserted, respecting its assigned OT and resources. If no such
insertion position is found on day d, due to lack of available time, the surgical case
s is left unscheduled.

3.2 Schedule evaluation

Given a priority feasible list l, its corresponding schedule can be computed using the
list decoding procedure described in Section 3.1 (denoted GenerateSchedule(l)):

(T (s), S′, To,d , Tr,d , S′o,d , S′r,d) := GenerateSchedule(l)

with T (s) containing the scheduled start time of each case s; S′ the set of scheduled
cases; S′o,d , S′r,d the set of scheduled cases for OR o, resource r on day d; and To,d , Tr,d

containing the occupied intervals of each OR o/resource r.
The schedule can be evaluated with respect to the following objectives:

1. Total duration of surgical cases left unscheduled =
∑

s∈S\S′ ds
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2. Number of scheduled OR days =
∑

d∈D

∑

o∈O(To,d 6= ;)

where (To,d 6= ;) =

¨

1 If |To,d |> 0

0 otherwise.

3. Number of surgical cases scheduled in ‘if-necessary’ room = |I f Nec| with:

I f Nec = {(s, o, d, AR) ∈ l|o ∈ O3
s and s ∈ S′}

4. Number of resource ‘overloads’:

Overload =
∑

d∈D

∑

r∈R

max (|Or,d | − Cr , 0)

with:
Or,d = {o ∈ O|∃(s, o, d, AR) ∈ l and s ∈ S′r,d}

denoting the distinct ORs in which a resource r is scheduled on day d.

5. Number of resource transfers for resource r on day d: let lS′
r ′,d ′ denote the

sublist of l containing (s, o, d, AR) for which s ∈ S′ (it is scheduled), d = d ′

(assigned to day d ′) and ∃( j, r ′) ∈ AR (has r ′ assigned to it).

Then the number of transfers for resource r on day d can be determined
by considering all adjacent pairs (sk, ok, dk, ARk) ,(sl , ol , dl , ARl) in lS′

r,d , and
checking if ok 6= ol .

6. Total resource affinity cost:

TotalResourceAf f ini t yCost =
∑

s∈S′

∑

( j1,r1),( j2,r2)∈AR

AF(r1, r2)

7. Number of surgical cases scheduled in preferred room = |Pre f | with:

Pre f = {(s, o, d, AR) ∈ l|o ∈ O1
s and s ∈ S′}

8. Total OR idle time:

TotalORIdleT ime =
∑

d∈D

∑

o∈O



Max(To,d)−Min(To,d)−
∑

s∈S′o,d

ds





with Min(To,d),Max(To,d) denoting the first start (last end) time of a surgical
case in room o on day d.

9. Total resource idle time:

TotalResourceIdleT ime =
∑

d∈D

∑

r∈RI DLE

�

Max(Tr,d)−Min(Tr,d)

−
∑

(T (s)+ss j ,T (s)+ss j+ds j)∈Tr,d

ds j

!

with Min(To,d),Max(To,d) denoting the first start (last end) time of a surgical
case in room o on day d.
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3.3 Local search procedure

The schedule constructed by the list decoding procedure may be arbitrarily bad.
Complex resource dependencies may not be resolved due to the sequence of the
cases in the priority feasible list, or a particular resource may be assigned to too
many surgical cases. Therefore, the list decoding procedure is used within a local
search framework to find a list sequence resulting in a good quality schedule. The
local search modifies both the sequence of the surgical cases in the priority feasible
list, as well as the assigned resources, OR or operating day of the surgical cases in
order to find better quality schedules.

The following local search neighbourhoods have been developed that manipulate a
given list l to obtain a new list l ′:

• Shift (S): shift a tuple (s, o, d, AR) ∈ l to a new position, maintaining the
priority feasible nature of the list.

• Change Day (CD): given a tuple (s, o, d, AR) ∈ l, replace d by d ′ ∈ Ds.

• Change OR (COR): given a tuple (s, o, d, AR) ∈ l, replace o by o′ ∈ Os.

• Change Assigned Resources (CAR): given a tuple (s, o, d, AR) ∈ l, with AR =
{( j, r)| j ∈ RT r

s , r ∈ R j}, select a required resource ( j, r) and a resource r ′ ∈ R j
and replace ( j, r) by ( j, r ′).

A random improving-or-equal local search algorithm has been developed, using
these neighbourhoods to improve an initial feasible priority list and corresponding
schedule. Pseudocode of this procedure is presented in Algorithm 1. Note that the
lexicographical improving-or-equal comparison (denoted using operator�) is based
on the ordering defined earlier. The algorithm requires as input an initial feasible

Algorithm 1 Local search procedure

Require: f : l 7→ R . f applies list decoding and evaluation to l
Require: l . Initial priority feasible list

while termination criterion not met do
N ← SelectNeighbourhood(S,CD,COR,CAR)
l ′← N(l) . Obtain a neighbouring solution from l
if f (l ′)� f (l) then . Only accept lexicographic improving/equal solutions

l ← l ′

end if
end while
return l

priority list from which the local search is started. We have opted to construct this
initial list randomly, relying on the local search algorithm to find a new list that
results in a good quality schedule. Pseudocode of this method that constructs the
initial random list is presented in Algorithm 2.

3.4 Optional resource assignment

After the local search phase has finished, the final schedule is constructed. Up to this
point, only required resource dependencies have been considered, while optional
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Algorithm 2 Procedure to construct random initial feasible list

l ←<> . l is initially an empty sequence
PrioritySort(S) . Assume S is sorted by increasing priority number
for s ∈ S do . Iterate over surgical cases in increasing priory number

o← SelectRandomly(Os)
d ← SelectRandomly(Ds)
AR← ; . Will contain (resource type, resource) tuples
RASSIGN ED ← ; . Will contain already assigned resources for case s
for j ∈ RT r

s do
for i = 1 . . . Cs j do

ri ← SelectRandomly(R j\RASSIGN ED)
AR← AR∪ ( j, ri)
RASSIGN ED ← RASSIGN ED ∪ ri

end for
end for
l ← l ∪ (s, o, d, AR) . Append tuple to list

end for
return l

resource dependencies have been left unassigned. Essentially, optional resource
dependencies could have been handled in a similar fashion as required dependen-
cies. Optional resources can be assigned to a surgical case s, be scheduled by the
list decoding procedure, and be manipulated by the local search. For this, the list
decoding procedure should be suitably modified to not prohibit a case from being
scheduled due to unavailability of an optional resource.
However, treating the optional resources in the same manner as required resources
would slow down the approach unacceptably in hospitals where optional resources
are numerous.
A two-phase approach has been developed to cope with this problem, performing
the optional resource assignment after the surgical case schedule has been construc-
ted. The optional resource assignment is implemented using a greedy approach: it
considers the scheduled surgical cases one by one, and assigns the resource that
minimally increases the objective function. Note that in the first phase, the number
of optional resources left unassigned is irrelevant. Due to the two-phase approach,
this value does not change in the first phase (and will be equal to the total number
of optional resources required by the surgical cases, as none will be assigned). How-
ever, in the second phase, when the optional resources are assigned, the number
of optional resources left unassigned is lexicographically evaluated as fourth most
important objective (as described in Section 2.2.4).

4 Modelling examples

The flexibility of the resource dependencies is illustrated by modelling two common
practical considerations in surgical case scheduling, using generalized resource de-
pendencies.
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4.1 Post-anaesthetic care unit (PACU) consideration

The availability of a bed in the post-anaesthetic care unit (PACU) is an important
consideration for surgical case schedules. Generally, patients undergo surgery un-
der local, regional or general anaesthesia, and require post-operative monitoring
(typically a few hours) in the PACU to assess recovery thereof. A bed in the PACU
must be available when surgery ends to ensure proper monitoring. If no beds are
available for some time, surgeries may be delayed or even postponed to a later date.
The following shows how such a dependency can be modelled using the generalized
resource constraints.

• Define a resource type jPACU denoting the PACU. Define as many resources r
as there are beds in the PACU, with RTr := { jPACU}.

• For each surgical case s (assuming all surgeries require post-anaesthetic care),
add a required resource dependency on jPACU , i.e. RT r

s := RT r
s ∪{ jPACU} with

Cs jPACU
= 1 and ss jPACU

= ds, ds jPACU
= Required monitoring time in the PACU .

Thus, a required resource dependency is defined with surgical phase starting
after the surgical case ends. Therefore, the surgical case can only be scheduled
at a time when bed availability in the PACU can be ensured after the surgery
ends.

4.2 Instrument kits

Another common practical consideration is the usage of instrument kits, standard
sets of surgical tools (scalpels, scissors, clamps). Clearly such tools are necessary
during surgery and thus need to be available. It is important to account for the
fact that these also must be cleaned and sterilized after each surgery. Cleaning is
typically performed in a dedicated facility, which may take significant time. The
turnaround time of this cleaning process can therefore not be neglected. When
instrument kits are in limited supply (some kits are specialized for example), this
may require extra attention during scheduling.
Again such a dependency can be modelled:

• Define resource types jinst r1, jinst r2, . . . , jinst rK as much as there are different
kinds of instrument kits (e.g. K). Define as many resources r as there are
instrument kits of each type, with RTr := { jinst r1, jinst r2, . . .}. Large kits may
serve multiple purposes thus it is possible that |RTr |> 1.

• Add resource dependencies to surgical cases s, accommodating their instru-
ment kit dependencies, e.g. RT r

s := RT r
s ∪ { jinst r1} and accordingly ss j , ds j ,

with ds j sufficiently long to account for cleaning turnaround time.

5 Computational experiments

5.1 Experimental setup

Data for the surgical case scheduling problem was provided by Dotnext, as part of
the research project. The algorithm has been implemented in Java 1.8 and provides
an XML file based interface for reading problem instances and writing the generated
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|D| # instances Avg. |R| Avg. |S|

1 11 276.1 86.5
2 9 285.2 175.2
3 7 288.6 258.4
4 11 288.8 247.9
5 8 292.1 306.5
6 4 293.5 339.5
7 2 293.5 429.5

Table 4: General problem instance characteristics. Instances are grouped by their planning
horizon, ranging from 1 to 7 days.

schedules. The QCare OR application interfaces with the algorithm by means of
writing and reading XML files and displaying the results in the user interface.
A dataset of 52 problem instances was obtained from a Belgian hospital that uses
QCare OR for managing the OT. This hospital has an OT consisting of 24 ORs, of
which 18 are general purpose ORs and 6 are specialized.
General characteristics of this dataset can be found in Table 4. We distinguish the
problem instances by their time horizon, which ranges from 1 to 7 days. The ho-
rizon relates to problem size. Single-day instances have fewer appointments to be
scheduled than multi-day instances. As can be seen in Table 4, the number of re-
sources under consideration is quite high. In general, the surgical cases have only
one required resource type dependency, a surgeon, and 2-3 optional resource de-
pendencies, representing the remaining surgical team (anaesthesiologists, nursing
staff). The specified surgical phase [ss j , ds j) for surgeons is smaller than the surgical
case interval [0, ds), i.e. surgeons only need to be present during the incision phase.
In addition, surgical cases were always fixed to a specific surgeon. Incorporation in
the presented model can be achieved by specifying a unique ‘resource type’ specific
to each surgeon. Finally, no MSS is imposed, therefore all ORs are available for
scheduling surgical cases.
All tests reported in the following sections have been performed on a workstation
computer equipped with two eight-core Intel Xeon 2650 v2 2.6 GHz processors and
128 GB of main memory (RAM), running a Linux-based operating system. Only one
processing thread is used per test, as the algorithm does not employ parallelism. The
system was therefore used to perform up to 16 tests in parallel (limiting available
memory to 8 GB for each test) to reduce overall computation time.

5.2 Results and discussion

5.2.1 Convergence of the algorithm

One important aspect is whether or not the algorithm converges in a reasonable
time, considering that the number of resources (and thus the problem size) is quite
large. To analyse this, the algorithm was tested on all instances with different time-
outs as termination criterion. The following time-outs were tested: 30 s, 60 s, 120
s, 300 s, 600 s.
Figure 5 shows the relative improvement that can still be found after an initial 30
seconds of running the local search algorithm. The results have been averaged over
all instances. They were grouped per planning horizon (ranging from 1 to 7 days) to
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Figure 5: Convergence rate of the algorithm for the different instance subsets (grouped by
planning horizon). The graph shows the relative improvement of the local search algorithm
that can still be found after an initial 30 second optimization. Note that the results obtained
for different planning horizons are incomparable.

show how fast the algorithm converges with respect to the problem size. It is clear
that for small instances (1-2 day instances) the algorithm is able to converge in a
relatively short time span of 1-2 minutes. The objective of the presented research
was to construct schedules for day instances in a reasonable time and to allow for
near-interactive use. The analysis reveals that the larger planning horizons (up to
1 week) require additional time (up to 10 minutes) for the improvement process to
start to converge. However, in a weekly planning setting, the required time is less
of an issue.

5.2.2 Comparison with practice

The quality of the obtained schedules also requires analysis. The generated sched-
ules for the set of 52 instances were compared to the schedules made by manual
planners, available in the QCare OR application. An important note is that these
schedules rarely were completely feasible: overlap could be detected between sur-
gical cases, surgical phases would overlap for some resources, or surgical cases were
scheduled outside of availabilities of the ORs/resources. For the purpose of com-
parison, these surgical cases were considered left unscheduled since the objective
here is to construct feasible schedules (respecting all timing information). In the
case of overlap between two surgical cases, or their required resources, only one is
left unscheduled. Infeasibilities due to overlap for optional resource dependencies
were handled by leaving the optional resource unassigned.
We tested the algorithm on all instances with the same time-outs of Section 5.2.1
(30 s, 60 s, 120 s, 300 s, 600 s). Additionally, each test was performed ten times
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with a different random seed (ranging from 1 to 10) to reduce random effects. Table
5 reports the results obtained by the heuristic approach on the one-day instances.
This subset of instances is of particular importance as it represents a common use
case where e.g. the detailed schedule of surgeries is constructed one day before they
are performed. The table reports on the different objective function components:
the violation of soft constraints and the two primary objectives. It indicates both the
average result (over all instances and 10 runs per instance) and the average stand-
ard deviation (standard dev. calculated over 10 runs per instance and averaged over
all instances). An additional measure is also presented to report on the expected
quality of the schedules. The Room Gap measure shows the average deviation from
a lower bound on the number of OR-days required to assign all surgeries that were
scheduled. This lower bound was calculated by solving a bin packing MIP-model
(refer to Appendix A), taking into account operating rooms and their daily capacity
(which varies across ORs) and the surgery durations.
Clearly, the presented approach is able to schedule more surgical cases than what
was obtained by the manual planner, without violating any of the hard constraints.
Less than one surgical case is left unscheduled on average, indicating that it was
almost always possible to make a completely feasible schedule containing all sur-
gical cases. The two primary objectives, the sum of unscheduled surgery duration
and number of OR-days, converge in less than 60 seconds. This small execution
time allows for interactive use. Soft constraint violations can be further reduced by
allowing additional computation time. The gap from the lower bound regarding
required OR-days is on average between 25 and 30%. Although this may still seem
large, it is expected that the lower bound is not tight as resource availabilities are
not considered when computing the bound. Therefore, we expect that the sched-
ules are rather tight. With respect to the remaining secondary soft constraints, the
approach is able to schedule more optional resources (feasibly) and minimize re-
source affinities. Evidently, this results in higher total resource overload and more
resource transfers, as more resources are assigned.
Table 6 reports on the results obtained for the entire set of instances (averaged over
all instances, ten runs per instance). The results are quite similar to the ones ob-
tained on the one-day instance subset. Clearly it remains beneficial to increase the
time-out of the algorithm to 600 seconds to improve convergence of the algorithm
on the larger instances.

6 Conclusion and future work

6.1 Conclusion

This paper has reported on a flexible decision support model for multi-day OT
scheduling that encompasses many considerations from hospital practice. This de-
velopment has been partly supported by Dotnext, a company that commercializes
a software suite (QCare OR) for managing the operating theatre.
A surgical case scheduling model with generalized resource dependencies was in-
troduced to cope with a broad variety of scheduling considerations: human depend-
encies (surgeons, anaesthesiologists, instrumentalists, nurses) as well as material
dependencies (e.g. large surgical equipment), dependencies during specific sur-
gical phases, etc. The aim of the model is to assist in scheduling as many surgical
cases as possible, within availabilities of all considered ORs and resources, to re-
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duce the number of ORs that need to be opened for performing surgical cases, to
minimize violations of soft constraints and to optimize several measures of resource
efficiency. A heuristic approach to this feature-rich model has been developed, scal-
ing favourably with problem size. An important achievement is that the algorithmic
complexity of the schedule generation approach does not depend on the scheduling
precision and is therefore able to schedule up to any precision of time.
The approach has been validated on a set of problem instances obtained from a
Belgian hospital that uses QCare OR for managing the operating theatre. The al-
gorithm has been implemented and has been tested in conjunction with the QCare
OR application.
Computational experiments were conducted on a set of 52 problem instances ob-
tained from the hospital. Our results show that the approach is able to schedule
more surgical cases than a manual planner in a feasible way (e.g. not violating
opening hours of ORs, availability of resources), whilst further decreasing the re-
quired number of ORs. In addition, secondary resource performance and efficiency
measures are improved.

6.2 Future work

Although the work presented in this paper has had a strong focus on flexibility and
generality, there are still elements that were left out of scope.
Most notably is that the approach disregards the uncertain nature of the scheduling
problem. In practice, it is only possible to estimate the duration of surgeries; the ex-
act duration depends on the specific case and may vary depending on the surgeon,
the patient and possible complications. However, the results presented in this work
have indicated that the generated schedules are quite dense. Consequently, vari-
ation in surgery durations may cause delays and shifts in the schedule, ultimately
resulting in overtime or postponed/cancelled surgeries. Some slack may need to be
introduced to cope with this uncertainty. In future work, we therefore plan to ex-
amine how the schedules can be made more robust to variation, either by a) simply
adding some slack to surgical durations, or b) developing a more advanced model
taking into account stochastic surgery durations (with a known distribution from
historic data) through sample average approximation (SAA). The former approach is
clearly easier to implement but may be too conservative/aggressive depending on
the surgery duration distribution (which often are modelled with long-tailed dis-
tributions such as the log-normal distribution [31]). Therefore the latter approach
may be more appropriate in correctly accounting surgical duration variation, at the
cost of increased computational effort.
Apart from the uncertain nature of the problem, other considerations from prac-
tice were not yet considered in this work. One observation was pointed out by
a reviewer: the model does not allow resources to be assigned to multiple, non-
overlapping, surgical phases. Such a modelling feature may be interesting, for ex-
ample resources used at the start and end of a surgery but not in the meantime.
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A Appendix: MIP model for operating room lower
bound

Let denote:

xsod =

¨

1 if surgical case s is assigned to OR o on day d,

0 otherwise.
(3)

yod =

¨

1 if OR o is used on day d,

0 otherwise.
(4)

Using these decision variables, a binpacking MIP-model can be formulated that
provides a lower bound on the number of required OR-days to plan P LANN ED
(which is a parameter) surgical cases. Given parameter P LANN ED, solving the
MIP-model to optimality (e.g. by using Gurobi) provides the minimal number of
OR-days by expression (5).

Minimize
∑

o∈O

∑

d∈D

yod (5)

Subject to :
∑

o∈Os

∑

d∈Ds

xsod ≤ 1 ∀s ∈ S (6)

∑

s∈S:
d∈Ds

ds · xsod ≤ yod ·
∑

[star t,end)∈AVo,d :
CAP=end−star t

CAP ∀o ∈ O, d ∈ D (7)

∑

s∈S

∑

o∈Os

∑

d∈Ds

xsod ≥ P LANN ED (8)

(9)

xsod ∈ {0, 1} ∀s ∈ S, o ∈ Os, d ∈ Ds (10)

yod ∈ {0,1} ∀o ∈ O, d ∈ D (11)
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