KU LEUVEN

MW STADIUS

Center for Dynamical Systems,

Signal Processing and Data Analytics

Citation/Reference

Sorber L., Van Barel M., De Lathauwer L., *"Structured data fusion", IEEE
Journal of Selected Topics in Signal Processing, vol. 9, no. 4, Jun. 2015, pp.
586-600

Archived version

Author manuscript: the content is identical to the content of the

published paper, but without the final typesetting by the publisher

Published version

insert link to the published version of your paper

http://dx.doi.org/10.1109/JSTSP.2015.2400415

Journal homepage

insert link to the journal homepage of your paper

http: //www.signalprocessingsociety.org/publications/periodicals/jsts

YA

Author contact

lieven.delathauwer@Xkuleuven.be

Klik hier als u tekst wilt invoeren.

IR

url in Lirias https://lirias.kuleuven.be/handle/123456789/482995

(article begins on next page)



mailto:lieven.delathauwer@kuleuven.be
https://lirias.kuleuven.be/handle/123456789/xxxxxx

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/JST SP.2015.2400415, | EEE Journal of Selected Topicsin Signal Processing

JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, JUNE 2015 1

Structured Data Fusion

Laurent Sorber, Marc Van Barel, Member, IEEE, and Lieven De Lathauwer, Fellow, IEEE

Abstract—We present structured data fusion (SDF) as a
framework for the rapid prototyping of knowledge discovery
in one or more possibly incomplete data sets. In SDF, each
data set—stored as a dense, sparse or incomplete tensor—is
factorized with a matrix or tensor decomposition. Factorizations
can be coupled, or fused, with each other by indicating which
factors should be shared between data sets. At the same time,
factors may be imposed to have any type of structure that
can be constructed as an explicit function of some underlying
variables. With the right choice of decomposition type and
factor structure, even well-known matrix factorizations such
as the eigenvalue decomposition, singular value decomposition
and QR factorization can be computed with SDF. A domain
specific language (DSL) for SDF is implemented as part of the
software package Tensorlab, with which we offer a library of
tensor decompositions and factor structures to choose from. The
versatility of the SDF framework is demonstrated by means of
four diverse applications, which are all solved entirely within
Tensorlab’s DSL.

Index Terms—big data, tensor, data fusion, structured matri-
ces, canonical polyadic decomposition, block term decomposition,
structured factors, domain specific language

I. INTRODUCTION

UCCESSOR to the industrial age and fostered by the
digital revolution, the information age is characterized by
an ever increasing rate of data production and consumption.
One of the greatest challenges we face is how to make sense
out of the abundance of available information. Although many
data sets take the form of matrices, they are increasingly sur-
facing as multidimensional arrays, also known as higher-order
tensors. Due to the curse of dimensionality, aggregating, mea-
suring, computing or storing all entries of high-dimensional
tensors is often impracticable. Yet even incomplete tensors—
of which only a fraction of entries are known—can require vast
amounts of storage. The possibilities for leveraging big data
continue to evolve rapidly, further fueling a growing demand
for new algorithms and software to tap into this wealth of
information.
Higher-order tensors also possess properties that are not
present on the matrix level. In fact, there is an upcoming
trend to (explicitly or implicitly) tensorize data sets which
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are otherwise naturally represented as matrices [L1], [2]], [3].
Perhaps the most salient property of the jump to the third
dimension is that tensor decompositions can be unique under
mild conditions without imposing additional constraints [4],
5], 6], [7Z]. This is in stark contrast to matrix factorizations,
which require constraints such as orthogonality or nonneg-
ativity together with sparsity to obtain uniqueness. Factor
uniqueness is a desirable property as it is a key facilitator
of attaching meaning to factors, or in other words, extracting
knowledge from data. However, tensor decompositions and
imposing constraints on the factors are not the only means
of achieving factor uniqueness.

Integrating and analyzing data from multiple sources, also
known as data fusion, can be used to develop insights that are
deeper and more accurate than those resulting from a single
source of data. Similar to tensorization, data fusion provides
a powerful means of introducing factor uniqueness. Where a
single matrix factorization is not unique without additional
constraints on the factors, the joint factorization of two ma-
trices sharing at least one factor can be unique. Intuitively,
this can be understood from the fact that if these matrices
are of equal size, their joint factorization can be interpreted
as a tensor decomposition. As such, tensor decompositions
can be seen as a special case of data fusion where the data
sets are homogeneous in size. Moreover, data fusion also
allows the uniqueness of a single tensor decomposition to be
transferred and reinforced between data sets by coupling their
factorizations. The latter is area of research that is of special
interest to signal processing, cf. the recent papers [8]], [9l], [LO],
[y, [r2f.

Independent component analysis (ICA) [13] is a form of
blind source separation (BSS) which embodies the afore-
mentioned concepts: fusion of multiple data sets, exploiting
tensorization to obtain unique solutions, and tensor decompo-
sitions comprising various types of structured factors. The goal
is to separate a matrix of measurement data into two factors
called the mixing matrix and source matrix, respectively. To
fix the rotational freedom of the two factors, matrix factoriza-
tions of the measurement data itself require constraints which
may feel forced or unnatural depending on the application.
For example, principal component analysis (PCA) is a BSS
technique that imposes orthogonality on the factors to obtain
uniqueness. In contrast, one variety of ICA instead tensorizes
the measurement data into a fourth-order cumulant tensor.
The cumulant’s factorization in symmetric rank-one tensors
is unique under mild conditions and, hence, interpretable. In
the case of ICA, the combined effect of tensorization and
factorization expresses the desire that the underlying sources
should be statistically independent. This can be seen as an
implicit constraint which is often strong enough to elicit a
unique result.
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Both fusion by coupled tensor factorization and imposing
structure on the corresponding factor matrices have been
shown to improve the results of ICA. For example, the cu-
mulant’s information can be fused with second-order statistics
such as the measurement data’s covariance matrix to improve
robustness and accuracy [13, Chap. 5]. Convolutive extensions
of this type of ICA wherein a block-Hankel structure arises
in the factor matrices corresponding to the first three modes
of the cumulant and first mode of the covariance matrix
have also been proposed [14]. A different approach to ICA
identifies the mixing matrix by computing several time-lagged
covariance matrices and fusing them with a joint factorization
[15], [16]. Furthermore, convolutive extensions of this time-
lagged form of ICA can be formulated in terms of joint block
diagonalization, which is tantamount to computing a block
term decomposition (BTD) wherein the factor matrices display
a Toeplitz-block structure [[17]].

The concept of fusing data by joint factorization has found
its way into many other disciplines. Canonical correlation
analysis (CCA) is perhaps the first model aiming to capture
the commonalities between two data sets [18]]. Later, CCA was
extended to the analysis of more than two Gramian matrices,
which was dubbed multi-set CCA [19]], [20], [21]]. Data fusion
is also known as multi-view [22] and multi-relational [23]], [[24]]
learning in artificial intelligence, as multi-set or multi-block
data analysis in chemometrics and systems biology [25]], [26],
[27] and as integrative data analysis in psychometrics [28]].
Multi-view data arises when an observation’s attributes, or
features, consist of two or more disjoint sets, or views. For
example, a video’s features could be separated into its visual
and audio content. Relational data has a natural representation
in the form of a tensor. For example, in the relation student-
performs-task, the two entities student and task correspond to
the tensor’s modes or dimensions, while its entries are defined
by the relation type performs [29]. This relation can then be
coupled with the relations fask-requires-skill and student-has-
skill to form a multi-relational data set. Singh and Gordon
proposed a framework for multi-relational learning called
collective matrix factorization [23]], [30] (CMF). Later, Acar et
al. generalized CMF to coupled matrix and tensor factorization
(CMTF) [31]] for a Euclidian distance loss function.

Building on these foundations, we present structured data
fusion (SDF) as a novel framework for the rapid prototyping
of knowledge discovery in one or more possibly incomplete
or sparse data sets. Each data set in an SDF problem is repre-
sented as a tensor and factorized with a tensor decomposition.
The different factorizations are coupled with each other by
indicating which (sub)factors should be shared between data
sets. Factors may be imposed to have any type of structure that
can be constructed as an explicit function of some underlying
variables. The scope of this framework reaches far beyond
factor analysis alone, encompassing nearly the full breadth of
applications resulting from matrix factorizations and tensor
decompositions. It subsumes, for example, tasks based on
dimensionality reduction such as feature extraction, subspace
learning and model order reduction and tasks related to ma-
chine learning such as regression, classification, clustering, and
imputation of missing data. Examples of applications that fit

in the SDF framework and fuse at least two data sets include
social network mining [32f, (sub)classification of documents
[133l], [134]], [35], images [36] and cancer [37], [38]], sentiment
analysis [39], cross-social media retrieval [4Q], collaborative
and content-based filtering [41], [23]], [42], [43], link pre-
diction [44], [45], fusion of metabolomics data [46], [25]],
[26l], predicting protein-protein interactions [47], [48], [49],
multilingual text analysis [S0]], analysis of batch processes
[51]], spectral clustering [52], gene expression profiling [53]],
[54], gene function prediction [24], personalized medicine
[55]], multi-task learning [56], community discovery [57],
compressed sensing [38]], and brain computer interfacing [S9],
[6Q]. For a more general background in recent tensor methods
and applications, cf. [61], [62], [63]. The SDF framework is
also directly applicable to a wide range of applications in
signal processing [9], [10]], [LL], [12], [61], [64], [65], [66]. For
example, data acquired by widely separated colocated arrays
admit coupled tensor decompositions with the common source
signals in a shared factor matrix. The terms have rank-one or
block structure depending on the propagation (line-of-sight or
multipath, respectively) [65], [66]. Moreover, Vandermonde
structure is common when employing uniform linear arrays
(ULA), in direction of arrival (DOA) applications and in
harmonic retrieval [9]], [[10], [67]. In this paper, we do not aim
to solve any one specific problem in signal processing, but
rather create a language with which one can rapidly design,
implement and solve many of the above problems.

In SDF, the type of tensor decomposition, the coupling
between factorizations and the structure imposed on the factors
can all be chosen freely without any changes to the solver. By
enabling the user to effortlessly switch between the countless
combinations arising from these choices, he or she can rapidly
iterate towards a solution for the problem at hand. The
different types of tensor decompositions and factor structures
are completely modularized, which opens the door to building
separate libraries of these components. This goal is achieved in
part by completely isolating the computational aspects related
to the decomposition and factor structure from each other and
the SDF solver. Furthermore, SDF is built with big data in
mind—attaining linear time complexity in the total number
of known elements in the data sets. As a result, the amount
of effort required to add new tensor decompositions or factor
structures to a software package implementing SDF such as
Tensorlab [68]] is kept to a minimum. The latter is a MATLAB
toolbox that currently offers SDF with three types of tensor
decompositions, two types of regularization and a library of
32 factor structures including nonnegativity, orthogonality and
many matrix structures such as Toeplitz, Hankel and Vander-
monde. With the right choice of decomposition type and factor
structure, even well-known matrix factorizations such as the
eigenvalue decomposition, singular value decomposition and
QR factorization can be computed with SDF.

The paper is organized as follows. Section [II| introduces
SDF framework and reviews the most prominent tensor de-
compositions. In Section we propose two families of
algorithms for solving SDF problems with a computational
complexity per iteration which is linear in the number of
known elements of the data sets. Moreover, the resulting
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algorithms are able to optimize over the complex domain just
as easily as over the real domain. In Section [[V| we apply the
SDF framework on four applications: (a) accurately computing
eigenvalues, (b) making personalized movie recommendations,
(c) designing an alloy to exhibit certain physical properties and
(d) predicting user participation in activities. We conclude the
paper in Section

II. STRUCTURED DATA FUSION

Given D data sets 7(? which are stored as possibly
incomplete multidimensional arrays in C'* % *I~a also called
tensors, we are interested in jointly factorizing these data sets
in factors which may depend (non)linearly on some underlying
variables. The data sets need not be high-dimensional—vector
and matrix data sets correspond to Ny equal to 1 and 2,
respectively. With each tensor 7(9) we associate a so-called
observation tensor W% of the same size with ones in the
positions corresponding to known entries of the data set and
zeros elsewhere. We will use observation tensors mainly as a
notational convenience for blanking out any unknown entries.
The underlying variables z are stored as an ordered set of
V variables {z1, ..., 2y}, each defined as a real or complex
scalar, vector, matrix or higher-order tensor. An ordered set of
F factors X(z) is then defined as {z1(z;,),...,2p(2)}, in
which the fth transformation x ¢ is a smooth'| function which
maps the iyth variable z;, to a tensor. For example, z; could
map a sequence of Householder reflectors z;, to a rectangular
matrix with orthonormal columns. These factors will form
the building blocks of the data sets’ tensor decompositions.
Note that a factor xf(2;,) will sometimes be written as xf
to simplify notation. For each tensor 7(?), we choose a type
of decomposition, or model, M® to approximate that tensor
with. For the moment, assume the model maps a subset of
factors in X'(z) to a tensor with dimensions equal to those
of the approximated tensor. Examples of such models will be
given in the following subsection. Two factorizations can be
coupled with each other simply by requiring that their models
share at least one factor. We then define structured data fusion
as the optimization problem

2
minimize , (D
z wi(d)

35 ot -7

where wy are scalar weights and || - [|yy is defined as the
Frobenius norm |[W(® x -||g, in which * is the Hadamard or
element-wise product. A good rule of thumb for choosing the
weights wy may be to ensure they are inversely proportional
to the number of known elements of the corresponding data
sets 7(4 [27].

The motivation for this choice of norm is threefold. First,
it is well-known that minimizing a sum of squares as in
(1) gives rise to the maximum likelihood estimate of z in
the presence of white Gaussian noise on the data sets 7 (%,
Second, the Frobenius norm is unique in that it enables a

"Here, smooth is to be understood in the sense of having continuous
Wirtinger derivatives. In other words, the partial derivatives of z ; with respect
to the elements of z; . and their complex conjugates Zi; should exist and be
continuous up to all orders.

cheap Newton-like update with a computational complexity
that is linear in the number of known elements, yet still
retaining quadratic convergence near the solution. This is
an especially important feature when dealing with big data,
given that it takes about 8 hours to read a modern 4 TB hard
drive from beginning to end. However, a low computational
complexity by itself is not enough to be able to process data
sets in the tens to hundreds of terabytes range. In this paper,
we aim to lay the groundwork for structured data fusion as
a language and computational framework, and showcase its
possibilities. Mapping the underlying algorithms, or designing
an entirely new family of algorithms, to a massively parallel
processing platform such as the Hadoop ecosystem is still a
topic for future research. There, stochastic gradient descent
(SGD) could be a promising candidate for such a family of
SDF solvers due to their simplicity and aptitude for large data
sets. In addition, substantial progress has recently been made
in the computation of tensor decompositions on Hadoop with
algorithms based on alternating least squares (ALS) [69], [[70],
[71]]. Third, let vec(-) denote the column-wise vectorization of
its argument and let n be the number of elements in a tensor 7.
Then the equivalence of norms states that any vector norm can
be used to bound another vector norm from above and below.
For example, the L1-norm and infinity-norm are bounded by

ITlle < [lvee(T)llx < Vnl Tl

1
WIITHF < [[vee(T)llso < 1T 1[e
respectively. This suggests that even when a different norm
is desired, it may be worthwhile to first minimize the com-
putationally more tractable Frobenius norm as this will likely
improve other measures of error as well.

A. Tensor decompositions

The rank of a matrix can be defined as the minimal number
of rank-one matrices It whose sum Zle u,-0,-v; is equal to
that matrix, or equivalently as the dimension of its column and
row spaces, represented by the matrices U and V, respectively,
in a factorization of the form U - S - V1. Together with some
constraints on the factorization’s constituents, we arrive at
well-known matrix decompositions such as the singular value
decomposition, eigenvalue decomposition and QR factoriza-
tion, among many others.

Although these definitions of rank are compatible with
each other in the matrix case, they disjoin into two different
concepts for higher-order tensors. On the one hand we have
the rank of a tensor, which is defined as the minimal number of
so-called rank-one tensors whose sum is equal to that tensor.
On the other hand, we have the multilinear rank of a tensor,
which is defined as a tuple comprising the dimensions of the
mode-n vector spaces of the tensor. In the matrix case, the
dimension of the column space is equal to the dimension of the
row space, but this is no longer true for higher-order tensors
in general.

The two different views of tensor rank engender two
archetypal tensor decompositions. The first is the canonical
polyadic decomposition (CPD) [72], [73l], [74], [[75], which
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Variables Factors Factorizations
2 — (e ~ =y
MWD 1 ~ | T
22 — x2(22) 1
M@ L + ~ | 7O
23 — x3(z3)| +

Fig. 1. Schematic of structured data fusion. The vector z1, upper triangular matrix zo (representing a sequence of Householder reflectors) and full matrix z3
are transformed into a Toeplitz, orthogonal and nonnegative matrix, respectively. The resulting factors are then used to jointly factorize two coupled data sets.

decomposes a tensor as the sum of a minimaﬂ number of
rank-one tensors (cf. Figure [2). The outer product of two
tensors A € Cli>*xIr and B € C/1**Ja is defined by
(Ao B)iyipji-jo = @iy-ip - Dji...jo- A rank-one tensor is
defined as an outer product of two or more nonzero vectors.
For example, the outer product of two nonzero vectors a o b
is equivalent to the rank-one matrix a - b". The CPD model
can then be written as

R
Mepp(UD, .. UMY = Zuﬁl) o-ou™M, (2
r=1

where uq(nn) denotes the rth column of the nth factor matrix

U™ Here, we arrive at a first example of a tensor decom-
position which can be applied in an SDF model. Concretely,
we could choose MY (X(2)) := Mcpp(UD, ..., UM) in
order to approximate the dth data set 7(%) by a CPD. The
factor matrices U™ := z,,(z;, ) may be structured by defining
2y, to transform some underlying variables z;, into a matrix
of required shape, or they may be unstructured by defining z,,
as the identity function.

3 3

2w i

N I | — L]

= (@ T )

,,7— Uy up
o) )

Fig. 2. Canonical polyadic decomposition of a third-order tensor.

The smallest integer R for which a (noise-free) tensor’s
CPD is exactly equal to that tensor is called the tensor’s rank
and the corresponding decomposition is called the tensor’s
rank decomposition.

In addition, the rank decomposition of a higher-order tensor
is unique under relatively mild conditions. Clearly, the rank-
one terms in (2) may be arbitrarily permuted without affecting

2In practice, most decompositions of higher-order tensors are only approx-
imate. Accordingly, minimal is to be understood in the sense of Occam’s
razor—i.e., the smallest value for which the model explains the data suffi-
ciently well.

their sum. The vectors in a single rank-one term may also be
arbitrarily scaled, as long as their product remains the same.
A rank decomposition is called (essentially) unique when it is
subject only to these permutation and scaling ambiguities. The
most well-known sufficient condition for uniqueness is due to
Kruskal [4], [S], which is generically satisfied if

N
1
< | = 1 — — .
R< 2;:1m1n(1n 1L,R-1) 3)

More recent and powerful frameworks for the uniqueness of
tensor decompositions can be found in [6], [7].

A

= S
UMDk

U®

Fig. 3. Low multilinear rank approximation of a third-order tensor.

The low multilinear rank approximation (LMLRA) or
Tucker decomposition [76], [62] is related to the second
concept of tensor rank. It decomposes a tensor as a so-called
core tensor S, multiplied by matrices U™ along each of its
N modes (cf. Figure[3). A tensor’s mode-n matricization is a
matrix whose columns comprise the tensor’s mode-n vectors—
i.e., column vectors, row vectors, and so on. Formally, the
mode-n matricization T, of a tensor 7 € C/***IN maps
tensor element with indices (i1,...,4x) to matrix element
(in,7) such that

N k—1

=14 (k=1 with Jp:= ] Im. @
k=1 m=0
k#n m#n

wherein I := 1. The mode-n rank of a tensor is then defined
to be the rank of its mode-n matricization and the tensor’s
multilinear rank is represented by a tuple of all mode-n ranks.
Furthermore, the mode-n tensor-matrix product S e, U™ of
a tensor S € CR1* xRN and a matrix U™ e CIn*En jg
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defined by the matricization (S , U™),) = U™ . Sny- In
other words, in a mode-n tensor-matrix product each mode-n
vector of a given tensor is premultiplied by a given matrix. For
example, the expression U-S-V T is equivalent to S o1 U s V.
The LMLRA model can now be formulated as

Munira (U, UM, 8) =8 o UW -

Similarly to the CPD, the LMLRA is another decomposition
that can be applied in the SDF framework. To approximate
the dth data set in an SDF model with a LMLRA, we set
MD(X(2)) = Mpmra(UD,... ,UN)S). The factors
U™ = 2,(z,) and S := xn11(2i1y,,) may be structured
by defining z,, to transform some underlying variables z;
into a matrix or core tensor of required shape, or they may be
unstructured by defining z,, as the identity function.

Lastly, the block term decomposition (BTD) framework
[77], 78], [79] unifies the CPD and LMLRA by combining the
CPD’s mild conditions for uniqueness with the more general
low-rank structure of a LMLRA. A BTD decomposes a tensor
as a sum of low multilinear rank terms, each of which may
have a different multilinear rank. Therefore, the BTD model
is given by

o UM (5)

MBTD({Ur(n)}f:J{n:D {SH)

R
— ZST . Ur(l) ey UT(N)' (6)
r=1

To approximate the dth data set in an SDF model with a BTD,
we choose M (X(2)) == Mem({U" )2, {SHL).
wherein U,E") = T, and S, := Zf, s mMay depend
nonlinearly on some underlying set of variables z.

In principle, it would suffice to exclusively implement the
BTD model in the SDF framework since it subsumes both
the CPD and LMLRA. For instance, the LMLRA can be
seen as a single term BTD. However, as we will see there
are computational advantages to be found in integrating the
CPD model separately. One of the SDF framework’s strengths
is that it is decomposition agnostic. As such, support for
other models such as the tensor train decomposition [80] can
also be incorporated without having to change the underlying
algorithms.

III. ALGORITHMS FOR SDF

The two most prevalent classes of algorithms to tackle (I}
are quasi-Newton (QN) methods and nonlinear least squares
(NLS) methods. Both iteratively improve an initial solution
with additive updates obtained by minimizing a second-order
approximation of the objective function based solely on first-
order derivatives. In the following, let F(¥ and f(4 be
the dth residual tensor M@ (X (2)) — T and objective
function 1/2||]-'(d)|\)2/v(d), respectively. The SDF objective
function is then f := > wqf (d), Additionally, we identify
tensors and ordered sets of variables and factors with their
vectorized versions where convenient, especially in or around
derivatives. For instance, the Jacobian 9.F (%) /OX T should be
read as O vec(F(®)/0 Vec(é¥)T, where vec(X) is the vector

[vec(z1)T vec(zp)T] .

Given an objective function f and a current iterate zj, the
key idea of QN and NLS is to minimize a second-order Taylor
series approximation of f around zj;. Like matrix factoriza-
tions, tensor decompositions may also involve complex-valued
factors. Under these circumstances, the objective function f
is necessarily nonanalytic in z due to the Frobenius norm.
In other words, f depends on the complex conjugate Z and
because of this the Taylor series of f around z does not exist
in general. The de facto solution is to consider the Taylor
series of f around the real and imaginary parts of the variables
z. However, this easily obfuscates any structure present in
the objective function and its derivatives. Recently, a complex
optimization framework [81] has been introduced with which
QN and NLS algorithms were generalized to both real and
complex variables. In complex optimization, the real Taylor
series is replaced by a complex Taylor series of f around zj
based on complex derivatives. More specifically, f(zy + p)
is approximated by the second-order complex Taylor series
expansion

() = f(o0) + 57 L)+ 55 BB ()
wherein z and p are implicitly vectorized and ¢ denotes
the vertical concatenation of its argument and its complex
conjugate, e.g., Z is equivalent to [zT ET] T Analogously, the
complex gradient 9 f / D% concatenates the so-called cogradient
0f /0z and conjugate cogradient 0 f/0z. By definition, these
derivatives are to be interpreted as partial derivatives with
respect to elements of z (Z), while treating Z (2z) as constant.
They are also known, especially in the German literature,
as Wirtinger derivatives [82]. For real-valued functions f,
the cogradients are each other’s complex conjugates. Conse-
quently, only one of the two cogradients need be computed. In
practice, most algorithms ask for the so-called scaled conjugate
cogradient 20f/0z for two reasons. First, the negative con-
jugate cogradient is the objective function’s steepest descent
direction. Second, the factor two ensures the scaled conjugate
cogradient coincides with the real gradient if all variables are
real-valued.

By construction, the matrix By, is a positive semidefinite
approximation of the complex Hessian 9% f/ (8%8?). A good
candidate step to take is the approximate Newton step p,y 1=
arg miny, m{: (p), which can be obtained by setting the model’s
cogradients equal to zero and solving the resulting linear
system
—i{(zk) ®)

e

z

Bk'ic)AN:

Depending on the total number of elements in z, storing
(let alone inverting) Bj, can become prohibitively expensive.
Fortunately, both QN and NLS methods have their own way of
mitigating this cost. Assuming we have (approximately) solved
@), the next iterate can then be computed as 2541  zx+Dp,,
where p, is usually a linear combination of the steepest
descent direction pg, := —20f/0Z at zj, and the approximate
Newton step p,yn- The former is used to guarantee that the
objective function value will improve and the latter enables
super-linear or even quadratic convergence near the solution.
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Algorithms that compute p, given the steepest descent di-
rection and approximate Newton step are called globalization
strategies and can be categorized into line search and trust-
region approaches.

A. Quasi-Newton

Limited memory BFGS (L-BFGS) and, by extension, non-
linear conjugate gradient (NCG) are examples of QN methods
[83]]. Instead of storing By, L-BFGS represents its inverse B, 1
as the sum of a scaled identity matrix plus m rank-two updates.
The inverse Hessian approximation at the next iterate B, +11
is computed as a rank-two correction of B, '. This BFGS
update is designed so that B +11 is, among all matrices that
satisfy the so-called secant equation, in some sense as close
as possible to Bk_l. NCG can be seen as a special case of
L-BFGS where m = 1 together with a few other assumptions.
In practice, it has been observed that L-BFGS often performs
better than NCG, which is likely due to its greater flexibility
in representing second-order information.

Not only does a diagonal plus low-rank matrix repre-
sentation of B, ! save memory, it also allows for a very
efficient solution to @) In fact, the L-BFGS two-loop re-
cursion algorithm generalized to complex optimization [81]]
can compute p,y directly with the same amount of (albeit
complex) floating point operations as the equivalent algorithm
in real optimization.

In summary, QN methods require only two pieces of in-
formation: a way to evaluate the objective function f and its
scaled conjugate cogradient 20f/0zZ.

B. Nonlinear least squares

The SDF problem given by (I) consists of a weighted
sum of NLS objective functions f(¥). NLS methods build a
second-order model of the form for each such f(@ by
approximating the corresponding residual tensors F(%) around
zj, with the linear model

ml " (p) = F D (z) + 0 - . ©)
wherein Jlid) = OF @ /927 is the residual tensor’s complex
Jacobian at zj. Substituting this model for F(?) in the SDF
objective function results in a complex second-order Taylor
series expansion of f [81]], [84] with

D
Bie =Y wa (veeWD) 5 O - (vec WD) 5 J(),
d=1

(10)

where the Hadamard product implicitly expands singleton
dimensions of its operands. In other words, dimensions of
length one of an operand that do not match the size of the
corresponding dimensions in the other operand are repeated
until their sizes match. Notice that the complex Jacobian J,gd)
does not depend on the data in 7(4). However, the approximate
Hessian By now does depend on the locations of the known
entries of all data sets in the problem (stored in W(d)).
Depending on the model M, a relatively sparse correc-
tion matrix can be added to the Gauss—Newton approximation

(TO) to obtain the objective function’s complex Hessian [84]).
Coupled with the fact that such corrections are scaled by
residuals in F(?, it may be expected that the Gauss—Newton
approximation rapidly approaches the complex Hessian as the
residuals decrease in magnitude. Consequently, NLS methods
can converge close to quadratically near solutions with small
residuals.

For many model parameterizations the Gauss—Newton ap-
proximation of the Hessian is rank deficient due to indetermi-
nacies such as the scaling ambiguity in the CPD [84]. To solve
(8) under these circumstances, one approach is to compute the
Moore—Penrose pseudo-inverse of Bj. Another is to regularize
the solution by using the Levenberg—Marquardt approximation
of the Hessian, which adds a scaled identity matrix to the
Gauss—Newton approximation.

However, tensor decompositions’ Jacobians are also often
very structured and we wish to exploit this structure to
save memory and reduce the computational complexity of
computing p,y. Inexact NLS methods only approximately
solve with the preconditioned conjugate gradient (PCG)
algorithm [83]]. Since PCG only requires a function to evaluate
By, -y for different y, we can store By, in a data-sparse way and
easily exploit its rank structure in its matrix-vector product.
Moreover, singular By no longer pose a problem because the
solution can be regularized by limiting the number of PCG
iterations. The convergence rate of PCG depends on how well
the system’s eigenvalues are clustered and the magnitude of its
condition number. The eigenvalue distribution can be improved
by applying a so-called preconditioner, which can be thought
of as a cheap and approximate inverse of Bj. Designing
preconditioners is a difficult task which is usually done one
a case-by-case basis. We will focus on preconditioners for a
single unstructured CPD or BTD, and leave the design of more
advanced preconditioners as a topic for future work.

In summary, inexact NLS methods require four pieces of in-
formation: a way to evaluate the objective function f, its scaled
conjugate cogradient 20 f /0Z, the approximate Hessian-vector
product By, - y and, optionally, a preconditioner.

C. Modularizing decompositions and structure

Now that we have settled on which components need to
be implemented, we will further subdivide these components
into parts so as to isolate the decomposition models from any
structure imposed on the factors. Modularizing decompositions
and factor structure has two major advantages. First, it enables
us to build libraries of both models and factor structures to be
mixed and matched as desired. Second, separating the model
and factor structure from each other ensures both remain
transparent and independently exploitable.

Objective function. By definition, f(zy) is equal to the
weighted sum >, wqf @ (z1). To compute the latter, simply
evaluate X'(z)) once and then use the resulting factors to
evaluate the models M(?) at the known entries of the cor-
responding data sets 7 (4.

Gradient. Analogously to the objective function, we
may compute the scaled conjugate cogradient 20f/0z as
S wa(20f@ /9Z). To decouple the factor structure from the
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model, we apply the chain rule [81]

af@ <8X)H of@ N (ax)T of@

oX

oz \ 02T ox o0z’ (11
to separate the conjugate cogradient 9f(?) /9% into partial
derivative of the objective function (%) with respect to the fac-
tors X' and a partial derivative of the factors X with respect to
the variables z. As mentioned at the beginning of this section,
we transparently interchange tensors and ordered sets with
their vectorized equivalents in and around derivatives. Since
f@ is real-valued, its cogradient is the complex conjugate of
its conjugate cogradient so that we can implement (TT)) by first
computing an ordered set of factors # as 0 f(%) /OX and then

applying the map
5 H
T f
+ -h 12
(5‘%} ) ! (12)

to each of its constituents i ¢. In other words, the components
of the conjugate cogradient 9 f () /0Z can be obtained by com-
puting the partial derivative of the objective function f(%) with
respect to the complex conjugate of the unstructured factors
2y, vectorizing the result hy and then applying the linear
contraction (I2Z). Consequently, imposing a factor structure
defined by the transformation x ¢ not only requires the ability
to evaluate the expansion zf(2;, ), but also its associated linear
contraction given by (I2). Hence, to implement a factor struc-
ture, we simply need to implement these two components. For
instance, a factorization may depend on a factor which is the
matrix inverse of another factor. In that case, xf(2i;) == 2;, !
for certain indices f and iy and it can be shown that the
associated linear contraction is given by

g _— _H . . _H
hf — Zif hf Zif . (13)

When the model M@ is Mcpp or Mg, the partial
derivative of the objective function f(?) with respect to the
factors X depends on the string of Khatri—-Rao and Kronecker
products

N-—1

kry(am) = ©
m=0
N-méo

N—1

kron, (o) = &

m=0
N—-méo

an_,, and (14a)

N —m» (14b)

respectively, in which N is implicitly defined as the length
of the sequence «,,, which usually corresponds to an ordered
set of factors such as {zy, })_,. The Khatri-Rao product
A ® B of two matrices A and B with an equal number of
columns R is defined as the column-wise Kronecker product
[a1 ® by ar ®bg]. In short, the functions kr, and
kron, compute a string of Khatri-Rao or Kronecker products
of the sequence o, from back to front, with the exception of
the indices specified by the set o.

Assuming the dth data set 7(¥ is modeled by Mcpp
defined by the factor matrices zy,, n = 1,..., Ng, the partial

derivative with respect to the complex conjugate of the nth
factor matrix is given by [84]

d

i

895 fn

Similarly, if the dth data set 7(? is modeled by Mpgrp

defined by the factor matrices xy,, , and core tensors xy . o,

r=1,...,Rgand n = 1,..., Ng, the partial derivative with

respect to the complex conjugate of the nth factor matrix and
core tensor of the rth term are given by

= (WD 5 F'Y ey (z4,). (15)

(n) =7 (n)

of @ d d
Qamf( ) = (W((n)) * F((n))) : kron{n} (xf('r',m)) : (Ifu-,S))l(-{n,)
(16a)
and
(d)
2 of = vec(WD « FINT . krong ()5 (16b)
8xf(7‘.,$)

respectively. In both and (I6), the Hadamard product of
the observation tensor WW(? and residual tensor F(?) ensures
that only the residuals corresponding to known entries of the
data set contribute to the gradient.

The matrices kry,;(zy, ) and krong(zy, ) are highly
structured and often appear as the right operand in matricized
tensor-matrix products, such as in @ and @ Concretely,
they represent the matrices Ty, ©---OTf, , OTf, , OO
Ty, and Ty 0@ - @ Ty, respectively. It is desirable
to avoid explicitly forming these matrices where possible.
Efficient algorithms computing the matricized-tensor times
string of Khatri-Rao products are available [85], [86], and
can be generalized to strings of Kronecker products with
little effort. Although these algorithms obviate the need to
permute the tensor’s elements in memory or explicitly form
the Khatri-Rao or Kronecker products, they are ill-suited for
big data because of their sizable intermediate results.

We now have the components necessary to solve SDF
problems using gradient-based algorithms. Each model M (%)
should define how it can be evaluated given a set of factors
and how to compute the gradient of its corresponding objective
function (%) with respect to those factors. Additionally, each
transformation s should define how to expand the variable z;,
into the factor x¢(z;,) and how to apply the associated linear
contraction (I2)). The final two components—the approximate
Hessian-vector product By, -y and an optional preconditioner—
are all that remain to enable the NLS family of algorithms as
well.

Approximate Hessian-vector product. Although the approx-
imate Hessian By, in (I0) does not depend on the tensor’s
known entries, it does depend on their locations through
W@ In the case of big data, even reading the observation
tensor W(? could take an unreasonable amount of time.
Moreover, the presence of the observation tensor destroys the
rank structure which would otherwise be present in the approx-
imate Hessian. For these reasons, we redefine the approximate
Hessian as

D
By =Y wq iy, (17)
d=1
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where the Jacobian j,gd) is defined as OF (@ /02" at zj,. For
the sake of simplicity, we have assumed that F(% is analytic
in z so that (8) reduces to

Ui
oL (21)

Because the observation tensor W(%) was omitted, the approx-
imate Hessian’s (Frobenius) norm is now likely to be larger
than that of the approximate Hessian in (I0). As a result,
the approximate Newton step p,y which solves (I8) may be
much smaller than intended. A reasonably effective yet simple
solution is to instead solve the system

By - pan = —2 (18)

af(d
0z

(zk), (19)

By - pan = —

d=1

where o4 is defined as the product of dth tensor’s dimensions,
divided by its number of known elements. The function
of the scalars o4 is to make up for the missing residuals
corresponding to the unknown entries in the data sets. If each
tensor’s known entries are distributed more or less randomly
across the tensor and if the residuals F(%) are close to equal
in magnitude, it may be expected that the right-hand side of
(I9) approaches the scaled conjugate cogradient of the same
SDF problem wherein all tensors’ entries are known.

Again, we use the chain rule to decouple the factor structure
defined by the transformations z; from the models M (@
By the assumption that (%) is analytic in z we obtain the
decomposition

H
By = (de (8 T) _Jlgd)HJlid)>

where the so-called (Jacobian’s) Gramian J ,id)Hj ,Ed) is defined
as (OF D /oxT)H.0F (D /o XT at z},. Notice that we discarded
the matrix multiplication symbol in the Gramian, emphasizing
that it should be thought of as a structured matrix that can
be multiplied by a vector in one action instead of two.
The approximate Hessian-vector product By - y can now be
computed in three stages. First, for each transformation x
expand the corresponding variable y;, in the ordered set of
variables y into a factor gy with the map

oxX

S Q0

63;‘]0

“Yig- (2D
Then, multiply each residual function’s Gramian by the result-
ing ordered set of factors G. Since the Gramian is square, the
result can again be interpreted as an ordered set of factors
H(® . Finally, contract %9 into variables by reusing the
previously defined map (12), multiply by wq and sum up the
contributions over all data sets. Returning back to our example
transformation s (z;,) := Z, ! which computes the fth factor
as the matrix inverse of another factor, the linear expansion
(ZT) can be implemented as

Y —z;fl SE zi_fl. (22)

Depending on the model, the Gramian can exhibit a certain
rank structure that we would like to exploit in its matrix-vector

product. To this end, we introduce the string of Hadamard
products

N-1
hdm, () == *

m=0
N—-mé¢o

N (23)

There is an interesting relationship between the Khatri-Rao
and Hadamard product given by

kry (o) - krg (ay,) = hdm, (ol (24)

which is a straightforward consequence of the fact that the
columns of a string of Khatri-Rao products are vectorized
rank-one tensors. Furthermore, we introduce the modified
string of Hadamard and Kronecker products

CQm),

N-1 an-m N-m¢ép
hdmo o (am, Bm) = mtO { Bn—m  otherwise (253)
N—mégo
N—1 _
. an-m N-m¢ép
krong ,(Qm, fm) 1= n(LX:)o { Bn m  otherwise (25b)

N—-mé¢o

respectively. These functions generalize hdm, and kron, so
that operands in the string corresponding to indices in the set
p can be replaced by those of a second sequence [,,.

Assuming the dth data set T is modeled by Mcpp
defined by the factor matrices zy,, n = 1,..., Ny, the factor
matrix with index f,, of the Gramian-vector product is given
by [84]

D
(JMIY - G)g, = g7, - hdmpy (@ -y,
Na
26
tag, Y hdmpy oy (g g, 3O
n=1
n#N

Herein, gy, is the factor matrix with index f,, in the ordered
set of factors G.

Similarly, if the dth data set 7(¥ is modeled by Mgrp
defined by the factor matrices xy,, ,  and core tensors xy o,
r=1,...,Rgand n = 1,. Nd, it can be shown that the
factor matrix with index f T,n) and core tensor with index
fer,s) of the Gramian-vector product are given by

Ry
(D (d
(Jli ) Jli ) 'g)f('r.n) = Z <xf(7"*,n) ) ((gf('F,S))(n)
=1
H
’ kron{"} (wf(F,m) ’ If('r‘,nl)) + (':Ef(F,S) )('fl)
Ng
. Z kron ay (2 -z 7 -z )
{3 AR TGy " T frim) s 9F romy L F rm)
n=1
n#n

H
t 9fmy (xfw-,s))(n) ) kron{n}(xf(;’m) ) mf('r','m,)))

H
. (wf(r,s) )(n)
(27a)
and
Rg
I
SR Dg =D (Vec(gfms)f
7=1
krong (2 wp, )+ vee(ws o))" (27b)

Ng
H H
. Z kron@,{ﬁ} (xf(;‘m) : mf(r,7n) ) gf(;,m) : xf(r,m) )) P

n=1
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respectively. The Gramian-vector products of (26) and (27)
are designed to fully exploit the Gramian’s rank structure.
For example, in the case of a CPD the Gramian consists
exclusively of diagonal and rank-one blocks [84]. Instead of
computing and storing these blocks explicitly, (26) directly
applies their action on the factors gy. In much the same way,
takes advantage of the rank structure of the block term
decomposition’s Gramian. As with the computation of the
gradient, notice that all of the terms in these expressions can
be implemented as matricized-tensor times string of Kronecker
products.

Preconditioner. The convergence rate of computing the
approximate Newton step with PCG can be improved by
modifying the system (I9) with a preconditioner Mj, which
resembles By, yet is cheap to invert [83]]. Designing precon-
ditioners for SDF problems is complicated by the fact that
By, is a weighted sum of Gramians transformed by linear ex-
pansion and contraction operators. In contrast to the previous
components such as the gradient and approximate Hessian-
vector product, there is no straightforward way of building
a preconditioner for each of the countless combinations of
decomposition types, coupling and factor structure. Instead,
we restrict ourselves to the approximation of a single data set
with a CPD or BTD in which there is no structure or symmetry
imposed on the factors.

In the case of a single data set PCG computes the approx-
imate Newton step from the modified system

M;' By pay = —0M; ! ~Qg—f(zk),
z
where M), is a symmetric positive definite matrix and o is the
scaling coefficient introduced in (I9).

Since the Gramian exhibits a block structure for many tensor
decompositions, a block-diagonal preconditioner is a natural
first choice. These so-called block-Jacobi type preconditioners
can be interpreted as a divide-and-conquer approach to invert-
ing the approximate Hessian as each of the blocks may be
inverted independently of each other. Not only are the diagonal
blocks much smaller, and hence cheaper to invert, but they
may also exhibit some structure which can be exploited in
computing their inverse.

When the data set is approximated by a CPD defined by
the factor matrices x¢,, n =1,..., N, the factor matrix with
index f, of the block-Jacobi preconditioner-vector product
M, L. y can be computed as [84]]

(28)

(M- Y)g, = g, -hdwpy (2, - 2p,).  (29)
Likewise, when the data set is approximated by a BTD defined
by the factor matrices Tfi, and core tensors Tf, g T =
1,...,R; and n = 1,..., Ng, the factor matrix with index
frn) and core tensor with index f(, s) of the block-Jacobi
preconditioner-vector product are given by [84]

(Mk_l ! y)f(r,n) = yf("'v”) ' ((I‘f(T’S))(n)
(30a)

—1
: kron{n}(xlj_‘l(TM) .:'Ef(nm)) : (‘/'Cf(r,s))l({n))

and

(Mlgl 'y)f(r,S) = Vec(yf(r,s)>T

- (30b)
. krong((xl}[(mn) . xf(rp,rn,)) 1),

respectively.

D. Generalizations

The SDF framework as presented can be improved even
further with a number of generalizations. One such improve-
ment would be to allow chaining of transformations, i.e., allow
factors of the form x4 (¢ (z;,)). This would enable combining
factor structures in novel ways. For example, a nonnegative
Toeplitz structure could be imposed by using x; to square the
elements of a generator vector z;, and then applying z, to
generate the Toeplitz matrix. Other convenient improvements
could include allowing constant factors, which can be used
to incorporate prior knowledge, and nested variables, which
are variables that themselves consist of an ordered set of
variables. The latter is especially useful when a single variable
is most naturally represented by a set of vectors, matrices
or tensors. For example, a factor matrix with orthonormal
columns zf(z ) can be parametrized by a sequence of House-
holder reflectors, which could be stored as a set of vectors of
increasing length {zf, }X , =: 2.

With Tensorlab [68], we offer a domain specific language
(DSL) for defining SDF problems which includes the above
and other improvements such as the ability to compose fac-
tors out of subfactors. At the time of writing the supported
models include the CPD, LMLRA and BTD and a library
of 32 factor structures is provided. With the latter, the user
can impose constraints such as nonnegativity, orthonormal
columns, columns as sums of kernel functions and banded,
Toeplitz, Hankel or Vandermonde structures, among others. As
an example of the modularity of the framework, two additional
models representing an L1- and L2-regularization term in
the objective function are offered. Efficient complex QN and
NLS algorithms are included for solving the resulting SDF
problems, as well as tools for estimating model parameters
and generating high-quality initializations.

IV. NUMERICAL EXPERIMENTS

A. FEigenvalue decomposition as a structured tensor decom-
position

To demonstrate the flexibility of SDF, we compare the
relative accuracy of the eigenvalues of a certain matrix as
computed by LAPACK’s driver routine DGEEV with those
computed by the Tensorlab implementation of SDF. Consider
the colleague matrix

0 1/2
1 0 1/2
A= 1/2 0

of order n, corresponding to the Chebyshev polynomial
T, (z) := cos(narccos(x)). The eigenvalues of the matrix A
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are the zeros of T,,(z), which are known to be given in closed

form by
>7 1=0,....,n—1.

Sl
A = cos (M
n

For reference, we evaluate (3I) in high precision and then
truncate the result to double precision. To compute the eigen-
value decomposition of A with SDF, we define two variables
z1 and z9 as a matrix of order n and a row vector of
length n, respectively. Then, we define three transformations
x21(21) == 21, x2(21) == zl_T and x3(z2) := 2o. Finally, we
model the eigenvalue decomposition of A as a CPD defined
by the factor matrices x1, x5 and z3. Here, we interpret A
as an n X n x 1 tensor wherein x3 is associated with its
third dimension. We compute the eigenvalue decomposition
of A with LAPACK and use the resulting eigenvectors and
eigenvalues to initialize the variables z; and z5. In Tensorlab,
we choose the sdf_nls nonlinear least squares solver and
set the convergence criteria TolX and TolFun (related to
the relative difference between iterates and objective function,
respectively) to 0, ensuring that the solver stops when the
maximum accuracy has been reached. The relative accuracy of
the eigenvalues compared to the reference solution is shown in
Figure ] for n = 200. About 60% of the eigenvalues computed
by SDF have a relative error which is at least 10 times smaller
than those of LAPACK, and this increases to over 75% for
n = 500.

3D

% Define and initialize variables.
model.variables.zl = randn(n,n);
model.variables.z2 = randn(l,n);

% Define factors as transformed variables.

model.factors.x1l = 'z1';
model.factors.x2 = {'zl',@struct_invtransp};
model.factors.x3 = 'z2';

% Define factorizations using the factors.

model.factorizations.evd.data = A;

model.factorizations.evd.cpd = {'x1', 'x2','x3"'};

% Solve the SDF problem.
1

sol = sdf_nls(model); % sol.variables, sol.factors

Listing 1. Defining and solving an eigenvalue decomposition with Tensorlab’s
DSL for SDF.

The strength of SDF is not so much the efficiency with
which the eigenvalue decomposition is computed, but rather
the expressive power of the framework and, in this ex-
ample, the improved accuracy of the resulting eigenvalues.
To make this more concrete, Listing [I] gives an impression
of how an eigenvalue decomposition could be implemented
using Tensorlab’s DSL. The SDF problem is created as a
MATLAB structure that defines the model’s variables, factors
and factorizations. The function @struct_invtransp en-
codes the transformation x, and its associated left and right
Jacobian-vector products and (2I)), wherein it exploits
all structure related to the transformation. Structure at the
tensor decomposition level is exploited by their gradient and
approximate Hessian-vector products. After solving the model
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with sdf_minf or sdf_nls—corresponding to the quasi-
Newton and NLS family of algorithms discussed in the previ-
ous section—the resulting MATLAB structure sol contains
the optimized variables and factors in sol.variables and
sol. factors, respectively.

1 [
| | + SDF o |
o LAPACK L. . . d
107 F =
[ o o . . hd g : :u' ° o §
N . ® e o B
: . A .. we o’ . ." o.~ . :
R | .O.Ou ..o o o %o, l. ..i‘ ) Pl |
‘M cet 2 ° . .o o % g
Ai 10-15 |- o, % ..’. ° 'y :o. o |
F .o - s o o ® .:u. ° —
I hi (A . C—
|- - hd L4 —
|- o °% —
10716 | =
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1

150 200

Fig. 4. Relative accuracy of the eigenvalues of the colleague matrix A, as
computed by LAPACK and Tensorlab’s implementation of SDF.

B. Recommending movies: the Netflix prize

In 2006, the online DVD rental company Netflix organized
a contest to improve its recommender system. The company
released a training set of more than 100 million ratings given
by about 480,000 customers to almost 18,000 movies over a
period of 6 years. The goal of the contest is to predict unseen
ratings more accurately than Netflix’s proprietary Cinematch
algorithm, enabling better personalized movie recommenda-
tions. The Netflix data set can be described by an incomplete
user X movie x date tensor R containing integer ratings
between 1 and 5 stars given by users to movies on certain
dates. The data set fits in about 2 GB of memory, which is
not considered big data, but still large enough to represent a
formidable computational challenge. A standardized validation
set of about 2 million ratings, called the probe set, was also
supplied by Netflix.

Matrix factorization techniques were a key component in
most solutions, though it took some time before participants
understood how to effectively incorporate temporal data into
their models. With a tensor representation of the data set, the
temporal data is naturally taken into account by employing
tensor factorizations. Here, we use SDF to extend the core
matrix factorization model of the prize winning entry [87] to
a tensor factorization. We will model each rating 7,4 as

K
Puma ~ p+ 00 4 0@ 46 + 37020 (G2

k=1

where p is the mean rating and the vectors b1, b and b
represent a bias due to users, movies and temporal effects,
respectively. For example, the user bias models the fact that
some users consistently rate movies a certain amount of stars
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TABLE I
RMSE ON THE PROBE SET BY THE MEAN /1, NETFLIX’S CINEMATCH ALGORITHM AND MODEL (32).

Model  Mean Cinematch K =1 K =2 =3 K=4 K=5 K=6 Winning model
RMSE 1.1296  0.9474 0.9447  0.9387 09372 09326 09298 09275  =~0.8527
more or less than the average user. Taking a closer look at 20 .
(32), we notice that the bias terms are in fact structured rank-
one tensors in which the outer product is taken with all-one
vectors. Accordingly, after removing the mean, these terms 15 N
can be assimilated together with the matrices zW) 72,
Z® into factor matrices x1 = [bD) 1yx 2ZM], 22 =
[11»1><1 b(2) Tarxi Z(Z)} and r3 = [1D><2 b(s) Z(g)} T3 10 |
corresponding to a structured CPD.
We factorize the tensor R using SDF to implement the 51 —
model (32) as a structured CPD and add a regularization term /
to the objective function of the form A(||zy||Z+]|z2 |2+ ||z3]|3) J
to prevent overfitting. To determine the hyperparameter A, 0 T
| | | | |

we perform a simple grid search and select the value for
which the model best explains the ratings in the validation
set. The resulting SDF problem was a strenuous challenge
for MATLAB, requiring a high-end server with several tens
of gigabytes of memory to solve due to the size of the data
set. Even so, a single gradient call took about 30 seconds to
evaluate, which implies a solution time of about 1 hour per
model assuming convergence is reached after 120 iterations.

Netflix chose to measure the predictive power of its models
with the root mean square error (RMSE), defined as the square
root of the mean squared error on the individual ratings.
This measure has the tendency to amplify the penalization of
false positives (“trust busters”) and false negatives (‘“missed
opportunities”). Table shows the RMSE on the probe set
of a baseline model that predicts each rating as the mean rating
., Netflix’s Cinematch algorithm and model (32) for various
values of the rank parameter K. Here, we compute each model
using the sdf_minf L-BFGS algorithm with the maximum
number of L-BFGS updates set to 20, and To1X and TolFun
setto 10~* and 1078, respectivelyﬂ Because of the significant
computational effort required, we have limited our experiments
to a maximum of K = 6 rank-one terms. Even a relatively
simple bias plus rank-one model can improve on Cinematch’s
performance, while larger values of K provide consistent
improvements to the RMSE. The Netflix prize was awarded
to the first team to improve on Cinematch’s performance
by 10%, which corresponds to an RMSE of 0.8527 on the
probe set. Table [TV-B| shows that a bias plus rank-6 model
already accounts for a 2.1% improvement over Cinematch.
For comparison, the prize winning entry consisted of a blend
of 107 different models, the majority of which are matrix
factorization models with ranks in the order of hundreds to
thousands [87].

3Note that the SDF objective function (1) is a sum of squares, implying that
a relative change of 10~8 in the objective function corresponds to a relative
change of 10~ after applying the square root.

o

10 20 30 40 50
cz (%)

Fig. 5. The R = 5 columns of the third factor matrix x3 in the structured
CPD of the InsPyro data set. Each column is a sum of D = 8 RBF kernels,
sampled at different concentrations c3. Here, the columns are also evaluated
at non-integer concentrations.

C. Designing an alloy

By varying the concentrations of an alloy’s constituent
metals, materials with different physical properties can be
designed. For example, we might be interested in the tensile
strength of an alloy comprising four metals. Since the con-
centrations should sum to one, the concentration of the fourth
metal is fixed once the concentrations of the first three are
chosen. Assuming we discretize the concentrations of each
of the constituent metals between 0% and 99% in steps of
1%, we can arrange the tensile strength of the resulting alloys
in a 100 x 100 x 100 tensor 7 where the nth dimension
corresponds to the concentration of the nth constituent. Since
measuring or computing each of the one million combinations
is impractical, we would like to sample only a few of the
tensor’s entries. Based on these samples, the tensile strength
of the other combinations can then be inferred.

InsPyro NV—a KU Leuven spin-off—Xkindly provided us
with a data set containing more than 35,000 measurements of a
certain material property of a four-material mixture. Although
we cannot describe the material property or the material’s
constituents in more detail, we will refer to former as the
tensile strength and to the latter as metals for the sake of this
example. The metals’ concentrations are varied in steps of 1%
starting at 11% for the first metal and 1% for the remaining
metals, up to a maximum of 95%, 49% and 52% for the three
metals, respectively. As such, the data set can be represented
as an incomplete 85 x 49 x 52 tensor 7 in which 16.31% of
the entries are known.

One fact we wish to exploit in modelling this data set is that
the tensile strength is expected to vary relatively smoothly as
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the concentrations are varied. We can take advantage of this
piece of information by approximating the tensor with a CPD
in which the factor matrices’ columns are sampled smoothly
varying functions. Let 2(n) e RIXDXR = 1,...,3,
represent the parameters of R functions, each of which is the
sum of D radial basis function (RBF) kernels. The ¢th element
of the rth column of the nth factor matrix z,,(z(™)) is then
described by

D ; (n)y2
n Cn () — Z3qr
(a0 1= 3 20 exp | Lol 22 ()(n) 2;) . (33)
d=1 2(234,)

where ¢, (i) maps the index ¢ to the ith concentration of
the nmth constituent, and the first, second and third row of
2(") correspond to the amplitude, location and spread of the
individual RBF kernels.

We choose D = 8 and R = 5 and implement the structured
CPD with factor matrices x1, xo and x3 defined by
with Tensorlab’s DSL. We choose the sdf_minf L-BFGS
algorithm and set TolX and TolFun set to 0, but limit the
maximum number of iterations MaxTter to 10%. The model
is trained on two thirds of the data, and validated on the
remaining one third. The relative error of the optimized model
was 0.27% for both training and validation set.

Figure [3] plots the columns of the third factor matrix 3
as a function of the concentration cs, and illustrates that by
modelling the columns of the factor matrices as continuous
functions, we have the added benefit of being able to evaluate
the melting point at non-integer concentrations. Figure [6] shows
a slice of the modelled tensor, where the concentration of
the first constituent c; is kept fixed at 20%. The remaining
two concentrations co and c3 are free. Because the sample
data is not uniformly distributed over the tensor but is rather
clustered per slice, we have coloured the slice only partially
opaque to indicate where the model is supported by nearby
data points. Straying too far from the samples may lead to
inaccurate extrapolations of the tensile strength even though
the validation error is small. Computing a simple rank-5 CPD
of the tensor with alternating least squares (ALS) results
in a comparable error on both training and validation set,
although at the cost of obtaining factors that are significantly
less smooth and losing the ability to evaluate the factors
at noninteger concentrations. The resulting irregular factors
suggest that the solution computed by ALS will generalize
less well to data points that lie far from the sampled region.

D. Predicting user participation in activities

When visiting a city for the first time, it would be useful to
be presented with a personalized list of recommended activities
or points of interest (POI) near your current location. In [45],
a multi-relational data set is presented in which 164 users’
global positioning system (GPS) coordinates were tracked over
a period of 2.5 years. The data set consists of 12,765 GPS
trajectories with a total length of close to 140 megametres.
The raw coordinates were clustered into 168 meaningful
locations and the user comments attached to the GPS data were
manually parsed into activity annotations for these locations.
A total of five activity categories were defined: food and drink,

2,000
1,000 3 0
o A A0
1,600 S 20
G / Lo
40 40 ¢y (%)

c3 (%)

Fig. 6. The tensile strength of an alloy comprising four metals where c; is
fixed to 20%.

shopping, movies and shows, sports and exercise, and tourism
and amusement.

A binary user x location x activity tensor 7 (! is con-
structed from the above data in which element tf}ll has
the value 1 if the user w participated in the activity a at
location [, and O otherwise. The data set also includes four
auxiliary sources of information: a user x user matrix 7 (2)
that measures the similarity between users obtained from
social network data, a location x feature matrix 7 ) in which
each feature represents a normalized number of POI at a
location, an activity x activity matrix 7(4) that measures the
similarity between activities obtained by analysis of internet
search engine results, and a binary user X location matrix
T®) in which element tffl) has the value 1 if the user u has
visited location [/, and O otherwise. We preprocess the data by
removing the 18 users who have not participated in any activity
and normalize the columns of 7) so that they sum to 1. In
summary, we have 146 users, 168 locations, 5 activities and
14 location features.

In similar vein to the experiments in [44], we consider two
scenarios. In a first scenario, we randomly select 80% of the
entries in 7 and remove them. In a second scenario, all
information (i.e., all slices) of 50 randomly selected users is
removed from 71). The task is then to predict the missing
entries with the remaining information. We model each data
set 7(4) with a simple rank-2 CPD M (%), defined by the user
factor U € R146%2 Jocation factor L € R168%2  activity factor
A € R%*2 and feature factor F' € R!'4*2, Furthermore, we
introduce the factors A, 1, v € R'*?2 to absorb any differences
in scale between factorizations. For example, we model the
user x location matrix 7 by the CPD M®)(U, L,v) :=
U - diag(v) - LT. For the first scenario, two different models
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are computed by solving the regularized SDF problem

2
minimize

U,L,A,F\,u,v

2 N2
LR | R
7
2
w
+ 50 (NOIZ + 1L + HAN + IFIE + AN+l + 7
(34

w1 (1) _ (1>H
2 HM (U, L, 4) - T W

+2t M, - T(4>Hi + S MO W, L) - T®

for two choices of the weights wy. In the first case, all
weights are nonzero and we exploit all available information.

More specifically, we set wy; := 1/Ni, wa = 0.05/Ns,
ws := 0.01/N3, wy := 0.001/Nyg, ws := 0.001/N5 and
wg := 0.05/Ng, wherein Ny is the number of residuals (or

known elements) of the dth term in the objective function
@]}. In the second case we choose wy := 1 and wy := w3 =
wy 1= ws := 0, corresponding to a regularized CPD of 7 ()
without data fusion. We solve (34) for the two choices of
weights with the sdf_nls nonlinear least squares family of
algorithms, and set both To1X and TolFun to 0 for maximal
accuracy.

1 - ]
o 0.8 - n
e
_g 0.6 - —
Z
= 04+ —
[}
=
= 0.2 i
— SDF
0 ——CPD |
| | | | | |
0 0.2 0.4 0.6 0.8 1

False positive rate

Fig. 7. ROC curves for the prediction of the 80% missing user-location-
activity links in 7(1), The SDF model fuses all five data sources with coupled
rank-2 CPDs and has an AUC of 93.78%. The CPD model is a regularized
CPD of 7() and has an AUC of 85.59%.

Figure [/| shows the receiver operating characteristic (ROC)
curves of the resulting models. Each ROC curve is obtained
by evaluating the corresponding model at the unknown entries
of 7™ and varying a threshold with which we discriminate
between the negative class O and positive class 1. As the
threshold value increases, the number of both false and true
positives resulting from model’s predictions decreases mono-
tonically. The area under curve (AUC) is a standard measure
of a binary classifier’s quality. The SDF model, which exploits
all available information, has an AUC of 93.78% and clearly
outperforms the regularized CPD model, which only exploits
information available in 7(*) and has an AUC of 85.59%.

The second scenario corresponds to the difficult case of
making predictions for new users, also known as the cold

13

start problem. In this scenario, we must make use of the
auxiliary data sets since 7(!) by itself no longer has enough
information to fully determine the factor U. To improve
predictor robustness, we impose the additional constraint that
all factors should be nonnegative. This constraint is enforced
, by modifying the SDF problem (34) so that the transformation
x(z) := z * z is applied to each factor, effectively squaring
F all entries. In Tensorlab, this can be achieved by applying the

transformation struct_nonneg to all underlying variables
(cf. Listing [2).

% Define factors as transformed variables.
model.factors.U = {'zl',@struct_nonneg};
model.factors.L {'z2',@struct_nonneg};
model.factors.A {'z3',@struct_nonneg};
model.factors.F {'z4',@struct_nonneg};

Listing 2. Defining nonnegative factors as transformed variables with
Tensorlab’s DSL for SDF.

0.8

0.6

0.4

True positive rate

0.2

—— SDF

I
0.8 1

0.2

| |
04 06
False positive rate

o -

Fig. 8. ROC curve for the prediction of the user-location-activity links of
50 missing users. The SDF model fuses all five data sources with coupled
nonnegative rank-2 CPDs and has an AUC of 96.75%.

The ROC curve of the resulting model is shown in Figure
[l and has an AUC of 96.75%. Experimenting with different
factor structures and tensor decompositions is as simple as
indicating which transformations and factors should be used.
For example, changing the model M) from a CPD to a
LMLRA only requires adding an extra factor in the SDF
problem to represent the LMLRA’s core tensor. However,
in our experiments the LMLRA did not offer a significant
advantage in performance compared to the CPD.

V. CONCLUSION

We presented structured data fusion (SDF) as a language
and computational framework for the rapid prototyping of cou-
pled tensor factorizations with structured factors. The ability to
create libraries of both tensor decompositions and factor struc-
tures is facilitated by decoupling these components from the
underlying optimization algorithm. New decompositions and
constraints can be added to these libraries by implementing a
small number of functions with which the structure inherent
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to each can be fully exploited by means of efficient matrix-
vector products. The countless combinations of decomposition
types, coupling between factorizations and factor structures
and ease of switching between them allows users to rapidly
iterate towards a solution. As a special case, well-known
matrix factorizations such as the singular value decomposition
can be computed by selecting the right decomposition type
and factor structures. The SDF framework was implemented
as a domain specific language (DSL) in Tensorlab [68], a
MATLAB toolbox for tensor computations. The versatility of
the framework was demonstrated by solving four applications
ranging from the computation of eigenvalue decompositions to
activity recommendation entirely within the Tensorlab’s DSL
for SDF.
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